1
|
Lee S, Yoo I, Cheon Y, Ka H. Complement system molecules: Expression and regulation at the maternal-conceptus interface during pregnancy in pigs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105229. [PMID: 39004297 DOI: 10.1016/j.dci.2024.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
The complement system, composed of complement components and complement control proteins, plays an essential role in innate immunity. Complement system molecules are expressed at the maternal-conceptus interface, and inappropriate activation of the complement system is associated with various adverse pregnancy outcomes in humans and rodents. However, the expression, regulation, and function of the complement system at the maternal-conceptus interface in pigs have not been studied. In this study, we investigated the expression, localization, and regulation of complement system molecules at the maternal-conceptus interface in pigs. Complement components and complement control proteins were expressed in the endometrium, early-stage conceptus, and chorioallantoic tissues during pregnancy. The expression of complement components acting on the early stage of complement activation increased in the endometrium on Day 15 of pregnancy, with greater levels on that day compared with the estrous cycle. Localization of several complement components and complement control proteins was cell-type specific in the endometrium. The expression of C1QC, C2, C3, C4A, CFI, ITGB2, MASP1, and SERPING1 was increased by IFNG in endometrial explant tissues. Furthermore, cleaved C3 fragments were detected in endometrial tissues and uterine flushings on Day 15 of the estrous cycle and Day 15 of pregnancy, with greater levels on Day 15 of pregnancy. These results suggest that complement system molecules in pigs expressed at the maternal-conceptus interface play important roles in the establishment and maintenance of pregnancy by regulating innate immunity and modulating the maternal immune environment during pregnancy.
Collapse
Affiliation(s)
- Soohyung Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea.
| | - Inkyu Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Yugyeong Cheon
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea.
| |
Collapse
|
2
|
Geisert RD, Bazer FW, Lucas CG, Pfeiffer CA, Meyer AE, Sullivan R, Johns DN, Sponchiado M, Prather RS. Maternal recognition of pregnancy in the pig: A servomechanism involving sex steroids, cytokines and prostaglandins. Anim Reprod Sci 2024; 264:107452. [PMID: 38522133 DOI: 10.1016/j.anireprosci.2024.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Maternal recognition of pregnancy (MRP) is a term utilized in mammals to describe pathways in which the conceptus alters the endometrial environment to prevent regression of corpora lutea to ensure continued production of progesterone (P4) required for establishment and maintenance of pregnancy. For nearly 40 years after publication of the endocrine/exocrine theory, conceptus estrogen (E2) was considered the primary maternal recognition signal in the pig. Conceptus production of prostaglandin E2 (PGE2) was also considered to be a major factor in preventing luteolysis. An addition to E2 and PGE2, pig conceptuses produce interleukin 1B2 (IL1B2) and interferons (IFN) delta (IFND) and gamma (IFNG). The present review provides brief history of the discovery of E2, PGs and IFNS which led to research investigating the role of these conceptus secreted factors in establishing and maintaining pregnancy in the pig. The recent utilization of gene editing technology allowed a more direct approach to investigate the in vivo roles of IL1B2, E2, PGE2, AND IFNG for establishment of pregnancy. These studies revealed unknown functions for IFNG and ILB2 in addition to PGE2 and E2. Thus, pregnancy recognition signal is via a servomechanism in requiring sequential effects of P4, E2, IL1B2, PGE2 and IFNG. Results indicate that the original established dogma for the role of conceptus E2 and PGs in MRP is a far too simplified model that involves the interplay of numerous mechanisms for inhibiting luteolysis, inducing critical elongation of the conceptuses and resolution of inflammation in pigs.
Collapse
Affiliation(s)
- Rodney D Geisert
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Caroline G Lucas
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Caroline A Pfeiffer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Ashley E Meyer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Riley Sullivan
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Destiny N Johns
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Mariana Sponchiado
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Ashley RL, Trigo EM, Ervin JM. Placental insufficiency and heavier placentas in sheep after suppressing CXCL12/CXCR4 signaling during implantation†. Biol Reprod 2023; 109:982-993. [PMID: 37724932 PMCID: PMC10724462 DOI: 10.1093/biolre/ioad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023] Open
Abstract
During implantation, trophoblast cell invasion and differentiation is predominantly important to achieving proper placental formation and embryonic development. The chemokine, C-X-C motif chemokine ligand 12 (CXCL12) working through its receptor C-X-C motif chemokine receptor 4 (CXCR4) is implicated in implantation and placentation but precise roles of this axis are unclear. Suppressing CXCL12/CXCR4 signaling at the fetal-maternal interface in sheep reduces trophoblast invasion, disrupts uterine remodeling, and diminishes placental vascularization. We hypothesize these negative impacts during implantation will manifest as compromised fetal and placental growth at midgestation. To test, on day 12 postbreeding, osmotic pumps were surgically installed in 30 ewes and delivered intrauterine CXCR4 inhibitor or saline for 7 or 14 days. On day 90, fetal/maternal tissues were collected, measured, weighed, and maternal (caruncle) and fetal (cotyledon) placenta components separated and analyzed. The objectives were to determine if (i) suppressing CXCL12/CXCR4 during implantation results in reduced fetal and placental growth and development and (ii) if varying the amount of time CXCL12/CXCR4 is suppressed impacts fetal/placental development. Fetal weights were similar; however greater placental weight and placentome numbers occurred when CXCL12/CXCR4 was suppressed for 14 days. In caruncles, greater abundance of fibroblast growth factor 2, vascular endothelial growth factor A, vascular endothelial growth factor A receptor 1 (FLT-1), and placental growth factor were observed after suppressing CXCL12/CXCR4. Similar results occurred in cotyledons except less vascular endothelial growth factor in 7 day group and less fibroblast growth factor in 14 day group. Our data underscore the importance of CXCL12/CXCR4 signaling during placentation and provide strong evidence that altering CXCL12-mediated signaling induces enduring placental effects manifesting later in gestation.
