1
|
San José Estépar R. Artificial intelligence in functional imaging of the lung. Br J Radiol 2022; 95:20210527. [PMID: 34890215 PMCID: PMC9153712 DOI: 10.1259/bjr.20210527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/11/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022] Open
Abstract
Artificial intelligence (AI) is transforming the way we perform advanced imaging. From high-resolution image reconstruction to predicting functional response from clinically acquired data, AI is promising to revolutionize clinical evaluation of lung performance, pushing the boundary in pulmonary functional imaging for patients suffering from respiratory conditions. In this review, we overview the current developments and expound on some of the encouraging new frontiers. We focus on the recent advances in machine learning and deep learning that enable reconstructing images, quantitating, and predicting functional responses of the lung. Finally, we shed light on the potential opportunities and challenges ahead in adopting AI for functional lung imaging in clinical settings.
Collapse
Affiliation(s)
- Raúl San José Estépar
- Applied Chest Imaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
2
|
Pourfathi M, Kadlecek SJ, Chatterjee S, Rizi RR. Metabolic Imaging and Biological Assessment: Platforms to Evaluate Acute Lung Injury and Inflammation. Front Physiol 2020; 11:937. [PMID: 32982768 PMCID: PMC7487972 DOI: 10.3389/fphys.2020.00937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
Pulmonary inflammation is a hallmark of several pulmonary disorders including acute lung injury and acute respiratory distress syndrome. Moreover, it has been shown that patients with hyperinflammatory phenotype have a significantly higher mortality rate. Despite this, current therapeutic approaches focus on managing the injury rather than subsiding the inflammatory burden of the lung. This is because of the lack of appropriate non-invasive biomarkers that can be used clinically to assess pulmonary inflammation. In this review, we discuss two metabolic imaging tools that can be used to non-invasively assess lung inflammation. The first method, Positron Emission Tomography (PET), is widely used in clinical oncology and quantifies flux in metabolic pathways by measuring uptake of a radiolabeled molecule into the cells. The second method, hyperpolarized 13C MRI, is an emerging tool that interrogates the branching points of the metabolic pathways to quantify the fate of metabolites. We discuss the differences and similarities between these techniques and discuss their clinical applications.
Collapse
Affiliation(s)
- Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen J. Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Shampa Chatterjee
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Rahim R. Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Rahim R. Rizi,
| |
Collapse
|
3
|
Fischer A, Patel NM, Volkmann ER. Interstitial Lung Disease in Systemic Sclerosis: Focus on Early Detection and Intervention. Open Access Rheumatol 2019; 11:283-307. [PMID: 31849543 PMCID: PMC6910104 DOI: 10.2147/oarrr.s226695] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/09/2019] [Indexed: 12/11/2022] Open
Abstract
Systemic sclerosis (SSc) is a progressive and often devastating disease characterized by autoimmune dysfunction, vasculopathy, and fibrosis. Interstitial lung disease (ILD) is identified in the majority of patients with SSc and is the leading cause of SSc-related mortality. Although clinical manifestations and ILD severity vary among patients, lung function typically declines to the greatest extent during the first 3-4 years after disease onset. We aim to provide an overview of SSc-associated ILD (SSc-ILD) with a focus on current and emerging tools for early diagnosis of ILD and current and novel treatments under investigation. Early detection of ILD provides the opportunity for early therapeutic intervention, which could improve patient outcomes. Thoracic high-resolution computed tomography is the most effective method of identifying ILD in patients with SSc; it enables detection of mild lung abnormalities and plays an important role in monitoring disease progression. Cyclophosphamide and mycophenolate mofetil are the most commonly prescribed treatments for SSc-ILD. Recently, nintedanib (an antifibrotic) was approved by the Food and Drug Administration for patients with SSc-ILD; it is indicated for slowing the rate of decline in pulmonary function. However, there is a need for additional effective and well-tolerated disease-modifying therapy. Ongoing studies are evaluating other antifibrotics and novel agents. We envision that early detection of lung involvement, combined with the emergence and integration of novel therapies, will lead to improved outcomes in patients with SSc-ILD.
