1
|
Araújo B, Caridade-Silva R, Soares-Guedes C, Martins-Macedo J, Gomes ED, Monteiro S, Teixeira FG. Neuroinflammation and Parkinson's Disease-From Neurodegeneration to Therapeutic Opportunities. Cells 2022; 11:cells11182908. [PMID: 36139483 PMCID: PMC9497016 DOI: 10.3390/cells11182908] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder worldwide. Clinically, it is characterized by a progressive degeneration of dopaminergic neurons (DAn), resulting in severe motor complications. Preclinical and clinical studies have indicated that neuroinflammation can play a role in PD pathophysiology, being associated with its onset and progression. Nevertheless, several key points concerning the neuroinflammatory process in PD remain to be answered. Bearing this in mind, in the present review, we cover the impact of neuroinflammation on PD by exploring the role of inflammatory cells (i.e., microglia and astrocytes) and the interconnections between the brain and the peripheral system. Furthermore, we discuss both the innate and adaptive immune responses regarding PD pathology and explore the gut–brain axis communication and its influence on the progression of the disease.
Collapse
Affiliation(s)
- Bruna Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rita Caridade-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carla Soares-Guedes
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Martins-Macedo
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Eduardo D. Gomes
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - Fábio G. Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
2
|
Linking Neuroinflammation and Neurodegeneration in Parkinson's Disease. J Immunol Res 2018; 2018:4784268. [PMID: 29850629 PMCID: PMC5926497 DOI: 10.1155/2018/4784268] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/28/2018] [Indexed: 11/30/2022] Open
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD) impose a pressing burden on our developed and consequently aging society. Misfolded protein aggregates are a critical aspect of several neurodegenerative diseases. Nevertheless, several questions remain unanswered regarding the role of misfolded protein aggregates and the cause of neuronal cell death. Recently, it has been postulated that neuroinflammatory processes might play a crucial role in the pathogenesis of PD. Numerous postmortem, brain imaging, epidemiological, and animal studies have documented the involvement of the innate and adaptive immunity in neurodegeneration. Whether these inflammatory processes are directly involved in the etiology of PD or represent secondary consequences of nigrostriatal pathway injury is the subject of intensive research. Immune alterations in response to extracellular α-synuclein may play a critical role in modulating Parkinson's disease progression. In this review, we address the current concept of neuroinflammation and its involvement in PD-associated neurodegeneration.
Collapse
|
3
|
Brandner S, Jaunmuktane Z. Prion disease: experimental models and reality. Acta Neuropathol 2017; 133:197-222. [PMID: 28084518 PMCID: PMC5250673 DOI: 10.1007/s00401-017-1670-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 01/04/2023]
Abstract
The understanding of the pathogenesis and mechanisms of diseases requires a multidisciplinary approach, involving clinical observation, correlation to pathological processes, and modelling of disease mechanisms. It is an inherent challenge, and arguably impossible to generate model systems that can faithfully recapitulate all aspects of human disease. It is, therefore, important to be aware of the potentials and also the limitations of specific model systems. Model systems are usually designed to recapitulate only specific aspects of the disease, such as a pathological phenotype, a pathomechanism, or to test a hypothesis. Here, we evaluate and discuss model systems that were generated to understand clinical, pathological, genetic, biochemical, and epidemiological aspects of prion diseases. Whilst clinical research and studies on human tissue are an essential component of prion research, much of the understanding of the mechanisms governing transmission, replication, and toxicity comes from in vitro and in vivo studies. As with other neurodegenerative diseases caused by protein misfolding, the pathogenesis of prion disease is complex, full of conundra and contradictions. We will give here a historical overview of the use of models of prion disease, how they have evolved alongside the scientific questions, and how advancements in technologies have pushed the boundaries of our understanding of prion biology.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG UK
| | - Zane Jaunmuktane
- Department of Neurodegenerative Disease, UCL Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG UK
| |
Collapse
|
4
|
Baskakov IV, Katorcha E. Multifaceted Role of Sialylation in Prion Diseases. Front Neurosci 2016; 10:358. [PMID: 27551257 PMCID: PMC4976111 DOI: 10.3389/fnins.2016.00358] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/18/2016] [Indexed: 11/13/2022] Open
Abstract
Mammalian prion or PrP(Sc) is a proteinaceous infectious agent that consists of a misfolded, self-replicating state of a sialoglycoprotein called the prion protein, or PrP(C). Sialylation of the prion protein N-linked glycans was discovered more than 30 years ago, yet the role of sialylation in prion pathogenesis remains poorly understood. Recent years have witnessed extraordinary growth in interest in sialylation and established a critical role for sialic acids in host invasion and host-pathogen interactions. This review article summarizes current knowledge on the role of sialylation of the prion protein in prion diseases. First, we discuss the correlation between sialylation of PrP(Sc) glycans and prion infectivity and describe the factors that control sialylation of PrP(Sc). Second, we explain how glycan sialylation contributes to the prion replication barrier, defines strain-specific glycoform ratios, and imposes constraints for PrP(Sc) structure. Third, several topics, including a possible role for sialylation in animal-to-human prion transmission, prion lymphotropism, toxicity, strain interference, and normal function of PrP(C), are critically reviewed. Finally, a metabolic hypothesis on the role of sialylation in the etiology of sporadic prion diseases is proposed.
Collapse
Affiliation(s)
- Ilia V. Baskakov
- Department of Anatomy and Neurobiology, Center for Biomedical Engineering and Technology, University of Maryland School of MedicineBaltimore, MD, USA
| | | |
Collapse
|
5
|
Trovato A, Panelli S, Strozzi F, Cambulli C, Barbieri I, Martinelli N, Lombardi G, Capoferri R, Williams JL. Expression of genes involved in the T cell signalling pathway in circulating immune cells of cattle 24 months following oral challenge with Bovine Amyloidotic Spongiform Encephalopathy (BASE). BMC Vet Res 2015; 11:105. [PMID: 25956229 PMCID: PMC4424883 DOI: 10.1186/s12917-015-0412-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 04/16/2015] [Indexed: 11/19/2022] Open
Abstract
Background Bovine Amyloidotic Spongiform Encephalopathy (BASE) is a variant of classical BSE that affects cows and can be transmitted to primates and mice. BASE is biochemically different from BSE and shares some molecular and histo-pathological features with the MV2 sub-type of human sporadic Creutzfeld Jakob Disease (sCJD). Results The present work examined the effects of BASE on gene expression in circulating immune cells. Ontology analysis of genes differentially expressed between cattle orally challenged with brain homogenate from cattle following intracranial inoculation with BASE and control cattle identified three main pathways which were affected. Within the immune function pathway, the most affected genes were related to the T cell receptor-mediated T cell activation pathways. The differential expression of these genes in BASE challenged animals at 10,12 and 24 months following challenge, vs unchallenged controls, was investigated by real time PCR. Conclusions The results of this study show that the effects of prion diseases are not limited to the CNS, but involve the immune system and particularly T cell signalling during the early stage following challenge, before the appearance of clinical signs.
