1
|
Keppel G, Sarnow U, Biffin E, Peters S, Fitzgerald D, Boutsalis E, Waycott M, Guerin GR. Population decline in a Pleistocene refugium: Stepwise, drought-related dieback of a South Australian eucalypt. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162697. [PMID: 36898535 DOI: 10.1016/j.scitotenv.2023.162697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Refugia can facilitate the persistence of species under long-term environmental change, but it is not clear if Pleistocene refugia will remain functional as anthropogenic climate change progresses. Dieback in populations restricted to refugia therefore raises concerns about their long-term persistence. Using repeat field surveys, we investigate dieback in an isolated population of Eucalyptus macrorhyncha during two droughts and discuss prospects for its continued persistence in a Pleistocene refugium. We first confirm that the Clare Valley in South Australia has constituted a long-term refugium for the species, with the population being genetically highly distinct from other conspecific populations. However, the population lost >40 % of individuals and biomass through the droughts, with mortality being just below 20 % after the Millennium Drought (2000-2009) and almost 25 % after the Big Dry (2017-2019). The best predictors of mortality differed after each drought. While north-facing aspect of a sampling location was significant positive predictor after both droughts, biomass density and slope were significant negative predictors only after the Millennium Drought, and distance to the north-west corner of the population, which intercepts hot, dry winds, was a significant positive predictor after the Big Dry only. This suggests that more marginal sites with low biomass and sites located on flat plateaus were more vulnerable initially, but that heat-stress was an important driver of dieback during the Big Dry. Therefore, the causative drivers of dieback may change during population decline. Regeneration occurred predominantly on southern and eastern aspects, which would receive the least solar radiation. While this refugial population is experiencing severe decline, some gullies with lower solar radiation appear to support relatively healthy, regenerating stands of red stringybark, providing hope for persistence in small pockets. Monitoring and managing these pockets during future droughts will be essential to ensure the persistence of this isolated and genetically unique population.
Collapse
Affiliation(s)
- Gunnar Keppel
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia; AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.
| | - Udo Sarnow
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia
| | - Ed Biffin
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Department for Environment and Water, Adelaide, Australia.
| | - Stefan Peters
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia.
| | - Donna Fitzgerald
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia.
| | - Evan Boutsalis
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia.
| | - Michelle Waycott
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Department for Environment and Water, Adelaide, Australia.
| | - Greg R Guerin
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
2
|
Mohr JJ, Harrison PA, Stanhope J, Breed MF. Is the genomics 'cart' before the restoration ecology 'horse'? Insights from qualitative interviews and trends from the literature. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210381. [PMID: 35757881 PMCID: PMC9234818 DOI: 10.1098/rstb.2021.0381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/26/2022] [Indexed: 12/21/2022] Open
Abstract
Harnessing new technologies is vital to achieve global imperatives to restore degraded ecosystems. We explored the potential of genomics as one such tool. We aimed to understand barriers hindering the uptake of genomics, and how to overcome them, via exploratory interviews with leading scholars in both restoration and its sister discipline of conservation-a discipline that has successfully leveraged genomics. We also conducted an examination of research trends to explore some insights that emerged from the interviews, including publication trends that have used genomics to address restoration and conservation questions. Our qualitative findings revealed varied perspectives on harnessing genomics. For example, scholars in restoration without genomics experience felt genomics was over-hyped. Scholars with genomics experience emphatically emphasized the need to proceed cautiously in using genomics in restoration. Both genomics-experienced and less-experienced scholars called for case studies to demonstrate the benefits of genomics in restoration. These qualitative data contrasted with our examination of research trends, which revealed 70 restoration genomics studies, particularly studies using environmental DNA as a monitoring tool. We provide a roadmap to facilitate the uptake of genomics into restoration, to help the restoration sector meet the monumental task of restoring huge areas to biodiverse and functional ecosystems. This article is part of the theme issue 'Ecological complexity and the biosphere: the next 30 years'.