Collapse
Affiliation(s)
- Aryeh Fischer
- Division of Rheumatology, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Denver, CO, USA
| | - Nina M Patel
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth R Volkmann
- Division of Rheumatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Horn FC, Marshall H, Collier GJ, Kay R, Siddiqui S, Brightling CE, Parra-Robles J, Wild JM. Regional Ventilation Changes in the Lung: Treatment Response Mapping by Using Hyperpolarized Gas MR Imaging as a Quantitative Biomarker. Radiology 2017; 284:854-861. [PMID: 28471738 DOI: 10.1148/radiol.2017160532] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To assess the magnitude of regional response to respiratory therapeutic agents in the lungs by using treatment response mapping (TRM) with hyperpolarized gas magnetic resonance (MR) imaging. TRM was used to quantify regional physiologic response in adults with asthma who underwent a bronchodilator challenge. Materials and Methods This study was approved by the national research ethics committee and was performed with informed consent. Imaging was performed in 20 adult patients with asthma by using hyperpolarized helium 3 (3He) ventilation MR imaging. Two sets of baseline images were acquired before inhalation of a bronchodilating agent (salbutamol 400 μg), and one set was acquired after. All images were registered for voxelwise comparison. Regional treatment response, ΔR(r), was calculated as the difference in regional gas distribution (R[r] = ratio of inhaled gas to total volume of a voxel when normalized for lung inflation volume) before and after intervention. A voxelwise activation threshold from the variability of the baseline images was applied to ΔR(r) maps. The summed global treatment response map (ΔRnet) was then used as a global lung index for comparison with metrics of bronchodilator response measured by using spirometry and the global imaging metric percentage ventilated volume (%VV). Results ΔRnet showed significant correlation (P < .01) with changes in forced expiratory volume in 1 second (r = 0.70), forced vital capacity (r = 0.84), and %VV (r = 0.56). A significant (P < .01) positive treatment effect was detected with all metrics; however, ΔRnet showed a lower intersubject coefficient of variation (64%) than all of the other tests (coefficient of variation, ≥99%). Conclusion TRM provides regional quantitative information on changes in inhaled gas ventilation in response to therapy. This method could be used as a sensitive regional outcome metric for novel respiratory interventions. © RSNA, 2017 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Felix C Horn
- From the Unit of Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, C Floor, Royal Hallamshire Hospital, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (F.C.H., H.M., G.J.C., J.P., J.M.W.); Novartis, Basel, Switzerland (R.K.); Department of Respiratory Medicine, Glenfield Hospital, Leicester, England (S.S., C.E.B.); Insigneo Institute of In-Silico Medicine, University of Sheffield, Sheffield, England (J.M.W.)
| | - Helen Marshall
- From the Unit of Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, C Floor, Royal Hallamshire Hospital, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (F.C.H., H.M., G.J.C., J.P., J.M.W.); Novartis, Basel, Switzerland (R.K.); Department of Respiratory Medicine, Glenfield Hospital, Leicester, England (S.S., C.E.B.); Insigneo Institute of In-Silico Medicine, University of Sheffield, Sheffield, England (J.M.W.)
| | - Guilhem J Collier
- From the Unit of Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, C Floor, Royal Hallamshire Hospital, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (F.C.H., H.M., G.J.C., J.P., J.M.W.); Novartis, Basel, Switzerland (R.K.); Department of Respiratory Medicine, Glenfield Hospital, Leicester, England (S.S., C.E.B.); Insigneo Institute of In-Silico Medicine, University of Sheffield, Sheffield, England (J.M.W.)
| | - Richard Kay
- From the Unit of Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, C Floor, Royal Hallamshire Hospital, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (F.C.H., H.M., G.J.C., J.P., J.M.W.); Novartis, Basel, Switzerland (R.K.); Department of Respiratory Medicine, Glenfield Hospital, Leicester, England (S.S., C.E.B.); Insigneo Institute of In-Silico Medicine, University of Sheffield, Sheffield, England (J.M.W.)
| | - Salman Siddiqui
- From the Unit of Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, C Floor, Royal Hallamshire Hospital, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (F.C.H., H.M., G.J.C., J.P., J.M.W.); Novartis, Basel, Switzerland (R.K.); Department of Respiratory Medicine, Glenfield Hospital, Leicester, England (S.S., C.E.B.); Insigneo Institute of In-Silico Medicine, University of Sheffield, Sheffield, England (J.M.W.)
| | - Christopher E Brightling
- From the Unit of Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, C Floor, Royal Hallamshire Hospital, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (F.C.H., H.M., G.J.C., J.P., J.M.W.); Novartis, Basel, Switzerland (R.K.); Department of Respiratory Medicine, Glenfield Hospital, Leicester, England (S.S., C.E.B.); Insigneo Institute of In-Silico Medicine, University of Sheffield, Sheffield, England (J.M.W.)