Collapse
Affiliation(s)
- Andrea Trovato
- Parco Tecnologico Padano, via Einstein, Lodi, 26900, Italy.
| | - Simona Panelli
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Loc. La Quercia, 26027, Rivolta d'Adda, Italy.
| | | | - Caterina Cambulli
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Loc. La Quercia, 26027, Rivolta d'Adda, Italy.
| | - Ilaria Barbieri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, via Bianchi 9, 25124, Brescia, Italy.
| | - Nicola Martinelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, via Bianchi 9, 25124, Brescia, Italy.
| | - Guerino Lombardi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, via Bianchi 9, 25124, Brescia, Italy.
| | - Rossana Capoferri
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Loc. La Quercia, 26027, Rivolta d'Adda, Italy.
| | - John L Williams
- Parco Tecnologico Padano, via Einstein, Lodi, 26900, Italy. .,Present address: School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia.
| |
Collapse
|
6
|
Altmeppen HC, Prox J, Krasemann S, Puig B, Kruszewski K, Dohler F, Bernreuther C, Hoxha A, Linsenmeier L, Sikorska B, Liberski PP, Bartsch U, Saftig P, Glatzel M. The sheddase ADAM10 is a potent modulator of prion disease. eLife 2015; 4. [PMID: 25654651 PMCID: PMC4346534 DOI: 10.7554/elife.04260] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/04/2015] [Indexed: 01/10/2023] Open
Abstract
The prion protein (PrPC) is highly expressed in the nervous system and critically involved in prion diseases where it misfolds into pathogenic PrPSc. Moreover, it has been suggested as a receptor mediating neurotoxicity in common neurodegenerative proteinopathies such as Alzheimer's disease. PrPC is shed at the plasma membrane by the metalloprotease ADAM10, yet the impact of this on prion disease remains enigmatic. Employing conditional knockout mice, we show that depletion of ADAM10 in forebrain neurons leads to posttranslational increase of PrPC levels. Upon prion infection of these mice, clinical, biochemical, and morphological data reveal that lack of ADAM10 significantly reduces incubation times and increases PrPSc formation. In contrast, spatiotemporal analysis indicates that absence of shedding impairs spread of prion pathology. Our data support a dual role for ADAM10-mediated shedding and highlight the role of proteolytic processing in prion disease. DOI:http://dx.doi.org/10.7554/eLife.04260.001 Prion proteins are anchored to the surface of brain cells called neurons. Normally, prion proteins are folded into a specific three-dimensional shape that enables them to carry out their normal roles in the brain. However, they can be misfolded into a different shape known as PrPSc, which can cause Creutzfeldt-Jakob disease and other serious conditions that affect brain function and ultimately lead to death. The PrPSc proteins can force normal prion proteins to change into the PrPSc form, so that over time this form accumulates in the brain. They are essential components of infectious particles termed ‘prions’ and this is why prion diseases are infectious: if prions from one individual enter the brain of another individual they can cause disease in the recipient. The UK outbreak of variant Creutzfeldt-Jakob disease in humans in the 1990s is thought to be due to the consumption of meat from cattle with a prion disease known as mad cow disease. An enzyme called ADAM10 can cut normal prion proteins from the surface of neurons. However, it is not clear whether ADAM10 can also target the PrPSc proteins and what impact this may have on the development of prion diseases. Here, Altmeppen et al. studied mutant mice that were missing ADAM10 in neurons in the front portion of their brain. These mice had a higher number of normal prion proteins on the surface of their neurons than normal mice did. When mice missing ADAM10 were infected with prions, more PrPSc accumulated in their brain and disease symptoms developed sooner than when normal mice were infected. This supports the view that mice with higher numbers of prion proteins are more vulnerable to prion disease. However, disease symptoms did not spread as quickly to other parts of the brain in the mice missing ADAM10. This suggests that by releasing prion proteins from the surface of neurons, ADAM10 helps PrPSc proteins to spread around the brain. Recently, it has been suggested that prion proteins may also play a role in Alzheimer's disease and other neurodegenerative conditions. Therefore, Altmeppen et al.'s findings may help to develop new therapies for other forms of dementia. The next challenge is to understand the precise details of how ADAM10 works. DOI:http://dx.doi.org/10.7554/eLife.04260.002
Collapse
Affiliation(s)
- Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Prox
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Berta Puig
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Kruszewski
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Dohler
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ana Hoxha
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Medical University Lodz, Lodz, Poland
| | - Pawel P Liberski
- Department of Molecular Pathology and Neuropathology, Medical University Lodz, Lodz, Poland
| | - Udo Bartsch
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Lema Tomé CM, Tyson T, Rey NL, Grathwohl S, Britschgi M, Brundin P. Inflammation and α-synuclein's prion-like behavior in Parkinson's disease--is there a link? Mol Neurobiol 2013; 47:561-74. [PMID: 22544647 PMCID: PMC3589652 DOI: 10.1007/s12035-012-8267-8] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/04/2012] [Indexed: 01/24/2023]
Abstract
Parkinson's disease patients exhibit progressive spreading of aggregated α-synuclein in the nervous system. This slow process follows a specific pattern in an inflamed tissue environment. Recent research suggests that prion-like mechanisms contribute to the propagation of α-synuclein pathology. Little is known about factors that might affect the prion-like behavior of misfolded α-synuclein. In this review, we suggest that neuroinflammation plays an important role. We discuss causes of inflammation in the olfactory bulb and gastrointestinal tract and how this may promote the initial misfolding and aggregation of α-synuclein, which might set in motion events that lead to Parkinson's disease neuropathology. We propose that neuroinflammation promotes the prion-like behavior of α-synuclein and that novel anti-inflammatory therapies targeting this mechanism could slow disease progression.
Collapse
Affiliation(s)
- Carla M. Lema Tomé
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, BMC B11, 221 84 Lund, Sweden
| | - Trevor Tyson
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, BMC B11, 221 84 Lund, Sweden
| | - Nolwen L. Rey
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, BMC B11, 221 84 Lund, Sweden
| | - Stefan Grathwohl
- F. Hoffmann-La Roche Ltd, pRED, Pharma Research & Early Development, DTA CNS, Grenzacherstrasse 124, Basel, 4070 Switzerland
| | - Markus Britschgi
- F. Hoffmann-La Roche Ltd, pRED, Pharma Research & Early Development, DTA CNS, Grenzacherstrasse 124, Basel, 4070 Switzerland
| | - Patrik Brundin
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, BMC B11, 221 84 Lund, Sweden
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503 USA
| |
Collapse
|
8
|
|
9
|
Peralta OA, Huckle WR, Eyestone WH. Developmental expression of the cellular prion protein (PrP(C) ) in bovine embryos. Mol Reprod Dev 2013; 79:488-98. [PMID: 22674901 DOI: 10.1002/mrd.22057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The mammalian cellular prion protein (PrP(C) ) is a highly conserved glycoprotein that may undergo conversion into a conformationally altered isoform (scrapie prion protein or PrP(Sc) ), widely believed to be the pathogenic agent of transmissible spongiform encephalopathies (TSEs). Although much is known about PrP(Sc) conversion and its role in TSEs, the normal function of PrP(C) has not been elucidated. In adult mammals, PrP(C) is most abundant in the central nervous tissue, with intermediate levels in the intestine and heart, and lower levels in the pancreas and liver. PrP(C) is expressed during neurogenesis throughout development, and it has recently been proposed that PrP(C) participates in neural cell differentiation during embryogenesis. In order to establish the developmental timing and to address the cell-specific expression of PrP(C) during mammalian development, we examined PrP(C) expression in bovine gametes and embryos through gestation Day 39. Our data revealed differential levels of Prnp mRNA at Days 4 and 18 in pre-attachment embryos. PrP(C) was detected in the developing central and peripheral nervous systems in Day-27, 32-, and -39 embryos. PrP(C) was particularly expressed in differentiated neural cells located in the marginal regions of the central nervous system, but was absent from mitotically active, periventricular areas. Moreover, a PrP(C) cell-specific pattern of expression was detected in non-nervous tissues, including liver and mesonephros, during these stages. The potential participation of PrP(C) in neural cell differentiation is supported by its specific expression in differentiated states of neurogenesis.