Collapse
Affiliation(s)
- Ryan L Ashley
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Elisa M Trigo
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Jacqueline M Ervin
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA
| |
Collapse
|
4
|
Lyu F, Burzynski C, Fang YY, Tal A, Chen AY, Kisa J, Agrawal K, Kluger Y, Taylor HS, Tal R. Maternal CXCR4 deletion results in placental defects and pregnancy loss mediated by immune dysregulation. JCI Insight 2023; 8:e172216. [PMID: 37815869 PMCID: PMC10721256 DOI: 10.1172/jci.insight.172216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023] Open
Abstract
CXCR4 is a key regulator of the development of NK cells and DCs, both of which play an important role in early placental development and immune tolerance at the maternal-fetal interface. However, the role of CXCR4 in pregnancy is not well understood. Our study demonstrates that adult-induced global genetic CXCR4 deletion, but not uterine-specific CXCR4 deletion, was associated with increased pregnancy resorptions and decreased litter size. CXCR4-deficient mice had decreased NK cells and increased granulocytes in the decidua, along with increased leukocyte numbers in peripheral blood. We found that CXCR4-deficient mice had abnormal decidual NK cell aggregates and NK cell infiltration into trophoblast areas beyond the giant cell layer. This was associated with low NK cell expression of granzyme B, a NK cell granule effector, indicative of NK cell dysfunction. Pregnancy failure in these mice was associated with abnormalities in placental vascular development and increased placental expression of inflammatory genes. Importantly, adoptive BM transfer of WT CXCR4+ BM cells into CXCR4-deficient mice rescued the reproductive deficits by normalizing NK cell function and mediating normal placental vascular development. Collectively, our study found an important role for maternal CXCR4 expression in immune cell function, placental development, and pregnancy maintenance.
Collapse
Affiliation(s)
- Fang Lyu
- Department of Obstetrics, Gynecology and Reproductive Sciences, and
| | - Chase Burzynski
- Department of Obstetrics, Gynecology and Reproductive Sciences, and
| | - Yuan yuan Fang
- Department of Obstetrics, Gynecology and Reproductive Sciences, and
| | - Aya Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, and
| | - Alice Y. Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences, and
| | - Jacqueline Kisa
- Department of Obstetrics, Gynecology and Reproductive Sciences, and
| | - Kriti Agrawal
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
- Program of Applied Mathematics, Yale University, New Haven, Connecticut, USA
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
- Program of Applied Mathematics, Yale University, New Haven, Connecticut, USA
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, and
| | - Reshef Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, and
| |
Collapse
|
5
|
Wang S, Chen X, Guo S, Zhou F, Zhang X, Lu C, Yang X, Wang Q, He B, Wang J, Wang H, Xu X. CXCR4, regulated by HIF1A, promotes endometrial breakdown via CD45 + leukocyte recruitment in a mouse model of menstruation. Reprod Biol 2023; 23:100785. [PMID: 37392490 DOI: 10.1016/j.repbio.2023.100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
Menstruation is a specific physiological phenomenon in female humans that is regulated by complex molecular mechanisms. However, the molecular network involved in menstruation remains incompletely understood. Previous studies have suggested that C-X-C chemokine receptor 4 (CXCR4) is involved; however, how CXCR4 participates in endometrial breakdown remains unclear, as do its regulatory mechanisms. This study aimed to clarify the role of CXCR4 in endometrial breakdown and its regulation by hypoxia-inducible factor-1 alpha (HIF1A). We first confirmed that CXCR4 and HIF1A protein levels were significantly increased during the menstrual phase compared with the late secretory phase using immunohistochemistry. In our mouse model of menstruation, real-time PCR, western blotting, and immunohistochemistry showed that CXCR4 mRNA and protein expression levels gradually increased from 0 to 24 h after progesterone withdrawal during endometrial breakdown. HIF1A mRNA and HIF1A nuclear protein levels significantly increased and peaked at 12 h after progesterone withdrawal. Endometrial breakdown was significantly suppressed by the CXCR4 inhibitor AMD3100 and the HIF1A inhibitor 2-methoxyestradiol in our mouse model, and HIF1A inhibition also suppressed CXCR4 mRNA and protein expression. In vitro studies using human decidual stromal cells showed that CXCR4 and HIF1A mRNA expression levels were increased by progesterone withdrawal and that HIF1A knockdown significantly suppressed the elevation in CXCR4 mRNA expression. CD45+ leukocyte recruitment during endometrial breakdown was suppressed by both AMD3100 and 2-methoxyestradiol in our mouse model. Taken together, our preliminary findings suggest that endometrial CXCR4 expression is regulated by HIF1A during menstruation and may promote endometrial breakdown, potentially via leukocyte recruitment.
Collapse
Affiliation(s)
- Shufang Wang
- Department of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan Province 453003, People's Republic of China
| | - Xihua Chen
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing 100081, People's Republic of China
| | - Shige Guo
- Department of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan Province 453003, People's Republic of China; Graduate School of Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Fang Zhou
- Male Clinical Laboratory, National Research Institute for Family Planning, Beijing 100081, People's Republic of China
| | - Xin Zhang
- Department of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan Province 453003, People's Republic of China; Graduate School of Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Cong Lu
- Department of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan Province 453003, People's Republic of China; Graduate School of Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Xuqing Yang
- Department of Cell Biology, Zunyi Medical University, Zunyi 563099, People's Republic of China
| | - Qianxing Wang
- Department of Cell Biology, Zunyi Medical University, Zunyi 563099, People's Republic of China
| | - Bin He
- Department of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan Province 453003, People's Republic of China
| | - Jiedong Wang
- Department of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan Province 453003, People's Republic of China
| | - Hanbi Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, People's Republic of China.
| | - Xiangbo Xu
- Department of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan Province 453003, People's Republic of China.
| |
Collapse
|
6
|
Geisert RD, Johns DN, Pfeiffer CA, Sullivan RM, Lucas CG, Simintiras CA, Redel BK, Wells KD, Spencer TE, Prather RS. Gene editing provides a tool to investigate genes involved in reproduction of pigs. Mol Reprod Dev 2023; 90:459-468. [PMID: 35736243 DOI: 10.1002/mrd.23620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 11/08/2022]
Abstract
CRISPR-Cas9 gene editing technology provides a method to generate loss-of-function studies to investigate, in vivo, the specific role of specific genes in regulation of reproduction. With proper design and selection of guide RNAs (gRNA) designed to specifically target genes, CRISPR-Cas9 gene editing allows investigation of factors proposed to regulate biological pathways involved with establishment and maintenance of pregnancy. The advantages and disadvantages of using the current gene editing technology in a large farm species is discussed. CRISPR-Cas9 gene editing of porcine conceptuses has generated new perspectives for the regulation of endometrial function during the establishment of pregnancy. The delicate orchestration of conceptus factors facilitates an endometrial proinflammatory response while regulating maternal immune cell migration and expansion at the implantation site is essential for establishment and maintenance of pregnancy. Recent developments and use of endometrial epithelial "organoids" to study endometrial function in vitro provides a future method to screen and target specific endometrial genes as an alternative to generating a gene edited animal model. With continuing improvements in gene editing technology, future researchers will be able to design studies to enhance our knowledge of mechanisms essential for early development and survival of the conceptus.