| | - Juan Parra-Robles
- From the Unit of Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, C Floor, Royal Hallamshire Hospital, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (F.C.H., H.M., G.J.C., J.P., J.M.W.); Novartis, Basel, Switzerland (R.K.); Department of Respiratory Medicine, Glenfield Hospital, Leicester, England (S.S., C.E.B.); Insigneo Institute of In-Silico Medicine, University of Sheffield, Sheffield, England (J.M.W.)
| | - Jim M Wild
- From the Unit of Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, C Floor, Royal Hallamshire Hospital, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (F.C.H., H.M., G.J.C., J.P., J.M.W.); Novartis, Basel, Switzerland (R.K.); Department of Respiratory Medicine, Glenfield Hospital, Leicester, England (S.S., C.E.B.); Insigneo Institute of In-Silico Medicine, University of Sheffield, Sheffield, England (J.M.W.)
| |
Collapse
|
5
|
Pourfathi M, Xin Y, Kadlecek SJ, Cereda MF, Profka H, Hamedani H, Siddiqui SM, Ruppert K, Drachman NA, Rajaei JN, Rizi RR. In vivo imaging of the progression of acute lung injury using hyperpolarized [1- 13 C] pyruvate. Magn Reson Med 2017; 78:2106-2115. [PMID: 28074497 DOI: 10.1002/mrm.26604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/29/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE To investigate pulmonary metabolic alterations during progression of acute lung injury. METHODS Using hyperpolarized [1-13 C] pyruvate imaging, we measured pulmonary lactate and pyruvate in 15 ventilated rats 1, 2, and 4 h after initiation of mechanical ventilation. Lung compliance was used as a marker for injury progression. 5 untreated rats were used as controls; 5 rats (injured-1) received 1 ml/kg and another 5 rats (injured-2) received 2 ml/kg hydrochloric acid (pH 1.25) in the trachea at 70 min. RESULTS The mean lactate-to-pyruvate ratio of the injured-1 cohort was 0.15 ± 0.02 and 0.15 ± 0.03 at baseline and 1 h after the injury, and significantly increased from the baseline value 3 h after the injury to 0.23 ± 0.02 (P = 0.002). The mean lactate-to-pyruvate ratio of the injured-2 cohort decreased from 0.14 ± 0.03 at baseline to 0.08 ± 0.02 1 h after the injury and further decreased to 0.07 ± 0.02 (P = 0.08) 3 h after injury. No significant change was observed in the control group. Compliance in both injured groups decreased significantly after the injury (P < 0.01). CONCLUSIONS Our findings suggest that in severe cases of lung injury, edema and hyperperfusion in the injured lung tissue may complicate interpretation of the pulmonary lactate-to-pyruvate ratio as a marker of inflammation. However, combining the lactate-to-pyruvate ratio with pulmonary compliance provides more insight into the progression of the injury and its severity. Magn Reson Med 78:2106-2115, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen J Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maurizio F Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harrilla Profka
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarmad M Siddiqui
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicholas A Drachman
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennia N Rajaei
- School of Medicine, Stanford University, Stanford, California, USA
| | - Rahim R Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Zurek M, Sladen L, Johansson E, Olsson M, Jackson S, Zhang H, Mayer G, Hockings PD. Assessing the Relationship between Lung Density and Function with Oxygen-Enhanced Magnetic Resonance Imaging in a Mouse Model of Emphysema. PLoS One 2016; 11:e0151211. [PMID: 26977928 PMCID: PMC4792441 DOI: 10.1371/journal.pone.0151211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022] Open
Abstract
Purpose A magnetic resonance imaging method is presented that allows for the simultaneous assessment of oxygen delivery, oxygen uptake, and parenchymal density. The technique is applied to a mouse model of porcine pancreatic elastase (PPE) induced lung emphysema in order to investigate how structural changes affect lung function. Method Nine-week-old female C57BL6 mice were instilled with saline or PPE at days 0 and 7. At day 19, oxygen delivery, oxygen uptake, and lung density were quantified from T1 and proton-density measurements obtained via oxygen-enhanced magnetic resonance imaging (OE-MRI) using an ultrashort echo-time imaging sequence. Subsequently, the lungs were sectioned for histological observation. Blood-gas analyses and pulmonary functional tests via FlexiVent were performed in separate cohorts. Principal Findings PPE-challenged mice had reduced density when assessed via MRI, consistent with the parenchyma loss observed in the histology sections, and an increased lung compliance was detected via FlexiVent. The oxygenation levels, as assessed via the blood-gas analysis, showed no difference between PPE-challenged animals and control. This finding was mirrored in the global MRI assessments of oxygen delivery and uptake, where the changes in relaxation time indices were matched between the groups. The heterogeneity of the same parameters however, were increased in PPE-challenged animals. When the oxygenation status was investigated in regions of varying density, a reduced oxygen-uptake was found in low-density regions of PPE-challenged mice. In high-density regions the uptake was higher than that of regions of corresponding density in control animals. The oxygen delivery was proportional to the oxygen uptake in both groups. Conclusions The proposed method allowed for the regional assessment of the relationship between lung density and two aspects of lung function, the oxygen delivery and uptake. When compared to global indices of lung function, an increased sensitivity for detecting heterogeneous lung disorders was found. This indicated that the technique has potential for early detection of lung dysfunction–before global changes occur.
