1
|
Zhang Y, Wang B, Sun W, Wang G, Liu Z, Zhang X, Ding J, Han Y, Zhang H. Paternal exposures to endocrine-disrupting chemicals induce intergenerational epigenetic influences on offspring: A review. ENVIRONMENT INTERNATIONAL 2024; 187:108689. [PMID: 38688236 DOI: 10.1016/j.envint.2024.108689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are ubiquitous in ecological environments and have become a great issue of public health concern since the 1990 s. There is a deep scientific understanding of the toxicity of EDCs. However, recent studies have found that the abnormal physiological functions of the parents caused by EDCs could be transmitted to their unexposed offspring, leading to intergenerational toxicity. We questioned whether sustained epigenetic changes occur through the male germline. In this review, we (1) systematically searched the available research on the intergenerational impacts of EDCs in aquatic and mammal organisms, including 42 articles, (2) summarized the intergenerational genetic effects, such as decreased offspring survival, abnormal reproductive dysfunction, metabolic disorders, and behavioral abnormalities, (3) summarized the mechanisms of intergenerational toxicity through paternal interactions, and (4) propose suggestions on future research directions to develop a deeper understanding of the ecological risk of EDCs.
Collapse
Affiliation(s)
- Yinan Zhang
- Hangzhou Normal University, Hangzhou 310018, China
| | - Bingyi Wang
- Hangzhou Normal University, Hangzhou 310018, China
| | - Wenhui Sun
- Hangzhou Normal University, Hangzhou 310018, China
| | | | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou 310018, China; Hangzhou International Urbanology Research Center, Hangzhou 311121, China
| | | | - Jiafeng Ding
- Hangzhou Normal University, Hangzhou 310018, China
| | - Yu Han
- Hangzhou Normal University, Hangzhou 310018, China
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou 310018, China; Hangzhou International Urbanology Research Center, Hangzhou 311121, China.
| |
Collapse
|
2
|
Jones SL, De Braga V, Caccese C, Lew J, Elgbeili G, Castellanos-Ryan N, Parent S, Muckle G, Herba CM, Fraser WD, Ducharme S, Barnwell J, Trasler J, Séguin JR, Nguyen TV, Montreuil TC. Prenatal paternal anxiety symptoms predict child DHEA levels and internalizing symptoms during adrenarche. Front Behav Neurosci 2024; 17:1217846. [PMID: 38239262 PMCID: PMC10794355 DOI: 10.3389/fnbeh.2023.1217846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction This study examined (1) whether measures of paternal anxious and depressive symptoms collected prenatally and during a follow-up assessment when the child was in middle childhood, predict child neuroendocrine outcomes, and (2) whether neuroendocrine outcomes are intermediate factors between paternal mental health and child cognitive/behavioral outcomes. Middle childhood coincides with increased autonomy as the child transitions into grade school, and with adrenarche, as the maturing adrenal gland increases secretion of dehydroepiandrosterone (DHEA) and its sulfated metabolite (DHEA-S), hormones that are implicated in corticolimbic development which regulate emotions and cognition. Methods Participants were recruited from a subsample of a large prospective birth cohort study (3D study). We conducted a follow-up study when children were 6-8 years old (N = 61 families, 36 boys, 25 girls). Parental symptoms of anxiety, stress and depression were assessed via validated self-report questionnaires: prenatally using an in-house anxiety questionnaire, the Perceived Stress Scale (PSS) and the Center for Epidemiologic Studies Depression (CES-D), and at the follow up, using the Beck Anxiety and Beck Depression Inventories. Children provided salivary hormone samples, and their pituitary gland volume was measured from structural Magnetic Resonance Imaging (MRI) scans. Child behaviors were measured using the Strengths and Difficulties Questionnaire and cognitive outcomes using the WISC-V. Multiple regression analyses were used to test whether paternal mental health symptoms assessed prenatally and during childhood are associated with child neuroendocrine outcomes, adjusting for maternal mental health and child sex. Indirect-effect models assessed whether neuroendocrine factors are important intermediates that link paternal mental health and cognitive/behavioral outcomes. Results (1) Fathers' prenatal anxiety symptoms predicted lower DHEA levels in the children, but not pituitary volume. (2) Higher prenatal paternal anxiety symptoms predicted higher child internalizing symptoms via an indirect pathway of lower child DHEA. No associations were detected between paternal anxiety symptoms measured in childhood, and neuroendocrine outcomes. No child sex differences were detected on any measure. Conclusion These results highlight the often-overlooked role of paternal factors during pregnancy on child development, suggesting that paternal prenatal anxiety symptoms are associated with child neuroendocrine function and in turn internalizing symptoms that manifest at least up to middle childhood.
Collapse
Affiliation(s)
- Sherri Lee Jones
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Department of Psychiatry, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- Department of Psychiatry, Douglas Research Center, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Victoria De Braga
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Department of Psychiatry, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- School of Medicine, McGill University, Montreal, QC, Canada
| | - Christina Caccese
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Department of Psychiatry, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Jimin Lew
- Department of Psychiatry, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Guillaume Elgbeili
- Department of Psychiatry, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- Department of Psychiatry, Douglas Research Center, Douglas Mental Health University Institute, Montreal, QC, Canada
| | | | - Sophie Parent
- School of Psychoeducation, Université de Montréal, Montreal, QC, Canada
| | - Gina Muckle
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, School of Psychology, Laval University, Québec, QC, Canada
| | - Catherine M. Herba
- Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Université de Montréal, Montreal, QC, Canada
- Department of Psychology, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - William D. Fraser
- Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Université de Montréal, Montreal, QC, Canada
- Department of Obstetrics and Gynecology, Centre de Recherche du CHU de Sherbrooke, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Ducharme
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Department of Psychiatry, Douglas Research Center, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Julia Barnwell
- Department of Psychiatry, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Human Genetics and Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Jacquetta Trasler
- Department of Psychiatry, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Human Genetics and Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Jean R. Séguin
- Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Université de Montréal, Montreal, QC, Canada
- Department of Psychiatry and Addiction, Université de Montréal, Montreal, QC, Canada
| | - Tuong-Vi Nguyen
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Department of Psychiatry, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- Reproductive Psychiatry Program, McGill University Health Centre, Departments of Psychiatry and Obstetrics and Gynecology, Montreal, QC, Canada
| | - Tina C. Montreuil
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Department of Psychiatry, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Université de Montréal, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Department of Educational and Counselling Psychology, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Tompkins JD. Transgenerational Epigenetic DNA Methylation Editing and Human Disease. Biomolecules 2023; 13:1684. [PMID: 38136557 PMCID: PMC10742326 DOI: 10.3390/biom13121684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
During gestation, maternal (F0), embryonic (F1), and migrating primordial germ cell (F2) genomes can be simultaneously exposed to environmental influences. Accumulating evidence suggests that operating epi- or above the genetic DNA sequence, covalent DNA methylation (DNAme) can be recorded onto DNA in response to environmental insults, some sites which escape normal germline erasure. These appear to intrinsically regulate future disease propensity, even transgenerationally. Thus, an organism's genome can undergo epigenetic adjustment based on environmental influences experienced by prior generations. During the earliest stages of mammalian development, the three-dimensional presentation of the genome is dramatically changed, and DNAme is removed genome wide. Why, then, do some pathological DNAme patterns appear to be heritable? Are these correctable? In the following sections, I review concepts of transgenerational epigenetics and recent work towards programming transgenerational DNAme. A framework for editing heritable DNAme and challenges are discussed, and ethics in human research is introduced.