Collapse
Affiliation(s)
- Rodney D Geisert
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Destiny N Johns
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Caroline A Pfeiffer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Riley M Sullivan
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Caroline G Lucas
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | | | - Bethany K Redel
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
7
|
Fang YY, Lyu F, Abuwala N, Tal A, Chen AY, Taylor HS, Tal R. Chemokine C-X-C receptor 4 mediates recruitment of bone marrow-derived nonhematopoietic and immune cells to the pregnant uterus†. Biol Reprod 2022; 106:1083-1097. [PMID: 35134114 PMCID: PMC9198949 DOI: 10.1093/biolre/ioac029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
Bone marrow-derived progenitor cells (BMDPCs) are mobilized to the circulation in pregnancy and get recruited to the pregnant decidua where they contribute functionally to decidualization and successful implantation. However, the molecular mechanisms underlying BMDPCs recruitment to the decidua are unknown. CXCL12 ligand and its CXCR4 receptor play crucial roles in the mobilization and homing of stem/progenitor cells to various tissues. To investigate the role of CXCL12-CXCR4 axis in BMDPCs recruitment to decidua, we created transgenic GFP mice harboring CXCR4 gene susceptible to tamoxifen-inducible Cre-mediated ablation. These mice served as BM donors into wild-type C57BL/6 J female recipients using a 5-fluorouracil-based nongonadotoxic submyeloablation to achieve BM-specific CXCR4 knockout (CXCR4KO). Successful CXCR4 ablation was confirmed by RT-PCR and in vitro cell migration assays. Flow cytometry and immunohistochemistry showed a significant increase in GFP+ BM-derived cells (BMDCs) in the implantation site as compared to the nonpregnant uterus of control (2.7-fold) and CXCR4KO (1.8-fold) mice. This increase was uterus-specific and was not observed in other organs. This pregnancy-induced increase occurred in both hematopoietic (CD45+) and nonhematopoietic (CD45-) uterine BMDCs in control mice. In contrast, in CXCR4KO mice there was no increase in nonhematopoietic BMDCs in the pregnant uterus. Moreover, decidual recruitment of myeloid cells but not NK cells was diminished by BM CXCR4 deletion. Immunofluorescence showed the presence of nonhematopoietic GFP+ cells that were negative for CD45 (panleukocyte) and DBA (NK) markers in control but not CXCR4KO decidua. In conclusion, we report that CXCR4 expression in nonhematopoietic BMDPCs is essential for their recruitment to the pregnant decidua.
Collapse
Affiliation(s)
- Yuan-Yuan Fang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Fang Lyu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Nafeesa Abuwala
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Aya Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Alice Y Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Reshef Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Han J, Yoo I, Lee S, Cheon Y, Yun CH, Ka H. Interleukin-10 and Its Receptors at the Maternal-Conceptus Interface: Expression, Regulation, and Implication for Th2 Cytokine Predominance and Maternal Immune Tolerance in the Pig, a True Epitheliochorial Placentation Species†. Biol Reprod 2022; 106:1159-1174. [PMID: 35348632 DOI: 10.1093/biolre/ioac058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/19/2022] [Accepted: 03/14/2022] [Indexed: 11/12/2022] Open
Abstract
The appropriate balance between pro-inflammatory and anti-inflammatory cytokines is important for the maternal immune tolerance during pregnancy in mammals. Among the various cytokines, interleukin (IL)-10 (IL10) plays an essential role in anti-inflammatory responses, while IL12 is involved in pro-inflammatory responses during pregnancy. However, the roles of IL10 and IL12 in the endometrium during pregnancy have not been studied in pigs. Thus, we investigated the expression of IL10, IL12 (IL12A and IL12B) and their receptors (IL10RA, IL10RB, IL12RB1, and IL12RB2) at the maternal-conceptus interface. IL10, IL12, and their receptors were expressed in the endometrium during the estrous cycle and pregnancy in a pregnancy stage-specific manner. During pregnancy, IL10 expression increased on Day 15, whereas the expression of IL12A and IL12B decreased after the implantation period. IL10 protein was localized to luminal epithelial (LE), stromal cells, and macrophages; IL10RA protein to LE, endothelial, stromal, and T cells; and IL10RB mRNA to LE cells in the endometrium. IL10 and IL10RA proteins and IL10RB mRNA were also localized to chorionic epithelial (CE) cells. In endometrial explants, the expression of IL10RA and IL10RB was induced by estradiol-17β, IL-1β, and/or interferon-γ. Heme oxygenase 1, an IL10-inducible factor, was expressed in the endometrium with highest levels on Day 30 of pregnancy and was localized to LE and CE cells. These results in pigs suggest that conceptus-derived signals change the endometrial immune environment by regulating the expression of IL10 and IL10 receptors at the maternal-conceptus interface and that IL10 may provide anti-inflammatory conditions for the maternal immune tolerance. Summary Sentence: IL10 expression increases at the maternal-conceptus interface in pigs.
