1
|
Marchiori GN, Eynard AR, Soria EA. Essential Fatty Acids along the Women’s Life Cycle and Promotion of a
Well-balanced Metabolism. CURRENT WOMENS HEALTH REVIEWS 2024; 20. [DOI: 10.2174/0115734048247312230929092327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/12/2023] [Accepted: 08/21/2023] [Indexed: 01/03/2025]
Abstract
Abstract:
Linoleic acid (ω-6 LA) and α-linolenic acid (ω-3 ALA) are essential fatty acids (EFA)
for human beings. They must be consumed through diet and then extensively metabolized, a process that plays a fundamental role in health and eventually in disease prevention. Given the numerous changes depending on age and sex, EFA metabolic adaptations require further investigations
along the women’s life cycle, from onset to decline of the reproductive age. Thus, this review explains women’s life cycle stages and their involvement in diet intake, digestion and absorption,
the role of microbiota, metabolism, bioavailability, and EFA fate and major metabolites. This
knowledge is crucial to promoting lipid homeostasis according to female physiology through well-directed health strategies. Concerning this, the promotion of breastfeeding, nutrition, and physical activity is cardinal to counteract ALA deficiency, LA/ALA imbalance, and the release of unhealthy derivatives. These perturbations arise after menopause that compromise both lipogenic
and lipolytic pathways. The close interplay of diet, age, female organism, and microbiota also
plays a central role in regulating lipid metabolism. Consequently, future studies are encouraged to
propose efficient interventions for each stage of women's cycle. In this sense, plant-derived foods
and products are promising to be included in women’s nutrition to improve EFA metabolism.
Collapse
Affiliation(s)
- Georgina N. Marchiori
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Cátedra de Biología Celular, Histología y Embriología,
Instituto de Biología Celular. Bv. de la Reforma, Ciudad Universitaria, 5014, Córdoba, Argentina
- Universidad
Nacional de Córdoba, Facultad de Ciencias Médicas, Escuela de Nutrición. Bv. de la Reforma, Ciudad Universitaria,
5014, Córdoba, Argentina
| | - Aldo R. Eynard
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Cátedra de Biología Celular, Histología y Embriología,
Instituto de Biología Celular. Bv. de la Reforma, Ciudad Universitaria, 5014, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, INICSA.
Bv. de la Reforma, Ciudad Universitaria, 5014, Córdoba, Argentina
| | - Elio A. Soria
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Cátedra de Biología Celular, Histología y Embriología,
Instituto de Biología Celular. Bv. de la Reforma, Ciudad Universitaria, 5014, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, INICSA.
Bv. de la Reforma, Ciudad Universitaria, 5014, Córdoba, Argentina
| |
Collapse
|
2
|
Fang H, Wang X, Wang Z, Ma X, Zhang L, Yang L. Modulation of PI3K/AKT/mTOR signaling pathway in the ovine liver and duodenum during early pregnancy. Domest Anim Endocrinol 2024; 89:106870. [PMID: 38954983 DOI: 10.1016/j.domaniend.2024.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
The liver and intestine play a critical role in nutrient absorption, storage, and metabolism. The aim of this study was to evaluate expression pattern of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of the rapamycin (mTOR) signaling pathway that included PI3K, AKT1, mTOR, FoxO1, SREBP-1, PPARα, PTEN and FXR in the maternal liver and duodenum. Ovine livers and duodenums were sampled at day 16 of the estrous cycle, and at days 13, 16 and 25 of gestation, and RT-qPCR, western blot and immunohistochemistry analysis were used to detect mRNA and protein expression. The results showed that expression of PI3K, AKT1, p-mTOR, FoxO1, SREBP-1 and PTEN upregulated in the maternal liver, and PPARα upregulated in the duodenum. However, expression of FoxO1, SREBP-1 and PTEN in the duodenum downregulated during early pregnancy. In addition, expression levels of SREBP-1, PTEN and PPARα in the maternal liver, and PI3K in the duodenum peaked at day 13 of pregnancy. In addition, expression levels of PI3K, p-mTOR and FoxO1 in the liver, and AKT1 and p-mTOR in the duodenum peaked at day 16 of pregnancy. Nevertheless, expression levels of FXR both in the maternal liver duodenum downregulated at days 13 and 16 of pregnancy. In conclusion, early pregnancy regulated expression pattern of PI3K/AKT/mTOR signaling pathway in the ovine liver and duodenum in a pregnancy stage-specific and tissue-specific manner, which may be necessary for the adaptations in maternal hepatic nutrient metabolism and intestinal nutrient absorption early pregnancy.