Collapse
Affiliation(s)
- Joshua D Tompkins
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Abruzzese GA, Ferreira SR, Ferrer MJ, Silva AF, Motta AB. Prenatal Androgen Excess Induces Multigenerational Effects on Female and Male Descendants. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231196461. [PMID: 37705939 PMCID: PMC10496475 DOI: 10.1177/11795514231196461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/15/2023] [Indexed: 09/15/2023] Open
Abstract
Background It is still unelucidated how hormonal alterations affect developing organisms and their descendants. Particularly, the effects of androgen levels are of clinical relevance as they are usually high in women with Polycystic Ovary Syndrome (PCOS). Moreover, it is still unknown how androgens may affect males' health and their descendants. Objectives We aimed to evaluate the multigenerational effect of prenatal androgen excess until a second generation at early developmental stages considering both maternal and paternal effects. Design And Methods This is an animal model study. Female rats (F0) were exposed to androgens during pregnancy by injections of 1 mg of testosterone to obtain prenatally hyperandrogenized (PH) animals (F1), leading to a well-known animal model that resembles PCOS features. A control (C) group was obtained by vehicle injections. The PH-F1 animals were crossed with C males (m) or females (f) and C animals were also mated, thus obtaining 3 different mating groups: Cf × Cm, PHf × Cm, Cf × PHm and their offspring (F2). Results F1-PHf presented altered glucose metabolism and lipid profile compared to F1-C females. In addition, F1-PHf showed an increased time to mating with control males compared to the C group. At gestational day 14, we found alterations in glucose and total cholesterol serum levels and in the placental size of the pregnant F1-PHf and Cf mated to F1-PHm. The F2 offspring resulting from F1-PH mothers or fathers showed alterations in their growth, size, and glucose metabolism up to early post-natal development in a sex-dependent manner, being the females born to F1-PHf the most affected ones. Conclusion androgen exposure during intrauterine life leads to programing effects in females and males that affect offspring health in a sex-dependent manner, at least up-to a second generation. In addition, this study suggests paternally mediated effects on the F2 offspring development.
Collapse
Affiliation(s)
- Giselle Adriana Abruzzese
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvana Rocio Ferreira
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
- Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Maria José Ferrer
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Aimé Florencia Silva
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
5
|
Rumph JT, Stephens VR, Ameli S, Brown LK, Rayford KJ, Nde PN, Osteen KG, Bruner-Tran KL. A Paternal Fish Oil Diet Preconception Reduces Lung Inflammation in a Toxicant-Driven Murine Model of New Bronchopulmonary Dysplasia. Mar Drugs 2023; 21:161. [PMID: 36976210 PMCID: PMC10052688 DOI: 10.3390/md21030161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/25/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
New bronchopulmonary dysplasia (BPD) is a neonatal disease that is theorized to begin in utero and manifests as reduced alveolarization due to inflammation of the lung. Risk factors for new BPD in human infants include intrauterine growth restriction (IUGR), premature birth (PTB) and formula feeding. Using a mouse model, our group recently reported that a paternal history of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure increased his offspring's risk of IUGR, PTB, and new BPD. Additionally, formula supplementation of these neonates worsened the severity of pulmonary disease. In a separate study, we reported that a paternal preconception fish oil diet prevented TCDD-driven IUGR and PTB. Not surprisingly, eliminating these two major risk factors for new BPD also significantly reduced development of neonatal lung disease. However, this prior study did not examine the potential mechanism for fish oil's protective effect. Herein, we sought to determine whether a paternal preconception fish oil diet attenuated toxicant-associated lung inflammation, which is an important contributor to the pathogenesis of new BPD. Compared to offspring of standard diet TCDD-exposed males, offspring of TCDD-exposed males provided a fish oil diet prior to conception exhibited a significant reduction in pulmonary expression of multiple pro-inflammatory mediators (Tlr4, Cxcr2, Il-1 alpha). Additionally, neonatal lungs of pups born to fish oil treated fathers exhibited minimal hemorrhaging or edema. Currently, prevention of BPD is largely focused on maternal strategies to improve health (e.g., smoking cessation) or reduce risk of PTB (e.g., progesterone supplementation). Our studies in mice support a role for also targeting paternal factors to improve pregnancy outcomes and child health.
Collapse
Affiliation(s)
- Jelonia T. Rumph
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Victoria R. Stephens
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sharareh Ameli
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - LaKendria K. Brown
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Kayla J. Rayford
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Pius N. Nde
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Kevin G. Osteen
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| | - Kaylon L. Bruner-Tran
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Greeson KW, Crow KMS, Edenfield RC, Easley CA. Inheritance of paternal lifestyles and exposures through sperm DNA methylation. Nat Rev Urol 2023:10.1038/s41585-022-00708-9. [PMID: 36653672 DOI: 10.1038/s41585-022-00708-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/19/2023]
Abstract
Many different lifestyle factors and chemicals present in the environment are a threat to the reproductive tracts of humans. The potential for parental preconception exposure to alter gametes and for these alterations to be passed on to offspring and negatively affect embryo growth and development is of concern. The connection between maternal exposures and offspring health is a frequent focus in epidemiological studies, but paternal preconception exposures are much less frequently considered and are also very important determinants of offspring health. Several environmental and lifestyle factors in men have been found to alter sperm epigenetics, which can regulate gene expression during early embryonic development. Epigenetic information is thought to be a mechanism that evolved for organisms to pass on information about their lived experiences to offspring. DNA methylation is a well-studied epigenetic regulator that is sensitive to environmental exposures in somatic cells and sperm. The continuous production of sperm from spermatogonial stem cells throughout a man's adult life and the presence of spermatogonial stem cells outside of the blood-testis barrier makes them susceptible to environmental insults. Furthermore, altered sperm DNA methylation patterns can be maintained throughout development and ultimately result in impairments, which could predispose offspring to disease. Innovations in human stem cell-based spermatogenic models can be used to elucidate the paternal origins of health and disease.
Collapse
Affiliation(s)
- Katherine W Greeson
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Krista M S Crow
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - R Clayton Edenfield
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Charles A Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA. .,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
7
|
Bhadsavle SS, Golding MC. Paternal epigenetic influences on placental health and their impacts on offspring development and disease. Front Genet 2022; 13:1068408. [PMID: 36468017 PMCID: PMC9716072 DOI: 10.3389/fgene.2022.1068408] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 07/25/2023] Open
Abstract
Our efforts to understand the developmental origins of birth defects and disease have primarily focused on maternal exposures and intrauterine stressors. Recently, research into non-genomic mechanisms of inheritance has led to the recognition that epigenetic factors carried in sperm also significantly impact the health of future generations. However, although researchers have described a range of potential epigenetic signals transmitted through sperm, we have yet to obtain a mechanistic understanding of how these paternally-inherited factors influence offspring development and modify life-long health. In this endeavor, the emerging influence of the paternal epigenetic program on placental development, patterning, and function may help explain how a diverse range of male exposures induce comparable intergenerational effects on offspring health. During pregnancy, the placenta serves as the dynamic interface between mother and fetus, regulating nutrient, oxygen, and waste exchange and coordinating fetal growth and maturation. Studies examining intrauterine maternal stressors routinely describe alterations in placental growth, histological organization, and glycogen content, which correlate with well-described influences on infant health and adult onset of disease. Significantly, the emergence of similar phenotypes in models examining preconception male exposures indicates that paternal stressors transmit an epigenetic memory to their offspring that also negatively impacts placental function. Like maternal models, paternally programmed placental dysfunction exerts life-long consequences on offspring health, particularly metabolic function. Here, focusing primarily on rodent models, we review the literature and discuss the influences of preconception male health and exposure history on placental growth and patterning. We emphasize the emergence of common placental phenotypes shared between models examining preconception male and intrauterine stressors but note that the direction of change frequently differs between maternal and paternal exposures. We posit that alterations in placental growth, histological organization, and glycogen content broadly serve as reliable markers of altered paternal developmental programming, predicting the emergence of structural and metabolic defects in the offspring. Finally, we suggest the existence of an unrecognized developmental axis between the male germline and the extraembryonic lineages that may have evolved to enhance fetal adaptation.