Collapse
Affiliation(s)
- Magdalena Zurek
- Personalised Healthcare and Biomarkers, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
- * E-mail:
| | - Louise Sladen
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Edvin Johansson
- Personalised Healthcare and Biomarkers, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Marita Olsson
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Sonya Jackson
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Hui Zhang
- Drug Safety and Metabolism, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Gaell Mayer
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Paul D. Hockings
- Personalised Healthcare and Biomarkers, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
- MedTech West, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
7
|
Baldi S, Hartley R, Brightling C, Gupta S. Asthma. IMAGING 2016. [DOI: 10.1183/2312508x.10002815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
8
|
Ivanovska T, Hegenscheid K, Laqua R, Gläser S, Ewert R, Völzke H. Lung Segmentation of MR Images: A Review. VISUALIZATION IN MEDICINE AND LIFE SCIENCES III 2016. [DOI: 10.1007/978-3-319-24523-2_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Hartley R, Baldi S, Brightling C, Gupta S. Novel imaging approaches in adult asthma and their clinical potential. Expert Rev Clin Immunol 2015; 11:1147-62. [PMID: 26289375 DOI: 10.1586/1744666x.2015.1072049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Currently, imaging in asthma is confined to chest radiography and CT. The emergence of new imaging techniques and tremendous improvement of existing imaging methods, primarily due to technological advancement, has completely changed its research and clinical prospects. In research, imaging in asthma is now being employed to provide quantitative assessment of morphology, function and pathogenic processes at the molecular level. The unique ability of imaging for non-invasive, repeated, quantitative, and in vivo assessment of structure and function in asthma could lead to identification of 'imaging biomarkers' with potential as outcome measures in future clinical trials. Emerging imaging techniques and their utility in the research and clinical setting is discussed in this review.
Collapse
Affiliation(s)
- Ruth Hartley
- a 1 Department of Infection, Inflammation and Immunity, Institute for Lung Health, University of Leicester, Leicester, LE3 9QP, UK
| | - Simonetta Baldi
- a 1 Department of Infection, Inflammation and Immunity, Institute for Lung Health, University of Leicester, Leicester, LE3 9QP, UK
| | - Chris Brightling
- a 1 Department of Infection, Inflammation and Immunity, Institute for Lung Health, University of Leicester, Leicester, LE3 9QP, UK
| | - Sumit Gupta
- a 1 Department of Infection, Inflammation and Immunity, Institute for Lung Health, University of Leicester, Leicester, LE3 9QP, UK.,b 2 Radiology Department, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester, LE3 9QP, UK
| |
Collapse
|
10
|
Wujcicki A, Corteville D, Materka A, Schad LR. Perfusion and ventilation filters for Fourier-decomposition MR lung imaging. Z Med Phys 2015; 25:66-76. [DOI: 10.1016/j.zemedi.2014.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 10/15/2014] [Accepted: 10/30/2014] [Indexed: 11/26/2022]
|
11
|
Couch MJ, Ball IK, Li T, Fox MS, Ouriadov AV, Biman B, Albert MS. Inert fluorinated gas MRI: a new pulmonary imaging modality. NMR IN BIOMEDICINE 2014; 27:1525-1534. [PMID: 25066661 DOI: 10.1002/nbm.3165] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/06/2014] [Accepted: 06/12/2014] [Indexed: 06/03/2023]
Abstract
Fluorine-19 ((19)F) MRI of the lungs using inhaled inert fluorinated gases can potentially provide high quality images of the lungs that are similar in quality to those from hyperpolarized (HP) noble gas MRI. Inert fluorinated gases have the advantages of being nontoxic, abundant, and inexpensive compared with HP gases. Due to the high gyromagnetic ratio of (19)F, there is sufficient thermally polarized signal for imaging, and averaging within a single breath-hold is possible due to short longitudinal relaxation times. Therefore, the gases do not need to be hyperpolarized prior to their use in MRI. This eliminates the need for an expensive polarizer and expensive isotopes. Inert fluorinated gas MRI of the lungs has been previously demonstrated in animals, and more recently in healthy volunteers and patients with lung diseases. The ongoing improvements in image quality demonstrate the potential of (19)F MRI for visualizing the distribution of ventilation in human lungs and detecting functional biomarkers. In this brief review, the development of inert fluorinated gas MRI, current progress, and future prospects are discussed. The current state of HP noble gas MRI is also briefly discussed in order to provide context to the development of this new imaging modality. Overall, this may be a viable clinical imaging modality that can provide useful information for the diagnosis and management of chronic respiratory diseases.