Collapse
Affiliation(s)
- Hongxu Fang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China
| | - Xinxin Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China
| | - Zhongyue Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China
| | - Xiaoxin Ma
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China.
| |
Collapse
|
3
|
Sousa D, Magalhães C, Matafome P, Pereira S. Adipose tissue-liver cross-talk: a route to hepatic dysfunction in pregnant women with obesity. Biosci Rep 2024; 44:BSR20231679. [PMID: 39083072 PMCID: PMC11327218 DOI: 10.1042/bsr20231679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/24/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Obesity during pregnancy has been escalating, becoming a huge problem that poses consequences not only for the health of the offspring but also for the maternal well-being. Women's adipose and hepatic tissue metabolism undergoes significant changes during the gestational period. During pregnancy, obesity is a primary instigator of steatosis, increasing the risk of non-alcholic fatty liver disease (NAFLD), now recognized under the updated nomenclature metabolic dysfunction-associated steatotic liver disease (MASLD). Pregnant women with obesity present higher levels of free fatty acids and glucose, reduction in insulin sensitivity, and adipose tissue endocrine dysregulation. Furthermore, obesity-induced modifications in clock genes and lipid-associated gene expression within adipose tissue disrupt crucial metabolic adaptations, potentially culminating in adipose tissue dysfunction. Thus, the liver experiences increased exposure to free fatty acids through the portal vein. Higher uptake of free fatty acids into the liver disrupts hepatic lipid oxidation while enhances lipogenesis, thereby predisposing to ectopic fat deposition within the liver. This review focuses on the obesity-induced changes during pregnancy in both liver and adipose tissue metabolism, elucidating how the metabolic crosstalk between these two organs can be dysregulated in pregnant women living with obesity.
Collapse
Affiliation(s)
- Diana Sousa
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Carina C. Magalhães
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Paulo Matafome
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Polytechnic University of Coimbra, Coimbra Health School, Rua 5 de Outubro—S. Martinho do Bispo, 3046-854 Coimbra, Portugal
| | - Susana P. Pereira
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra,3004-504 Coimbra, Portugal
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra; 3004-517 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory of for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
4
|
Fang H, Li Q, Wang H, Ren Y, Zhang L, Yang L. Maternal nutrient metabolism in the liver during pregnancy. Front Endocrinol (Lausanne) 2024; 15:1295677. [PMID: 38572473 PMCID: PMC10987773 DOI: 10.3389/fendo.2024.1295677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
The liver plays pivotal roles in nutrient metabolism, and correct hepatic adaptations are required in maternal nutrient metabolism during pregnancy. In this review, hepatic nutrient metabolism, including glucose metabolism, lipid and cholesterol metabolism, and protein and amino acid metabolism, is first addressed. In addition, recent progress on maternal hepatic adaptations in nutrient metabolism during pregnancy is discussed. Finally, the factors that regulate hepatic nutrient metabolism during pregnancy are highlighted, and the factors include follicle-stimulating hormone, estrogen, progesterone, insulin-like growth factor 1, prostaglandins fibroblast growth factor 21, serotonin, growth hormone, adrenocorticotropic hormone, prolactin, thyroid stimulating hormone, melatonin, adrenal hormone, leptin, glucagon-like peptide-1, insulin glucagon and thyroid hormone. Our vision is that more attention should be paid to liver nutrient metabolism during pregnancy, which will be helpful for utilizing nutrient appropriately and efficiently, and avoiding liver diseases during pregnancy.