Collapse
Affiliation(s)
| | - Michael C. Golding
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
8
|
A Paternal Fish Oil Diet Preconception Modulates the Gut Microbiome and Attenuates Necrotizing Enterocolitis in Neonatal Mice. Mar Drugs 2022; 20:md20060390. [PMID: 35736193 PMCID: PMC9230221 DOI: 10.3390/md20060390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/05/2022] Open
Abstract
Epidemiology and animal studies suggest that a paternal history of toxicant exposure contributes to the developmental origins of health and disease. Using a mouse model, our laboratory previously reported that a paternal history of in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased his offspring’s risk of developing necrotizing enterocolitis (NEC). Additionally, our group and others have found that formula supplementation also increases the risk of NEC in both humans and mice. Our murine studies revealed that intervening with a paternal fish oil diet preconception eliminated the TCDD-associated outcomes that are risk factors for NEC (e.g., intrauterine growth restriction, delayed postnatal growth, and preterm birth). However, the efficacy of a paternal fish oil diet in eliminating the risk of disease development in his offspring was not investigated. Herein, reproductive-age male mice exposed to TCDD in utero were weaned to a standard or fish oil diet for one full cycle of spermatogenesis, then mated to age-matched unexposed females. Their offspring were randomized to a strict maternal milk diet or a supplemental formula diet from postnatal days 7–10. Offspring colon contents and intestines were collected to determine the onset of gut dysbiosis and NEC. We found that a paternal fish oil diet preconception reduced his offspring’s risk of toxicant-driven NEC, which was associated with a decrease in the relative abundance of the Firmicutes phylum, but an increase in the relative abundance of the Negativicutes class.
Collapse
|
9
|
Sum KK, Tint MT, Aguilera R, Dickens BSL, Choo S, Ang LT, Phua D, Law EC, Ng S, Tan KML, Benmarhnia T, Karnani N, Eriksson JG, Chong YS, Yap F, Tan KH, Lee YS, Chan SY, Chong MFF, Huang J. The socioeconomic landscape of the exposome during pregnancy. ENVIRONMENT INTERNATIONAL 2022; 163:107205. [PMID: 35349911 DOI: 10.1016/j.envint.2022.107205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND While socioeconomic position (SEP) is consistently related to pregnancy and birth outcome disparities, relevant biological mechanisms are manifold, thus necessitating more comprehensive characterization of SEP-exposome associations during pregnancy. OBJECTIVES We implemented an exposomic approach to systematically characterize the socioeconomic landscape of prenatal exposures in a setting where social segregation was less distinct in a hypotheses-generating manner. METHODS We described the correlation structure of 134 prenatal exogenous and endogenous sources (e.g., micronutrients, hormones, immunomodulatory metabolites, environmental pollutants) collected in a diverse, population-representative, urban, high-income longitudinal mother-offspring cohort (N = 1341; 2009-2011). We examined the associations between maternal, paternal, household, and areal level SEP indicators and 134 exposures using multiple regressions adjusted for precision variables, as well as potential effect measure modification by ethnicity and nativity. Finally, we generated summary SEP indices using Multiple Correspondence Analysis to further explore possible curved relationships. RESULTS Individual and household SEP were associated with anthropometric/adiposity measures, folate, omega-3 fatty acids, insulin-like growth factor-II, fasting glucose, and neopterin, an inflammatory marker. We observed paternal education was more strongly and consistently related to maternal exposures than maternal education. This was most apparent amongst couples discordant on education. Analyses revealed additional non-linear associations between areal composite SEP and particulate matter. Environmental contaminants (e.g., per- and polyfluoroalkyl substances) and micronutrients (e.g., folate and copper) showed opposing associations by ethnicity and nativity, respectively. DISCUSSION SEP-exposome relationships are complex, non-linear, and context specific. Our findings reinforce the potential role of paternal contributions and context-specific modifiers of associations, such as between ethnicity and maternal diet-related exposures. Despite weak presumed areal clustering of individual exposures in our context, our approach reinforces subtle non-linearities in areal-level exposures.
Collapse
Affiliation(s)
- Ka Kei Sum
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore.
| | - Mya Thway Tint
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Rosana Aguilera
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Borame Sue Lee Dickens
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Sue Choo
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Li Ting Ang
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Desiree Phua
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Evelyn C Law
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Sharon Ng
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Karen Mei-Ling Tan
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore; Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA; Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Neerja Karnani
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Johan G Eriksson
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore; Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland
| | - Yap-Seng Chong
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Fabian Yap
- Duke-NUS Medical School, Singapore, Singapore; Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Kok Hian Tan
- Duke-NUS Medical School, Singapore, Singapore; Department of Maternal-Fetal Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yung Seng Lee
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Mary F F Chong
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jonathan Huang
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore; Centre for Quantitative Medicine (CQM), Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
10
|
Sandovici I, Fernandez-Twinn DS, Hufnagel A, Constância M, Ozanne SE. Sex differences in the intergenerational inheritance of metabolic traits. Nat Metab 2022; 4:507-523. [PMID: 35637347 DOI: 10.1038/s42255-022-00570-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/05/2022] [Indexed: 02/02/2023]
Abstract
Strong evidence suggests that early-life exposures to suboptimal environmental factors, including those in utero, influence our long-term metabolic health. This has been termed developmental programming. Mounting evidence suggests that the growth and metabolism of male and female fetuses differ. Therefore, sexual dimorphism in response to pre-conception or early-life exposures could contribute to known sex differences in susceptibility to poor metabolic health in adulthood. However, until recently, many studies, especially those in animal models, focused on a single sex, or, often in the case of studies performed during intrauterine development, did not report the sex of the animal at all. In this review, we (a) summarize the evidence that male and females respond differently to a suboptimal pre-conceptional or in utero environment, (b) explore the potential biological mechanisms that underlie these differences and (c) review the consequences of these differences for long-term metabolic health, including that of subsequent generations.
Collapse
Affiliation(s)
- Ionel Sandovici
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonia Hufnagel
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Miguel Constância
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Stephens VR, Rumph JT, Ameli S, Bruner-Tran KL, Osteen KG. The Potential Relationship Between Environmental Endocrine Disruptor Exposure and the Development of Endometriosis and Adenomyosis. Front Physiol 2022; 12:807685. [PMID: 35153815 PMCID: PMC8832054 DOI: 10.3389/fphys.2021.807685] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/07/2021] [Indexed: 01/27/2023] Open
Abstract
Women with endometriosis, the growth of endometrial glands and stroma outside the uterus, commonly also exhibit adenomyosis, the growth of endometrial tissues within the uterine muscle. Each disease is associated with functional alterations in the eutopic endometrium frequently leading to pain, reduced fertility, and an increased risk of adverse pregnancy outcomes. Although the precise etiology of either disease is poorly understood, evidence suggests that the presence of endometriosis may be a contributing factor to the subsequent development of adenomyosis as a consequence of an altered, systemic inflammatory response. Herein, we will discuss the potential role of exposure to environmental toxicants with endocrine disrupting capabilities in the pathogenesis of both endometriosis and adenomyosis. Numerous epidemiology and experimental studies support a role for environmental endocrine disrupting chemicals (EDCs) in the development of endometriosis; however, only a few studies have examined the potential relationship between toxicant exposures and the risk of adenomyosis. Nevertheless, since women with endometriosis are also frequently found to have adenomyosis, discussion of EDC exposure and development of each of these diseases is relevant. We will discuss the potential mechanisms by which EDCs may act to promote the co-development of endometriosis and adenomyosis. Understanding the disease-promoting mechanisms of environmental toxicants related to endometriosis and adenomyosis is paramount to designing more effective treatment(s) and preventative strategies.