Collapse
Affiliation(s)
- Oscar A Peralta
- Department of Large Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | | | | |
Collapse
|
10
|
Roettger Y, Du Y, Bacher M, Zerr I, Dodel R, Bach JP. Immunotherapy in prion disease. Nat Rev Neurol 2012; 9:98-105. [DOI: 10.1038/nrneurol.2012.258] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Rapamycin delays disease onset and prevents PrP plaque deposition in a mouse model of Gerstmann-Sträussler-Scheinker disease. J Neurosci 2012; 32:12396-405. [PMID: 22956830 DOI: 10.1523/jneurosci.6189-11.2012] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a cell survival response to nutrient deprivation that delivers cellular components to lysosomes for digestion. In recent years, autophagy has also been shown to assist in the degradation of misfolded proteins linked to neurodegenerative disease (Ross and Poirier, 2004). In support of this, rapamycin, an autophagy inducer, improves the phenotype of several animal models of neurodegenerative disease. Our Tg(PrP-A116V) mice model Gerstmann-Sträussler-Scheinker disease (GSS), a genetic prion disease characterized by prominent ataxia and extracellular PrP amyloid plaque deposits in brain (Yang et al., 2009). To determine whether autophagy induction can mitigate the development of GSS, Tg(PrP-A116V) mice were chronically treated with 10 or 20 mg/kg rapamycin intraperitoneally thrice weekly, beginning at 6 weeks of age. We observed a dose-related delay in disease onset, a reduction in symptom severity, and an extension of survival in rapamycin-treated Tg(PrP-A116V) mice. Coincident with this response was an increase in the autophagy-specific marker LC3II, a reduction in insoluble PrP-A116V, and a near-complete absence of PrP amyloid plaques in the brain. An increase in glial cell apoptosis of unclear significance was also detected. These findings suggest autophagy induction enhances elimination of misfolded PrP before its accumulation in plaques. Because ataxia persisted in these mice despite the absence of plaque deposits, our findings also suggest that PrP plaque pathology, a histopathological marker for the diagnosis of GSS, is not essential for the GSS phenotype.
Collapse
|
12
|
Friedman-Levi Y, Hoftberger R, Budka H, Mayer-Sonnenfeld T, Abramsky O, Ovadia H, Gabizon R. Targeting of prion-infected lymphoid cells to the central nervous system accelerates prion infection. J Neuroinflammation 2012; 9:58. [PMID: 22436404 PMCID: PMC3347999 DOI: 10.1186/1742-2094-9-58] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 03/21/2012] [Indexed: 12/11/2022] Open
Abstract
Background Prions, composed of a misfolded protein designated PrPSc, are infectious agents causing fatal neurodegenerative diseases. We have shown previously that, following induction of experimental autoimmune encephalomyelitis, prion-infected mice succumb to disease significantly earlier than controls, concomitant with the deposition of PrPSc aggregates in inflamed white matter areas. In the present work, we asked whether prion disease acceleration by experimental autoimmune encephalomyelitis results from infiltration of viable prion-infected immune cells into the central nervous system. Methods C57Bl/6 J mice underwent intraperitoneal inoculation with scrapie brain homogenates and were later induced with experimental autoimmune encephalomyelitis by inoculation of MOG35-55 in complete Freund's adjuvant supplemented with pertussis toxin. Spleen and lymph node cells from the co-induced animals were reactivated and subsequently injected into naïve mice as viable cells or as cell homogenates. Control groups were infected with viable and homogenized scrapie immune cells only with complete Freund's adjuvant. Prion disease incubation times as well as levels and sites of PrPSc deposition were next evaluated. Results We first show that acceleration of prion disease by experimental autoimmune encephalomyelitis requires the presence of high levels of spleen PrPSc. Next, we present evidence that mice infected with activated prion-experimental autoimmune encephalomyelitis viable cells succumb to prion disease considerably faster than do mice infected with equivalent cell extracts or other controls, concomitant with the deposition of PrPSc aggregates in white matter areas in brains and spinal cords. Conclusions Our results indicate that inflammatory targeting of viable prion-infected immune cells to the central nervous system accelerates prion disease propagation. We also show that in the absence of such targeting it is the load of PrPSc in the inoculum that determines the infectivity titers for subsequent transmissions. Both of these conclusions have important clinical implications as related to the risk of prion disease contamination of blood products.
Collapse
Affiliation(s)
- Yael Friedman-Levi
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
13
|
Tortosa R, Castells X, Vidal E, Costa C, Ruiz de Villa MDC, Sánchez A, Barceló A, Torres JM, Pumarola M, Ariño J. Central nervous system gene expression changes in a transgenic mouse model for bovine spongiform encephalopathy. Vet Res 2011; 42:109. [PMID: 22035425 PMCID: PMC3225326 DOI: 10.1186/1297-9716-42-109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 10/28/2011] [Indexed: 12/04/2022] Open
Abstract
Gene expression analysis has proven to be a very useful tool to gain knowledge of the factors involved in the pathogenesis of diseases, particularly in the initial or preclinical stages. With the aim of finding new data on the events occurring in the Central Nervous System in animals affected with Bovine Spongiform Encephalopathy, a comprehensive genome wide gene expression study was conducted at different time points of the disease on mice genetically modified to model the bovine species brain in terms of cellular prion protein. An accurate analysis of the information generated by microarray technique was the key point to assess the biological relevance of the data obtained in terms of Transmissible Spongiform Encephalopathy pathogenesis. Validation of the microarray technique was achieved by RT-PCR confirming the RNA change and immunohistochemistry techniques that verified that expression changes were translated into variable levels of protein for selected genes. Our study reveals changes in the expression of genes, some of them not previously associated with prion diseases, at early stages of the disease previous to the detection of the pathological prion protein, that might have a role in neuronal degeneration and several transcriptional changes showing an important imbalance in the Central Nervous System homeostasis in advanced stages of the disease. Genes whose expression is altered at early stages of the disease should be considered as possible therapeutic targets and potential disease markers in preclinical diagnostic tool development. Genes non-previously related to prion diseases should be taken into consideration for further investigations.
Collapse
Affiliation(s)
- Raül Tortosa
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Urayama A, Morales R, Niehoff ML, Banks WA, Soto C. Initial fate of prions upon peripheral infection: half-life, distribution, clearance, and tissue uptake. FASEB J 2011; 25:2792-803. [PMID: 21555356 DOI: 10.1096/fj.11-180729] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prion diseases are infectious neurodegenerative disorders associated with the misfolded prion protein (PrP(Sc)), which appears to be the sole component of the infectious agent (termed prion). To produce disease, prions have to be absorbed into the body and reach sufficient quantities in the brain. Very little is known about the biological mechanisms controlling the initial fate of prions. Here, we studied the systemic pharmacokinetics and biodistribution of PrP(Sc) in vivo. After an intravenous injection of highly purified radiolabeled or native unlabeled PrP(Sc), the protein was eliminated rapidly from the serum (half-life of 3.24 h), mostly through tissue uptake. The quantity of intact PrP(Sc) reaching the brain was ∼ 0.2% of the injected dose per gram of brain tissue (ID/g). The highest levels were found in liver (∼ 20% ID/g), spleen (∼ 13% ID/g), and kidney (∼ 7.4% ID/g). Cell surface PrP(C) does not appear to play a role in PrP(Sc) pharmacokinetics, since the infectious protein distributed similarly in wild-type and PrP-null mice. To measure tissue uptake kinetics and biodistribution accurately, vascular space in tissues was measured with radioactively labeled albumin coinjected with radioactively labeled PrP(Sc). Our results provide a fundamental pharmacokinetic characterization of PrP(Sc) in vivo, which may be relevant to estimate tissue risks and mechanisms of prion neuroinvasion and to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Akihiko Urayama
- Department of Neurology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
15
|
Okada H, Iwamaru Y, Imamura M, Masujin K, Matsuura Y, Murayama Y, Mohri S, Yokoyama T. Detection of disease-associated prion protein in the posterior portion of the small intestine involving the continuous Peyer's patch in cattle orally infected with bovine spongiform encephalopathy agent. Transbound Emerg Dis 2011; 58:333-43. [PMID: 21320296 DOI: 10.1111/j.1865-1682.2011.01208.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Twenty-eight calves were exposed to 5 g of homogenized brainstems confirmed as bovine spongiform encephalopathy (BSE) agents. Two to five animals were sequentially killed for post-mortem analyses 20 months post-inoculation (MPI) at intervals of 6 or 12 months. Samples from animals challenged orally with BSE agents were examined by Western blot and immunohistochemical analyses. Immunolabelled, disease-associated prion protein (PrPsc) was detected in a small portion of follicles in the continuous Peyer's patch from the posterior portion of the small intestine involving the entire ileum and the posterior jejunum but not in the discrete Peyer's patches in the remaining jejunum in preclinical animals at 20, 36, and 48 MPI. The PrPsc-positive cells corresponded to tingible body macrophages on double immunofluorescence labelling. In addition, PrPsc accumulated in 7 of 14 animals in the central nervous system (CNS) after 34 MPI, and five of them developed clinical signs and were killed at 34, 46, 58, and 66 MPI. Two preclinical animals killed at 36 and 48 MPI presented the earliest detectable and smallest deposition of immunolabelled PrPsc in the dorsal motor nucleus of the vagus nerve, the spinal trigeminal nucleus of the medulla oblongata at the obex region, and/or the intermediolateral nucleus of the 13th thoracic segment of the spinal cord. Based on serial killing, no PrPsc was detectable in the CNS, including the medulla oblongata at the obex level, before 30 MPI, by Western blot and immunohistochemical analyses. These results are important for understanding the pathogenesis of BSE.
