1
|
Darwish D, Kumar P, Urs K, Dave S. Inhaled Anesthetics: Beyond the Operating Room. J Clin Med 2024; 13:7513. [PMID: 39768435 PMCID: PMC11679802 DOI: 10.3390/jcm13247513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The development of inhaled anesthetics (IAs) has a rich history dating back many centuries. In modern times they have played a pivotal role in anesthesia and critical care by allowing deep sedation during periods of critical illness and surgery. In addition to their sedating effects, they have many systemic effects allowing for therapy beyond surgical anesthesia. In this narrative review we chronicle the evolution of IAs, from early volatile agents such as ether to the contemporary use of halogenated hydrocarbons. This is followed by a discussion of the mechanisms of action of these agents which primarily involve the modulation of lipid membrane properties and ion channel activity. IAs' systemic effects are also examined, including their effects on the cardiovascular, respiratory, hepatic, renal and nervous systems. We discuss of the role of IAs in treating systemic disease processes including ischemic stroke, delayed cerebral ischemia, status epilepticus, status asthmaticus, myocardial ischemia, and intensive care sedation. We conclude with a review of the practical and logistical challenges of utilizing IAs outside the operating room as well as directions for future research. This review highlights the expanding clinical utility of IAs and their evolving role in the management of a diverse range of disease processes, offering new avenues for therapeutic exploration beyond anesthesia.
Collapse
Affiliation(s)
- Dana Darwish
- Department of Anesthesiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pooja Kumar
- School of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Khushi Urs
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Siddharth Dave
- Department of Anesthesiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Shang J, Li B, Fan H, Liu P, Zhao W, Chen T, Chen P, Yang L. Sevoflurane promotes premature differentiation of dopaminergic neurons in hiPSC-derived midbrain organoids. Front Cell Dev Biol 2022; 10:941984. [PMID: 36176283 PMCID: PMC9513420 DOI: 10.3389/fcell.2022.941984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Conventional animal models used in corresponding basic studies are distinct from humans in terms of the brain’s development trajectory, tissue cytoarchitecture and cell types, making it difficult to accurately evaluate the potential adverse effects of anesthetic treatments on human fetal brain development. This study investigated the effects of sevoflurane on the midbrain’s development and cytopathology using human physiologically-relevant midbrain organoids. Methods: Monolayer human induced pluripotent stem cells (hiPSC)-derived human floor plate cells and three-dimensional hiPSC-derived midbrain organoids (hMBOs) were exposed to 2% (v/v) sevoflurane for 2 or 6 h, followed by expansion or differentiation culture. Then, immunofluorescence, real-time PCR, EdU assay, Tunnel assay, and transcriptome sequencing were performed to examine the effects of sevoflurane on the midbrain’s development. Results: We found that 2% sevoflurane exposure inhibited hFPCs’ proliferation (differentiation culture: 7.2% ± 0.3% VS. 13.3% ± 0.7%, p = 0.0043; expansion culture: 48% ± 2.2% VS. 35.2% ± 1.4%, p = 0.0002) and increased their apoptosis, but did not affect their differentiation into human dopaminergic neurons After 6 h, 2% sevoflurane exposure inhibited cell proliferation (62.8% ± 5.6% VS. 100% ± 5.5%, p = 0.0065) and enhanced the premature differentiation of hMBOs (246% ± 5.2% VS. 100% ± 28%, p = 0.0065). The RNA-seq results showed long-term exposure to sevoflurane up regulates some transcription factors in the differentiation of dopaminergic neurons, while short-term exposure to sevoflurane has a weak up-regulation effect on these transcription factors. Conclusion: This study revealed that long-term exposure to sevoflurane could promote the premature differentiation of hMBOs, while short-term exposure had negligible effects, suggesting that long-term exposure to sevoflurane in pregnant women may lead to fetals’ midbrain development disorder.
Collapse
Affiliation(s)
- Jia Shang
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei, China
- Department of Anesthesiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Bin Li
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei, China
| | - Han Fan
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei, China
| | - Peidi Liu
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei, China
| | - Wen Zhao
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei, China
| | - Tao Chen
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei, China
| | - Pu Chen
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei, China
- *Correspondence: Longqiu Yang, ; Pu Chen,
| | - Longqiu Yang
- Department of Anesthesiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
- Medical College, Wuhan University of Science and Technology, Wuhan, Hubei, China
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei, China
- *Correspondence: Longqiu Yang, ; Pu Chen,
| |
Collapse
|
3
|
Cryan MT, Li Y, Ross AE. Sustained delivery of focal ischemia coupled to real-time neurochemical sensing in brain slices. LAB ON A CHIP 2022; 22:2173-2184. [PMID: 35531656 PMCID: PMC9156565 DOI: 10.1039/d1lc00908g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Local stimulation of tissue can occur naturally in events like immune-mediated inflammation and focal ischemic injuries in brain and is confined to specific regions within tissue, occurring on various timescales. Making chemical measurements at the exact site of stimulation with current technologies is difficult yet important for understanding tissue response. We have developed a microfluidic device capable of local stimulation of brain slices with minimal lateral spread over time and submillimeter, tunable spatial resolution. This device is compatible with electrochemical measurements to monitor signaling at the site of stimulation over time. The PDMS-based device is three layers and contains a culture well, channel layer, and exit port layer for the channels. Channels with exit ports straddling the stimulus channels and ports were specifically fabricated to focus the stimulus over time. We demonstrated that the device is compatible with fast-scan cyclic voltammetry (FSCV) recording of neurotransmitter release. Localized hypoxia in tissue was verified using Image-iT Green Hypoxia Reagent and coupling this device with FSCV enabled measurement of local dopamine changes at the site of focal ischemia for the first time. This work provides a significant advance in knowledge of local neurochemical fluctuations during sustained tissue injury. Overall, the unique capabilities of the device to deliver sustained localized stimulation combined with real-time sensing provide an innovative platform to answer significant biological questions about how tissues respond at the site of controlled, localized injury and chemical stimulation.