Collapse
Affiliation(s)
- Victoria R. Stephens
- Department of Obstetrics and Gynecology, Women’s Reproductive Health Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Jelonia T. Rumph
- Department of Obstetrics and Gynecology, Women’s Reproductive Health Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, United States
| | - Sharareh Ameli
- Department of Obstetrics and Gynecology, Women’s Reproductive Health Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Kaylon L. Bruner-Tran
- Department of Obstetrics and Gynecology, Women’s Reproductive Health Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Kevin G. Osteen
- Department of Obstetrics and Gynecology, Women’s Reproductive Health Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
- VA Tennessee Valley Healthcare System, Nashville, TN, United States
| |
Collapse
|
12
|
Rumph JT, Stephens VR, Martin JL, Brown LK, Thomas PL, Cooley A, Osteen KG, Bruner-Tran KL. Uncovering Evidence: Associations between Environmental Contaminants and Disparities in Women's Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031257. [PMID: 35162279 PMCID: PMC8835285 DOI: 10.3390/ijerph19031257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 01/20/2022] [Indexed: 11/16/2022]
Abstract
Over the years, industrial accidents and military actions have led to unintentional, large-scale, high-dose human exposure to environmental contaminants with endocrine-disrupting action. These historical events, in addition to laboratory studies, suggest that exposure to toxicants such as dioxins and polychlorinated biphenyls negatively impact the reproductive system and likely influence the development of gynecologic diseases. Although high-level exposure to a single toxicant is rare, humans living in industrialized countries are continuously exposed to a complex mixture of manmade and naturally produced endocrine disruptors, including persistent organic pollutants and heavy metals. Since minorities are more likely to live in areas with known environmental contamination; herein, we conducted a literature review to identify potential associations between toxicant exposure and racial disparities in women's health. Evidence within the literature suggests that the body burden of environmental contaminants, especially in combination with inherent genetic variations, likely contributes to previously observed racial disparities in women's health conditions such as breast cancer, endometriosis, polycystic ovarian syndrome, uterine fibroids, and premature birth.
Collapse
Affiliation(s)
- Jelonia T. Rumph
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA; (J.T.R.); (J.L.M.); (L.K.B.); (P.L.T.); (A.C.)
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (V.R.S.); (K.G.O.)
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Victoria R. Stephens
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (V.R.S.); (K.G.O.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Joanie L. Martin
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA; (J.T.R.); (J.L.M.); (L.K.B.); (P.L.T.); (A.C.)
| | - LaKendria K. Brown
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA; (J.T.R.); (J.L.M.); (L.K.B.); (P.L.T.); (A.C.)
| | - Portia L. Thomas
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA; (J.T.R.); (J.L.M.); (L.K.B.); (P.L.T.); (A.C.)
| | - Ayorinde Cooley
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA; (J.T.R.); (J.L.M.); (L.K.B.); (P.L.T.); (A.C.)
| | - Kevin G. Osteen
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (V.R.S.); (K.G.O.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37208, USA
| | - Kaylon L. Bruner-Tran
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (V.R.S.); (K.G.O.)
- Correspondence:
| |
Collapse
|
13
|
Rumph JT, Rayford KJ, Stephens VR, Ameli S, Nde PN, Osteen KG, Bruner-Tran KL. A Preconception Paternal Fish Oil Diet Prevents Toxicant-Driven New Bronchopulmonary Dysplasia in Neonatal Mice. TOXICS 2021; 10:7. [PMID: 35051049 PMCID: PMC8778469 DOI: 10.3390/toxics10010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022]
Abstract
New bronchopulmonary dysplasia is a developmental lung disease associated with placental dysfunction and impaired alveolarization. Risk factors for new BPD include prematurity, delayed postnatal growth, the dysregulation of epithelial-to-mesenchymal transition (EMT), and parental exposure to toxicants. Our group previously reported that a history of paternal toxicant exposure increased the risk of prematurity and low birth weight in offspring. A history of paternal toxicant exposure also increased the offspring's risk of new BPD and disease severity was increased in offspring who additionally received a supplemental formula diet, which has also been linked to poor lung development. Risk factors associated with new BPD are well-defined, but it is unclear whether the disease can be prevented. Herein, we assessed whether a paternal fish oil diet could attenuate the development of new BPD in the offspring of toxicant exposed mice, with and without neonatal formula feeding. We investigated the impact of a paternal fish oil diet preconception because we previously reported that this intervention reduces the risk of TCDD associated placental dysfunction, prematurity, and low birth weight. We found that a paternal fish oil diet significantly reduced the risk of new BPD in neonatal mice with a history of paternal toxicant exposure regardless of neonatal diet. Furthermore, our evidence suggests that the protective effects of a paternal fish oil diet are mediated in part by the modulation of small molecules involved in EMT.
Collapse
Affiliation(s)
- Jelonia T. Rumph
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, 1161 21st Ave S, MCN B-1100, Nashville, TN 37232, USA; (J.T.R.); (V.R.S.); (S.A.); (K.G.O.)
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA; (K.J.R.); (P.N.N.)
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37208, USA
| | - Kayla J. Rayford
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA; (K.J.R.); (P.N.N.)
| | - Victoria R. Stephens
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, 1161 21st Ave S, MCN B-1100, Nashville, TN 37232, USA; (J.T.R.); (V.R.S.); (S.A.); (K.G.O.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37208, USA
| | - Sharareh Ameli
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, 1161 21st Ave S, MCN B-1100, Nashville, TN 37232, USA; (J.T.R.); (V.R.S.); (S.A.); (K.G.O.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37208, USA
| | - Pius N. Nde
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA; (K.J.R.); (P.N.N.)
| | - Kevin G. Osteen
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, 1161 21st Ave S, MCN B-1100, Nashville, TN 37232, USA; (J.T.R.); (V.R.S.); (S.A.); (K.G.O.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37208, USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37208, USA
| | - Kaylon L. Bruner-Tran
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, 1161 21st Ave S, MCN B-1100, Nashville, TN 37232, USA; (J.T.R.); (V.R.S.); (S.A.); (K.G.O.)