Collapse
Affiliation(s)
- H Okada
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Panelli S, Strozzi F, Capoferri R, Barbieri I, Martinelli N, Capucci L, Lombardi G, Williams JL. Analysis of gene expression in white blood cells of cattle orally challenged with bovine amyloidotic spongiform encephalopathy. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:96-102. [PMID: 21218338 DOI: 10.1080/15287394.2011.529059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Bovine amyloidotic spongiform encephalopathy (BASE) is one of the recently discovered atypical forms of BSE, which is transmissible to primates, and may be the bovine equivalent of sporadic Creutzfeldt-Jacob disease (CJD) in humans. Although it is transmissible, it is unknown whether BASE is acquired through infection or arises spontaneously. In the present study, the gene expression of white blood cells (WBCs) from 5 cattle at 1 yr after oral BASE challenge was compared with negative controls using a custom microarray containing 43,768 unique gene probes. In total, 56 genes were found to be differentially expressed between BASE and control animals with a log fold change of 2 or greater. Of these, 39 were upregulated in BASE animals, while 17 were downregulated. The majority of these genes are related to immune function. In particular, BASE animals appeared to have significantly modified expression of genes linked to T- and B-cell development and activation, and to inflammatory responses. The potential impacts of these gene expression changes are described.
Collapse
Affiliation(s)
- Simona Panelli
- IDRA-LAB, Parco Tecnologico Padano, via Einstein, Lodi, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Casteleyn C, Cornelissen M, Simoens P, Van den Broeck W. Ultramicroscopic examination of the ovine tonsillar epithelia. Anat Rec (Hoboken) 2010; 293:879-89. [PMID: 20225209 DOI: 10.1002/ar.21098] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
As solid morphological knowledge of ovine tonsillar epithelia might contribute to a better understanding of the pathogenesis of several diseases including prion diseases, the epithelia of all tonsils of 7 one-year-old Texel sheep were examined using scanning and transmission electron microscopy. Major parts of the pharyngeal and tubal tonsils were covered by pseudostratified columnar ciliated epithelia that were interrupted by patches of epithelium containing cells with densely packed microfolds or microvilli, and cells with both microvilli and cilia. Smaller parts were covered by either flattened polygonal cells with densely packed microvilli or microfolds, squamous epithelial cells, or patches of reticular epithelium. The palatine and paraepiglottic tonsils were mainly lined by squamous epithelial cells with apical microplicae or short knobs. Additionally, regions of reticular epithelium containing epithelial cells with apical microvilli were seen. The lingual tonsil was uniformly covered by a keratinized squamous epithelium and devoid of microvillous cells and patches of reticular epithelium. The rostral half of the tonsil of the soft palate was lined by a pseudostratified columnar ciliated epithelium with characteristics of the pharyngeal and tubal tonsils. The epithelium of the caudal part resembled the epithelia of the palatine and paraepiglottic tonsils. Putative M cells, mainly characterized by apical microvilli or microfolds and a close association with lymphoid cells, seem manifestly present on the nasopharyngeal tonsils. The reticular epithelium of the palatine and paraepiglottic tonsils also harbor cells with small apical microvilli. The exact nature of these presumptive M cells should, however, be elucidated in functional studies.
Collapse
Affiliation(s)
- Christophe Casteleyn
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | | | |
Collapse
|
18
|
Sisó S, González L, Jeffrey M. Neuroinvasion in prion diseases: the roles of ascending neural infection and blood dissemination. Interdiscip Perspect Infect Dis 2010; 2010:747892. [PMID: 20652006 PMCID: PMC2905956 DOI: 10.1155/2010/747892] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 03/08/2010] [Indexed: 01/27/2023] Open
Abstract
Prion disorders are infectious, neurodegenerative diseases that affect humans and animals. Susceptibility to some prion diseases such as kuru or the new variant of Creutzfeldt-Jakob disease in humans and scrapie in sheep and goats is influenced by polymorphisms of the coding region of the prion protein gene, while other prion disorders such as fatal familial insomnia, familial Creutzfeldt-Jakob disease, or Gerstmann-Straussler-Scheinker disease in humans have an underlying inherited genetic basis. Several prion strains have been demonstrated experimentally in rodents and sheep. The progression and pathogenesis of disease is influenced by both genetic differences in the prion protein and prion strain. Some prion diseases only affect the central nervous system whereas others involve the peripheral organs prior to neuroinvasion. Many experiments undertaken in different species and using different prion strains have postulated common pathways of neuroinvasion. It is suggested that prions access the autonomic nerves innervating peripheral organs and tissues to finally reach the central nervous system. We review here published data supporting this view and additional data suggesting that neuroinvasion may concurrently or independently involve the blood vascular system.
Collapse
Affiliation(s)
- Sílvia Sisó
- Veterinary Laboratories Agency (VLA-Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Lorenzo González
- Veterinary Laboratories Agency (VLA-Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Martin Jeffrey
- Veterinary Laboratories Agency (VLA-Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| |
Collapse
|
19
|
Abstract
Transmissible spongiform encephalopathies (TSEs) are inevitably lethal neurodegenerative diseases that affect humans and a large variety of animals. The infectious agent responsible for TSEs is the prion, an abnormally folded and aggregated protein that propagates itself by imposing its conformation onto the cellular prion protein (PrPC) of the host. PrPCis necessary for prion replication and for prion-induced neurodegeneration, yet the proximal causes of neuronal injury and death are still poorly understood. Prion toxicity may arise from the interference with the normal function of PrPC, and therefore, understanding the physiological role of PrPCmay help to clarify the mechanism underlying prion diseases. Here we discuss the evolution of the prion concept and how prion-like mechanisms may apply to other protein aggregation diseases. We describe the clinical and the pathological features of the prion diseases in human and animals, the events occurring during neuroinvasion, and the possible scenarios underlying brain damage. Finally, we discuss potential antiprion therapies and current developments in the realm of prion diagnostics.