Collapse
Affiliation(s)
- Michael T Cryan
- University of Cincinnati, Department of Chemistry, 312 College Drive, 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | - Yuxin Li
- University of Cincinnati, Department of Chemistry, 312 College Drive, 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | - Ashley E Ross
- University of Cincinnati, Department of Chemistry, 312 College Drive, 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| |
Collapse
|
4
|
Liang TY, Peng SY, Ma M, Li HY, Wang Z, Chen G. Protective effects of sevoflurane in cerebral ischemia reperfusion injury: a narrative review. Med Gas Res 2021; 11:152-154. [PMID: 34213497 PMCID: PMC8374460 DOI: 10.4103/2045-9912.318860] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a phenomenon that the reperfusion of ischemic organs or tissues aggravates their damage, which poses a serious health threat and economic burden to the world. I/R gives rise to a series of physiological and pathological world, including inflammatory response, oxidative stress, brain edema, blood-brain barrier destruction, and neuronal death. Therefore, finding effective treatment measures is extremely important to the recovery of I/R patients and the improvement of long-term quality of life. Sevoflurane is an important volatile anesthetic which has been reported to reduce myocardial I/R damage and infarct size. Sevoflurane also has anti-inflammatory and neuroprotective effects. As reported sevoflurane treatment could reduce nerve function injury, cerebral infarction volume and the level of inflammatory factors. At the same time, there is evidence that sevoflurane can reduce neuron apoptosis and antioxidant stress. The protective effect of sevoflurane in brain injury has been proved to be existed in several aspects, so that a comprehensive understanding of its neuroprotective effect is helpful to exploit new treatment paths for I/R, provide clinicians with new clinical treatment decisions, contribute to the effective treatment of I/R patients and the improvement of quality of life after I/R healing.
Collapse
Affiliation(s)
- Tian-Yu Liang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Song-Yang Peng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Mian Ma
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu Province, China
| | - Hai-Ying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
5
|
Yang A, Liu B. May sevoflurane prevent the development of neurogenic pulmonary edema and improve the outcome? Or as a new sedation method for severe brain injury patients. Med Hypotheses 2020; 137:109538. [PMID: 31911369 DOI: 10.1016/j.mehy.2019.109538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 02/05/2023]
Abstract
Neurogenic pulmonary edema (NPE) is a life-threatening complication that develops rapidly and dramatically after injury to the central nervous system (CNS). Severe primary brain injury and subsequent secondary brain injury cascade events are thought to be involved in the development of NPE. Activation of the sympathetic nervous system and release of vasoactive substances are also essential prerequisites for NPE. We hypothesize that sevoflurane may be an effective treatment for preventing the development of NPE. Sevoflurane may play a role in protecting brain and lung tissue after acute brain injury through its sympatholytic, antioxidative, ion channel stabilizing, anti-inflammatory, anti-apoptotic, and pulmonary protection effects. It has the potential to be used as a sedative in the neurosurgical intensive care unit (NICU), which can help maintain nervous system and cardiopulmonary function in patients with acute brain injury to improve prognosis. Sevoflurane also has the advantages of fast induction of anesthesia, rapid drug metabolism, little interference to the cardiovascular system, and controllable depth of anesthesia. If our hypothesis is supported by further experiments, use of sevoflurane may open a new door for the treatment of acute brain injury and NPE.
Collapse
Affiliation(s)
- Aobing Yang
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Bin Liu
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China.
| |
Collapse
|
6
|
Wang H, Li P, Xu N, Zhu L, Cai M, Yu W, Gao Y. Paradigms and mechanisms of inhalational anesthetics mediated neuroprotection against cerebral ischemic stroke. Med Gas Res 2016; 6:194-205. [PMID: 28217291 PMCID: PMC5223310 DOI: 10.4103/2045-9912.196901] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cerebral ischemic stroke is a leading cause of serious long-term disability and cognitive dysfunction. The high mortality and disability of cerebral ischemic stroke is urging the health providers, including anesthesiologists and other perioperative professioners, to seek effective protective strategies, which are extremely limited, especially for those perioperative patients. Intriguingly, several commonly used inhalational anesthetics are recently suggested to possess neuroprotective effects against cerebral ischemia. This review introduces multiple paradigms of inhalational anesthetic treatments that have been investigated in the setting of cerebral ischemia, such as preconditioning, proconditioning and postconditioning with a variety of inhalational anesthetics. The pleiotropic mechanisms underlying these inhalational anesthetics-afforded neuroprotection against stroke are also discussed in detail, including the common pathways shared by most of the inhalational anesthetic paradigms, such as anti-excitotoxicity, anti-apoptosis and anti-inflammation. There are also distinct mechanisms involved in specific paradigms, such as preserving blood brain barrier integrity, regulating cerebral blood flow and catecholamine release. The ready availability of these inhalational anesthetics bedside and renders them a potentially translatable stroke therapy attracting great efforts for understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Hailian Wang
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peiying Li
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Na Xu
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Ling Zhu
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mengfei Cai
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanqin Gao
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Differences Between Cerebrovascular and Anti-Ischemic Effects of Dopamine, Docosahexaenoyldopamine, and GABA–Docosahexaenoyldopamine Conjugate. Pharm Chem J 2016. [DOI: 10.1007/s11094-016-1348-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Sun Y, Li Y, Liu L, Wang Y, Xia Y, Zhang L, Ji X. Identification of miRNAs Involved in the Protective Effect of Sevoflurane Preconditioning Against Hypoxic Injury in PC12 Cells. Cell Mol Neurobiol 2015; 35:1117-25. [PMID: 25982511 PMCID: PMC11488055 DOI: 10.1007/s10571-015-0205-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/05/2015] [Indexed: 01/22/2023]
Abstract
The mechanism of sevoflurane preconditioning-induced neuroprotection is poorly understood. This study was aimed at identifying microRNAs (miRNAs) involved in the protective effect of sevoflurane preconditioning against hypoxic injury using the miRCURYTM LNA Array. The screened differentially expressed miRNAs were further validated using qRT-PCR. Finally, after transfection of miRNA (miR-101a or miR-34b) mimics or inhibitor, MTT and flow cytometry assays were used to evaluate cell survival and apoptosis in sevoflurane preconditioning. qRT-PCR confirmed the changes in expression of differentially expressed miRNAs that were screened by the microarray: down-regulation of rno-miR-101a, rno-miR-106b, and rno-miR-294 and up-regulation of rno-miR-883, rno-miR-16, and rno-miR-34b. MiR-101a and miR-34b were the most differentially expressed miRNAs. Sevoflurane preconditioning-inhibited apoptosis and preconditioning-enhanced cell viability of PC12 cells were significantly attenuated by transfection of miR-101a mimetic or miR-34b inhibitors, but were significantly enhanced by transfection of miR-34b mimetic. Therefore, a number of miRNAs, including miR-101a and miR-34b, might play important roles in the neuroprotection induced by sevoflurane preconditioning. Such miRNAs might provide novel targets for preventive and therapeutic strategies against cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yingying Sun
- Department of Anesthesiology, First Affiliated Hospital of AnHui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
- Department of Anesthesiology, AnHui Provincial Children's Hospital, Hefei, People's Republic of China
| | - Yuanhai Li
- Department of Anesthesiology, First Affiliated Hospital of AnHui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China.