| |
Collapse
|
14
|
Mortimer R, James K, Bormann CL, Harris AL, Yeh J, Toth TL, Souter I, Roberts DJ, Sacha CR. Male factor infertility and placental pathology in singleton live births conceived with in vitro fertilization. J Assist Reprod Genet 2021; 38:3223-3232. [PMID: 34704166 PMCID: PMC8666390 DOI: 10.1007/s10815-021-02344-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
PURPOSE We sought to determine whether pregnancies conceived in those with male factor infertility have unique placental pathology profiles compared to those undergoing infertility treatments for other indications. METHODS This was a retrospective cohort study of placental pathology from 464 live births conceived from autologous fresh IVF cycles at an academic fertility center from 2004 to 2017. Placental pathology was compared between live births arising from patients with male factor infertility alone and those with another infertility diagnosis. Placental outcomes were compared with parametric or non-parametric tests; logistic regression was performed to account for potential confounders. RESULTS Compared to cycles performed for a non-male factor diagnosis, male factor infertility cycles had a higher mean paternal age (38.2 years vs. 36.5 years, p < 0.001), a higher female mean BMI (24.3 vs. 23.3 kg/m2, p = 0.01), and a lower day 3 follicle stimulating hormone (FSH) level (6.8 vs. 7.3 IU/mL, p = 0.02). The mean numbers of embryos transferred, and day of transfer were similar between groups, and more cycles used ICSI in the male factor infertility group (90.6% vs. 22.5%, p < 0.001). Placental pathology in our adjusted model was similar between the male factor and non-male factor groups. In our unadjusted subgroup analysis, cycles for male factor using ICSI appeared to lead to more small placentas by weight compared to cycles performed with conventional insemination (45.8% < 10th percentile vs. 18.8%, p = 0.04). CONCLUSION Male factor infertility is not associated with significantly different placental pathology compared to other infertility diagnoses.
Collapse
Affiliation(s)
- Roisin Mortimer
- Department of OB/GYN, Massachusetts General Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| | - K James
- Center for Outcomes Research, Department of OB/GYN, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - C L Bormann
- Massachusetts General Hospital Fertility Center and Harvard Medical School, Boston, MA, USA
| | - A L Harris
- Department of Women's Health, Wright Patterson Air Force Base, Wright Patterson AFB, Dayton, OH, USA
- Department of OB/GYN, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - J Yeh
- Division of Reprod Endo & Infertil, UMass Medical, Worcester, MA, USA
| | - T L Toth
- Boston IVF, Department of OB/GYN, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - I Souter
- Massachusetts General Hospital Fertility Center and Harvard Medical School, Boston, MA, USA
| | - D J Roberts
- Department of Pathology, Harvard Medical School and Massachusetts General, Boston Hospital, Boston, MA, USA
| | - C R Sacha
- Massachusetts General Hospital Fertility Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Gaspari L, Paris F, Kalfa N, Soyer-Gobillard MO, Sultan C, Hamamah S. Experimental Evidence of 2,3,7,8-Tetrachlordibenzo-p-Dioxin (TCDD) Transgenerational Effects on Reproductive Health. Int J Mol Sci 2021; 22:ijms22169091. [PMID: 34445797 PMCID: PMC8396488 DOI: 10.3390/ijms22169091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Previous studies have demonstrated that endocrine disruptors (EDs) can promote the transgenerational inheritance of disease susceptibility. Among the many existing EDs, 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) affects reproductive health, including in humans, following direct occupational exposure or environmental disasters, for instance the Agent Orange sprayed during the Vietnam War. Conversely, few studies have focused on TCDD multigenerational and transgenerational effects on human reproductive health, despite the high amount of evidence in animal models of such effects on male and female reproductive health that mimic human reproductive system disorders. Importantly, these studies show that paternal ancestral TCDD exposure substantially contributes to pregnancy outcome and fetal health, although pregnancy outcome is considered tightly related to the woman’s health. In this work, we conducted a systematic review of the literature and a knowledge synthesis in order (i) to describe the findings obtained in rodent models concerning TCDD transgenerational effects on reproductive health and (ii) to discuss the epigenetic molecular alterations that might be involved in this process. As ancestral toxicant exposure cannot be changed in humans, identifying the crucial reproductive functions that are negatively affected by such exposure may help clinicians to preserve male and female fertility and to avoid adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Laura Gaspari
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, CHU Montpellier, University of Montpellier, 34090 Montpellier, France; (L.G.); (F.P.); (C.S.)
- Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, CHU Montpellier, University of Montpellier, Hôpital Lapeyronie, 34090 Montpellier, France;
- INSERM 1203, Développement Embryonnaire Fertilité Environnement, University of Montpellier, 34295 Montpellier, France
| | - Françoise Paris
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, CHU Montpellier, University of Montpellier, 34090 Montpellier, France; (L.G.); (F.P.); (C.S.)
- Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, CHU Montpellier, University of Montpellier, Hôpital Lapeyronie, 34090 Montpellier, France;
- INSERM 1203, Développement Embryonnaire Fertilité Environnement, University of Montpellier, 34295 Montpellier, France
| | - Nicolas Kalfa
- Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, CHU Montpellier, University of Montpellier, Hôpital Lapeyronie, 34090 Montpellier, France;
- Département de Chirurgie Viscérale et Urologique Pédiatrique, CHU Montpellier, University of Montpellier, Hôpital Lapeyronie, 34090 Montpellier, France
- Institut Debrest de Santé Publique IDESP, UMR INSERM, University of Montpellier, 34090 Montpellier, France
| | - Marie-Odile Soyer-Gobillard
- CNRS, Sorbonne University, 75006 Paris, France;
- Association Hhorages-France, 95270 Asnières-sur-Oise, France
| | - Charles Sultan
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, CHU Montpellier, University of Montpellier, 34090 Montpellier, France; (L.G.); (F.P.); (C.S.)
| | - Samir Hamamah
- INSERM 1203, Développement Embryonnaire Fertilité Environnement, University of Montpellier, 34295 Montpellier, France
- Département de Biologie de la Reproduction, Biologie de la Reproduction/DPI et CECOS, CHU Montpellier, University of Montpellier, 34090 Montpellier, France
- Correspondence: ; Fax: +33-4-67-33-62-90
| |
Collapse
|
16
|
Talia C, Connolly L, Fowler PA. The insulin-like growth factor system: A target for endocrine disruptors? ENVIRONMENT INTERNATIONAL 2021; 147:106311. [PMID: 33348104 DOI: 10.1016/j.envint.2020.106311] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 05/15/2023]
Abstract
The insulin-like growth factor (IGF) system is a critical regulator of growth, especially during fetal development, while also playing a central role in metabolic homeostasis. Endocrine disruptors (EDs) are ubiquitous compounds able to interfere with hormone action and impact human health. For example, exposure to EDs is associated with decreased birthweight and increased incidence of metabolic disorders. Therefore, the IGF system is a potential target for endocrine disruption. This review summarises the state of the science regarding effects of exposure to major classes of endocrine disruptors (dioxins and dioxin-like compounds, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers, phthalates, perfluoroalkyl substances and bisphenol A) on the IGF system. Evidence from both experimental models (in vitro and in vivo) and epidemiological studies is presented. In addition, possible molecular mechanisms of action and effects on methylation are discussed. There is a large body of evidence supporting the link between dioxins and dioxin-like compounds and IGF disruption, but mixed findings have been reported in human studies. On the other hand, although only a few animal studies have investigated the effects of phthalates on the IGF system, their negative association with IGF levels and methylation status has been more consistently reported in humans. For polybrominated diphenyl ethers, perfluoroalkyl substances and bisphenol A the evidence is still limited. Despite a lack of studies for some ED classes linking ED exposure to changes in IGF levels, and the need for further research to improve reproducibility and determine the degree of risk posed by EDs to the IGF system, this is clearly an area of concern.