Collapse
Affiliation(s)
- Jisoo Han
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Inkyu Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Soohyung Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Yugyeong Cheon
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| |
Collapse
|
9
|
Jang H, Lee S, Yoo I, Choi Y, Han J, Cheon Y, Ka H. Calcium-binding proteins S100A8, S100A9, and S100A12: expression and regulation at the maternal-conceptus Interface in pigs†. Biol Reprod 2022; 106:1098-1111. [PMID: 35178550 DOI: 10.1093/biolre/ioac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/01/2021] [Accepted: 02/15/2022] [Indexed: 11/12/2022] Open
Abstract
Among the many calcium-binding proteins, S100A8, S100A9, and S100A12 play important roles in inflammation, innate immunity, and antimicrobial function, but their expression, regulation, and function at the maternal-conceptus interface in pigs are not fully understood. Therefore, we determined the expression and regulation of S100A8, S100A9, S100A12, and their receptor AGER at the maternal-conceptus interface in pigs. We found that S100A8, S100A9, and S100A12 mRNAs were expressed in the endometrium during the estrous cycle and pregnancy, with the greatest levels on Day (D) 12 of pregnancy, and AGER appeared at greater levels on D15 and D30 of pregnancy than on other days. The expression of S100A8, S100A9, and S100A12 was predominantly localized to epithelial cells in the endometrium, and they were detected in early-stage conceptus and later chorioallantoic tissues during pregnancy. AGER expression was localized to endometrial epithelial and stromal cells and chorionic epithelial cells. In endometrial explant tissues, the expression of S100A8, S100A9, and S100A12 was induced by estrogen, S100A8 by interleukin-1β, and AGER by interferon-γ. We further found that on D12 of pregnancy, the expression of S100A8, S100A9, and S100A12 decreased significantly in the endometria of gilts carrying conceptuses derived from somatic cell nuclear transfer. These results indicate that the expression of S100A8, S100A9, and S100A12 is dynamically regulated in response to conceptus-derived signals at the maternal-conceptus interface, suggesting that S100A8, S100A9, and S100A12 could play a critical role in regulating endometrial epithelial cell function and conceptus implantation to support the establishment and maintenance of pregnancy in pigs.
Collapse
Affiliation(s)
- Hwanhee Jang
- Department of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Soohyung Lee
- Department of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Inkyu Yoo
- Department of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Yohan Choi
- Department of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Jisoo Han
- Department of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Yugyeong Cheon
- Department of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Hakhyun Ka
- Department of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| |
Collapse
|
10
|
Walsh SC, Miles JR, Keel BN, Rempel LA, Wright-Johnson EC, Lindholm-Perry AK, Oliver WT, Pannier AK. Global analysis of differential gene expression within the porcine conceptus transcriptome as it transitions through spherical, ovoid, and tubular morphologies during the initiation of elongation. Mol Reprod Dev 2022; 89:175-201. [PMID: 35023252 PMCID: PMC9305853 DOI: 10.1002/mrd.23553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022]
Abstract
This study aimed to identify transcriptome differences between distinct or transitional stage spherical, ovoid, and tubular porcine blastocysts throughout the initiation of elongation. We performed a global transcriptome analysis of differential gene expression using RNA‐Seq with high temporal resolution between spherical, ovoid, and tubular stage blastocysts at specific sequential stages of development from litters containing conceptus populations of distinct or transitional blastocysts. After RNA‐Seq analysis, significant differentially expressed genes (DEGs) and pathways were identified between distinct morphologies or sequential development stages. Overall, 1898 significant DEGs were identified between distinct spherical and ovoid morphologies, with 311 total DEGs between developmental stages throughout this first morphological transition, while 15 were identified between distinct ovoid and tubular, with eight total throughout these second morphological transition developmental stages. The high quantity of DEGs and pathways between conceptus stages throughout the spherical to ovoid transition suggests the importance of gene regulation during this first morphological transition for initiating elongation. Further, extensive DEG coverage of known elongation signaling pathways was illustrated from spherical to ovoid, and regulation of lipid signaling and membrane/ECM remodeling across these early conceptus stages were implicated as essential to this process, providing novel insights into potential mechanisms governing this rapid morphological change.
Collapse
Affiliation(s)
- Sophie C Walsh
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jeremy R Miles
- U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Brittney N Keel
- U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Lea A Rempel
- U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | | | | | | | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
11
|
Almeida FRCL, Dias ALNA. Pregnancy in pigs: the journey of an early life. Domest Anim Endocrinol 2022; 78:106656. [PMID: 34474228 DOI: 10.1016/j.domaniend.2021.106656] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 01/12/2023]
Abstract
Embryo mortality is responsible for greater losses in litter size in pigs. It is well known that pregnancy establishment is a complex process, and important changes occur continuously in both the corpora lutea and the endometrium, which varies depending on the pre-natal development phase: embryonic, pre-implantation or fetal stages. The placenta is a key organ responsible for the exchange of nutrients, metabolites and respiratory gases between mother and fetuses. The porcine placenta is diffuse, epitheliochorial, and placentation begins with implantation, which involves specialized cell adhesion and cell migration, leading to the attachment of the trophectoderm to the uterine endometrial lumen epithelium. The efficiency with which the placenta provides adequate amounts of nutrients and oxygen to the fetus is crucial for proper fetal growth and development. In the last decades, emphasis on selection for sow prolificacy has resulted in a substantial increase in the number of piglets born per litter, which had a direct effect on piglet quality, compromising birth weight and litter uniformity. Placental insufficiency will lead to fetal intrauterine growth restriction. This review addresses the main events of early embryo development, including preimplantation and implantation periods. In addition, placentation and its role on fetal development are covered, as well as intrauterine growth restriction, as it is a natural condition in the pig, with long lasting detrimental effects to the production chain.
Collapse
Affiliation(s)
- F R C L Almeida
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, CEP 31207-901, Belo Horizonte, MG, Brazil.
| | - A L N Alvarenga Dias
- Faculty of Veterinary Medicine, Federal University of Uberlandia, Rodovia BR-050, km 78 - CEP 38410-337, Uberlandia, MG, Brazil
| |
Collapse
|
12
|
Luo Z, Yao J, Xu J. Reactive oxygen and nitrogen species regulate porcine embryo development during pre-implantation period: A mini-review. ACTA ACUST UNITED AC 2021; 7:823-828. [PMID: 34466686 PMCID: PMC8384778 DOI: 10.1016/j.aninu.2021.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 01/22/2023]
Abstract
Significant porcine embryonic loss occurs during conceptus morphological elongation and attachment from d 10 to 20 of pregnancy, which directly decreases the reproductive efficiency of sows. A successful establishment of pregnancy mainly depends on the endometrium receptivity, embryo quality, and utero-placental microenvironment, which requires complex cross-talk between the conceptus and uterus. The understanding of the molecular mechanism regulating the uterine-conceptus communication during porcine conceptus elongation and attachment has developed in the past decades. Reactive oxygen and nitrogen species, which are intracellular reactive metabolites that regulate cell fate decisions and alter their biological functions, have recently reportedly been involved in porcine conceptus elongation and attachment. This mini-review will mainly focus on the recent researches about the role of reactive oxygen and nitrogen species in regulating porcine embryo development during the pre-implantation period.