| | - Lei Liu
- Department of Anesthesiology, AnHui Provincial Children's Hospital, Hefei, People's Republic of China
| | - Yiqiao Wang
- Department of Anesthesiology, First Affiliated Hospital of AnHui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
| | - Yingjing Xia
- Department of Anesthesiology, AnHui Provincial Children's Hospital, Hefei, People's Republic of China
| | - Lingli Zhang
- Department of Anesthesiology, AnHui Provincial Children's Hospital, Hefei, People's Republic of China
| | - Xuewu Ji
- Department of Anesthesiology, AnHui Provincial Children's Hospital, Hefei, People's Republic of China
| |
Collapse
|
9
|
Preischemic Administration of Sevoflurane Does not Exert Dose-dependent Effects on the Outcome of Severe Forebrain Ischemia in Rats. J Neurosurg Anesthesiol 2015; 27:216-21. [DOI: 10.1097/ana.0000000000000141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Inhibition of N-myc Downstream–regulated Gene-2 Is Involved in an Astrocyte-specific Neuroprotection Induced by Sevoflurane Preconditioning. Anesthesiology 2014; 121:549-62. [PMID: 24866406 DOI: 10.1097/aln.0000000000000314] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
Background:
Mechanism of sevoflurane preconditioning–induced cerebral ischemic tolerance is unclear. This study investigates the role of N-myc downstream–regulated gene-2 (NDRG2) in the neuroprotection of sevoflurane preconditioning in ischemic model both in vivo and in vitro.
Methods:
At 2 h after sevoflurane (2%) preconditioning for 1 h, rats were subjected to middle cerebral artery occlusion for 120 min. Neurobehavioral scores (n = 10), infarct volumes (n = 10), cellular apoptosis (n = 6), and NDRG2 expression (n = 6) were determined at 24 h after reperfusion. In vitro, cultural astrocytes were exposed to oxygen–glucose deprivation for 4 h. Cellular viability, cytotoxicity, apoptosis, and NDRG2 expression (n = 6) were evaluated in the presence or absence of NDRG2-specific small interfering RNA or NDRG2 overexpression plasmid.
Results:
Sevoflurane preconditioning decreased apoptosis (terminal deoxynucleotidyl transferase–mediated 2’-deoxyuridine 5’-triphosphate nick-end labeling–positive cells reduced to 31.2 ± 5.3% and cleaved Caspase-3 reduced to 1.42 ± 0.21 fold) and inhibited NDRG2 expression (1.28 ± 0.15 fold) and nuclear translocation (2.21 ± 0.29 fold) in ischemic penumbra. Similar effects were observed in cultural astrocytes exposed to oxygen–glucose deprivation. NDRG2 knockdown by small interfering RNA attenuated oxygen–glucose deprivation–induced injury (cell viability increased to 80.5 ± 4.1%; lactate dehydrogenase release reduced to 30.5 ± 4.0%) and cellular apoptosis (cleaved Caspase-3 reduced to 1.55 ± 0.21 fold; terminal deoxynucleotidyl transferase–mediated 2’-deoxyuridine 5’-triphosphate nick-end labeling–positive cells reduced to 18.2 ± 4.3%), whereas NDRG2 overexpression reversed the protective effects of sevoflurane preconditioning. All the data are presented as mean ± SD.
Conclusion:
Sevoflurane preconditioning inhibits NDRG2 up-regulation and nuclear translocation in astrocytes to induce cerebral ischemic tolerance via antiapoptosis, which represents one new mechanism of sevoflurane preconditioning and provides a novel target for neuroprotection.
Collapse
|
11
|
Lee H, Park YH, Jeon YT, Hwang JW, Lim YJ, Kim E, Park SY, Park HP. Sevoflurane post-conditioning increases nuclear factor erythroid 2-related factor and haemoxygenase-1 expression via protein kinase C pathway in a rat model of transient global cerebral ischaemia. Br J Anaesth 2014; 114:307-18. [PMID: 25163467 DOI: 10.1093/bja/aeu268] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The antioxidant mechanism of sevoflurane post-conditioning-induced neuroprotection remains unclear. We determined whether sevoflurane post-conditioning induces nuclear factor erythroid 2-related factor (Nrf2, a master transcription factor regulating antioxidant defence genes) and haemoxygenase-1 (HO-1, an antioxidant enzyme) expression, and whether protein kinase C (PKC) is involved in Nrf2 activation, in a rat model of transient global cerebral ischaemia/reperfusion (I/R) injury. METHODS Eighty-six rats were assigned to five groups: sham (n=6), control (n=20), sevoflurane post-conditioning (two cycles with 2 vol% sevoflurane inhalation for 10 min, n=20), chelerythrine (a PKC inhibitor; 5 mg kg(-1) i.v. administration, n=20), and sevoflurane post-conditioning plus chelerythrine (n=20). The levels of nuclear Nrf2 and cytoplasmic HO-1 were assessed 1 or 7 days after ischaemia (n=10 each, apart from the sham group, n=3). RESULTS On day 1 but not day 7 post-ischaemia, Nrf2 and HO-1 expression were significantly higher in the sevoflurane post-conditioning group than in the control group. Chelerythrine administration reduced the elevated Nrf2 and HO-1 expression induced by sevoflurane post-conditioning. CONCLUSIONS Sevoflurane post-conditioning increased Nrf2/HO-1 expression via PKC signalling in the early phase after transient global cerebral I/R injury, suggesting that activation of antioxidant enzymes may be responsible for sevoflurane post-conditioning-induced neuroprotection in the early phase after cerebral I/R injury.