Collapse
Affiliation(s)
- Chiara Talia
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lisa Connolly
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland BT9 5DL, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
17
|
Intrauterine growth restriction: Clinical consequences on health and disease at adulthood. Reprod Toxicol 2021; 99:168-176. [DOI: 10.1016/j.reprotox.2020.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
|
18
|
Burke CG, Myers JR, Post CM, Boulé LA, Lawrence BP. DNA Methylation Patterns in CD4+ T Cells of Naïve and Influenza A Virus-Infected Mice Developmentally Exposed to an Aryl Hydrocarbon Receptor Ligand. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:17007. [PMID: 33449811 PMCID: PMC7810290 DOI: 10.1289/ehp7699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/08/2020] [Accepted: 12/22/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Early life environmental exposures can have lasting effects on the function of the immune system and contribute to disease later in life. Epidemiological studies have linked early life exposure to xenobiotics that bind the aryl hydrocarbon receptor (AhR) with dysregulated immune responses later in life. Among the immune cells influenced by developmental activation of the AhR are CD 4 + T cells. Yet, the underlying affected cellular pathways via which activating the AhR early in life causes the responses of CD 4 + T cells to remain affected into adulthood remain unclear. OBJECTIVE Our goal was to identify cellular mechanisms that drive impaired CD 4 + T-cell responses later in life following maternal exposure to an exogenous AhR ligand. METHODS C57BL/6 mice were vertically exposed to the prototype AhR ligand, 2,3,7,8-tetrachlorodibenzo-p -dioxin (TCDD), throughout gestation and early postnatal life. The transcriptome and DNA methylation patterns were evaluated in CD 4 + T cells isolated from naïve and influenza A virus (IAV)-infected adult mice that were developmentally exposed to TCDD or vehicle control. We then assessed the influence of DNA methylation-altering drug therapies on the response of CD 4 + T cells from developmentally exposed mice to infection. RESULTS Gene and protein expression showed that developmental AhR activation reduced CD 4 + T-cell expansion and effector functions during IAV infection later in life. Furthermore, whole-genome bisulfite sequencing analyses revealed that developmental AhR activation durably programed DNA methylation patterns across the CD 4 + T-cell genome. Treatment of developmentally exposed offspring with DNA methylation-altering drugs alleviated some, but not all, of the impaired CD 4 + T-cell responses. DISCUSSION Taken together, these results indicate that skewed DNA methylation is one of the mechanisms by which early life exposures can durably change the function of T cells in mice. Furthermore, treatment with DNA methylation-altering drugs after the exposure restored some aspects of CD 4 + T-cell functional responsiveness. https://doi.org/10.1289/EHP7699.
Collapse
Affiliation(s)
- Catherine G. Burke
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jason R. Myers
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Christina M. Post
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Lisbeth A. Boulé
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - B. Paige Lawrence
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
19
|
Ben Maamar M, Nilsson E, Thorson JLM, Beck D, Skinner MK. Transgenerational disease specific epigenetic sperm biomarkers after ancestral exposure to dioxin. ENVIRONMENTAL RESEARCH 2021; 192:110279. [PMID: 33039529 PMCID: PMC8130889 DOI: 10.1016/j.envres.2020.110279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 05/15/2023]
Abstract
Dioxin was historically one of the most common industrial contaminants with several major industry accidents, as well as governmental actions involving military service, having exposed large numbers of the worldwide population over the past century. Previous rat studies have demonstrated the ability of dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)) exposure to promote the epigenetic transgenerational inheritance of disease susceptibility in subsequent generations. The types of disease previously observed include puberty abnormalities, testis, ovary, kidney, prostate and obesity pathologies. The current study was designed to use an epigenome-wide association study (EWAS) to identify potential sperm DNA methylation biomarkers for specific transgenerational diseases. Therefore, the transgenerational F3 generation dioxin lineage male rats with and without a specific disease were compared to identify differential DNA methylation regions (DMRs) as biomarkers for disease. The genomic features of the disease-specific DMRs were characterized. Observations demonstrate that disease-specific epimutation DMRs exist for the transgenerational dioxin lineage rats that can potentially be used as epigenetic biomarkers for testis, kidney, prostate and obesity diseases. These disease-specific DMRs were associated with genes that have previously been shown to be linked with the specific diseases. This EWAS for transgenerational disease identified potential epigenetic biomarkers and provides the proof of concept of the potential to develop similar biomarkers for humans to diagnose disease susceptibilities and facilitate preventative medicine.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Jennifer L M Thorson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
20
|
Zhang Z, Zhao Y, Zhang Y, Zhao R, He B. Paternal systemic inflammation induces offspring programming of growth and liver regeneration in association with Igf2 upregulation. Mol Cell Endocrinol 2020; 518:111001. [PMID: 32882328 DOI: 10.1016/j.mce.2020.111001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/30/2022]
Abstract
Recent studies suggest that stress can lead to variations in offspring development. However, whether paternal systemic inflammation induces phenotypic changes in the offspring remains unclear. Here, we established an in vivo mouse model of systemic inflammation and investigated the long-term consequences on the offspring. Male, but not female offspring derived from inflammatory fathers (LPS-F1) grew faster than those derived from the control fathers (CON-F1). Moreover, the LPS-F1 males had higher capacity for liver regeneration after injury, as indicated by decreased hepatic fibrosis, apoptosis, and increased hepatocyte proliferation upon carbon tetrachloride challenge. Insulin-like growth factor 2 (Igf2), a key mitogen that drives growth and liver regeneration, was significantly upregulated in the livers of male, but not female offspring from fathers with inflammation. Taken together, paternal inflammation alters the hepatic Igf2 expression and reprograms growth and liver regeneration in male but not female offspring.
Collapse
Affiliation(s)
- Zhilong Zhang
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yuting Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yanwen Zhang
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Bin He
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
21
|
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol 2020; 18:183. [PMID: 33246472 PMCID: PMC7694421 DOI: 10.1186/s12915-020-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until recently. In the last 5 years, research on environmentally induced paternal effects has grown rapidly in the number of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence (systematic map) and influence (bibliometric analyses). RESULTS We find that motivations for studies into paternal effects are diverse. For example, from the ecological and evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We highlight examples of research gaps, which, in turn, lead to future avenues of research. CONCLUSIONS The literature on paternal effects is large and disparate. Our study helps in fostering connections between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of concepts and methods.
Collapse
Affiliation(s)
- Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| |
Collapse
|
22
|
Garbett KA, Ding T, Allison J, Grueter CA, Grueter BA, Osteen KG, Strifert K, Sweatt JD. Synthetic female gonadal hormones alter neurodevelopmental programming and behavior in F 1 offspring. Horm Behav 2020; 126:104848. [PMID: 32918873 DOI: 10.1016/j.yhbeh.2020.104848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/17/2020] [Accepted: 08/29/2020] [Indexed: 12/25/2022]
Abstract
The increased prevalence of neurodevelopmental disorders during the last half-century led us to investigate the potential for intergenerational detrimental neurodevelopmental effects of synthetic female gonadal hormones, typically used in contraceptive pills. We examined 3 separate cohorts of mice over the span of 2 years, a total of 150 female F0 mice and over 300 male and female rodents from their F1 progeny. We demonstrate that F1 male offsprings of female mice previously exposed to the synthetic estrogen 17α-ethinylestradiol (EE2) in combination with the synthetic progestin Norethindrone, exhibit neurodevelopmental and behavioral differences compared to control mice. Because the EE2 + Norethindrone administration resulted in gene expression changes in the exposed F0 mice ovaries persisting after the end of treatment, it is likely that the synthetic hormone treatment caused changes in the germline cells and that led to altered neurodevelopment in the offsprings. An altered gene expression pattern was discovered in the frontal cortex of male mice from the first offspring (F1.1) at infancy and an ADHD-like hyperactive locomotor behavior was exhibited in young male mice from the second offspring (F1.2) of female mice treated with contraceptive pill doses of EE2 + Norethindrone prior to pregnancy. The intergenerational neurodevelopmental effects of EE2 + Norethindrone treatment were sex specific, predominantly affecting males. Our observations in mice support the hypothesis that the use of synthetic contraceptive hormones is a potential environmental factor impacting the prevalence of human neurodevelopmental disorders. Additionally, our results indicate that contraceptive hormone drug safety assessments may need to be extended to F1 offspring.