Collapse
Affiliation(s)
- Jakki J. Mohr
- College of Business, Institute on Ecosystems, University of Montana, Missoula, MT 59812, USA
| | - Peter A. Harrison
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Jessica Stanhope
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Martin F. Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
3
|
Climate Adaptation, Drought Susceptibility, and Genomic-Informed Predictions of Future Climate Refugia for the Australian Forest Tree Eucalyptus globulus. FORESTS 2022. [DOI: 10.3390/f13040575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Understanding the capacity of forest tree species to adapt to climate change is of increasing importance for managing forest genetic resources. Through a genomics approach, we modelled spatial variation in climate adaptation within the Australian temperate forest tree Eucalyptus globulus, identified putative climate drivers of this genomic variation, and predicted locations of future climate refugia and populations at-risk of future maladaptation. Using 812,158 SNPs across 130 individuals from 30 populations (i.e., localities) spanning the species’ natural range, a gradientForest algorithm found 1177 SNPs associated with locality variation in home-site climate (climate-SNPs), putatively linking them to climate adaptation. Very few climate-SNPs were associated with population-level variation in drought susceptibility, signalling the multi-faceted nature and complexity of climate adaptation. Redundancy analysis (RDA) showed 24% of the climate-SNP variation could be explained by annual precipitation, isothermality, and maximum temperature of the warmest month. Spatial predictions of the RDA climate vectors associated with climate-SNPs allowed mapping of genomically informed climate selective surfaces across the species’ range under contemporary and projected future climates. These surfaces suggest over 50% of the current distribution of E. globulus will be outside the modelled adaptive range by 2070 and at risk of climate maladaptation. Such surfaces present a new integrated approach for natural resource managers to capture adaptive genetic variation and plan translocations in the face of climate change.
Collapse
|
4
|
Towards a More Realistic Simulation of Plant Species with a Dynamic Vegetation Model Using Field-Measured Traits: The Atlas Cedar, a Case Study. FORESTS 2022. [DOI: 10.3390/f13030446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Improving the model-based predictions of plant species under a projected climate is essential to better conserve our biodiversity. However, the mechanistic link between climatic variation and plant response at the species level remains relatively poorly understood and not accurately developed in Dynamic Vegetation Models (DVMs). We investigated the acclimation to climate of Cedrus atlantica (Atlas cedar), an endemic endangered species from northwestern African mountains, in order to improve the ability of a DVM to simulate tree growth under climatic gradients. Our results showed that the specific leaf area, leaf C:N and sapwood C:N vary across the range of the species in relation to climate. Using the model parameterized with the three traits varying with climate could improve the simulated local net primary productivity (NPP) when compared to the model parameterized with fixed traits. Quantifying the influence of climate on traits and including these variations in DVMs could help to better anticipate the consequences of climate change on species dynamics and distributions. Additionally, the simulation with computed traits showed dramatic drops in NPP over the course of the 21st century. This finding is in line with other studies suggesting the decline in the species in the Rif Mountains, owing to increasing water stress.
Collapse
|
5
|
Filipe JC, Rymer PD, Byrne M, Hardy G, Mazanec R, Ahrens CW. Signatures of natural selection in a foundation tree along Mediterranean climatic gradients. Mol Ecol 2022; 31:1735-1752. [PMID: 35038378 PMCID: PMC9305101 DOI: 10.1111/mec.16351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/30/2022]
Abstract
Temperature and precipitation regimes are rapidly changing, resulting in forest dieback and extinction events, particularly in Mediterranean‐type climates (MTC). Forest management that enhance forests’ resilience is urgently required, however adaptation to climates in heterogeneous landscapes with multiple selection pressures is complex. For widespread trees in MTC we hypothesized that: patterns of local adaptation are associated with climate; precipitation is a stronger factor of adaptation than temperature; functionally related genes show similar signatures of adaptation; and adaptive variants are independently sorting across the landscape. We sampled 28 populations across the geographic distribution of Eucalyptus marginata (jarrah), in South‐west Western Australia, and obtained 13,534 independent single nucleotide polymorphic (SNP) markers across the genome. Three genotype‐association analyses that employ different ways of correcting population structure were used to identify putatively adapted SNPs associated with independent climate variables. While overall levels of population differentiation were low (FST = 0.04), environmental association analyses found a total of 2336 unique SNPs associated with temperature and precipitation variables, with 1440 SNPs annotated to genic regions. Considerable allelic turnover was identified for SNPs associated with temperature seasonality and mean precipitation of the warmest quarter, suggesting that both temperature and precipitation are important factors in adaptation. SNPs with similar gene functions had analogous allelic turnover along climate gradients, while SNPs among temperature and precipitation variables had uncorrelated patterns of adaptation. These contrasting patterns provide evidence that there may be standing genomic variation adapted to current climate gradients, providing the basis for adaptive management strategies to bolster forest resilience in the future.