Collapse
Affiliation(s)
- H Lee
- Department of Anaesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Y H Park
- Department of Anaesthesiology and Pain Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Y T Jeon
- Department of Anaesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - J W Hwang
- Department of Anaesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Y J Lim
- Department of Anaesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - E Kim
- Department of Anaesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - S Y Park
- Department of Anaesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H P Park
- Department of Anaesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Deng J, Lei C, Chen Y, Fang Z, Yang Q, Zhang H, Cai M, Shi L, Dong H, Xiong L. Neuroprotective gases – Fantasy or reality for clinical use? Prog Neurobiol 2014; 115:210-45. [DOI: 10.1016/j.pneurobio.2014.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 12/17/2022]
|
13
|
Arcangeli S, Tozzi A, Tantucci M, Spaccatini C, de Iure A, Costa C, Di Filippo M, Picconi B, Giampà C, Fusco FR, Amoroso S, Calabresi P. Ischemic-LTP in striatal spiny neurons of both direct and indirect pathway requires the activation of D1-like receptors and NO/soluble guanylate cyclase/cGMP transmission. J Cereb Blood Flow Metab 2013; 33:278-86. [PMID: 23149555 PMCID: PMC3564198 DOI: 10.1038/jcbfm.2012.167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Striatal medium-sized spiny neurons (MSNs) are highly vulnerable to ischemia. A brief ischemic insult, produced by oxygen and glucose deprivation (OGD), can induce ischemic long-term potentiation (i-LTP) of corticostriatal excitatory postsynaptic response. Since nitric oxide (NO) is involved in the pathophysiology of brain ischemia and the dopamine D1/D5-receptors (D1-like-R) are expressed in striatal NOS-positive interneurons, we hypothesized a relation between NOS-positive interneurons and striatal i-LTP, involving D1R activation and NO production. We investigated the mechanisms involved in i-LTP induced by OGD in corticostriatal slices and found that the D1-like-R antagonist SCH-23390 prevented i-LTP in all recorded MSNs. Immunofluorescence analysis confirmed the induction of i-LTP in both substance P-positive, (putative D1R-expressing) and adenosine A2A-receptor-positive (putative D2R-expressing) MSNs. Furthermore, i-LTP was dependent on a NOS/cGMP pathway since pharmacological blockade of NOS, guanylate-cyclase, or PKG prevented i-LTP. However, these compounds failed to prevent i-LTP in the presence of a NO donor or cGMP analog, respectively. Interestingly, the D1-like-R antagonism failed to prevent i-LTP when intracellular cGMP was pharmacologically increased. We propose that NO, produced by striatal NOS-positive interneurons via the stimulation of D1-like-R located on these cells, is critical for i-LTP induction in the entire population of MSNs involving a cGMP-dependent pathway.
Collapse
Affiliation(s)
- Sara Arcangeli
- Clinica Neurologica, Università di Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chauhan NK, Young AMJ, Gibson CL, Davidson C. Inhibition of pre-ischeamic conditioning in the mouse caudate brain slice by NMDA- or adenosine A1 receptor antagonists. Eur J Pharmacol 2012; 698:322-9. [PMID: 23099254 PMCID: PMC3556740 DOI: 10.1016/j.ejphar.2012.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/01/2012] [Accepted: 10/13/2012] [Indexed: 12/16/2022]
Abstract
Evidence suggests that pre-ischeamic conditioning (PIC) offers protection against a subsequent ischeamic event. Although some brain areas such as the hippocampus have received much attention, the receptor mechanisms of PIC in other brain regions are unknown. We have previously shown that 10 min oxygen and glucose deprivation (OGD) evokes tolerance to a second OGD event in the caudate. Here we further examine the effect of length of conditioning event on the second OGD event. Caudate mouse brain slices were superfused with artificial cerebro-spinal fluid (aCSF) bubbled with 95%O2/5%CO2. OGD was achieved by reducing the aCSF glucose concentration and by bubbling with 95%N2/5%CO2. After approximately 5 min OGD a large dopamine efflux was observed, presumably caused by anoxic depolarisation. On applying a second OGD event, 60 min later, dopamine efflux was delayed and reduced. We first examined the effect of varying the length of the conditioning event from 5 to 40 min and found tolerance to PIC increased with increasing duration of conditioning. We then examined the receptor mechanism(s) underlying PIC. We found that pre-incubation with either MK-801 or 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) reduced tolerance to the second OGD event. These data suggest that either N-methyl-d-aspartate (NMDA) or adenosine A1 receptor activation evokes PIC in the mouse caudate.
Collapse
Affiliation(s)
- Nikky K Chauhan
- School of Psychology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | | | | | | |
Collapse
|
15
|
Pour ou contre les halogénés en neuroanesthésie pour chirurgie intracrânienne. ACTA ACUST UNITED AC 2012; 31:e229-34. [DOI: 10.1016/j.annfar.2012.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Kimura-Kuroiwa K, Adachi YU, Mimuro S, Obata Y, Kawamata M, Sato S, Matsuda N. The effect of aging on dopamine release and metabolism during sevoflurane anesthesia in rat striatum: an in vivo microdialysis study. Brain Res Bull 2012; 89:223-30. [PMID: 22960643 DOI: 10.1016/j.brainresbull.2012.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/22/2012] [Indexed: 11/26/2022]
Abstract
We have previously reported that halothane anesthesia increases extracellular concentrations of dopamine (DA) metabolites in rat striatum using in vivo microdialysis techniques. Aging induces many changes in the brain, including neurotransmission. However, the relationship between aging and changes in neurotransmitter release during inhalational anesthesia has not been fully investigated. The aim of the present investigation was to evaluate the effect of sevoflurane on methamphetamine (MAPT)-induced DA release and metabolism in young and middle-aged rats. Male Sprague-Dawley rats were implanted with a microdialysis probe into the right striatum. The probe was perfused with a modified Ringer's solution and 40μl of dialysate was directly injected to an HPLC every 20min. Rats were administered saline, the same volume of 2mgkg(-1) MAPT intraperitoneally, or 5μM MAPT locally perfused. After treatments, the rats were anesthetized with 1% or 3% sevoflurane for 1h. Sevoflurane anesthesia significantly increased the extracellular concentration of DA only in middle-aged rats (52-weeks-old). In young rats (8-weeks-old), sevoflurane significantly enhanced MAPT-induced DA when administered both intraperitoneally and perfused locally, whereas no significant additive interaction was found in middle-aged rats. These results suggest that aging changes DA release and metabolism in rat brains primarily by decreasing the DA transporter.