Collapse
Affiliation(s)
- Hongxu Fang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Qingyang Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Haichao Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ying Ren
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
5
|
Rossi GS, Welch KC. Leptin Resistance Does Not Facilitate Migratory Fattening in Ruby-Throated Hummingbirds (Archilochus Colubris). Integr Comp Biol 2023; 63:1075-1086. [PMID: 37248054 DOI: 10.1093/icb/icad046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023] Open
Abstract
In mammals, leptin is an important energy homeostasis hormone produced by adipose tissue. Circulating leptin concentrations correlate positively with fat mass and act in a negative feedback fashion to inhibit food intake and increase energy expenditure, thereby preventing fat gain. For some species, leptin resistance is advantageous during times of year where fat gain is necessary (e.g., prior to hibernation). While the function of leptin in birds remains controversial, seasonal leptin resistance may similarly benefit migratory species. Here, we used the ruby-throated hummingbird (Archilochus colubris) to test the hypothesis that leptin resistance promotes fattening prior to migration. We predicted that during the migratory fattening period, leptin levels should correlate positively with fat mass but should not inhibit food intake or increase energy expenditure, resulting in fattening. We tracked the body (fat) mass, the concentration of leptin-like protein in the urine, and the food intake of 12 captive hummingbirds from August 2021 to January 2022. In a subset of hummingbirds, we also quantified voluntary physical activity as a proxy for energy expenditure. We found remarkable age-related variation in fattening strategies, with juveniles doubling their body fat by mid-September and adults exhibiting only a 50% increase. Changes in fat mass were strongly associated with increased food intake and reduced voluntary activity. However, we found no correlation between leptin-like protein concentration and fat mass, food intake, or voluntary activity. Since increased torpor use has been shown to accelerate migratory fattening in ruby-throated hummingbirds, we also hypothesized that leptin is a mediator of torpor use. In an experimental manipulation of circulating leptin, however, we found no change in torpor use, body fat, or food intake. Overall, our findings suggest that leptin may not act as an adipostat in hummingbirds, nor does leptin resistance regulate how hummingbirds fatten prior to migration.
Collapse
Affiliation(s)
- Giulia S Rossi
- Departmant of Biological Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| | - Kenneth C Welch
- Departmant of Biological Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| |
Collapse
|
6
|
Rees A, Richards O, Chambers M, Jenkins BJ, Cronin JG, Thornton CA. Immunometabolic adaptation and immune plasticity in pregnancy and the bi-directional effects of obesity. Clin Exp Immunol 2022; 208:132-146. [PMID: 35348641 PMCID: PMC9188350 DOI: 10.1093/cei/uxac003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/24/2022] [Indexed: 01/25/2023] Open
Abstract
Mandatory maternal metabolic and immunological changes are essential to pregnancy success. Parallel changes in metabolism and immune function make immunometabolism an attractive mechanism to enable dynamic immune adaptation during pregnancy. Immunometabolism is a burgeoning field with the underlying principle being that cellular metabolism underpins immune cell function. With whole body changes to the metabolism of carbohydrates, protein and lipids well recognised to occur in pregnancy and our growing understanding of immunometabolism as a determinant of immunoinflammatory effector responses, it would seem reasonable to expect immune plasticity during pregnancy to be linked to changes in the availability and handling of multiple nutrient energy sources by immune cells. While studies of immunometabolism in pregnancy are only just beginning, the recognised bi-directional interaction between metabolism and immune function in the metabolic disorder obesity might provide some of the earliest insights into the role of immunometabolism in immune plasticity in pregnancy. Characterised by chronic low-grade inflammation including in pregnant women, obesity is associated with numerous adverse outcomes during pregnancy and beyond for both mother and child. Concurrent changes in metabolism and immunoinflammation are consistently described but any causative link is not well established. Here we provide an overview of the metabolic and immunological changes that occur in pregnancy and how these might contribute to healthy versus adverse pregnancy outcomes with special consideration of possible interactions with obesity.