Collapse
Affiliation(s)
- J C Filipe
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University
| | - P D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University
| | - M Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions
| | - G Hardy
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University
| | - R Mazanec
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions
| | - C W Ahrens
- Hawkesbury Institute for the Environment, Western Sydney University
| |
Collapse
|
6
|
McDonald G, Appleby MW, Sime H, Radford J, Hoffmann AA. Establishing a climate‐ready revegetation trial in central Victoria – A case study. ECOLOGICAL MANAGEMENT & RESTORATION 2021. [DOI: 10.1111/emr.12497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Walters SJ, Robinson TP, Byrne M, Wardell‐Johnson GW, Nevill P. Association of putatively adaptive genetic variation with climatic variables differs between a parasite and its host. Evol Appl 2021; 14:1732-1746. [PMID: 34295360 PMCID: PMC8288004 DOI: 10.1111/eva.13234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 11/28/2022] Open
Abstract
Parasitism is a pervasive phenomenon in nature with the relationship between species driving evolution in both parasite and host. Due to their host-dependent lifestyle, parasites may adapt to the abiotic environment in ways that differ from their hosts or from free-living relatives; yet rarely has this been assessed. Here, we test two competing hypotheses related to whether putatively adaptive genetic variation in a specialist mistletoe associates with the same, or different, climatic variables as its host species. We sampled 11 populations of the specialist mistletoe Amyema gibberula var. tatei (n = 154) and 10 populations of its associated host Hakea recurva subsp. recurva (n = 160). Reduced-representation sequencing was used to obtain genome-wide markers and putatively adaptive variation detected using genome scan methods. Climate associations were identified using generalized dissimilarity modelling, and these were mapped geographically to visualize the spatial patterns of genetic composition. Our results supported the hypothesis of parasites and host species responding differently to climatic variables. Temperature was relatively more important in predicting allelic turnover in the specialist mistletoe while precipitation was more important for the host. This suggests that parasitic plants and host species may respond differently to selective pressures, potentially as a result of differing nutrient acquisition strategies. Specifically, mistletoes acquire water from hosts (rather than the abiotic environment), which may provide a buffer to precipitation as a selective pressure. This work deepens and complements the physiological and other ecological studies of adaptation and provides a window into the evolutionary processes that underlie previously observed phenomena. Applying these methods to a comparative study in a host-parasite system has also highlighted factors that affect the study of selection pressure on nonmodel organisms, such as differing adaptation rates and lack of reference genomes.
Collapse
Affiliation(s)
- Sheree J. Walters
- ARC Centre for Mine Site RestorationSchool of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
| | - Todd P. Robinson
- School of Earth and Planetary ScienceCurtin UniversityBentleyWAAustralia
| | - Margaret Byrne
- Biodiversity and Conservation ScienceDepartment of Biodiversity, Conservation and AttractionsBentleyWAAustralia
- School of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
| | - Grant W. Wardell‐Johnson
- ARC Centre for Mine Site RestorationSchool of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
| | - Paul Nevill
- ARC Centre for Mine Site RestorationSchool of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
- Trace and Environmental DNA LaboratorySchool of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
| |
Collapse
|
8
|
von Takach B, Ahrens CW, Lindenmayer DB, Banks SC. Scale-dependent signatures of local adaptation in a foundation tree species. Mol Ecol 2021; 30:2248-2261. [PMID: 33740830 DOI: 10.1111/mec.15894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023]
Abstract
Understanding local adaptation is critical for conservation management under rapidly changing environmental conditions. Local adaptation inferred from genotype-environment associations may show different genomic patterns depending on the spatial scale of sampling, due to differences in the slope of environmental gradients and the level of gene flow. We compared signatures of local adaptation across the genome of mountain ash (Eucalyptus regnans) at two spatial scales: A species-wide data set and a topographically-complex subregional data set. We genotyped 367 individual trees at over 3700 single-nucleotide polymorphisms (SNPs), quantified patterns of spatial genetic structure among populations, and used two analytical methods to identify loci associated with at least one of three environmental variables at each spatial scale. Together, the analyses identified 549 potentially adaptive SNPs at the subregion scale, and 435 SNPs at the range-wide scale. A total of 39 genic or near-genic SNPs, associated with 28 genes, were identified at both spatial scales, although no SNP was identified by both methods at both scales. We observed that nongenic regions had significantly higher homozygote excess than genic regions, possibly due to selective elimination of inbred genotypes during stand development. Our results suggest that strong environmental selection occurs in mountain ash, and that the identification of putatively adaptive loci can differ substantially depending on the spatial scale of analyses. We also highlight the importance of multiple adaptive genetic architectures for understanding patterns of local adaptation across large heterogenous landscapes, with comparison of putatively adaptive loci among spatial scales providing crucial insights into the process of adaptation.