Collapse
Affiliation(s)
- Kaori Kimura-Kuroiwa
- 2nd Department of Anesthesia, Nagano Red Cross Hospital, Wakasato, Nagano, Nagano, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Knight SR, Davidson C, Young AMJ, Gibson CL. Allopregnanolone protects against dopamine-induced striatal damage after in vitro ischaemia via interaction at GABA A receptors. J Neuroendocrinol 2012; 24:1135-43. [PMID: 22458414 DOI: 10.1111/j.1365-2826.2012.02319.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sex steroid hormones, such as progesterone, have been shown to display neuroprotective properties after various models of central nervous system injury, including cerebral ischaemia, although the mechanism(s) of action remain largely undetermined. Allopregnanolone, an active progesterone metabolite, may explain some of the protective actions of progesterone. We utilised an in vitro model of ischaemia to evaluate the neuroprotective potential of allopregnanolone and examine its interaction at the GABA(A) receptor, which is hypothesised to be its main neuroprotective mechanism. In adult male mouse coronal caudate slices exposed to oxygen glucose deprivation (OGD), we measured aspects of OGD-induced dopamine release, which is neurotoxic during ischaemia, using fast cyclic voltammetry and also assessed tissue viability. The GABA(A) agonist, muscimol, displayed a neuroprotective profile in terms of delaying the OGD-evoked dopamine efflux (P < 0.05) and reducing the amount of dopamine released after OGD (P < 0.05). Allopregnanolone, at a concentration of 10(-6) m, also displayed a neuroprotective profile because it significantly reduced the amount of dopamine efflux (P < 0.05) and reduced the loss of viable tissue after OGD compared to slices exposed to vehicle during OGD (P < 0.05). However, the effect of 10(-6) m allopregnanolone on dopamine efflux was prevented in the presence of bicuculline, a competitive GABA(A) receptor antagonist. These results describe the use of an in vitro model of ischaemia with respect to determining that allopregnanolone is neuroprotective during the acute phase of ischaemia, and also demonstrate that such actions are dependent, at least in part, upon interaction at the GABA(A) receptor.
Collapse
Affiliation(s)
- S R Knight
- School of Psychology, University of Leicester, Leicester, UK
| | | | | | | |
Collapse
|
18
|
Davidson C, Chauhan N, Knight S, Gibson C, Young A. Modelling ischaemia in vitro: Effects of temperature and glucose concentration on dopamine release evoked by oxygen and glucose depletion in a mouse brain slice. J Neurosci Methods 2011; 202:165-72. [DOI: 10.1016/j.jneumeth.2011.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
|
19
|
Abstract
BACKGROUND Sevoflurane is often presented as a near-perfect anaesthetic. After 10 years in the operating room, new uses are emerging outside. OBJECTIVE To remind readers of the principal characteristics of sevoflurane, to affirm its usefulness for day-case anaesthesia and to consider the recent new uses. METHODS The discussion of the physical properties, pharmacokinetics, metabolism, mechanisms of action and clinical effects is based on classic, essential papers. Recent literature concerning emerging utilizations of sevoflurane was analysed. RESULTS Sevoflurane presents many benefits with minimum inconvenience. It allows rapid inhalation induction, maintenance and rapid recovery. It has little toxicity and its haemodynamic and respiratory depressive effects are moderate and well tolerated. It is already widely use for sedation for magnetic resonance imaging in children. Its use in paediatric or adult intensive care could improve the management of pain and sedation.
Collapse
Affiliation(s)
- Fabrice Michel
- Faculty of Medicine, Paediatric and Neonatal Intensive Care Unit, University of the Mediterranean, North University Hospital, Marseille Cedex 20, France.
| | | |
Collapse
|
20
|
Sigaut S, Jannier V, Rouelle D, Gressens P, Mantz J, Dahmani S. The Preconditioning Effect of Sevoflurane on the Oxygen Glucose-Deprived Hippocampal Slice: The Role of Tyrosine Kinases and Duration of Ischemia. Anesth Analg 2009; 108:601-8. [DOI: 10.1213/ane.0b013e31818e2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Yurdakoc A, Gunday I, Memiş D. Effects of halothane, isoflurane, and sevoflurane on lipid peroxidation following experimental closed head trauma in rats. Acta Anaesthesiol Scand 2008; 52:658-63. [PMID: 18419720 DOI: 10.1111/j.1399-6576.2008.01635.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In a rat closed head trauma model we examined both the time course of lipid peroxidation and the effects of halothane, isoflurane, and sevoflurane on it by analysis of malondialdehyde (MDA) formation. METHODS Animals were divided randomly into five groups: sham-operated (SO), n=18; control-closed head trauma to left frontal pole, n=18; closed head trauma model+halothane, n=18; closed head trauma model+isoflurane, n=18; and closed head trauma model+sevoflurane, n=18. Halothane, isoflurane, or sevoflurane were applied 15 min after trauma for 30 min. Rats were euthanized 1,3, and 5 h after the inhalation agents. Brain tissue samples were taken 5 mm from the left and right frontal poles. MDA was considered to reflect the degree of lipid peroxidation. RESULTS MDA concentrations were greater in the control, halothane, sevoflurane, and isoflurane groups than in SO animals (P<0.001). No statistical difference between the hemispheres was found between the halothane, isoflurane, or sevoflurane groups, but MDA levels were lower with isoflurane than in the halothane, sevoflurane, and control groups at 1, 3, and 5 h (P<0.001). MDA levels were higher as compared with the halothane and sevoflurane groups at 1 h but not at 3 or 5 h (P<0.001). CONCLUSION MDA levels with the isoflurane group were lower than in the other trauma groups, which suggest that isoflurane, given after closed head trauma, might be protective against lipid peroxidation of cerebral injury.
Collapse
Affiliation(s)
- A Yurdakoc
- Department of Anaesthesiology, Kirklareli Hospital, Edirne, Turkey
| | | | | |
Collapse
|
22
|
Kitano H, Kirsch JR, Hurn PD, Murphy SJ. Inhalational anesthetics as neuroprotectants or chemical preconditioning agents in ischemic brain. J Cereb Blood Flow Metab 2007; 27:1108-28. [PMID: 17047683 PMCID: PMC2266688 DOI: 10.1038/sj.jcbfm.9600410] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review will focus on inhalational anesthetic neuroprotection during cerebral ischemia and inhalational anesthetic preconditioning before ischemic brain injury. The limitations and challenges of past and current research in this area will be addressed before reviewing experimental and clinical studies evaluating the effects of inhalational anesthetics before and during cerebral ischemia. Mechanisms underlying volatile anesthetic neuroprotection and preconditioning will also be examined. Lastly, future directions for inhalational anesthetics and ischemic brain injury will be briefly discussed.