Collapse
Affiliation(s)
- Krassimira A Garbett
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States of America.
| | - Tianbing Ding
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America
| | - John Allison
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States of America; Mouse Neurobehavioral Core, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America
| | - Carrie A Grueter
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America
| | - Brad A Grueter
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America
| | - Kevin G Osteen
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America; VA Tennessee Valley Healthcare System, Nashville, TN 37232, United States of America
| | - Kim Strifert
- 2028 Sunset Hills Terrace, Nashville, TN 37215, United States of America
| | - J David Sweatt
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States of America.
| |
Collapse
|
23
|
Kuzmina NS, Luong TM, Rubanovich AV. Changes in DNA Methylation Induced by Dioxins and Dioxin-Like Compounds as Potential Predictor of Disease Risk. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420100063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Environmental Impact on Male (In)Fertility via Epigenetic Route. J Clin Med 2020; 9:jcm9082520. [PMID: 32764255 PMCID: PMC7463911 DOI: 10.3390/jcm9082520] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
In the last 40 years, male reproductive health-which is very sensitive to both environmental exposure and metabolic status-has deteriorated and the poor sperm quality observed has been suggested to affect offspring development and its health in adult life. In this scenario, evidence now suggests that epigenetics shapes endocrine functions, linking genetics and environment. During fertilization, spermatozoa share with the oocyte their epigenome, along with their haploid genome, in order to orchestrate embryo development. The epigenetic signature of spermatozoa is the result of a dynamic modulation of the epigenetic marks occurring, firstly, in the testis-during germ cell progression-then, along the epididymis, where spermatozoa still receive molecules, conveyed by epididymosomes. Paternal lifestyle, including nutrition and exposure to hazardous substances, alters the phenotype of the next generations, through the remodeling of a sperm epigenetic blueprint that dynamically reacts to a wide range of environmental and lifestyle stressors. With that in mind, this review will summarize and discuss insights into germline epigenetic plasticity caused by environmental stimuli and diet and how spermatozoa may be carriers of induced epimutations across generations through a mechanism known as paternal transgenerational epigenetic inheritance.
Collapse
|
25
|
Stimpfel M, Vrtacnik-Bokal E. Minor DNA methylation changes are observed in spermatozoa prepared using different protocols. Andrology 2020; 8:1312-1323. [PMID: 32470185 DOI: 10.1111/andr.12832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND DNA methylation patterns can show transgenerational inheritance and are influenced by lifestyle and environmental factors. It is suggested that these patterns can be changed by assisted reproductive technology. OBJECTIVES To evaluate the impact of two different sperm preparation methods, conventional density gradient centrifugation (DGC) vs. density gradient centrifugation followed by magnetic-activated cell sorting (MACS) of non-apoptotic spermatozoa, on sperm DNA methylation profile. MATERIALS AND METHODS We analyzed semen of patients included in our IVF treatment program. Half of the semen from each included patient was prepared for ICSI using the DGC method and the other half with DGC followed by MACS. The remaining samples were processed for DNA methylation analysis with reduced representation bisulfite sequencing (RRBS). In addition to the DNA methylation profile, we assessed the morphology and DNA fragmentation of spermatozoa. RESULTS RRBS analysis revealed that the average genome-wide methylation level was similar between both groups (DGC vs. MACS group) and ranged from 0.53 to 0.56. Furthermore, RRBS analysis identified 99 differentially methylated regions (DMRs) and 800 differentially methylated positions (DMPs). In the DGC group, 43 DMRs and 392 DMPs were hypermethylated whereas 56 DMRs and 408 DMPs were hypomethylated compared with those in the MACS group. When DMRs and DMPs were annotated to genes, 3 genes associated with imprinting were found: IGF2, PRDM16, and CLF4/BRUNOL4. The percentage of morphologically normal spermatozoa (MACS vs. DGC; 14.0 ± 10.8 vs. 13.2 ± 10.0; P = .335) and of spermatozoa with fragmented DNA of patients with RRBS analysis (22.9 ± 21.1% vs. 34.4 ± 21.2; P = .529) were also similar between groups. DISCUSSION AND CONCLUSION Although the average genome-wide level of sperm DNA methylation was similar in both sample groups, a distinctive number of methylation changes were observed in DMR and DMP levels. A larger number of samples should be analyzed and additional sperm preparation methods should be tested to confirm our findings.
Collapse
Affiliation(s)
- Martin Stimpfel
- Department of Human Reproduction, Division of Gynaecology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Eda Vrtacnik-Bokal
- Department of Human Reproduction, Division of Gynaecology, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
26
|
Van Cauwenbergh O, Di Serafino A, Tytgat J, Soubry A. Transgenerational epigenetic effects from male exposure to endocrine-disrupting compounds: a systematic review on research in mammals. Clin Epigenetics 2020; 12:65. [PMID: 32398147 PMCID: PMC7218615 DOI: 10.1186/s13148-020-00845-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Assessing long-term health effects from a potentially harmful environment is challenging. Endocrine-disrupting compounds (EDCs) have become omnipresent in our environment. Individuals may or may not experience clinical health issues from being exposed to the increasing environmental pollution in daily life, but an issue of high concern is that also the non-exposed progeny may encounter consequences of these ancestral exposures. Progress in understanding epigenetic mechanisms opens new perspectives to estimate the risk of man-made EDCs. However, the field of epigenetic toxicology is new and its application in public health or in the understanding of disease etiology is almost non-existent, especially if it concerns future generations. In this review, we investigate the literature on transgenerational inheritance of diseases, published in the past 10 years. We question whether persistent epigenetic changes occur in the male germ line after exposure to synthesized EDCs. Our systematic search led to an inclusion of 43 articles, exploring the effects of commonly used synthetic EDCs, such as plasticizers (phthalates and bisphenol A), pesticides (dichlorodiphenyltrichloroethane, atrazine, vinclozin, methoxychlor), dioxins, and polycyclic aromatic hydrocarbons (PAHs, such as benzo(a)pyrene). Most studies found transgenerational epigenetic effects, often linked to puberty- or adult-onset diseases, such as testicular or prostate abnormalities, metabolic disorders, behavioral anomalies, and tumor development. The affected epigenetic mechanisms included changes in DNA methylation patterns, transcriptome, and expression of DNA methyltransferases. Studies involved experiments in animal models and none were based on human data. In the future, human studies are needed to confirm animal findings. If not transgenerational, at least intergenerational human studies and studies on EDC-induced epigenetic effects on germ cells could help to understand early processes of inheritance. Next, toxicity tests of new chemicals need a more comprehensive approach before they are introduced on the market. We further point to the relevance of epigenetic toxicity tests in regard to public health of the current population but also of future generations. Finally, this review sheds a light on how the interplay of genetics and epigenetics may explain the current knowledge gap on transgenerational inheritance.