Collapse
Affiliation(s)
- Zhen Luo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Jianxiong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| |
Collapse
|
13
|
Yoo I, Kye YC, Han J, Kim M, Lee S, Jung W, Hong M, Park TS, Yun CH, Ka H. Uterine epithelial expression of the tumor necrosis factor superfamily: a strategy for immune privilege during pregnancy in a true epitheliochorial placentation species. Biol Reprod 2021; 102:828-842. [PMID: 31901087 DOI: 10.1093/biolre/ioz233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/06/2020] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
The maternal immune system tolerates semi-allogeneic placental tissues during pregnancy. Fas ligand (FASLG) and tumor necrosis factor superfamily 10 (TNFSF10) are known to be components of maternal immune tolerance in humans and mice. However, the role of FASLG and TNFSF10 in the tolerance process has not been studied in pigs, which form a true epitheliochorial type placenta. Thus, the present study examined the expression and function of FASLG and TNFSF10 and their receptors at the maternal-conceptus interface in pigs. The endometrium and conceptus tissues expressed FASLG and TNFSF10 and their receptor mRNAs during pregnancy in a stage-specific manner. During pregnancy, FASLG and TNFSF10 proteins were localized predominantly to endometrial luminal epithelial cells with strong signals on Day 30 to term and on Day 15, respectively, and receptors for TNFSF10 were localized to some stromal cells. Interferon-γ (IFNG) increased the expression of TNFSF10 and FAS in endometrial tissues. Co-culture of porcine endometrial epithelial cells over-expressing TNFSF10 with peripheral blood mononuclear cells yielded increased apoptotic cell death of lymphocytes and myeloid cells. In addition, many apoptotic T cells were found in the endometrium on Day 15 of pregnancy. The present study demonstrated that FASLG and TNFSF10 were expressed at the maternal-conceptus interface and conceptus-derived IFNG increased endometrial epithelial TNFSF10, which, in turn, induced apoptotic cell death of immune cells. These results suggest that endometrial epithelial FASLG and TNFSF10 may be critical for the formation of micro-environmental immune privilege at the maternal-conceptus interface for the establishment and maintenance of pregnancy in pigs.
Collapse
Affiliation(s)
- Inkyu Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493
| | - Yoon Chul Kye
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826
| | - Jisoo Han
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493
| | - Minjeong Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493
| | - Soohyung Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493
| | - Wonchul Jung
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493
| | - Minsun Hong
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493
| | - Tae Sub Park
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493
| |
Collapse
|
14
|
Bidarimath M, Lingegowda H, Miller JE, Koti M, Tayade C. Insights Into Extracellular Vesicle/Exosome and miRNA Mediated Bi-Directional Communication During Porcine Pregnancy. Front Vet Sci 2021; 8:654064. [PMID: 33937376 PMCID: PMC8081834 DOI: 10.3389/fvets.2021.654064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
Spontaneous fetal loss is one of the most important challenges that commercial pig industry is still facing in North America. Research over the decade provided significant insights into some of the associated mechanisms including uterine capacity, placental efficiency, deficits in vasculature, and immune-inflammatory alterations at the maternal-fetal interface. Pigs have unique epitheliochorial placentation where maternal and fetal layers lay in opposition without any invasion. This has provided researchers opportunities to accurately tease out some of the mechanisms associated with maternal-fetal interface adaptations to the constantly evolving needs of a developing conceptus. Another unique feature of porcine pregnancy is the conceptus derived recruitment of immune cells during the window of conceptus attachment. These immune cells in turn participate in pregnancy associated vascular changes and contribute toward tolerance to the semi-allogeneic fetus. However, the precise mechanism of how maternal-fetal cells communicate during the critical times in gestation is not fully understood. Recently, it has been established that bi-directional communication between fetal trophoblasts and maternal cells/tissues is mediated by extracellular vesicles (EVs) including exosomes. These EVs are detected in a variety of tissues and body fluids and their role has been described in modulating several physiological and pathological processes including vascularization, immune-modulation, and homeostasis. Recent literature also suggests that these EVs (exosomes) carry cargo (nucleic acids, protein, and lipids) as unique signatures associated with some of the pregnancy associated pathologies. In this review, we provide overview of important mechanisms in porcine pregnancy success and failure and summarize current knowledge about the unique cargo containing biomolecules in EVs. We also discuss how EVs (including exosomes) transfer their contents into other cells and regulate important biological pathways critical for pregnancy success.
Collapse
Affiliation(s)
- Mallikarjun Bidarimath
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | | | - Jessica E. Miller
- Department Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Madhuri Koti
- Department Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Obstetrics and Gynecology, Queen's University, Kingston, ON, Canada
| | - Chandrakant Tayade
- Department Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
15
|
Jung W, Yoo I, Han J, Kim M, Lee S, Cheon Y, Hong M, Jeon BY, Ka H. Expression of Caspases in the Pig Endometrium Throughout the Estrous Cycle and at the Maternal-Conceptus Interface During Pregnancy and Regulation by Steroid Hormones and Cytokines. Front Vet Sci 2021; 8:641916. [PMID: 33644157 PMCID: PMC7907442 DOI: 10.3389/fvets.2021.641916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Caspases, a family of cysteine protease enzymes, are a critical component of apoptotic cell death, but they are also involved in cellular differentiation. The expression of caspases during apoptotic processes in reproductive tissues has been shown in some species; however, the expression and regulation of caspases in the endometrium and placental tissues of pigs has not been fully understood. Therefore, we determined the expression of caspases CASP3, CASP6, CASP7, CASP8, CASP9, and CASP10 in the endometrium throughout the estrous cycle and pregnancy. During the estrous cycle, the expression of all caspases and during pregnancy, the expression of CASP3, CASP6, and CASP7 in the endometrium changed in a stage-specific manner. Conceptus and chorioallantoic tissues also expressed caspases during pregnancy. CASP3, cleaved-CASP3, and CASP7 proteins were localized to endometrial cells, with increased levels in luminal and glandular epithelial cells during early pregnancy, whereas apoptotic cells in the endometrium were limited to some scattered stromal cells with increased numbers on Day 15 of pregnancy. In endometrial explant cultures, the expression of some caspases was affected by steroid hormones (estradiol-17β and/or progesterone), and the cytokines interleukin-1β and interferon-γ induced the expression of CASP3 and CASP7, respectively. These results indicate that caspases are dynamically expressed in the endometrium throughout the estrous cycle and at the maternal-conceptus interface during pregnancy in response to steroid hormones and conceptus signals. Thus, caspase action could be important in regulating endometrial and placental function and epithelial cell function during the implantation period in pigs.