Collapse
|
20
|
Lefrère JJ, Hewitt P. From mad cows to sensible blood transfusion: the risk of prion transmission by labile blood components in the United Kingdom and in France. Transfusion 2009; 49:797-812. [PMID: 19170997 DOI: 10.1111/j.1537-2995.2008.02044.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transfusion transmission of the prion, the agent of variant Creutzfeldt-Jakob disease (vCJD), is now established. Subjects infected through food may transmit the disease through blood donations. The two nations most affected to date by this threat are the United Kingdom (UK) and France. The first transfusion cases have been observed in the UK over the past 5 years. In France, a few individuals who developed vCJD had a history of blood donation, leading to a risk of transmission to recipients, some of whom could be incubating the disease. In the absence of a large-scale screening test, it is impossible to establish the prevalence of infection in the blood donor population and transfused patients. This lack of a test also prevents specific screening of blood donations. Thus, prevention of transfusion transmission essentially relies at present on deferral of "at-risk" individuals. Because prions are present in both white blood cells and plasma, leukoreduction is probably insufficient to totally eliminate the transfusion risk. In the absence of a screening test for blood donations, recently developed prion-specific filters could be a solution. Furthermore, while the dietary spread of vCJD seems efficiently controlled, uncertainty remains as to the extent of the spread of prions through blood transfusion and other secondary routes.
Collapse
|
21
|
Enrichment of prion protein in exosomes derived from ovine cerebral spinal fluid. Vet Immunol Immunopathol 2008; 124:385-93. [DOI: 10.1016/j.vetimm.2008.04.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 02/01/2008] [Accepted: 04/09/2008] [Indexed: 12/31/2022]
|
22
|
Zhang W, Wu J, Li Y, Carke RC, Wong T. The In Vitro Bioassay Systems for the Amplification and Detection of Abnormal Prion PrPSc in Blood and Tissues. Transfus Med Rev 2008; 22:234-42. [DOI: 10.1016/j.tmrv.2008.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Linden R, Martins VR, Prado MAM, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol Rev 2008; 88:673-728. [PMID: 18391177 DOI: 10.1152/physrev.00007.2007] [Citation(s) in RCA: 435] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs), attributed to conformational conversion of the cellular prion protein (PrP(C)) into an abnormal conformer that accumulates in the brain. Understanding the pathogenesis of TSEs requires the identification of functional properties of PrP(C). Here we examine the physiological functions of PrP(C) at the systemic, cellular, and molecular level. Current data show that both the expression and the engagement of PrP(C) with a variety of ligands modulate the following: 1) functions of the nervous and immune systems, including memory and inflammatory reactions; 2) cell proliferation, differentiation, and sensitivity to programmed cell death both in the nervous and immune systems, as well as in various cell lines; 3) the activity of numerous signal transduction pathways, including cAMP/protein kinase A, mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt pathways, as well as soluble non-receptor tyrosine kinases; and 4) trafficking of PrP(C) both laterally among distinct plasma membrane domains, and along endocytic pathways, on top of continuous, rapid recycling. A unified view of these functional properties indicates that the prion protein is a dynamic cell surface platform for the assembly of signaling modules, based on which selective interactions with many ligands and transmembrane signaling pathways translate into wide-range consequences upon both physiology and behavior.
Collapse
Affiliation(s)
- Rafael Linden
- Instituto de Biofísica da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | |
Collapse
|
24
|
Temporary depletion of CD11c+ dendritic cells delays lymphoinvasion after intraperitonal scrapie infection. J Virol 2008; 82:8933-6. [PMID: 18579603 DOI: 10.1128/jvi.02440-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The involvement of immune cells in prion capture and transport to lymphoid tissues still remains unclear. To investigate the role of dendritic cells (DC), we used DTR(+/+) mice, a transgenic model designed to trigger short-term ablation of DC. Transient depletion of DC around the time of intraperitoneal infection delayed prion replication in the spleen, as followed by PrPsc amount, a specific hallmark of prion diseases. Consequently, neuroinvasion and incubation time of prion disease were delayed. In contrast, no differences were observed after oral infection. These results suggest that DC act as vectors for prions from the peripheral entry site to the spleen.
Collapse
|
25
|
Consumption of beef tongue: Human BSE risk associated with exposure to lymphoid tissue in bovine tongue in consideration of new research findings - Scientific Opinion of the Panel on Biological Hazards. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
26
|
Segundo FDS, Sevilla N, Gutiérrez JP, Brun A. Altered lymphocyte homeostasis after oral prion infection in mouse. Vet Immunol Immunopathol 2007; 122:204-15. [PMID: 18207573 DOI: 10.1016/j.vetimm.2007.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 11/26/2007] [Accepted: 11/30/2007] [Indexed: 01/26/2023]
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases develop as central nervous system (CNS) disorders characterized by extremely long incubation periods. Although TSEs do not go along with inflammatory infiltrates and/or antibody production against the prion protein (PrP(Sc)), the immune system plays an important role in pathogenesis as long as different lymphoid organs (Peyer's patches, lymph nodes and spleen) may facilitate the accumulation and further spread of prions after peripheral exposure. In this work we investigated the changes in lymphoid and dendritic cell (DC) populations as well as the implications of different cytokines during disease progression after experimental oral inoculation of prions in a transgenic mouse model. At different days post-inoculation (dpi), T and B lymphocytes and DC populations from lymphoid organs, blood and brain were analyzed by flow cytometry and immunohistochemistry. Besides time related variations in lymphoid cell numbers due to the aging of the animals significant changes related with the infection were found in mesenteric lymph nodes, peripheral blood leukocytes (PBLs) as well as in spleen, affecting the CD4/CD8 ratio. In contrast, little or no variation was detected in Peyer's Patches or in thymus either associated with aging or the infection status. At individual time points significant differences between infected and control mice were seen in the CD8, CD4 and DC populations, with less evidence of differences in the B cell compartment. Finally, a pro-inflammatory phenotype occurred at early times in the spleen, where the levels of lymphotoxin-beta mRNA were found augmented with respect to controls. Altogether, these results suggest that normal regulation of lymphocyte populations becomes altered along the progression of a prion infection.
Collapse
Affiliation(s)
- F Díaz-San Segundo
- Centro de Investigación en Sanidad Animal (CISA-INIA), Carretera de Algete a El Casar km 8,100, Valdeolmos 28130, Madrid, Spain
| | | | | | | |
Collapse
|
27
|
Zabel MD, Heikenwalder M, Prinz M, Arrighi I, Schwarz P, Kranich J, von Teichman A, Haas KM, Zeller N, Tedder TF, Weis JH, Aguzzi A. Stromal Complement Receptor CD21/35 Facilitates Lymphoid Prion Colonization and Pathogenesis. THE JOURNAL OF IMMUNOLOGY 2007; 179:6144-52. [DOI: 10.4049/jimmunol.179.9.6144] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Tayebi M, Bate C, Hawke S, Williams A. A role for B lymphocytes in anti-infective prion therapies? Expert Rev Anti Infect Ther 2007; 5:631-8. [PMID: 17678426 DOI: 10.1586/14787210.5.4.631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The deposition of proteins in the form of amyloid fibrils and plaques is the characteristic feature of a number of neurodegenerative conditions affecting the nervous system. These disorders include prion and Alzheimer's diseases and are of enormous importance for public health. It has become apparent over the last 20 years that specificity and application in prion diseases' diagnostic and therapeutic situations are the most important considerations in designing strategies for the generation of antiprion antibodies. Specific antiprion therapeutics have been suggested and the establishment of the 'proof-of-principle' that the use of epitope-specific antiprion antibodies leads to indefinite delay of disease onset, has increased momentum for its use, although caution should be exerted prior to the application of new therapeutic strategies in a clinical set up. Furthermore, in vivo stimulation of immune-competent cells to specifically recognize and neutralize the abnormally folded isoform should also be pursued.