Collapse
Affiliation(s)
- April Rees
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - Oliver Richards
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - Megan Chambers
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - Benjamin J Jenkins
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - James G Cronin
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - Catherine A Thornton
- Corresponding author: Cathy Thornton, ILS1, Swansea University Medical School, Singleton Campus, Swansea University, Swansea, Wales SA2 8PP, UK.
| |
Collapse
|
7
|
OUP accepted manuscript. Nutr Rev 2022; 80:2178-2197. [DOI: 10.1093/nutrit/nuac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Does Altered Cellular Metabolism Underpin the Normal Changes to the Maternal Immune System during Pregnancy? IMMUNOMETABOLISM 2021; 3:e210031. [PMID: 34729242 PMCID: PMC7611926 DOI: 10.20900/immunometab20210031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pregnancy is characterised by metabolic changes that occur to support the growth and development of the fetus over the course of gestation. These metabolic changes can be classified into two distinct phases: an initial anabolic phase to prepare an adequate store of substrates and energy which are then broken down and used during a catabolic phase to meet the energetic demands of the mother, placenta and fetus. Dynamic readjustment of immune homeostasis is also a feature of pregnancy and is likely linked to the changes in energy substrate utilisation at this time. As cellular metabolism is increasingly recognised as a key determinant of immune cell phenotype and function, we consider how changes in maternal metabolism might contribute to T cell plasticity during pregnancy.
Collapse
|
9
|
Galindo-Cáceres MA, Parra-Unda R, Murillo-Llanes J, Morgan-Ortiz F, Rendón-Maldonado JG, Osuna-Espinoza KY, Osuna-Ramírez I. Association of leptin receptor expression in placenta and peripheral blood mononuclear cell with maternal weight in birth outcomes. Cytokine 2020; 138:155362. [PMID: 33264748 DOI: 10.1016/j.cyto.2020.155362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The pregnancy period represents the most intense period of growth and development. Pre-pregnancy weight influences weight gain during pregnancy. Leptin is a hormone mainly derived from white adipose tissue, during pregnancy leptin is also produced by the placenta. It has been suggested that the effects of placental leptin on the mother may contribute to endocrine-mediated alterations in energy balance; a dysregulation in leptin levels or its receptors may lead to poor birth outcomes. Therefore, the main goal of the present study was to analyze the differences in birth outcomes by maternal weight with the expression level of leptin receptor in maternal peripheral blood mononuclear cell (PBMC) and placental tissue. METHODS Women with full-term gestation and its offspring were enrolled. Total RNA from maternal PBMC and placenta was obtained to perform the analysis of expression of the leptin receptor (LEPR) gene trough real-time PCR technique. Data were analyzed using one-way ANOVA or Mann-Whitney u test when applicable. Pearson correlation coefficient was used to determine the relationship between continuous variables (Stata v.13); p ≤ 0.05 was considered statistically significant. RESULTS No statistically significant differences were found between LEPR expression level and the BMI studied groups in maternal PBMC and placental tissue. Interaction between gestational weight gain (GWG) and LEPR in maternal PBMC explain in a 32% the variability of the newborn weight. CONCLUSIONS LEPR expression level in maternal PBMC correlates with newborn measurements independent from sex. GWG can affect fetal development by increasing fetal birth weight.