Collapse
Affiliation(s)
- Hideto Kitano
- Department of Anesthesiology and Peri-Operative Medicine, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
23
|
Pape M, Engelhard K, Eberspächer E, Hollweck R, Kellermann K, Zintner S, Hutzler P, Werner C. The Long-Term Effect of Sevoflurane on Neuronal Cell Damage and Expression of Apoptotic Factors After Cerebral Ischemia and Reperfusion in Rats. Anesth Analg 2006; 103:173-9, table of contents. [PMID: 16790648 DOI: 10.1213/01.ane.0000222634.51192.a4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We investigated the long-term effects of sevoflurane on histopathologic injury and key proteins of apoptosis in a rat hemispheric ischemia/reperfusion model. Sixty-four male Sprague-Dawley rats were randomly assigned to Group 1 (fentanyl and N2O/O2; control) and Group 2 (2.0 vol% sevoflurane and O2/air). Ischemia (45 min) was produced by unilateral common carotid artery occlusion plus hemorrhagic hypotension (mean arterial blood pressure 40 mm Hg). Animals were killed after 1, 3, 7, and 28 days. In hematoxylin and eosin-stained brain sections eosinophilic hippocampal neurons were counted. Activated caspase-3 and the apoptosis-regulating proteins Bax, Bcl-2, Mdm-2, and p53 were analyzed by immunostaining. No eosinophilic neurons were detected in sevoflurane-anesthetized rats over time, whereas 9%-38% of the hippocampal neurons were eosinophilic (days 1-28) in control animals. On days 1 and 3, the concentration of Bax was 140%-200% larger in fentanyl/N2O-anesthetized animals compared with sevoflurane. Bcl-2 was 100% less in control animals during the first 3 days. Activated caspase-3 was detected in neurons of both groups (0.75%-2.2%). These data support a sustained neuroprotective potency of sevoflurane related to reduced eosinophilic injury after cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Monika Pape
- Klinik für Anästhesiolgie Klinikum der Johannes Gutenberg-Universität, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Bains R, Moe MC, Larsen GA, Berg-Johnsen J, Vinje ML. Volatile anaesthetics depolarize neural mitochondria by inhibiton of the electron transport chain. Acta Anaesthesiol Scand 2006; 50:572-9. [PMID: 16643227 DOI: 10.1111/j.1399-6576.2006.00988.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The mitochondrial membrane potential (DeltaPsim) controls the generation of adenosine triphosphate (ATP) and reactive oxygen species, and sequesteration of intracellular Ca2+[Ca2+]i. Clinical concentrations of sevoflurane affect the DeltaPsim in neural mitochondria, but the mechanisms remain elusive. The aim of the present study was to compare the effect of isoflurane and sevoflurane on DeltaPsim in rat pre-synaptic terminals (synaptosomes), and to investigate whether these agents affect DeltaPsim by inhibiting the respiratory chain. METHODS Synaptosomes were loaded with the fluorescent probes JC-1 (DeltaPsim) and Fura-2 ([Ca2+]i) and exposed to isoflurane or sevoflurane. The effect of the anaesthetics on the electron transport chain was investigated by blocking complex I and complex V. RESULTS Isoflurane 1 and 2 minimum alveolar concentration (MAC) decreased the normalized JC-1 ratio from 0.92 +/- 0.03 in control to 0.86 +/- 0.02 and 0.81 +/- 0.01, respectively, reflecting a depolarization of the mitochondrial membrane (n = 9). Isoflurane 2 MAC increased [Ca2+]i. In Ca2+-depleted medium, isoflurane still decreased DeltaPsim while [Ca2+]i remained unaltered. The effect of isoflurane was more pronounced than for sevoflurane. Blocking complex V of the respiratory chain enhanced the isoflurane- and sevoflurane-induced mitochondrial depolarization, whereas blocking complex I and V decreased DeltaPsim to the same extent in control, isoflurane and sevoflurane experiments. CONCLUSIONS Isoflurane and sevoflurane may act as metabolic inhibitors by depolarizing pre-synaptic mitochondria through inhibition of the electron transport chain, although isoflurane seems to inhibit mitochondrial function more significantly than sevoflurane. Both agents inhibit the respiratory chain sufficiently to cause ATP synthase reversal.
Collapse
Affiliation(s)
- R Bains
- Institute for Surgical Research and Department of Neurosurgery, Rikshospitalet University Hospital, Oslo, Norway.
| | | | | | | | | |
Collapse
|
25
|
Westphalen RI, Hemmings HC. Volatile anesthetic effects on glutamate versus GABA release from isolated rat cortical nerve terminals: basal release. J Pharmacol Exp Ther 2006; 316:208-15. [PMID: 16174801 DOI: 10.1124/jpet.105.090647] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of three volatile anesthetics (isoflurane, enflurane, and halothane) on basal release of glutamate and GABA from isolated rat cerebrocortical nerve terminals (synaptosomes) were compared using a dual isotope superfusion method. Concentration-dependent effects on basal release differed between anesthetics and transmitters. Over a range of clinical concentrations (0.5-2x minimum alveolar concentration), basal glutamate release was inhibited by all three anesthetics, whereas basal GABA release was enhanced (isoflurane) or unaffected (enflurane and halothane). These effects may represent a balance of stimulatory and inhibitory mechanisms between transmitters and anesthetics. There were no significant differences between anesthetic effects on basal release in the absence or presence of external Ca(2+), whereas intracellular Ca(2+) buffering limited volatile anesthetic inhibition of basal glutamate release. Although these results demonstrate fundamental differences in anesthetic effects on basal release between glutamatergic and GABAergic nerve terminals, all three volatile anesthetics at clinical concentrations consistently reduced the ratio of basal glutamate to GABA release. These actions may contribute to the net depression of glutamatergic excitation and potentiation of GABAergic inhibition characteristic of general anesthesia.