Collapse
Affiliation(s)
- Wonchul Jung
- Department of Biological Science and Technology, Yonsei University, Wonju, South Korea
| | - Inkyu Yoo
- Department of Biological Science and Technology, Yonsei University, Wonju, South Korea
| | - Jisoo Han
- Department of Biological Science and Technology, Yonsei University, Wonju, South Korea
| | - Minjeong Kim
- Department of Biological Science and Technology, Yonsei University, Wonju, South Korea
| | - Soohyung Lee
- Department of Biological Science and Technology, Yonsei University, Wonju, South Korea
| | - Yugeong Cheon
- Department of Biological Science and Technology, Yonsei University, Wonju, South Korea
| | - Minsun Hong
- Department of Biological Science and Technology, Yonsei University, Wonju, South Korea
| | - Bo-Young Jeon
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, South Korea
| | - Hakhyun Ka
- Department of Biological Science and Technology, Yonsei University, Wonju, South Korea
| |
Collapse
|
16
|
Transcriptomic analysis of interferon-γ-regulated genes in endometrial explants and their possible role in regulating maternal endometrial immunity during the implantation period in pigs, a true epitheliochorial placentation species. Theriogenology 2020; 155:114-124. [PMID: 32659448 DOI: 10.1016/j.theriogenology.2020.05.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/02/2023]
Abstract
The implantation process requires precisely controlled interactions between the maternal uterine endometrium and the implanting conceptus. Conceptus-derived secretions affect endometrial cells to facilitate the adhesion and attachment of trophoblasts, and endometrial secretions support the growth and development of the conceptus. In pigs, the conceptus secretes a large amount of type II interferon, interferon-γ (IFNG), during the implantation period. However, the role of IFNG in the implantation process has not been fully understood in pigs. Thus, to determine the role of IFNG in the endometrium during early pregnancy in pigs, we treated endometrial explant tissues with increasing doses of IFNG and analyzed the transcriptome regulated by IFNG using an RNA-sequencing analysis. Data analyses identified 276 differentially regulated genes, their Gene Ontology terms, and 94 signature genes in a Gene Set Enrichment Analysis. Furthermore, we analyzed the expression of IFNG-regulated genes, including CIITA, KYNU, IDO1, WARS, and MHC class II molecules, in the endometrium throughout pregnancy and found that levels of those genes in the endometrium were highest on Day 15 of pregnancy, corresponding to the time of peak IFNG secretion by porcine conceptuses. In addition, immunohistochemical analyses revealed that CIITA, KYNU, and IDO proteins were expressed in a cell type- and pregnancy status-specific manner in the endometrium. These results show that genes overrepresented in endometrial tissues in response to IFNG were mainly related to immune responses, suggesting that conceptus-derived IFNG could play critical roles in regulating the maternal immune response for the establishment of pregnancy in pigs.
Collapse
|
17
|
Dobrzyn K, Kiezun M, Szeszko K, Kisielewska K, Rytelewska E, Gudelska M, Zaobidna E, Bors K, Kopij G, Szymanska K, Kaminska B, Kaminski T, Smolinska N. Orexin B affects the transcriptome of incubated in vitro porcine endometrial explants from the early-implantation period. Reprod Domest Anim 2020; 56:239-253. [PMID: 32402144 DOI: 10.1111/rda.13700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/23/2020] [Accepted: 05/05/2020] [Indexed: 01/11/2023]
Abstract
This study determined the effect of orexin B (OXB) on the porcine endometrial transcriptome during the embryo attachment phase. Microarray analyses of gene ontology (GO), biological pathways, networks and differentially expressed genes (DEG) were performed. Orexin B influenced the expression of 887 genes (fold change > 1.2; p < .05): 620 genes were up-regulated, and 267 were down-regulated. The analysis of the relationship between DEG revealed that OXB interacts with genes linked with processes such as cell hormone binding, regulation of hormone levels, lipid transport, steroid metabolic processes, the apoptotic signalling pathway and the acute inflammatory response, which are pivotal for reproductive success. Orexin B played a bivalent role in the early-pregnant uterus by limiting the pregnancy outcome, promoting embryo development, suppressing the immune system and, consequently, preventing embryo rejection. These findings suggest that OXB could be responsible for the proper course of gestation by adapting litter size to the metabolic status of the maternal organism.
Collapse
Affiliation(s)
- Kamil Dobrzyn
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karol Szeszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Katarzyna Kisielewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marlena Gudelska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ewa Zaobidna
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kinga Bors
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
18
|
Expression and Functional Analysis of CXCL12 and Its Receptors in Human Term Trophoblast Cells. Reprod Sci 2020; 27:46-54. [PMID: 32046406 DOI: 10.1007/s43032-019-00134-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/17/2019] [Indexed: 12/20/2022]
Abstract
Chemokine CXCL12 and its receptors CXCR4/CXCR7 play a pivotal role in many physiological and pathological situations, while the expression and function in human term trophoblast cells remain largely unknown. In the study, the expression and function of CXCL12 and its receptors CXCR4/CXCR7 in human term trophoblast cells were investigated. Immunocytochemistry and flow cytometry showed that the expression of CXCL12/CXCR4/CXCR7 could be detected in term trophoblast cells while expression level differed. The secretion of CXCL12 in human term trophoblast cells was confirmed by enzyme-linked immunosorbent assay (ELISA). In order to reveal the function of CXCL12, exogenetic recombinant human CXCL12 protein (rhCXCL12) was added to the cultured term trophoblast cells; results showed that cell proliferation ability was increased while cell apoptosis rate was decreased. Moreover, the effects of rhCXCL12 on term trophoblast cells could be diminished or attenuated by antibodies against CXCL12, CXCR4, or CXCR7, respectively. Therefore, these results revealed the important role of CXCL12 on human term trophoblast cells. Our study will provide new insights into understanding the role of CXCL12 on human term trophoblast cells.