Collapse
Affiliation(s)
- Marcus J Couch
- Lakehead University, Thunder Bay, Ontario, Canada; Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhang WJ, Niven RM, Young SS, Liu YZ, Parker GJM, Naish JH. Dynamic oxygen-enhanced magnetic resonance imaging of the lung in asthma -- initial experience. Eur J Radiol 2014; 84:318-26. [PMID: 25467640 DOI: 10.1016/j.ejrad.2014.10.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/21/2014] [Accepted: 10/25/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To prospectively estimate the feasibility and reproducibility of dynamic oxygen-enhanced magnetic resonance imaging (OE-MRI) in the assessment of regional oxygen delivery, uptake and washout in asthmatic lungs. MATERIALS AND METHODS The study was approved by the National Research Ethics Committee and written informed consent was obtained. Dynamic OE-MRI was performed twice at one month apart on four mild asthmatic patients (23±5 years old, FEV1=96±3% of predicted value) and six severe asthmatic patients (41±12 years old, FEV1=60±14% of predicted value) on a 1.5T MR scanner using a two-dimensional T1-weighted inversion-recovery turbo spin echo sequence. The enhancing fraction (EF), the maximal change in the partial pressure of oxygen in lung tissue (ΔPO2max_l) and arterial blood of the aorta (ΔPO2max_a), and the oxygen wash-in (τup_l, τup_a) and wash-out (τdown_l, τdown_a) time constants were extracted and compared between groups using the independent-samples t-test (two-tailed). Correlations between imaging readouts and clinical measurements were assessed by Pearson's correlation analysis. Bland-Altman analysis was used to estimate the levels of agreement between the repeat scans and the intra-observer agreement in the MR imaging readouts. RESULTS The severe asthmatic group had significantly smaller EF (70±16%) and median ΔPO2max_l (156±52mmHg) and significantly larger interquartile range of τup_l (0.84±0.26min) than the mild asthmatic group (95±3%, P=0.014; 281±40mmHg, P=0.004; 0.20±0.07min, P=0.001, respectively). EF, median ΔPO2max_l and τdown_l and the interquartile range of τup_l and τdown_l were significantly correlated with age and pulmonary function test parameters (r=-0.734 to -0.927, 0.676-0.905; P=0.001-0.045). Median ΔPO2max_l was significantly correlated with ΔPO2max_a (r=0.745, P=0.013). Imaging readouts showed good one-month reproducibility and good intra-observer agreement (mean bias between repeated scans and between two observations did not significantly deviate from zero). CONCLUSIONS Dynamic OE-MRI is feasible in asthma and sensitive to the severity of disease. The technique provides indices related to regional oxygen delivery, uptake and washout that show good one month reproducibility and intra-observer agreement.