Collapse
Affiliation(s)
- M A Galindo-Cáceres
- Unidad de Investigaciones en Salud Pública, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - R Parra-Unda
- Unidad de Investigaciones en Salud Pública, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - J Murillo-Llanes
- Departamento de Investigación, Hospital de la Mujer de Culiacán, Servicios de Salud de Sinaloa, Culiacán, Sinaloa, Mexico
| | - F Morgan-Ortiz
- Ginecología y Obstetricia, Centro de Investigación y Docencia en Ciencias de la Salud, Hospital Civil de Culiacán, Culiacán, Sinaloa, Mexico
| | - J G Rendón-Maldonado
- Unidad de Investigaciones en Salud Pública, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - K Y Osuna-Espinoza
- Unidad Académica de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - I Osuna-Ramírez
- Unidad de Investigaciones en Salud Pública, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico.
| |
Collapse
|
10
|
Khant Aung Z, Grattan DR, Ladyman SR. Pregnancy-induced adaptation of central sensitivity to leptin and insulin. Mol Cell Endocrinol 2020; 516:110933. [PMID: 32707081 DOI: 10.1016/j.mce.2020.110933] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Pregnancy is a time of increased food intake and fat deposition in the mother, and adaptations of glucose homeostasis to meet the energy demands of the growing fetus. As part of these adaptations, leptin and insulin concentrations increase in the maternal circulation during pregnancy. Central effects of leptin and insulin, however, are counterproductive to pregnancy, as increased action of these hormones in the brain lead to suppression of food intake. To prevent this, it is well documented that pregnancy induces a state of leptin- and insulin-insensitivity in the brain, particularly the hypothalamus, in a range of species. While the mechanisms underlying leptin- or insulin-insensitivity during pregnancy vary between species, there is evidence of reduced transport into the brain, impaired activation of intracellular signalling pathways, including reduced leptin receptor expression, and attenuated activation of downstream neuronal pathways, especially for leptin insensitivity. Pregnancy-induced changes in prolactin, growth hormone and leptin are discussed in terms of their role in mediating this reduced response to leptin and insulin.
Collapse
Affiliation(s)
- Z Khant Aung
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - D R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1010, New Zealand
| | - S R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1010, New Zealand.
| |
Collapse
|
11
|
Xiao WQ, He JR, Shen SY, Lu JH, Kuang YS, Wei XL, Qiu X. Maternal circulating leptin profile during pregnancy and gestational diabetes mellitus. Diabetes Res Clin Pract 2020; 161:108041. [PMID: 32006645 DOI: 10.1016/j.diabres.2020.108041] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
AIMS To evaluate the difference in maternal circulating leptin profile between pregnant women with and without gestational diabetes mellitus (GDM). METHODS This is a nested case-control study embedded in the Born in Guangzhou Cohort Study in Guangzhou Women and Children's Medical Center, with 198 GDM cases and 192 controls included. Maternal plasma leptin profile was defined as leptin concentrations measured at early (baseline) and late pregnancy, as well as a ratio of concentration at late to that at early pregnancy (RL1L0). General linear regression was used to assess the associations between GDM and log-transformed leptin measurements. RESULTS Women with GDM had a higher baseline leptin concentration and lower RL1L0 compared to those without GDM. The log leptin concentration at baseline (β: 0.19, 95%CI: 0.04, 0.34) and the log RL1L0 (β: -0.22, 95%CI: -0.41, -0.03) were associated with GDM status. The RL1L0 decreased significantly along with the increase of 1-hour glucose and the difference between 1-hour and fasting glucose levels in both GDM and non-GDM women. CONCLUSIONS Women with GDM had a certain profile of circulating leptin, with higher baseline concentration but less increase during pregnancy, suggesting an impaired compensatory response to increasing insulin resistance along with the progress of pregnancy.
Collapse
Affiliation(s)
- Wan-Qing Xiao
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China; Department of Woman and Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China; Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Jian-Rong He
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China; Department of Woman and Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Song-Ying Shen
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Jin-Hua Lu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China; Department of Woman and Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Ya-Shu Kuang
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Xue-Ling Wei
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China; Department of Woman and Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China; Department of Woman and Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China; Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China.
| |
Collapse
|