Collapse
|
19
|
Yoo I, Seo H, Choi Y, Jang H, Han J, Lee S, Choi Y, Ka H. Analysis of interferon-γ receptor IFNGR1 and IFNGR2 expression and regulation at the maternal-conceptus interface and the role of interferon-γ on endometrial expression of interferon signaling molecules during early pregnancy in pigs. Mol Reprod Dev 2019; 86:1993-2004. [PMID: 31680343 DOI: 10.1002/mrd.23287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022]
Abstract
It has long been known that pig conceptuses produce interferon-γ (IFNG) at the time of implantation, but the role of IFNG and its mechanism of action at the maternal-conceptus interface are not fully understood. Accordingly, we analyzed the expression and regulation of IFNG receptors IFNGR1 and IFNGR2 in the endometrium during the estrous cycle and pregnancy in pigs. Levels of IFNGR1 and IFNGR2 messenger RNA (mRNA) expression changed in the endometrium, with the highest levels during mid pregnancy for IFNGR1 and on Day 12 of pregnancy for IFNGR2. The expression of IFNGR1 and IFNGR2 mRNAs was also detected in conceptuses during early pregnancy and chorioallantoic tissues during mid to late pregnancy. IFNGR1 and IFNGR2 mRNAs were localized to endometrial epithelial and stromal cells and to the chorionic membrane during pregnancy. IFNGR2 protein was also localized to endometrial epithelial and stromal cells, and increased epithelial expression of IFNGR2 mRNA and protein was detectable during early pregnancy than the estrous cycle. Explant culture studies showed that estrogen increased levels of IFNGR2, but not IFNGR1, mRNAs, while interleukin-1β did not affect levels of IFNGR1 and IFNGR2 mRNAs. Furthermore, IFNG increased levels of IRF1, IRF2, STAT1, and STAT2 mRNAs in the endometrial explants. These results in pigs indicate that IFNGR1 and IFNGR2 are expressed in a stage of pregnancy- and cell-type specific manner in the endometrium and that sequential cooperative action of conceptus signals estrogen and IFNG may be critical for endometrial responsiveness to IFNs for the establishment of pregnancy in pigs.
Collapse
Affiliation(s)
- Inkyu Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Heewon Seo
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Yohan Choi
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Hwanhee Jang
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Jisoo Han
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Soohyung Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
20
|
Spatial Transcriptomic and miRNA Analyses Revealed Genes Involved in the Mesometrial-Biased Implantation in Pigs. Genes (Basel) 2019; 10:genes10100808. [PMID: 31615128 PMCID: PMC6826901 DOI: 10.3390/genes10100808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/29/2019] [Accepted: 10/11/2019] [Indexed: 01/20/2023] Open
Abstract
Implantation failure is a major cause of early embryonic loss. Normally, the conceptus attachment is initiated at mesometrial side of the uterus and then spread to the anti-mesometrial side in pigs, however, the mechanisms that direct the mesometrial-biased attachment are largely unknown. In this study, the histological features of the entire uterine cross-section from gestational days 12 (pre-attachment stage) and 15 (post-attachment stage) were investigated and the differences in histological features between the mesometrial and anti-mesometrial side of the uterus were observed. Then, transcriptomic and miRNA analyses were performed on mesometrial and anti-mesometrial endometrium obtained from gestational days 12 and 15, respectively. Differentially expressed genes (DEGs) and miRNAs (DE-miRs) that were common to both or unique to either of the two anatomical locations of uterus were identified, respectively, indicating that differences in molecular response to the implanting conceptus exist between the two anatomical locations. In addition, we detected DEGs and DE-miRs between the two anatomical locations on the two gestational days, respectively. Of these DEGs, a number of genes, such as chemokine and T cell surface marker genes, were found to be significantly up-regulated mesometrially. Furthermore, we detected the interaction of CXCR4, CXCL11 and miR-9 using dual luciferase reporter assay. Taken together, this study revealed genes and pathways that might play the role of creating a receptive microenvironment at the mesometrial side, which is required to guide a proper positioning of conceptus in the uterus in pigs.
Collapse
|
21
|
Chemokines as the modulators of endometrial epithelial cells remodelling. Sci Rep 2019; 9:12968. [PMID: 31506569 PMCID: PMC6736846 DOI: 10.1038/s41598-019-49502-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
Previous studies highlighted chemokines as potential factors regulating changes in the endometrium during early pregnancy. The current study aimed to screen the effects of a broad range of chemokines and indicate those that are involved in porcine luminal epithelial (LE) cell remodelling. Messenger RNA expression of chemokines (CCL2, CCL4, CCL5, CCL8, CXCL2, CXCL8, CXCL10 and CXCL12) and both the mRNA and protein expression of their receptors (CCR1, CCR2, CCR3, CCR5, CXCR2, CXCR3, CXCR4) were detected in LE cells. Exogenous CCL8 enhanced the proliferative and migration potential of LE cells and their motility in the environment with its stable concentration. The adhesive properties of LE cells were negatively affected by CCL8. However, CXCL12 positively affected the proliferation, motility and adhesion of LE cells as well as caused a decrease in MUC1 mRNA expression. To conclude, our studies determined that exogenous chemokines affected critical endometrial epithelial cell functions in the context of embryo implantation. We suggest that of all the examined factors, chemokine CCL8 participates in the establishment of a proper environment for embryo implantation, whereas CXCL12, apart from participation in endometrial receptivity, promotes embryo attachment.
Collapse
|
22
|
Złotkowska A, Andronowska A. Variable chemokine expression in porcine trophoblasts and endometrium during the peri-implantation period. Theriogenology 2019; 131:16-27. [PMID: 30928625 DOI: 10.1016/j.theriogenology.2019.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/11/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023]
Abstract
Successful embryo implantation and its further development depends on appropriate endometrial remodelling. Porcine early pregnancy is associated with intensive endometrial angiogenesis and establishment of an immunotolerant environment for the embryo. An increasing number of factors are believed to participate in endometrial remodelling. The aim of this study was to elucidate the involvement of selected chemokines at the porcine maternal-foetal interface during the peri-implantation period. Real-time PCR analysis revealed several upregulated chemokines during the time of implantation, and Western blot/ELISA analyses and immunohistochemical staining confirmed their presence at the protein level. The gene expression of several chemokines and receptors was also confirmed in early porcine trophoblasts. The results indicated that IFNG, a porcine trophoblast signal, positively influenced the expression of some chemokines in endometrial cells. In conclusion, we suggest that some of the examined chemokines may be involved in endometrial communication with the trophoblast (CCL2, CCL5, CCL11, CXCL12), whereas others are implicated in the recruitment of immune cells and establishment of an immunotolerant environment for the embryo (CXCL9, CXCL10).