Collapse
Affiliation(s)
- Wei-Juan Zhang
- Centre for Imaging Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK; Biomedical Imaging Institute, The University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | - Robert M Niven
- North West Lung Research Centre, University Hospital of South Manchester, Southmoor Road, Manchester M23 9LT, UK.
| | - Simon S Young
- Personalised Healthcare and Biomarkers, AstraZeneca R&D, Alderley Park, Macclesfield SK10 4TF, UK.
| | - Yu-Zhen Liu
- Personalised Healthcare and Biomarkers, AstraZeneca R&D, Alderley Park, Macclesfield SK10 4TF, UK.
| | - Geoffrey J M Parker
- Centre for Imaging Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK; Biomedical Imaging Institute, The University of Manchester, Oxford Road, Manchester M13 9PT, UK; Bioxydyn Limited, Rutherford House, Pencroft Way, Manchester M15 6SZ, UK.
| | - Josephine H Naish
- Centre for Imaging Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK; Biomedical Imaging Institute, The University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
13
|
Couch MJ, Ball IK, Li T, Fox MS, Littlefield SL, Biman B, Albert MS. Pulmonary Ultrashort Echo Time19F MR Imaging with Inhaled Fluorinated Gas Mixtures in Healthy Volunteers: Feasibility. Radiology 2013; 269:903-9. [DOI: 10.1148/radiol.13130609] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Kyriazis A, Rodriguez I, Nin N, Izquierdo-Garcia JL, Lorente JA, Perez-Sanchez JM, Pesic J, Olsson LE, Ruiz-Cabello J. Dynamic ventilation 3He MRI for the quantification of disease in the rat lung. IEEE Trans Biomed Eng 2011; 59:777-86. [PMID: 22167560 DOI: 10.1109/tbme.2011.2179299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pulmonary diseases are known to be largely inhomogeneous. To evaluate such inhomogeneities, we are testing an image-based method to measure gas flow in the lung regionally. Dynamic, spin-density-weighted hyperpolarized (3)He MR images performed during slow inhalation of this gas were analyzed to quantify regional inflation rate. This parameter was measured in regions of interest (ROIs) that were defined by a rectangular grid that covered the entire rat lung and grew dynamically with it during its inflation. We used regional inflation rate to quantify elastase-induced emphysema and to differentiate healthy (n = 8) from elastase-treated (n = 9) rat lungs as well as healthy from elastase-treated areas of one rat unilaterally treated with elastase in the left lung. Emphysema was also assessed by gold standard morphological and well-established hyperpolarized (3)He MRI diffusion measurements. Mean values of regional inflation rates were significantly different for healthy and elastase-treated animals and correlated well with the apparent diffusion coefficient of (3)He and morphological measurements. The image-based biomarker inflation rate may be useful for the assessment of regional lung ventilation.
Collapse
Affiliation(s)
- Angelos Kyriazis
- Department of Chemistry-Physics II, Faculty of Pharmacy, Complutense University of Madrid, Madrid 28040, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Assessment of pulmonary parenchyma perfusion with FAIR in comparison with DCE-MRI—Initial results. Eur J Radiol 2009; 70:41-8. [DOI: 10.1016/j.ejrad.2007.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 12/20/2007] [Accepted: 12/20/2007] [Indexed: 11/18/2022]
|
16
|
Tsai LL, Mair RW, Li CH, Rosen MS, Patz S, Walsworth RL. Posture-dependent human 3He lung imaging in an open-access MRI system: initial results. Acad Radiol 2008; 15:728-39. [PMID: 18486009 PMCID: PMC2474800 DOI: 10.1016/j.acra.2007.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 09/24/2007] [Accepted: 10/17/2007] [Indexed: 11/28/2022]
Abstract
RATIONALE AND OBJECTIVES The human lung and its functions are extremely sensitive to orientation and posture, and debate continues as to the role of gravity and the surrounding anatomy in determining lung function and heterogeneity of perfusion and ventilation. However, study of these effects is difficult. The conventional high-field magnets used for most hyperpolarized (3)He magnetic resonance imaging (MRI) of the human lung, and most other common radiologic imaging modalities including positron emission tomography and computed tomography, restrict subjects to lying horizontally, minimizing most gravitational effects. MATERIALS AND METHODS In this article, we review the motivation for posture-dependent studies of human lung function and present initial imaging results of human lungs in the supine and vertical body orientations using inhaled hyperpolarized (3)He gas and an open-access MRI instrument. The open geometry of this MRI system features a "walk-in" capability that permits subjects to be imaged in vertical and horizontal positions and potentially allows for complete rotation of the orientation of the imaging subject in a two-dimensional plane. RESULTS Initial results include two-dimensional lung images acquired with approximately 4 x 8 mm in-plane resolution and three-dimensional images with approximately 2-cm slice thickness. CONCLUSIONS Effects of posture variation are observed, including posture-related effects of the diaphragm and distension of the lungs while vertical.