Collapse
Affiliation(s)
- Mourad Tayebi
- Department of Pathology and Infectious Diseases, The Royal Veterinary College, North Mymms, Hatfield, Hertfordshire, UK.
| | | | | | | |
Collapse
|
29
|
Geissen M, Krasemann S, Matschke J, Glatzel M. Understanding the natural variability of prion diseases. Vaccine 2007; 25:5631-6. [PMID: 17391814 DOI: 10.1016/j.vaccine.2007.02.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 01/16/2007] [Accepted: 02/15/2007] [Indexed: 11/24/2022]
Abstract
Prion diseases are a heterogeneous group of disorders with an invariably fatal disease course. Although various etiologies have been proposed it is apparent that at least a subset of these diseases are of infectious nature. An essential part of the infectious agent, termed the prion, is mainly composed of an abnormal isoform (PrP(Sc)) of a host-encoded normal cellular protein (PrP(C)). The molecular details of the pathophysiology of this group of diseases are unclear but the conversion of PrP(C) to PrP(Sc) plays a fundamental role. In all human prion diseases, PrP(Sc) is deposited in the central nervous system. These disorders include sporadic, genetic and acquired Creutzfeldt-Jakob disease. The molecular classification of human prion diseases is important in order to understand underlying disease mechanisms and for the development of novel therapy protocols. Current classification systems are based on the assessment of clinical presentation, genetic investigations, neuropathological findings and biochemical analysis of PrP(Sc).
Collapse
Affiliation(s)
- Markus Geissen
- Institute of Neuropathology, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | |
Collapse
|
30
|
Vidal E, Tortosa R, Costa C, Benavides J, Francino O, Sánchez-Robert E, Pérez V, Pumarola M. Lack of PrP(sc) immunostaining in intracranial ectopic lymphoid follicles in a sheep with concomitant non-suppurative encephalitis and Nor98-like atypical scrapie: a case report. Vet J 2007; 177:283-8. [PMID: 17574883 DOI: 10.1016/j.tvjl.2007.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 03/09/2007] [Accepted: 04/04/2007] [Indexed: 11/19/2022]
Abstract
During active surveillance for transmissible spongiform encephalopathies (TSEs) in sheep, an initial reactor was detected using a rapid test on a brain sample. Immunohistochemistry confirmed an atypical TSE presentation that closely resembled the previously described Nor98 cases. Sequencing of the prnp gene confirmed the ARQ/AHQ genotype with the L141F mutation at codon 141 associated with this phenotype. The head, including the brain and cranial lymphoid tissues, was sampled and examined thoroughly. Non-purulent encephalitis, with ectopic lymphoid follicle formation within the brain, was diagnosed concomitant to the TSE. When scrapie-associated prion protein (PrP(sc)) deposition was studied by immunohistochemistry there was a noticeable lack of lymphotropism. The distribution of PrP(sc) in the brain differed considerably from that of classical scrapie cases. Astrogliosis and microgliosis were demonstrated by histochemical procedures.
Collapse
Affiliation(s)
- E Vidal
- Priocat Laboratory, CReSA, Autonomous University of Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Fasano C, Campana V, Zurzolo C. Prions: protein only or something more? Overview of potential prion cofactors. J Mol Neurosci 2007; 29:195-214. [PMID: 17085779 DOI: 10.1385/jmn:29:3:195] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 11/30/1999] [Accepted: 02/03/2006] [Indexed: 12/12/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) in humans and animals are attributed to protein-only infectious agents, called prions. Prions have been proposed to arise from the conformational conversion of the cellular protein PrP(C) into a misfolded form (e.g., PrP(Sc) for scrapie), which precipitates into aggregates and fibrils. It has been proposed that the conversion process is triggered by the interaction of the infectious form (PrP(Sc)) with the cellular form (PrP(C)) or might result from a mutation in the gene for PrP(C). However, until recently, all efforts to reproduce this process in vitro had failed, suggesting that host factors are necessary for prion replication. In this review we discuss recent findings such as the cellular factors that might be involved in the conformational conversion of prion proteins and the potential mechanisms by which they could operate.
Collapse
Affiliation(s)
- Carlo Fasano
- Unité de Trafic Membranaire et Pathogénése, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
32
|
Ning ZY, Zhao DM, Yang JM, Cui YL, Meng LP, Wu CD, Liu HX. QUANTIFICATION OF PRION GENE EXPRESSION IN BRAIN AND PERIPHERAL ORGANS OF GOLDEN HAMSTER BY REAL-TIME RT-PCR. Anim Biotechnol 2007; 16:55-65. [PMID: 15926263 DOI: 10.1081/abio-200053404] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Determination of tissue-specific expression of cellular prion protein (PrPc) is essential for understanding its poorly explained role in organisms. Herein we report on quantification of PrP mRNA in golden hamsters, a popular experimental model for studying mechanisms of transmissible spongiform encephalopathies (TSE), by real-time RT-PCR. Total RNA was isolated from four different regions of the brain and six peripheral organs of eight golden hamsters. PrP mRNA copy numbers were determined using absolute standard curve method with real-time quantitative PCR instrument. It was found that high mRNA levels were present in all four regions of the brain examined, including obex, neocortex, cerebellum, and thalamus. In peripheral organs examined, inguinal lymph node showed high level of the expression similar to that in overall brain; spleen, heart, liver, and lung showed moderate levels of the expression; and kidney showed the lowest expression. Our result is consistent with the potential involvement of different organs in prion diseases and offers essential data for further study of TSE mechanism in this animal model.
Collapse
Affiliation(s)
- Zhang-Yong Ning
- National Animal Transmissible Spongiform Encephalopathies Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The infectious particle causing transmissible spongiform encephalopathy (TSE), a fatal neurodegenerative disease of humans and animals, has been termed prion. Its major component is an aggregated variant of the cellular prion protein, PrP(C). The main target of prion pathology is the central nervous system (CNS), yet most prion diseases are initiated or accompanied by prion replication at extracerebral locations, including secondary lymphoid organs, muscle and, in some instances, blood. How do prions travel from the periphery into the CNS? Is this an active or a passive process and does neuronal prion transport explain the long incubation times in prion diseases? Alternatively, if prion infectivity arises spontaneously in the CNS, as believed from sporadic Creutzfeldt-Jakob patients, how do prions manage to travel from the CNS into the periphery (e.g., spleen, muscle) of the infected host? The mechanisms of neuronal prion transport from the periphery into the CNS or vice versa are heavily investigated and debated but poorly understood. Although research in the past has accumulated knowledge on prion progression from the periphery to the brain, we are far from understanding the molecular mechanisms of neuronal prion transport.
Collapse
Affiliation(s)
- Mathias Heikenwalder
- Department of Pathology, Institute of Neuropathology, University Hospital of Zürich, Zürich, Switzerland.
| | | | | |
Collapse
|
34
|
Pasquali P, Nonno R, Mandara MT, Di Bari MA, Ricci G, Petrucci P, Capuccini S, Cartoni C, Macrì A, Agrimi U. Intracerebral administration of interleukin-12 (IL-12) and IL-18 modifies the course of mouse scrapie. BMC Vet Res 2006; 2:37. [PMID: 17192191 PMCID: PMC1769363 DOI: 10.1186/1746-6148-2-37] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 12/27/2006] [Indexed: 11/10/2022] Open
Abstract
Background Prion diseases are characterised by a neurodegenerative pattern in which the function of immune system remains still elusive. In the present study, we evaluate if an exogenous treatment with Interleukin-12 (IL-12) and IL-18, able to activate microglia, is able to affect scrapie pathogenesis. Results Cytokines injected intracranially, induced a strong inflammatory response characterised by TNF-α production and microglia activation. Two groups of mice were injected intracerebrally with high dose of ME7 strain of scrapie containing IL-12 and IL-18 or sterile saline. Cytokines-treated mice showed a more pronounced accumulation of PrPSc in brain tissues at 90 days post-inoculation and a shorter mean survival times than untreated mice. Conclusion We can conclude that intracerebral administration of IL-12 and IL-18 can modulate scrapie pathogenesis possibly through a microglia-mediated pattern.