Collapse
Affiliation(s)
- Aleksandra Złotkowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Aneta Andronowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland.
| |
Collapse
|
23
|
Han J, Yoo I, Lee S, Jung W, Kim HJ, Hyun SH, Lee E, Ka H. Atypical chemokine receptors 1, 2, 3 and 4: Expression and regulation in the endometrium during the estrous cycle and pregnancy and with somatic cell nucleus transfer-cloned embryos in pigs. Theriogenology 2019; 129:121-129. [PMID: 30844653 DOI: 10.1016/j.theriogenology.2019.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/03/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Atypical chemokine receptor (ACKR) 1, ACKR2, ACKR3, and ACKR4, chemokine decoy receptors that lack G-protein-mediated signaling pathways, internalize and degrade chemokines to control their availability and function. Chemokines play important roles in the endometrium during the estrous cycle and pregnancy, but the expression and regulation of ACKRs have not been determined in pigs. Therefore, we examined the expression of ACKRs in the endometrium throughout the estrous cycle and pregnancy and in conceptus tissues in pigs. ACKR1, ACKR2, ACKR3, and ACKR4 mRNA was expressed in the endometrium, with higher levels of ACKR3 on day 12 of the estrous cycle than in pregnancy and higher levels of ACKR4 on day 15 of pregnancy than in the estrous cycle. ACKR1, ACKR2, and ACKR3, but not ACKR4, mRNA was detected in conceptus and chorioallantoic tissues during pregnancy. ACKR2 and ACKR3 mRNA and ACKR4 protein were mainly localized to luminal epithelial cells and weakly to glandular epithelial cells in the endometrium. Increasing doses of progesterone increased the expression of ACKR2 and ACKR4 and decreased the expression of ACKR3 in endometrial tissues. On day 12 of pregnancy, the expression of ACKR4 mRNA was lower in the endometria of gilts with somatic cell nucleus transfer-derived conceptuses than in the endometria of gilts carrying conceptuses derived from natural mating. These results indicate that the expression of ACKRs is dynamically regulated at the maternal-conceptus interface, suggesting that ACKR proteins might play critical roles in regulating endometrial chemokines to support the establishment and maintenance of pregnancy in pigs.
Collapse
Affiliation(s)
- Jisoo Han
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Inkyu Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Soohyung Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Wonchul Jung
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Hyun Jong Kim
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Eunsong Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Gangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea.
| |
Collapse
|
24
|
Lee S, Jang H, Yoo I, Han J, Jung W, Ka H. Unique epithelial expression of S100A calcium binding protein A7A in the endometrium at conceptus implantation in pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1355-1362. [PMID: 30744322 PMCID: PMC6722313 DOI: 10.5713/ajas.18.0920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/11/2019] [Indexed: 12/17/2022]
Abstract
Objective S100A7A, a member of the S100 protein family, is involved in various biological processes, including innate immunity, antimicrobial function, and epithelial tumorigenesis. However, the expression and function of S100A7A in the endometrium during the estrous cycle and pregnancy are not well understood in pigs. Therefore, this study determined the expression and regulation of S100A7A at the maternal-conceptus interface in pigs. Methods We obtained endometrial tissues from pigs throughout the estrous cycle and pregnancy, conceptus tissues during early pregnancy, and chorioallantoic tissues during mid- to late pregnancy and analyzed the expression of S100A7A in these tissues. We also determined the effects of steroid hormones, estradiol-17β (E2) and progesterone, and interleukin-1β (IL1B) on S100A7A expression in endometrial tissues. Results We found that S100A7A was expressed in the endometrium during the estrous cycle and pregnancy in a pregnancy status- and stage-dependent manner and was localized to endometrial LE and superficial GE cells with strong intensity in LE cells on Day 12 of pregnancy. Early stage conceptuses and chorioallantoic tissues from Day 30 to term pregnancy also expressed S100A7A. The expression of S100A7A was increased by E2 and IL1B in endometrial tissues. Conclusion S100A7A was expressed at the maternal-conceptus interface at the initiation of implantation in response to conceptus-derived estrogen and IL1B and could be a unique endometrial epithelial marker for conceptus implantation in pigs. These findings provide an important insight into the understanding of conceptus-endometrial interactions for the successful establishment of pregnancy in pigs.
Collapse
Affiliation(s)
- Soohyung Lee
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Korea
| | - Hwanhee Jang
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Korea
| | - Inkyu Yoo
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Korea
| | - Jisoo Han
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Korea
| | - Wonchul Jung
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Korea
| | - Hakhyun Ka
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Korea
| |
Collapse
|
25
|
Analysis of stage-specific expression of the toll-like receptor family in the porcine endometrium throughout the estrous cycle and pregnancy. Theriogenology 2018; 125:173-183. [PMID: 30448720 DOI: 10.1016/j.theriogenology.2018.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/10/2018] [Accepted: 11/06/2018] [Indexed: 01/04/2023]
Abstract
Toll-like receptors (TLRs) play critical roles in innate immunity by regulating antimicrobial responses in mucosal tissues. The expression and function of TLRs in female reproductive tissues have been studied in several species, but the expression and function of TLRs and MYD88, an adaptor molecule in the TLR signaling pathway, at the maternal-conceptus interface are not well understood in pigs. Thus, we determined the expression of TLR1 - TLR10 and MYD88 in the endometrium, conceptus, and chorioallantoic tissues of pigs. TLR1 - TLR10 and MYD88 mRNAs were expressed in the endometrium during the estrous cycle and pregnancy in a stage-dependent manner. TLR and MYD88 mRNAs were also detected in early stage conceptuses and chorioallantoic tissues from Day 30 to term pregnancy. The expression of TLR2, TLR4, TLR5, and TLR7 was localized to epithelial and stromal cells in endometrial and chorioallantoic tissues. Increasing doses of P4, but not E2, induced the expression of TLR4, TLR5, TLR6, TLR7, and TLR8, while interferon-γ increased the expression of TLR2 and TLR7 in endometrial explant tissues. Expression of TLR3, TLR5, TLR6, TLR7, and MYD88 was higher in the endometrium with somatic cell nucleus transfer-derived conceptuses than conceptuses derived from natural mating on Day 12. These results indicate that the expression of TLR1 - TLR10 and MYD88 is dynamically regulated at the maternal-conceptus interface in pigs, suggesting that TLRs expressed in the endometrium and the placenta may play a critical role in regulating mucosal immune responses to support the establishment and maintenance of pregnancy.
Collapse
|