Collapse
Affiliation(s)
- Robert I Westphalen
- Department of Anesthesiology LC-203, Weill Medical College of Cornell University, Box 50, 1300 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
26
|
Moe MC, Bains R, Vinje ML, Larsen GA, Kampenhaug EB, Berg-Johnsen J. Sevoflurane depolarizes pre-synaptic mitochondria in the central nervous system. Acta Anaesthesiol Scand 2004; 48:562-8. [PMID: 15101849 DOI: 10.1111/j.1399-6576.2004.00382.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Volatile anaesthetics protect the heart from ischaemic injury by activating mitochondrial signalling pathways. The aim of this study was to test whether sevoflurane, which is increasingly used in neuroanaesthesia, affects mitochondrial function in the central nervous system by altering the mitochondrial membrane potential (DeltaPsi(m)). METHODS In order to correlate free cytosolic Ca(2+) ([Ca(2+)](i)) and DeltaPsi(m), rat neural presynaptic terminals (synaptosomes) were loaded with the fluorescent probes fura-2 and JC-1. During sevoflurane exposure, 4-aminopyridine (4-AP) 500 micro M to induce pre-synaptic membrane depolarization or carbonylcyanide-p-(trifluoromethoxy)-phenylhydrazone (FCCP) 1 micro M to induce maximum mitochondrial depolarization was added. In order to block mitochondrial ATP-regulated K(+)-channels (mitoK(ATP)), the antagonist 5-hydroxydecanoate (5-HD) 500 micro M was added. RESULTS In Ca(2+)-containing medium, both sevoflurane 1 and 2 MAC gradually decreased the normalized JC-1 ratio from 0.96 +/- 0.01 in control to 0.92 +/- 0.01 and 0.89 +/- 0.01, representing a depolarization of DeltaPsi(m) (n = 9, P < 0.05). Sevoflurane 2 MAC increased [Ca(2+)](i). In Ca(2+)-depleted medium, sevoflurane 1 and 2 MAC depolarized DeltaPsi(m), while [Ca(2+)](i) remained unaltered. Sevoflurane 2 MAC attenuated the 4-AP-induced depolarization of DeltaPsi(m). When mitoK(ATP) was blocked, the sevoflurane-induced depolarization of DeltaPsi(m) was attenuated, but not blocked. The depolarizing effect of sevoflurane on DeltaPsi(m) compared with FCCP was calculated to 13.2 +/- 1.3% in Ca(2+)-containing and 15.1 +/- 1.2% in Ca(2+)-depleted medium (n = 7). CONCLUSIONS Sevoflurane depolarizes DeltaPsi(m) in rat synaptosomes, and the effect is not dependent on Ca(2+)-influx to the cytosol. Opening of mitoK(ATP) is partly responsible for the depolarizing effect of sevoflurane.
Collapse
Affiliation(s)
- M C Moe
- Institute for Surgical Research and Department of Neurosurgery, Rikshospitalet University Hospital, 0027 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
27
|
De Deyne C, Joly LM, Ravussin P. Les nouveaux agents volatils halogénés en neuro-anesthésie : quelle place pour le sévoflurane ou le desflurane ? ACTA ACUST UNITED AC 2004; 23:367-74. [PMID: 15120783 DOI: 10.1016/j.annfar.2004.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The effects on cerebral circulation and metabolism of sevoflurane and desflurane are largely comparable to isoflurane. Both induce a direct vasodilation of the cerebral vessels, resulting in a less pronounced decrease in cerebral blood flow compared to the decrease in cerebral metabolism. This direct vasodilation seems to be dose-dependent and more pronounced for desflurane > isoflurane > sevoflurane. Many reports suggest luxury perfusion at high concentrations of desflurane. Sevoflurane maintains intact cerebral autoregulation up to 1.5 MAC. Desflurane induces a significant impairment in autoregulation, with a completely abolished autoregulation at 1.5 MAC. Both sevoflurane and desflurane (up to 1.5 MAC) maintain normal CO(2) regulation. As to their effect on final intracranial pressure (ICP), both sevoflurane and desflurane revealed no increases in ICP. However, compared to intravenous hypnotics, subdural ICP is higher with volatiles because of their tendency to increase cerebral swelling after dura opening (isoflurane > sevoflurane). Several case reports have noted seizure-like movements, as well as EEG recorded seizures during induction of sevoflurane anesthesia. Especially, in children during inhalational induction with hyperventilation at a high sevoflurane concentration, severe epileptiform EEG with a hyperdynamic response were observed, which urges for caution using inhalational sevoflurane induction in children for neurosurgical procedures. Neuroprotective properties (reduced neuronal death either by necrosis or apoptosis) have been attributed to all volatile agents. However, these neuroprotective effects have been described in experimental or animal models, so their possible effect on humans remains to be proven.
Collapse
Affiliation(s)
- C De Deyne
- Department of anaesthesia and critical care, Ziekenhuis Oost-Limburg, Genk, Belgique
| | | | | |
Collapse
|
28
|
Engelhard K, Werner C, Hoffman WE, Matthes B, Blobner M, Kochs E. The Effect of Sevoflurane and Propofol on Cerebral Neurotransmitter Concentrations During Cerebral Ischemia in Rats. Anesth Analg 2003; 97:1155-1161. [PMID: 14500174 DOI: 10.1213/01.ane.0000078576.93190.6f] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED Sevoflurane and propofol are neuroprotective possibly by attenuating central or peripheral catecholamines. We evaluated the effect of these anesthetics on circulating catecholamines and brain neurotransmitters during ischemia in rats. Forty male Sprague-Dawley rats were randomly assigned to one of the following treatment groups: fentanyl and N(2)O/O(2) (control), 2.0% sevoflurane, 0.8-1.2 mg x kg(-1) x min(-1) of propofol, and sham-operated rats with fentanyl and N(2)O/O(2). Ischemia (30 min) was produced by unilateral common carotid artery occlusion plus hemorrhagic hypotension to a mean arterial blood pressure of 32 +/- 2 mm Hg. Pericranial temperature, arterial blood gases, and pH value were maintained constant. Cerebral catecholamine and glutamate concentrations, sampled by microdialysis, and plasma catecholamine concentrations were analyzed using high-pressure liquid chromatography. During ischemia, circulating catecholamines were almost completely suppressed by propofol but only modestly decreased with sevoflurane. Sevoflurane and propofol suppressed brain norepinephrine concentration increases by 75% and 58%, respectively, compared with controls. Intra-ischemia cerebral glutamate concentration was decreased by 60% with both sevoflurane and propofol. These results question a role of circulating catecholamines as a common mechanism for cerebral protection during sevoflurane and propofol. A role of brain tissue catecholamines in mediating ischemic injury is consistent with our results. IMPLICATIONS During incomplete cerebral ischemia, the neuroprotective anesthetics sevoflurane and propofol suppressed cerebral increases in norepinephrine and glutamate concentrations. In contrast, propofol, but not sevoflurane, suppressed the ischemia-induced increase in circulating catecholamines to baseline levels. The results question a role for plasma catecholamines in cerebral ischemic injury.