Collapse
Affiliation(s)
- Paolo Pasquali
- Department of Food Safety and Animal Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Romolo Nonno
- Department of Food Safety and Animal Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Maria Teresa Mandara
- Department of Biopathological Veterinary Science, Veterinary Medicine School, Università degli Studi di Perugia, Perugia, Italy
| | - Michele Angelo Di Bari
- Department of Food Safety and Animal Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Giovanni Ricci
- Department of Biopathological Veterinary Science, Veterinary Medicine School, Università degli Studi di Perugia, Perugia, Italy
| | - Paola Petrucci
- Department of Food Safety and Animal Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Silvia Capuccini
- Department of Biopathological Veterinary Science, Veterinary Medicine School, Università degli Studi di Perugia, Perugia, Italy
| | - Claudia Cartoni
- Department of Food Safety and Animal Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Agostino Macrì
- Department of Food Safety and Animal Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Umberto Agrimi
- Department of Food Safety and Animal Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
35
|
Walker LC, Levine H, Mattson MP, Jucker M. Inducible proteopathies. Trends Neurosci 2006; 29:438-43. [PMID: 16806508 PMCID: PMC10725716 DOI: 10.1016/j.tins.2006.06.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 03/07/2006] [Accepted: 06/08/2006] [Indexed: 12/31/2022]
Abstract
Numerous degenerative diseases are characterized by the aberrant polymerization and accumulation of specific proteins. These proteopathies include neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease and the prion diseases, in addition to diverse systemic disorders, particularly the amyloidoses. The prion diseases have been shown to be transmissible by an alternative conformation of the normal cellular prion protein. Other proteopathies have been thought to be non-transmissible, but there is growing evidence that some systemic and cerebral amyloidoses can be induced by exposure of susceptible hosts to cognate molecular templates. As we review here, the mechanistic similarities among these diseases provide unprecedented opportunities for elucidating the induction of protein misfolding and assembly in vivo, and for developing an integrated therapeutic approach to degenerative proteopathies.
Collapse
Affiliation(s)
- Lary C Walker
- Yerkes National Primate Research Center and Department of Neurology, Emory University, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
36
|
Baron GS, Magalhães AC, Prado MAM, Caughey B. Mouse-adapted scrapie infection of SN56 cells: greater efficiency with microsome-associated versus purified PrP-res. J Virol 2006; 80:2106-17. [PMID: 16474119 PMCID: PMC1395383 DOI: 10.1128/jvi.80.5.2106-2117.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The process by which transmissible spongiform encephalopathy agents, or prions, infect cells is unknown. We employed a new differentiable cell line (SN56) susceptible to infection with three mouse-adapted scrapie strains to gain insight into the cellular infection process. The effect of disease-associated PrP (PrP-res) association with microsomal membranes on infection efficiency was examined by comparing sustained PrP-res production in cells treated with either scrapie brain microsomes or purified, detergent-extracted PrP-res. When normalized for quantity of input PrP-res, scrapie brain microsomes induced dramatically enhanced persistent PrP-res formation compared to purified PrP-res. Infected SN56 cells released low levels of PrP-res into the culture supernatant, which also efficiently initiated infection in recipient cells. Interestingly, microsomes labeled with a fluorescent marker were internalized by SN56 cells in small vesicles, which were subsequently found in neuritic processes. When bound to culture wells to reduce internalization during the infection process, scrapie microsomes induced less long-term PrP-res production than suspended microsomes. Long-term differentiation of infected SN56 cells was accompanied by a decrease in PrP-res formation. Our observations provide evidence that infection of cells is aided by the association of PrP-res with membranes and/or other microsomal constituents.
Collapse
Affiliation(s)
- Gerald S Baron
- Rocky Mountain Laboratories, Laboratory of Persistent Viral Diseases, NIAID, NIH, Hamilton, MT 59840, USA.
| | | | | | | |
Collapse
|
37
|
Buchholz CJ, Bach P, Nikles D, Kalinke U. Prion protein-specific antibodies for therapeutic intervention of transmissible spongiform encephalopathies. Expert Opin Biol Ther 2006; 6:293-300. [PMID: 16503737 DOI: 10.1517/14712598.6.3.293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Prion diseases, also called transmissible spongiform encephalopathies, are a group of fatal neurodegenerative conditions that affect humans and a wide variety of animals. There is no therapeutic or prophylactic approach against prion diseases available at present. The causative infectious agent is the prion, also termed PrPSc, which is a pathological conformer of the cellular prion protein PrPC. Passive immunisation studies with PrPC-specific antibodies indicated that immunotherapeutic strategies directed against PrPC can prevent prion disease. In this review, putative mechanisms of antibody-mediated prion inactivation, as well as active immunisation strategies, are discussed. Special attention is given to the problem of immunological self-tolerance against PrP.
Collapse
Affiliation(s)
- Christian J Buchholz
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany.
| | | | | | | |
Collapse
|
38
|
Amselgruber WM, Steffl M, Didier A, Märtlbauer E, Pfaff E, Büttner M. Prion protein expression in bovine podocytes and extraglomerular mesangial cells. Cell Tissue Res 2006; 324:497-505. [PMID: 16485135 DOI: 10.1007/s00441-005-0128-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 10/15/2005] [Indexed: 10/25/2022]
Abstract
The cellular form of the prion protein (PrP(c)) is thought to be a substrate for an abnormal isoform of the prion protein (PrP(sc)). One emerging hypothesis is that the proposed conversion phenomenon takes place at the site at which the infectious agent meets PrP(c). PrP(c) is abundant in the central nervous system, but little is known about the cell-type-specific distribution of PrP(c) in non-neuronal tissues of cattle. We have studied whether PrP(c), a protein found predominantly in neurons, also exists in bovine podocytes, since neurons and podocytes share a large number of similarities. We have therefore examined the expression of PrP(c) by immunohistochemistry, reverse transcription/polymerase chain reaction and enzyme-linked immunosorbent analysis. Immunostained serial sections and specific antibodies against PrP(c) have revealed that PrP(c) is selectively localized in podocytes and is particularly strongly expressed in extraglomerular mesangial cells but not in endothelial or intraglomerular mesangial cells. The selective expression of PrP(c) in podocytes is of special importance, as it suggests that these cells represent possible targets for peripheral infection with prions and demonstrates that PrP(c) can be added to the list of neuronal factors expressed in mammalian podocytes.
Collapse
Affiliation(s)
- W M Amselgruber
- Institute of Anatomy and Physiology, University of Hohenheim, Fruhwirthstrasse 35, 70593 Stuttgart, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Amselgruber WM, Büttner M, Schlegel T, Schweiger M, Pfaff E. The normal cellular prion protein (PrPc) is strongly expressed in bovine endocrine pancreas. Histochem Cell Biol 2005; 125:441-8. [PMID: 16208484 DOI: 10.1007/s00418-005-0089-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2005] [Indexed: 10/25/2022]
Abstract
Expression of the cellular prion protein (PrP(c)) has been shown to be crucial for the development of transmissible spongiform encephalopathies and for the accumulation of the disease-associated conformer (PrP(sc)) in the brain and other tissues. One of the emerging hypotheses is that the conversion phenomenon could take place at the site where the infectious agent meets PrP(c). In this work we have studied whether PrP(c), a protein found predominantly in neurons, could also exist in pancreatic endocrine cells since neuroectoderm-derived cells and pancreatic islet cells share a large number of similarities. For this purpose we have examined the expression of PrP(c) in a series of fetal and postnatal bovine pancreatic tissue by immunohistochemistry and RT-PCR. Using immunostained serial sections and specific antibodies against bovine PrP(c), insulin, glucagon, somatostatin, chromogranin A and chromogranin B we found that PrP(c) is highly expressed in all endocrine cells of fetal and adult pancreatic islets with a particular strong expression in A-cells. Moreover it became evident that the PrP(c) gene-neighbour chromogranin B as well as chromogranin A are coexpressed together with PrP(c). The selective expression of PrP(c) in the bovine endocrine pancreas is of particular importance regarding possible iatrogenic transmission routes and demonstrates also that bovine pancreatic islet cells could represent an interesting model to study the control of PrP-gene expression.