Collapse
Affiliation(s)
- Brenton von Takach
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia.,Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | - Collin W Ahrens
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - David B Lindenmayer
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | - Sam C Banks
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|
9
|
Ahrens CW, James EA, Miller AD, Scott F, Aitken NC, Jones AW, Lu-Irving P, Borevitz JO, Cantrill DJ, Rymer PD. Spatial, climate and ploidy factors drive genomic diversity and resilience in the widespread grass Themeda triandra. Mol Ecol 2020; 29:3872-3888. [PMID: 32885504 DOI: 10.1111/mec.15614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/27/2022]
Abstract
Global climate change poses a significant threat to natural communities around the world, with many plant species showing signs of climate stress. Grassland ecosystems are not an exception, with climate change compounding contemporary pressures such as habitat loss and fragmentation. In this study, we assess the climate resilience of Themeda triandra, a foundational species and the most widespread plant in Australia, by assessing the relative contributions of spatial, environmental and ploidy factors to contemporary genomic variation. Reduced-representation genome sequencing on 472 samples from 52 locations was used to test how the distribution of genomic variation, including ploidy polymorphism, supports adaptation to hotter and drier climates. We explicitly quantified isolation by distance (IBD) and isolation by environment (IBE) and predicted genomic vulnerability of populations to future climates based on expected deviation from current genomic composition. We found that a majority (54%) of genomic variation could be attributed to IBD, while an additional 22% (27% when including ploidy information) could be explained by two temperature and two precipitation climate variables demonstrating IBE. Ploidy polymorphisms were common within populations (31/52 populations), indicating that ploidy mixing is characteristic of T. triandra populations. Genomic vulnerabilities were found to be heterogeneously distributed throughout the landscape, and our analysis suggested that ploidy polymorphism, along with other factors linked to polyploidy, reduced vulnerability to future climates by 60% (0.25-0.10). Our data suggests that polyploidy may facilitate adaptation to hotter climates and highlight the importance of incorporating ploidy in adaptive management strategies to promote the resilience of this and other foundation species.
Collapse
Affiliation(s)
- Collin W Ahrens
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia.,Royal Botanic Gardens Victoria, Melbourne, VIC, Australia
| | | | - Adam D Miller
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Warrnambool, VIC, Australia
| | - Ferguson Scott
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Nicola C Aitken
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Ashley W Jones
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Patricia Lu-Irving
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Garden, Sydney, NSW, Australia
| | - Justin O Borevitz
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | - Paul D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
10
|
Fan X, Yan X, Qian C, Bachir DG, Yin X, Sun P, Ma XF. Leaf size variations in a dominant desert shrub, Reaumuria soongarica, adapted to heterogeneous environments. Ecol Evol 2020; 10:10076-10094. [PMID: 33005365 PMCID: PMC7520190 DOI: 10.1002/ece3.6668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 11/07/2022] Open
Abstract
The climate in arid Central Asia (ACA) has changed rapidly in recent decades, but the ecological consequences of this are far from clear. To predict the impacts of climate change on ecosystem functioning, greater attention should be given to the relationships between leaf functional traits and environmental heterogeneity. As a dominant constructive shrub widely distributed in ACA, Reaumuria soongarica provided us with an ideal model to understand how leaf functional traits of desert ecosystems responded to the heterogeneous environments of ACA. Here, to determine the influences of genetic and ecological factors, we characterized species-wide variations in leaf traits among 30 wild populations of R. soongarica and 16 populations grown in a common garden. We found that the leaf length, width, and leaf length to width ratio (L/W) of the northern lineage were significantly larger than those of other genetic lineages, and principal component analysis based on the in situ environmental factors distinguished the northern lineage from the other lineages studied. With increasing latitude, leaf length, width, and L/W in the wild populations increased significantly. Leaf length and L/W were negatively correlated with altitude, and first increased and then decreased with increasing mean annual temperature (MAT) and mean annual precipitation (MAP). Stepwise regression analyses further indicated that leaf length variation was mainly affected by latitude. However, leaf width was uncorrelated with altitude, MAT, or MAP. The common garden trial showed that leaf width variation among the eastern populations was caused by both local adaptation and phenotypic plasticity. Our findings suggest that R. soongarica preferentially changes leaf length to adjust leaf size to cope with environmental change. We also reveal phenotypic evidence for ecological speciation of R. soongarica. These results will help us better understand and predict the consequences of climate change for desert ecosystem functioning.