Collapse
Affiliation(s)
- Leo L Tsai
- Harvard-Smithsonian Center for Astrophysics, 60 Garden St, MS 59, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
17
|
Parraga G, Ouriadov A, Evans A, McKay S, Lam WW, Fenster A, Etemad-Rezai R, McCormack D, Santyr G. Hyperpolarized 3He Ventilation Defects and Apparent Diffusion Coefficients in Chronic Obstructive Pulmonary Disease. Invest Radiol 2007; 42:384-91. [PMID: 17507809 DOI: 10.1097/01.rli.0000262571.81771.66] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Hyperpolarized 3He magnetic resonance imaging (3He MRI) at 3.0 Tesla of healthy volunteers and chronic obstructive pulmonary disease (COPD) patients was performed for quantitative evaluation of ventilation defects and apparent diffusion coefficients (ADC) and for comparison to published results acquired at 1.5 Tesla. The reproducibility of 3He ADC and ventilation defects was also assessed in subjects scanned 3 times, twice within 10 minutes, and again within 7 +/- 2 days of the first MRI visit. MATERIALS AND METHODS Hyperpolarized 3He MRI was performed in 6 subjects. Two interleaved images with and without additional diffusion sensitization were acquired with the first image serving as a ventilation image from which defect score and volume were measured and the combination of the 2 images used to compute ADC maps and ADC histograms. RESULTS He MRI at 3.0 Tesla showed increased mean ADC and ADC standard deviation for subjects with COPD compared with healthy volunteers (ADC healthy volunteer (0.24 +/- 0.12 cm2/s), mild-moderate COPD (0.34 +/- 0.14 cm2/s), and severe COPD (0.47 +/- 0.21 cm2/s), and these values were similar to previously reported results acquired at 1.5 Tesla. Reproducibility of mean ADC was high (coefficient of variation 2% in severe COPD, 3% in mild-moderate COPD, 4% in healthy volunteers) across all 3 scans. Higher same-day scan reproducibility was observed for ventilation defect volume compared with 1-week scan reproducibility in this small group of subjects. CONCLUSIONS ADC values for emphysematous lungs were significantly increased compared with healthy lungs in age-matched subjects, and all values were comparable to those reported previously at 1.5 Tesla. Ventilation defect score and ventilation defect volume results were also comparable to results previously reported in COPD subjects Reproducibility of ADC for same-day scan-rescan and 7-day rescan was high and similar to previously reported results.
Collapse
Affiliation(s)
- Grace Parraga
- Imaging Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hoffman EA, Simon BA, McLennan G. State of the Art. A structural and functional assessment of the lung via multidetector-row computed tomography: phenotyping chronic obstructive pulmonary disease. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2006; 3:519-32. [PMID: 16921136 PMCID: PMC2647643 DOI: 10.1513/pats.200603-086ms] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 05/30/2006] [Indexed: 11/20/2022]
Abstract
With advances in multidetector-row computed tomography (MDCT), it is now possible to image the lung in 10 s or less and accurately extract the lungs, lobes, and airway tree to the fifth- through seventh-generation bronchi and to regionally characterize lung density, texture, ventilation, and perfusion. These methods are now being used to phenotype the lung in health and disease and to gain insights into the etiology of pathologic processes. This article outlines the application of these methodologies with specific emphasis on chronic obstructive pulmonary disease. We demonstrate the use of our methods for assessing regional ventilation and perfusion and demonstrate early data that show, in a sheep model, a regionally intact hypoxic pulmonary vasoconstrictor (HPV) response with an apparent inhibition of HPV regionally in the presence of inflammation. We present the hypothesis that, in subjects with pulmonary emphysema, one major contributing factor leading to parenchymal destruction is the lack of a regional blunting of HPV when the regional hypoxia is related to regional inflammatory events (bronchiolitis or alveolar flooding). If maintaining adequate blood flow to inflamed lung regions is critical to the nondestructive resolution of inflammatory events, the pathologic condition whereby HPV is sustained in regions of inflammation would likely have its greatest effect in the lung apices where blood flow is already reduced in the upright body posture.