Collapse
Affiliation(s)
- W M Amselgruber
- Institute of Anatomy and Physiology, University of Hohenheim, Fruhwirthstr. 35, 70599, Stuttgart, Germany.
| | | | | | | | | |
Collapse
|
40
|
Gossner A, Hunter N, Hopkins J. Role of lymph-borne cells in the early stages of scrapie agent dissemination from the skin. Vet Immunol Immunopathol 2005; 109:267-78. [PMID: 16169089 DOI: 10.1016/j.vetimm.2005.08.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 07/28/2005] [Accepted: 08/15/2005] [Indexed: 11/18/2022]
Abstract
Scrapie is a natural transmissible spongiform encephalopathy (TSE) of sheep, infecting the animal via the gastrointestinal tract or the skin. This project tested the hypotheses that lymph-borne cells (especially dendritic cells) are crucial for the systemic dissemination of the infectious agent from the site of infection in the skin, that PrP genotype affects PrPSC association with dendritic cells and that PrPSC carriage by cells affects their expression of cytokines. Skin, of scrapie-susceptible VRQ/ARR and scrapie-resistant ARR/ARR PrP genotypes, was scarified with FITC-labelled PrPSC. Pseudoafferent lymphatic cannulation was then used to monitor the presence of FITC-PrPSC over time in different lymph cell populations and plasma in the draining afferent lymphatics. The major observation was that PrPSC did not associate significantly with any lymphocyte or dendritic cell population in the 5 days following PrPSC scarification. The only cells seen to associate with PrPSC were neutrophils. Furthermore, despite the quantity of PrPSC used for scarification being equivalent to a standard infectious dose (the VRQ/ARR sheep dying at approximately 260 days) the only PrP found in afferent lymph during the 0-5-day period was proteinase K sensitive (i.e. soluble PrPC). No differences were observed between the PrP genotypes. Analysis of the effects of PrPSC scarification of cellular cytokine mRNA expression (by a nuclease protection assay) showed raised levels of IL-1beta and IL-8 in the susceptible VRQ/ARR group and raised levels of IFNgamma in the resistant ARR/ARR animals.
Collapse
Affiliation(s)
- Anton Gossner
- Division of Veterinary Biomedical Sciences, R(D)SVS, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | | | | |
Collapse
|
41
|
Affiliation(s)
- Benoit Février
- UMR144-CNRS, Institut Curie, 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | |
Collapse
|
42
|
Abstract
Antibody-based immunotherapy may represent a realistic approach against prion diseases, given that antibodies to the cellular prion protein PrPC have been shown to antagonize deposition of the disease-associated prion protein (termed PrPSc) in in vitro assays and in laboratory animals. However, induction of protective antiprion immune responses in wild-type animals is difficult because of host tolerance to the endogenous PrPC. Several studies indicate that it might be possible to overcome tolerance to PrPC and induce immune responses to bacterially expressed, recombinant PrP. However, it is much more difficult to induce antibodies capable of recognizing native cell-surface PrPC, and there is reason to believe that the latter immune responses correlate with anti-prion protection. The difficulties involved in eliciting development of such anti-native PrPC immune responses may be partly intrinsic to B cells and, in addition, may reside in peripheral T helper tolerance.
Collapse
Affiliation(s)
- Frank L Heppner
- Institute of Neuropathology, University Hospital Zurich, Schmelzbergstrasse 12, CH-8091, Switzerland.
| | | |
Collapse
|
43
|
|
44
|
Crozet C, Lin YL, Mettling C, Mourton-Gilles C, Corbeau P, Lehmann S, Perrier V. Inhibition of PrPSc formation by lentiviral gene transfer of PrP containing dominant negative mutations. J Cell Sci 2004; 117:5591-7. [PMID: 15494372 PMCID: PMC2062426 DOI: 10.1242/jcs.01484] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Currently, there is no treatment to cure transmissible spongiform encephalopathies. By taking advantage of the 'prion-resistant' polymorphisms Q171R and E219K that naturally exist in sheep and humans, respectively, we have evaluated a therapeutic approach of lentiviral gene transfer. Here, we show that VSV-G (vesicular stomatitis virus G glycoprotein) pseudotyped FIV-(feline immunodeficiency virus) derived vectors carrying the mouse Prnp gene in which these mutations have been inserted, are able to inhibit prion replication in chronically prion-infected cells. Because lentiviral tools are able to transduce post-mitotic cells such as neurons or cells of the lymphoreticular system, this result might help the development of gene- or cell-therapy approaches to prion disease.
Collapse
Affiliation(s)
- Carole Crozet
- Institut de génétique humaine
CNRS : UPR1142institut de Génétique humaine
141 Rue de la Cardonille
34396 MONTPELLIER CEDEX 5,FR
| | - Yea-Lih Lin
- Institut de génétique humaine
CNRS : UPR1142institut de Génétique humaine
141 Rue de la Cardonille
34396 MONTPELLIER CEDEX 5,FR
| | - Clément Mettling
- Institut de génétique humaine
CNRS : UPR1142institut de Génétique humaine
141 Rue de la Cardonille
34396 MONTPELLIER CEDEX 5,FR
| | - Chantal Mourton-Gilles
- Institut de Biotechnologie-Pharmacologie
CNRS : UMR5094BioRadUniversité Montpellier I Université Montpellier II - Sciences et Techniques du LanguedocFaculté de pharmacie, 15 avenue Charles Flahault BP14491, 34093 Montpellier Cedex 05,FR
| | - Pierre Corbeau
- Institut de génétique humaine
CNRS : UPR1142institut de Génétique humaine
141 Rue de la Cardonille
34396 MONTPELLIER CEDEX 5,FR
| | - Sylvain Lehmann
- Institut de génétique humaine
CNRS : UPR1142institut de Génétique humaine
141 Rue de la Cardonille
34396 MONTPELLIER CEDEX 5,FR
- Laboratoire de biochimie
CHRU Montpellier Hôpital Saint-EloiFR
| | - Véronique Perrier
- Institut de génétique humaine
CNRS : UPR1142institut de Génétique humaine
141 Rue de la Cardonille
34396 MONTPELLIER CEDEX 5,FR
- * Correspondence should be adressed to: Véronique Perrier
| |
Collapse
|
45
|
Abstract
The prion hypothesis proposes that proteins can act as infectious agents. Originally formulated to explain transmissible spongiform encephalopathies (TSEs), the prion hypothesis has been extended with the finding that several non-Mendelian traits in fungi are due to heritable changes in protein conformation, which may in some cases be beneficial. Although much remains to be learned about the specific role of cellular cofactors, mechanistic parallels between the mammalian and yeast prion phenomena point to universal features of conformation-based infection and inheritance involving propagation of ordered beta-sheet-rich protein aggregates commonly referred to as amyloid. Here we focus on two such features and discuss recent efforts to explain them in terms of the physical properties of amyloid-like aggregates. The first is prion strains, wherein chemically identical infectious particles cause distinct phenotypes. The second is barriers that often prohibit prion transmission between different species. There is increasing evidence suggesting that both of these can be manifestations of the same phenomenon: the ability of a protein to misfold into multiple self-propagating conformations. Even single mutations can change the spectrum of favored misfolded conformations. In turn, changes in amyloid conformation can shift the specificity of propagation and alter strain phenotypes. This model helps explain many common and otherwise puzzling features of prion inheritance as well as aspects of noninfectious diseases involving toxic misfolded proteins.
Collapse
Affiliation(s)
- Peter Chien
- Graduate Group in Biophysics, Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94107-2240, USA.
| | | | | |
Collapse
|