Collapse
Affiliation(s)
- Xingke Fan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province Department of Ecology and Agriculture Research Northwest Institute of Eco-Environment and Resources Chinese Academy of Sciences Lanzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Xia Yan
- School of Life Sciences Nantong University Nantong China
| | - Chaoju Qian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province Department of Ecology and Agriculture Research Northwest Institute of Eco-Environment and Resources Chinese Academy of Sciences Lanzhou China
| | - Daoura Goudia Bachir
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province Department of Ecology and Agriculture Research Northwest Institute of Eco-Environment and Resources Chinese Academy of Sciences Lanzhou China
| | - Xiaoyue Yin
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province Department of Ecology and Agriculture Research Northwest Institute of Eco-Environment and Resources Chinese Academy of Sciences Lanzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Peipei Sun
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province Department of Ecology and Agriculture Research Northwest Institute of Eco-Environment and Resources Chinese Academy of Sciences Lanzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Xiao-Fei Ma
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province Department of Ecology and Agriculture Research Northwest Institute of Eco-Environment and Resources Chinese Academy of Sciences Lanzhou China
| |
Collapse
|
11
|
Walters SJ, Robinson TP, Byrne M, Wardell-Johnson GW, Nevill P. Contrasting patterns of local adaptation along climatic gradients between a sympatric parasitic and autotrophic tree species. Mol Ecol 2020; 29:3022-3037. [PMID: 32621768 DOI: 10.1111/mec.15537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/16/2022]
Abstract
Sympatric tree species are subject to similar climatic drivers, posing a question as to whether they display comparable adaptive responses. However, no study has explicitly examined local adaptation of co-occurring parasitic and autotrophic plant species to the abiotic environment. Here we test the hypotheses that a generalist parasitic tree would display a weaker signal of selection and that genomic variation would associate with fewer climatic variables (particularly precipitation) but have similar spatial patterns to a sympatric autotrophic tree species. To test these hypotheses, we collected samples from 17 sites across the range of two tree species, the hemiparasite Nuytsia floribunda (n = 264) and sympatric autotroph Melaleuca rhaphiophylla (n = 272). We obtained 5,531 high-quality genome-wide single nucleotide polymorphisms (SNPs) for M. rhaphiophylla and 6,727 SNPs for N. floribunda using DArTseq genome scan technology. Population differentiation and environmental association approaches were used to identify signals of selection. Generalized dissimilarly modelling was used to detect climatic and spatial patterns of local adaptation across climatic gradients. Overall, 322 SNPs were identified as putatively adaptive for the autotroph, while only 57 SNPs were identified for the parasitic species. We found genomic variation to associate with different sets of bioclimatic variables for each species, with precipitation relatively less important for the parasite. Spatial patterns of predicted adaptive variability were different and indicate that co-occurring species with disparate life history traits may not respond equally to selective pressures (i.e., temperature and precipitation). Together, these findings provide insight into local adaptation of sympatric parasitic and autotrophic tree species to abiotic environments.
Collapse
Affiliation(s)
- Sheree J Walters
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Todd P Robinson
- School of Earth and Planetary Science, Curtin University, Perth, Western Australia, Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Perth, Western Australia, Australia.,School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Grant W Wardell-Johnson
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Paul Nevill
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia.,Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
12
|
Ahrens CW, Andrew ME, Mazanec RA, Ruthrof KX, Challis A, Hardy G, Byrne M, Tissue DT, Rymer PD. Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change. Ecol Evol 2020; 10:232-248. [PMID: 31988725 PMCID: PMC6972804 DOI: 10.1002/ece3.5890] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/18/2019] [Accepted: 11/10/2019] [Indexed: 12/12/2022] Open
Abstract
Climate change is testing the resilience of forests worldwide pushing physiological tolerance to climatic extremes. Plant functional traits have been shown to be adapted to climate and have evolved patterns of trait correlations (similar patterns of distribution) and coordinations (mechanistic trade-off). We predicted that traits would differentiate between populations associated with climatic gradients, suggestive of adaptive variation, and correlated traits would adapt to future climate scenarios in similar ways.We measured genetically determined trait variation and described patterns of correlation for seven traits: photochemical reflectance index (PRI), normalized difference vegetation index (NDVI), leaf size (LS), specific leaf area (SLA), δ13C (integrated water-use efficiency, WUE), nitrogen concentration (NCONC), and wood density (WD). All measures were conducted in an experimental plantation on 960 trees sourced from 12 populations of a key forest canopy species in southwestern Australia.Significant differences were found between populations for all traits. Narrow-sense heritability was significant for five traits (0.15-0.21), indicating that natural selection can drive differentiation; however, SLA (0.08) and PRI (0.11) were not significantly heritable. Generalized additive models predicted trait values across the landscape for current and future climatic conditions (>90% variance). The percent change differed markedly among traits between current and future predictions (differing as little as 1.5% (δ13C) or as much as 30% (PRI)). Some trait correlations were predicted to break down in the future (SLA:NCONC, δ13C:PRI, and NCONC:WD).Synthesis: Our results suggest that traits have contrasting genotypic patterns and will be subjected to different climate selection pressures, which may lower the working optimum for functional traits. Further, traits are independently associated with different climate factors, indicating that some trait correlations may be disrupted in the future. Genetic constraints and trait correlations may limit the ability for functional traits to adapt to climate change.