Collapse
Affiliation(s)
- Eric A Hoffman
- Department of Radiology, University of Iowa, 200 Hawkins Drive, CC701 GH, Iowa City, 52242, USA.
| | | | | |
Collapse
|
19
|
Ruset IC, Tsai LL, Mair RW, Patz S, Hrovat MI, Rosen MS, Muradian I, Ng J, Topulos GP, Butler JP, Walsworth RL, Hersman FW. A System for Open-Access He Human Lung Imaging at Very Low Field. CONCEPTS IN MAGNETIC RESONANCE. PART B, MAGNETIC RESONANCE ENGINEERING 2006; 29:210-221. [PMID: 20354575 PMCID: PMC2846659 DOI: 10.1002/cmr.b.20075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We describe a prototype system built to allow open-access very-low-field MRI of human lungs using laser-polarized (3)He gas. The system employs an open four-coil electromagnet with an operational B(0) field of 4 mT, and planar gradient coils that generate gradient fields up to 0.18 G/cm in the x and y direction and 0.41 G/cm in the z direction. This system was used to obtain (1)H and (3)He phantom images and supine and upright (3)He images of human lungs. We include discussion on challenges unique to imaging at 50 -200 kHz, including noise filtering and compensation for narrow-bandwidth coils.
Collapse
Affiliation(s)
- I C Ruset
- Department of Physics, University of New Hampshire, Physics Department, 9 Library Way, DeMeritt Hall, Durham, New Hampshire 03824
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schreiber WG, Morbach AE, Stavngaard T, Gast KK, Herweling A, Søgaard LV, Windirsch M, Schmiedeskamp J, Heussel CP, Kauczor HU. Assessment of lung microstructure with magnetic resonance imaging of hyperpolarized Helium-3. Respir Physiol Neurobiol 2005; 148:23-42. [PMID: 15967737 DOI: 10.1016/j.resp.2005.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 04/29/2005] [Accepted: 05/06/2005] [Indexed: 11/30/2022]
Abstract
Magnetic resonance imaging of the apparent diffusion coefficient (ADC) of hyperpolarized Helium-3 is a new technique for probing pulmonary microstructure in vivo. The aim of this study was the assessment of potential sources of systematic errors of the ADC measurement. The influence of macroscopic motion was determined by measurements at two different delays after initiating the breath-hold, and before and after cardiac arrest. An intercentre comparison was performed in two age- and lung function-matched groups of lung-healthy volunteers at two research sites. Moreover, measurements of diffusion anisotropy were performed. We found no dependency of the ADC as a function of the delay after stop of inspiration. The influence of cardiac motion was less than 10%. In the intercentre comparison study, an excellent agreement between the two sites was found. First measurements of the diffusion tensor of intrapulmonary Helium-3 are shown.
Collapse
Affiliation(s)
- Wolfgang G Schreiber
- Department of Diagnostic and Interventional Radiology, Johannes Gutenberg-University Medical School, Langenbeckstr. 1, 55131 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mair RW, Hrovat MI, Patz S, Rosen MS, Ruset IC, Topulos GP, Tsai LL, Butler JP, Hersman FW, Walsworth RL. 3He lung imaging in an open access, very-low-field human magnetic resonance imaging system. Magn Reson Med 2005; 53:745-9. [PMID: 15799045 DOI: 10.1002/mrm.20456] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The human lung and its functions are extremely sensitive to gravity; however, the conventional high-field magnets used for most laser-polarized (3)He MRI of the human lung restrict subjects to lying horizontally. Imaging of human lungs using inhaled laser-polarized (3)He gas is demonstrated in an open-access very-low-magnetic-field (<5 mT) MRI instrument. This prototype device employs a simple, low-cost electromagnet, with an open geometry that allows variation of the orientation of the imaging subject in a two-dimensional plane. As a demonstration, two-dimensional lung images were acquired with 4-mm in-plane resolution from a subject in two orientations: lying supine and sitting in a vertical position with one arm raised. Experience with this prototype device will guide optimization of a second-generation very-low-field imager to enable studies of human pulmonary physiology as a function of subject orientation.
Collapse
Affiliation(s)
- R W Mair
- Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 59, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hoffman EA, Clough AV, Christensen GE, Lin CL, McLennan G, Reinhardt JM, Simon BA, Sonka M, Tawhai MH, van Beek EJR, Wang G. The comprehensive imaging-based analysis of the lung: a forum for team science. Acad Radiol 2004; 11:1370-80. [PMID: 15596375 DOI: 10.1016/j.acra.2004.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 09/28/2004] [Indexed: 11/20/2022]
Affiliation(s)
- Eric A Hoffman
- Department of Radiology, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|