Collapse
Affiliation(s)
- Kristin Engelhard
- *Klinik für Anaesthesiologie and †Institut für klinische Chemie und Pathobiochemie, Technische Universität München, Klinikum rechts der Isar, Munich, Germany; and ‡Department of Anesthesiology, University of Illinois at Chicago
| | | | | | | | | | | |
Collapse
|
29
|
Moe MC, Berg-Johnsen J, Larsen GA, Kampenhaug EB, Vinje ML. The effect of isoflurane and sevoflurane on cerebrocortical presynaptic Ca2+ and protein kinase C activity. J Neurosurg Anesthesiol 2003; 15:209-14. [PMID: 12826968 DOI: 10.1097/00008506-200307000-00008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Protein kinase C (PKC) is an important enzyme involved in the regulation of neurotransmission and might also be important in the mediation of ischemic neuronal death. PKC has been implicated as a target of volatile anesthetics as well as in anesthetic protection against ischemia. The present study tested the effect of isoflurane and sevoflurane, both used in neuroanesthetic practice, on presynaptic free cytosolic Ca2+ ([Ca2+](i)) and PKC activity. To measure [Ca2+](i) and PKC activation simultaneously, rat synaptosomes, mostly containing presynaptic terminals, were loaded with the fluorescent probes fura-2 and fim-1, respectively. The synaptosomes were exposed to either isoflurane or sevoflurane in concentrations corresponding to 1 and 2 MAC values in rats, both in Ca2+-containing and Ca2+-free medium. After 8 minutes of anesthetic exposure, 1 mM 4-aminopyridine was added to induce membrane depolarization. Isoflurane 1 and 2 MAC increased the basal PKC activity after 8 minutes in Ca2+-containing medium by 15.1% (3.6%) and 30.5% (5.5%) compared with control, respectively [mean (SEM); n = 9, both values P < 0.05]. Sevoflurane 2 MAC transiently decreased but thereafter increased the PKC activity (P < 0.05). In Ca2+ -free medium sevoflurane attenuated the PKC activity (P < 0.05). The anesthetics did not alter the depolarization-evoked enzyme activation. Furthermore, 2 MAC of both isoflurane and sevoflurane increased the basal- and attenuated the depolarization-evoked increase in [Ca2+](i) (P < 0.05). The present study supports the hypotheses that volatile anesthetics affect presynaptic PKC activity and that the anesthetic effect on enzyme activation seems to be related to an increase in [Ca2+](i).
Collapse
Affiliation(s)
- Morten C Moe
- Institute for Surgical Research and Department of Neurosurgery, Rikshospitalet University Hospital, Oslo, Norway.
| | | | | | | | | |
Collapse
|
30
|
Toner CC, Milne AJ, Blatchford KL, McLaughlin DP, Stamford JA. An assessment of the cerebroprotective potential of volatile anaesthetics using two independent methods in an in vitro model of cerebral ischaemia. Brain Res 2002; 958:390-8. [PMID: 12470875 DOI: 10.1016/s0006-8993(02)03696-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies using a rat brain slice model of cerebral 'ischaemia' (hypoxia and hypoglycaemia) have suggested that volatile anaesthetics may have cerebroprotective potential. In this study, we tested the cerebroprotective profile of four volatile anaesthetics in this model by two independent means: voltammetric measurement of 'ischaemia'-induced dopamine (DA) release and post-'ischaemic' tissue staining with 2,3,5-triphenyltetrazolium chloride (TTC). 'Ischaemia' caused a characteristic pattern of DA release. Halothane, isoflurane and enflurane did not affect the time from onset of 'ischaemia' to the initiation of DA release. However, all three volatile agents significantly increased (P<0.01, P<0.05, P<0.001, respectively) the time taken for 'ischaemia'-induced DA release to reach maximum and reduced the rate of DA release. Enflurane, unlike halothane or isoflurane, reduced the maximal extracellular DA concentration induced by 'ischaemia' (P<0.01). The effects of sevoflurane were inconsistent. At the higher concentrations used, the volatile anaesthetics frequently changed the character of DA release from monophasic to biphasic, an effect only previously seen in this model with Na(+) channel blockers. 'Ischaemia' also diminished the subsequent level of tissue staining with TTC. When the effects of the volatile agents were analysed by TTC staining, only enflurane showed any cerebroprotective effects and these were limited to the striatum (P<0.01). High concentrations of halothane, isoflurane and enflurane appeared to have some 'toxic' effects, reducing TTC staining in control slices. In summary, we do not find any consistent evidence that volatile anaesthetics are cerebroprotective in this model.
Collapse
Affiliation(s)
- Christopher C Toner
- Neurotransmission Laboratory, Academic Department of Anaesthesia and Intensive Care, Barts and the London School of Medicine and Dentistry, Alexandra Wing, Royal London Hospital, Whitechapel, London E1 1BB, UK
| | | | | | | | | |
Collapse
|
31
|
Saulle E, Centonze D, Martín AB, Moratalla R, Bernardi G, Calabresi P. Endogenous dopamine amplifies ischemic long-term potentiation via D1 receptors. Stroke 2002; 33:2978-84. [PMID: 12468800 DOI: 10.1161/01.str.0000038093.42512.0f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Several observations indicate that, during energy deprivation, endogenous dopamine may become neurotoxic. Accordingly, the nucleus striatum is a preferential site of silent infarcts in humans, and experimental ischemia caused by homolateral carotid occlusion selectively damages this dopamine-enriched brain area. In an attempt to clarify how dopamine takes part in ischemia-induced neuronal damage, we performed in vitro electrophysiological recordings from neurons of the nucleus striatum. METHODS Intracellular recordings with sharp microelectrodes were performed from corticostriatal slices. Slices were obtained from both rats and wild-type and dopamine D1 receptor-lacking mice. In some experiments, the striatum was unilaterally denervated by injecting the dopamine-specific neurotoxin 6-hydroxydopamine in the homolateral substantia nigra. Dopamine agonists and antagonists, as well as drugs targeting the intracellular cascade coupled to dopamine receptor stimulation, were applied at known concentrations. RESULTS Manipulation of the dopamine system failed to affect the membrane depolarization of striatal neurons exposed to combined oxygen and glucose deprivation of short duration, but it reduced the amplitude of postischemic long-term potentiation (LTP) expressed at corticostriatal synapses. In particular, pharmacological blockade or genetic inactivation of D1/cAMP/protein kinase A pathway prevented the long-term increase of the excitatory postsynaptic potential (EPSP) amplitude caused by a transient ischemic episode, while it failed to prevent the increase of the EPSP half-decay coupled to ischemic LTP. CONCLUSIONS The present data suggest that endogenous dopamine, via D1 receptors, selectively facilitates the expression of ischemic LTP on the AMPA-mediated component of the EPSPs, while it does not alter the expression of this form of synaptic plasticity on the N-methyl-D-aspartate-mediated component of corticostriatal synaptic potentials. Understanding the cellular and molecular mechanisms of ischemia-triggered excitotoxicity offers hope for the development of specific treatments able to interfere with this pathological process.
Collapse
Affiliation(s)
- Emilia Saulle
- Clinica Neurologica, Dipartimento di Neuroscienze, Università "Tor Vergata," and IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | | | | | | | | |
Collapse
|