Collapse
Affiliation(s)
- Collin W. Ahrens
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
| | - Margaret E. Andrew
- Environmental & Conservation SciencesMurdoch UniversityMurdochWAAustralia
| | - Richard A. Mazanec
- Biodiversity and Conservation ScienceWestern Australian Department of Biodiversity, Conservation and AttractionsKensingtonWAAustralia
| | - Katinka X. Ruthrof
- Biodiversity and Conservation ScienceWestern Australian Department of Biodiversity, Conservation and AttractionsKensingtonWAAustralia
- Centre for Phytophthora Science and ManagementEnvironmental & Conservation SciencesMurdoch UniversityMurdochWAAustralia
| | - Anthea Challis
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
| | - Giles Hardy
- Centre for Phytophthora Science and ManagementEnvironmental & Conservation SciencesMurdoch UniversityMurdochWAAustralia
| | - Margaret Byrne
- Biodiversity and Conservation ScienceWestern Australian Department of Biodiversity, Conservation and AttractionsKensingtonWAAustralia
| | - David T. Tissue
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
| | - Paul D. Rymer
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
| |
Collapse
|
13
|
Temperature and Rainfall Are Separate Agents of Selection Shaping Population Differentiation in a Forest Tree. FORESTS 2019. [DOI: 10.3390/f10121145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Research highlights: We present evidence indicating that covariation of functional traits among populations of a forest tree is not due to genetic constraints, but rather selective covariance arising from local adaptation to different facets of the climate, namely rainfall and temperature. Background and Aims: Traits frequently covary among natural populations. Such covariation can be caused by pleiotropy and/or linkage disequilibrium, but also may arise when the traits are genetically independent as a direct consequence of natural selection, drift, mutation and/or gene flow. Of particular interest are cases of selective covariance, where natural selection directly generates among-population covariance in a set of genetically independent traits. We here studied the causes of population-level covariation in two key traits in the Australian tree Eucalyptus pauciflora. Materials and Methods: We studied covariation in seedling lignotuber size and vegetative juvenility using 37 populations sampled from throughout the geographic and ecological ranges of E. pauciflora on the island of Tasmania. We integrated evidence from multiple sources: (i) comparison of patterns of trait covariation within and among populations; (ii) climate-trait modelling using machine-learning algorithms; and (iii) selection analysis linking trait variation to field growth in an arid environment. Results: We showed strong covariation among populations compared with the weak genetic correlation within populations for the focal traits. Population differentiation in these genetically independent traits was correlated with different home-site climate variables (lignotuber size with temperature; vegetative juvenility with rainfall), which spatially covaried. The role of selection in shaping the population differentiation in lignotuber size was supported by its relationship with fitness measured in the field. Conclusions: Our study highlights the multi-trait nature of adaptation likely to occur as tree species respond to spatial and temporal changes in climate.
Collapse
|
14
|
Murray KD, Janes JK, Jones A, Bothwell HM, Andrew RL, Borevitz JO. Landscape drivers of genomic diversity and divergence in woodland Eucalyptus. Mol Ecol 2019; 28:5232-5247. [PMID: 31647597 PMCID: PMC7065176 DOI: 10.1111/mec.15287] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/23/2019] [Indexed: 01/03/2023]
Abstract
Spatial genetic patterns are influenced by numerous factors, and they can vary even among coexisting, closely related species due to differences in dispersal and selection. Eucalyptus (L'Héritier 1789; the "eucalypts") are foundation tree species that provide essential habitat and modulate ecosystem services throughout Australia. Here we present a study of landscape genomic variation in two woodland eucalypt species, using whole-genome sequencing of 388 individuals of Eucalyptus albens and Eucalyptus sideroxylon. We found exceptionally high genetic diversity (π ≈ 0.05) and low genome-wide, interspecific differentiation (FST = 0.15) and intraspecific differentiation between localities (FST ≈ 0.01-0.02). We found no support for strong, discrete population structure, but found substantial support for isolation by geographic distance (IBD) in both species. Using generalized dissimilarity modelling, we identified additional isolation by environment (IBE). Eucalyptus albens showed moderate IBD, and environmental variables have a small but significant amount of additional predictive power (i.e. IBE). Eucalyptus sideroxylon showed much stronger IBD and moderate IBE. These results highlight the vast adaptive potential of these species and set the stage for testing evolutionary hypotheses of interspecific adaptive differentiation across environments.