Collapse
Affiliation(s)
- Olivia Van Cauwenbergh
- Epidemiology Research Center, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven - University of Leuven, Leuven, Belgium
| | - Alessandra Di Serafino
- Epidemiology Research Center, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven - University of Leuven, Leuven, Belgium
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, University "G.d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Jan Tytgat
- Toxicology and Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Adelheid Soubry
- Epidemiology Research Center, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven - University of Leuven, Leuven, Belgium.
| |
Collapse
|
27
|
Chung FFL, Herceg Z. The Promises and Challenges of Toxico-Epigenomics: Environmental Chemicals and Their Impacts on the Epigenome. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:15001. [PMID: 31950866 PMCID: PMC7015548 DOI: 10.1289/ehp6104] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND It has been estimated that a substantial portion of chronic and noncommunicable diseases can be caused or exacerbated by exposure to environmental chemicals. Multiple lines of evidence indicate that early life exposure to environmental chemicals at relatively low concentrations could have lasting effects on individual and population health. Although the potential adverse effects of environmental chemicals are known to the scientific community, regulatory agencies, and the public, little is known about the mechanistic basis by which these chemicals can induce long-term or transgenerational effects. To address this question, epigenetic mechanisms have emerged as the potential link between genetic and environmental factors of health and disease. OBJECTIVES We present an overview of epigenetic regulation and a summary of reported evidence of environmental toxicants as epigenetic disruptors. We also discuss the advantages and challenges of using epigenetic biomarkers as an indicator of toxicant exposure, using measures that can be taken to improve risk assessment, and our perspectives on the future role of epigenetics in toxicology. DISCUSSION Until recently, efforts to apply epigenomic data in toxicology and risk assessment were restricted by an incomplete understanding of epigenomic variability across tissue types and populations. This is poised to change with the development of new tools and concerted efforts by researchers across disciplines that have led to a better understanding of epigenetic mechanisms and comprehensive maps of epigenomic variation. With the foundations now in place, we foresee that unprecedented advancements will take place in the field in the coming years. https://doi.org/10.1289/EHP6104.
Collapse
Affiliation(s)
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
28
|
Bruner-Tran KL, Mokshagundam S, Barlow A, Ding T, Osteen KG. Paternal Environmental Toxicant Exposure and Risk of Adverse Pregnancy Outcomes. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2019; 8:103-113. [PMID: 32953240 PMCID: PMC7500507 DOI: 10.1007/s13669-019-00265-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Current clinical efforts to predict and prevent preterm birth are primarily focused on the mother and have made minimal progress in improving outcomes. However, recent data indicate that paternal factors can also influence timing of birth. Herein, we will review recent human and murine data examining the contribution of the father to pregnancy outcomes with an emphasis on environmental exposures that can negatively impact fertility and the timing of birth. RECENT FINDINGS Human epidemiology studies now clearly indicate that a variety of paternal factors (age, race, weight, smoking status) can influence sperm quality, birth timing and, in some studies, offspring health. Utilizing a mouse model, our data have 57demonstrated that developmental exposure to the environmental toxicant TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) is associated with a transgenerational reduction in sperm number and quality and an increased risk of preterm birth in an unexposed partner. SUMMARY Toxicant exposure history can clearly influence sperm quality in men and mice. Murine data further indicate that exposures which negatively affect sperm quality also impair placental function, potentially leading to preterm birth and other adverse outcomes. Of particular concern, these changes have been linked to epigenetic alterations within the male germ cell which can then be transmitted across multiple generations. Since it is not possible to prevent an ancestral toxicant exposure in a human population, identifying lifestyle modifications that can be implemented during the preconception period to improve sperm quality should be explored for the therapeutic potential to reduce the incidence of PTB and its sequelae.
Collapse
Affiliation(s)
- Kaylon L. Bruner-Tran
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN
| | - Shilpa Mokshagundam
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN
| | - Alison Barlow
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN
| | - Tianbing Ding
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN
| | - Kevin G. Osteen
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
- VA Tennessee Valley Healthcare System, Nashville TN
| |
Collapse
|
29
|
Viluksela M, Pohjanvirta R. Multigenerational and Transgenerational Effects of Dioxins. Int J Mol Sci 2019; 20:E2947. [PMID: 31212893 PMCID: PMC6627869 DOI: 10.3390/ijms20122947] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Dioxins are ubiquitous and persistent environmental contaminants whose background levels are still reason for concern. There is mounting evidence from both epidemiological and experimental studies that paternal exposure to the most potent congener of dioxins, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), can lower the male/female ratio of offspring. Moreover, in laboratory rodents and zebrafish, TCDD exposure of parent animals has been reported to result in reduced reproductive performance along with other adverse effects in subsequent generations, foremost through the paternal but also via the maternal germline. These impacts have been accompanied by epigenetic alterations in placenta and/or sperm cells, including changes in methylation patterns of imprinted genes. Here, we review recent key studies in this field with an attempt to provide an up-to-date picture of the present state of knowledge to the reader. These studies provide biological plausibility for the potential of dioxin exposure at a critical time-window to induce epigenetic alterations across multiple generations and the significance of aryl hydrocarbon receptor (AHR) in mediating these effects. Currently available data do not allow to accurately estimate the human health implications of these findings, although epidemiological evidence on lowered male/female ratio suggests that this effect may take place at realistic human exposure levels.
Collapse
Affiliation(s)
- Matti Viluksela
- School of Pharmacy and Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
- Environmental Health Unit, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland.
| | - Raimo Pohjanvirta
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| |
Collapse
|
30
|
Arzuaga X, Smith MT, Gibbons CF, Skakkebæk NE, Yost EE, Beverly BEJ, Hotchkiss AK, Hauser R, Pagani RL, Schrader SM, Zeise L, Prins GS. Proposed Key Characteristics of Male Reproductive Toxicants as an Approach for Organizing and Evaluating Mechanistic Evidence in Human Health Hazard Assessments. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:65001. [PMID: 31199676 PMCID: PMC6792367 DOI: 10.1289/ehp5045] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Assessing chemicals for their potential to cause male reproductive toxicity involves the evaluation of evidence obtained from experimental, epidemiological, and mechanistic studies. Although mechanistic evidence plays an important role in hazard identification and evidence integration, the process of identifying, screening and analyzing mechanistic studies and outcomes is a challenging exercise due to the diversity of research models and methods and the variety of known and proposed pathways for chemical-induced toxicity. Ten key characteristics of carcinogens provide a valuable tool for organizing and assessing chemical-specific data by potential mechanisms for cancer-causing agents. However, such an approach has not yet been developed for noncancer adverse outcomes. OBJECTIVES The objective in this study was to identify a set of key characteristics that are frequently exhibited by exogenous agents that cause male reproductive toxicity and that could be applied for identifying, organizing, and summarizing mechanistic evidence related to this outcome. DISCUSSION The identification of eight key characteristics of male reproductive toxicants was based on a survey of known male reproductive toxicants and established mechanisms and pathways of toxicity. The eight key characteristics can provide a basis for the systematic, transparent, and objective organization of mechanistic evidence relevant to chemical-induced effects on the male reproductive system. https://doi.org/10.1289/EHP5045.
Collapse
Affiliation(s)
- Xabier Arzuaga
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Martyn T. Smith
- University of California, Berkeley, School of Public Health, Berkeley, California, USA
| | - Catherine F. Gibbons
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Niels E. Skakkebæk
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Erin E. Yost
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Brandiese E. J. Beverly
- Office of Health Assessment and Translation, National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Andrew K. Hotchkiss
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Russ Hauser
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Rodrigo L. Pagani
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Steven M. Schrader
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA (retired)
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA
| | - Gail S. Prins
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois, USA
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|