Collapse
Affiliation(s)
| | - Jasmine K Janes
- University of New EnglandArmidaleNSWAustralia
- Vancouver Island University,NanaimoBCCanada
| | - Ashley Jones
- Australian National UniversityCanberraACTAustralia
| | | | | | | |
Collapse
|
15
|
Hopley T, Byrne M. Gene Flow and Genetic Variation Explain Signatures of Selection across a Climate Gradient in Two Riparian Species. Genes (Basel) 2019; 10:genes10080579. [PMID: 31370268 PMCID: PMC6723506 DOI: 10.3390/genes10080579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022] Open
Abstract
Many species occur across environmental gradients and it is expected that these species will exhibit some signals of adaptation as heterogeneous environments and localized gene flow may facilitate local adaptation. While riparian zones can cross climate gradients, many of which are being impacted by climate change, they also create microclimates for the vegetation, reducing environmental heterogeneity. Species with differing distributions in these environments provide an opportunity to investigate the importance of genetic connectivity in influencing signals of adaptation over relatively short geographical distance. Association analysis with genomic data was used to compare signals of selection to climate variables in two species that have differing distributions along a river traversing a climate gradient. Results demonstrate links between connectivity, standing genetic variation, and the development of signals of selection. In the restricted species, the combination of high gene flow in the middle and lower catchment and occurrence in a microclimate created along riverbanks likely mitigated the development of selection to most climatic variables. In contrast the more widely distributed species with low gene flow showed a stronger signal of selection. Together these results strengthen our knowledge of the drivers and scale of adaptation and reinforce the importance of connectivity across a landscape to maintain adaptive potential of plant species.
Collapse
Affiliation(s)
- Tara Hopley
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia.
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia
| |
Collapse
|
16
|
Ahrens CW, Byrne M, Rymer PD. Standing genomic variation within coding and regulatory regions contributes to the adaptive capacity to climate in a foundation tree species. Mol Ecol 2019; 28:2502-2516. [PMID: 30950536 DOI: 10.1111/mec.15092] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 12/31/2022]
Abstract
Global climate is rapidly changing, and the ability for tree species to adapt is dependent on standing genomic variation; however, the distribution and abundance of functional and adaptive variants are poorly understood in natural systems. We test key hypotheses regarding the genetics of adaptive variation in a foundation tree: genomic variation is associated with climate, and genomic variation is more likely to be associated with temperature than precipitation or aridity. To test these hypotheses, we used 9,593 independent, genomic single-nucleotide polymorphisms (SNPs) from 270 individuals sampled from Corymbia calophylla's entire distribution in south-western Western Australia, spanning orthogonal temperature and precipitation gradients. Environmental association analyses returned 537 unique SNPs putatively adaptive to climate. We identified SNPs associated with climatic variation (i.e., temperature [458], precipitation [75] and aridity [78]) across the landscape. Of these, 78 SNPs were nonsynonymous (NS), while 26 SNPs were found within gene regulatory regions. The NS and regulatory candidate SNPs associated with temperature explained more deviance (27.35%) than precipitation (5.93%) and aridity (4.77%), suggesting that temperature provides stronger adaptive signals than precipitation. Genes associated with adaptive variants include functions important in stress responses to temperature and precipitation. Patterns of allelic turnover of NS and regulatory SNPs show small patterns of change through climate space with the exception of an aldehyde dehydrogenase gene variant with 80% allelic turnover with temperature. Together, these findings provide evidence for the presence of adaptive variation to climate in a foundation species and provide critical information to guide adaptive management practices.
Collapse
Affiliation(s)
- Collin W Ahrens
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Perth, Western Australia, Australia
| | - Paul D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
17
|
Phylogenomics shows lignotuber state is taxonomically informative in closely related eucalypts. Mol Phylogenet Evol 2019; 135:236-248. [PMID: 30914394 DOI: 10.1016/j.ympev.2019.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 11/21/2022]
Abstract
Plant taxa can be broadly divided based on the mechanisms enabling persistence through whole-crown disturbances, specifically whether individuals resprout, populations reseed, or both or neither of these mechanisms are employed. At scales from species through to communities, the balance of disturbance-response types has major ramifications for ecological function and biodiversity conservation. In some lineages, morphologically identical populations except for differences in a disturbance-response trait (e.g. ± lignotuber) occur, offering the opportunity to apply genetic analyses to test whether trait state is representative of broader genetic distinctiveness, or alternatively, variation in response to local environmental conditions. In eucalypts, a globally-significant plant group, we apply dense taxon sampling and high-density, genome-wide markers to test monophyly and genetic divergence among pairs of essentially morphologically-identical taxa excepting lignotuber state. Taxa differing in lignotuber state formed discrete phylogenetic lineages. Obligate-seeders were monophyletic and strongly differentiated from each other and lignotuber-resprouters, but this was not the case for all lignotuber-resprouter taxa. One lignotuber state transition within our sample clade was supported, implying convergence of some non-lignotuber morphology characters. Greater evolutionary rate associated with the obligate-seeder disturbance-response strategy offers a plausible explanation for these genetic patterns. Lignotuber state is an important taxonomic character in eucalypts, with transitions in lignotuber state having contributed to the evolution of the exceptional diversity of eucalypts in south-western Australia. Differences in lignotuber state have evolved directionally with respect to environmental conditions.
Collapse
|
18
|
Hoffmann AA, Rymer PD, Byrne M, Ruthrof KX, Whinam J, McGeoch M, Bergstrom DM, Guerin GR, Sparrow B, Joseph L, Hill SJ, Andrew NR, Camac J, Bell N, Riegler M, Gardner JL, Williams SE. Impacts of recent climate change on terrestrial flora and fauna: Some emerging Australian examples. AUSTRAL ECOL 2018. [DOI: 10.1111/aec.12674] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group School of BioSciences Bio21 Institute The University of Melbourne Melbourne Victoria 3010 Australia
| | - Paul D. Rymer
- Hawkesbury Institute for the Environment University of Western Sydney Penrith New South Wales
| | - Margaret Byrne
- Biodiversity and Conservation Science Western Australian Department of Biodiversity, Conservation, and Attractions Science Division Bentley Delivery Centre Bentley Western Australia Australia
| | - Katinka X. Ruthrof
- School of Veterinary and Life Sciences Murdoch University Murdoch Western Australia Australia
- Department of Biodiversity, Conservation and Attractions Kings Park Science Perth Western Australia Australia
| | - Jennie Whinam
- Geography and Spatial Sciences University of Tasmania Hobart Tasmania Australia
| | - Melodie McGeoch
- School of Biological Sciences Monash University Melbourne Victoria Australia
| | | | - Greg R. Guerin
- TERN School of Biological Sciences and Environment Institute University of Adelaide Adelaide South Australia Australia
| | - Ben Sparrow
- TERN School of Biological Sciences and Environment Institute University of Adelaide Adelaide South Australia Australia
| | - Leo Joseph
- Australian National Wildlife Collection National Research Collections Australia CSIRO Canberra Australian Capital Territory Australia
| | - Sarah J. Hill
- Insect Ecology Lab Centre of Excellence for Behavioural and Physiological Ecology University of New England Armidale New South Wales Australia
| | - Nigel R. Andrew
- Insect Ecology Lab Centre of Excellence for Behavioural and Physiological Ecology University of New England Armidale New South Wales Australia
| | - James Camac
- Centre of Excellence for Biosecurity Risk Analysis The University of Melbourne Melbourne Victoria Australia
| | - Nicholas Bell
- Pest and Environmental Adaptation Research Group School of BioSciences Bio21 Institute The University of Melbourne Melbourne Victoria 3010 Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment University of Western Sydney Penrith New South Wales
| | - Janet L. Gardner
- Division of Ecology & Evolution, Research School of Biology Australian National University Canberra Australian Capital Territory Australia
| | - Stephen E. Williams
- Centre for Tropical Environmental and Sustainability Science College of Science & Engineering James Cook University Townsville Queensland Australia
| |
Collapse
|
19
|
Crous KY, Drake JE, Aspinwall MJ, Sharwood RE, Tjoelker MG, Ghannoum O. Photosynthetic capacity and leaf nitrogen decline along a controlled climate gradient in provenances of two widely distributed Eucalyptus species. GLOBAL CHANGE BIOLOGY 2018; 24:4626-4644. [PMID: 29804312 DOI: 10.1111/gcb.14330] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/11/2018] [Indexed: 05/22/2023]
Abstract
Climate is an important factor limiting tree distributions and adaptation to different thermal environments may influence how tree populations respond to climate warming. Given the current rate of warming, it has been hypothesized that tree populations in warmer, more thermally stable climates may have limited capacity to respond physiologically to warming compared to populations from cooler, more seasonal climates. We determined in a controlled environment how several provenances of widely distributed Eucalyptus tereticornis and E. grandis adjusted their photosynthetic capacity to +3.5°C warming along their native distribution range (~16-38°S) and whether climate of seed origin of the provenances influenced their response to different growth temperatures. We also tested how temperature optima (Topt ) of photosynthesis and Jmax responded to higher growth temperatures. Our results showed increased photosynthesis rates at a standardized temperature with warming in temperate provenances, while rates in tropical provenances were reduced by about 40% compared to their temperate counterparts. Temperature optima of photosynthesis increased as provenances were exposed to warmer growth temperatures. Both species had ~30% reduced photosynthetic capacity in tropical and subtropical provenances related to reduced leaf nitrogen and leaf Rubisco content compared to temperate provenances. Tropical provenances operated closer to their thermal optimum and came within 3% of the Topt of Jmax during the daily temperature maxima. Hence, further warming may negatively affect C uptake and tree growth in warmer climates, whereas eucalypts in cooler climates may benefit from moderate warming.
Collapse
Affiliation(s)
- Kristine Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - John E Drake
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Department of Forest and Natural Resources Management, SUNY College of Environmental Science and Forestry, Syracuse, New York
| | - Michael J Aspinwall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - Robert E Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Oula Ghannoum
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
20
|
Ramalho CE, Byrne M, Yates CJ. A Climate-Oriented Approach to Support Decision-Making for Seed Provenance in Ecological Restoration. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|