1
|
Soria B, Escacena N, Gonzaga A, Soria-Juan B, Andreu E, Hmadcha A, Gutierrez-Vilchez AM, Cahuana G, Tejedo JR, De la Cuesta A, Miralles M, García-Gómez S, Hernández-Blasco L. Cell Therapy of Vascular and Neuropathic Complications of Diabetes: Can We Avoid Limb Amputation? Int J Mol Sci 2023; 24:17512. [PMID: 38139339 PMCID: PMC10743405 DOI: 10.3390/ijms242417512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Globally, a leg is amputated approximately every 30 seconds, with an estimated 85 percent of these amputations being attributed to complications arising from diabetic foot ulcers (DFU), as stated by the American Diabetes Association. Peripheral arterial disease (PAD) is a risk factor resulting in DFU and can, either independently or in conjunction with diabetes, lead to recurring, slow-healing ulcers and amputations. According to guidelines amputation is the recommended treatment for patients with no-option critical ischemia of the limb (CTLI). In this article we propose cell therapy as an alternative strategy for those patients. We also suggest the optimal time-frame for an effective therapy, such as implanting autologous mononuclear cells (MNCs), autologous and allogeneic mesenchymal stromal cells (MSC) as these treatments induce neuropathy relief, regeneration of the blood vessels and tissues, with accelerated ulcer healing, with no serious side effects, proving that advanced therapy medicinal product (ATMPs) application is safe and effective and, hence, can significantly prevent limb amputation.
Collapse
Affiliation(s)
- Bernat Soria
- Institute of Biomedical Research ISABIAL of the University Miguel Hernández, Dr. Balmis General and University Hospital, 03010 Alicante, Spain
- Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- CIBERDEM Network Research Center for Diabetes and Associated Metabolic Diseases, Carlos III Health Institute, 28029 Madrid, Spain
| | - Natalia Escacena
- Fresci Consultants, Human Health Innovation, 08025 Barcelona, Spain
| | - Aitor Gonzaga
- Institute of Biomedical Research ISABIAL of the University Miguel Hernández, Dr. Balmis General and University Hospital, 03010 Alicante, Spain
- Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
| | - Barbara Soria-Juan
- Reseaux Hôpitalieres Neuchatelois et du Jura, 2000 Neuchâtel, Switzerland
| | - Etelvina Andreu
- Institute of Biomedical Research ISABIAL of the University Miguel Hernández, Dr. Balmis General and University Hospital, 03010 Alicante, Spain
- Department of Applied Physics, University Miguel Hernández Elche, 03202 Elche, Spain
| | - Abdelkrim Hmadcha
- Biosanitary Research Institute (IIB-VIU), Valencian International University (VIU), 46002 Valencia, Spain
- Department of Molecular Biology, University Pablo de Olavide, 41013 Sevilla, Spain
| | - Ana Maria Gutierrez-Vilchez
- Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- Department of Pharmacology, Pediatrics and Organic Chemistry, University Miguel Hernández, 03202 Elche, Spain
| | - Gladys Cahuana
- Department of Molecular Biology, University Pablo de Olavide, 41013 Sevilla, Spain
| | - Juan R. Tejedo
- CIBERDEM Network Research Center for Diabetes and Associated Metabolic Diseases, Carlos III Health Institute, 28029 Madrid, Spain
- Department of Molecular Biology, University Pablo de Olavide, 41013 Sevilla, Spain
| | | | - Manuel Miralles
- University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
| | | | - Luis Hernández-Blasco
- Institute of Biomedical Research ISABIAL of the University Miguel Hernández, Dr. Balmis General and University Hospital, 03010 Alicante, Spain
| |
Collapse
|
2
|
Fernández‐Colino A, Kiessling F, Slabu I, De Laporte L, Akhyari P, Nagel SK, Stingl J, Reese S, Jockenhoevel S. Lifelike Transformative Materials for Biohybrid Implants: Inspired by Nature, Driven by Technology. Adv Healthc Mater 2023; 12:e2300991. [PMID: 37290055 PMCID: PMC11469152 DOI: 10.1002/adhm.202300991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Today's living world is enriched with a myriad of natural biological designs, shaped by billions of years of evolution. Unraveling the construction rules of living organisms offers the potential to create new materials and systems for biomedicine. From the close examination of living organisms, several concepts emerge: hierarchy, pattern repetition, adaptation, and irreducible complexity. All these aspects must be tackled to develop transformative materials with lifelike behavior. This perspective article highlights recent progress in the development of transformative biohybrid systems for applications in the fields of tissue regeneration and biomedicine. Advances in computational simulations and data-driven predictions are also discussed. These tools enable the virtual high-throughput screening of implant design and performance before committing to fabrication, thus reducing the development time and cost of biomimetic and biohybrid constructs. The ongoing progress of imaging methods also constitutes an essential part of this matter in order to validate the computation models and enable longitudinal monitoring. Finally, the current challenges of lifelike biohybrid materials, including reproducibility, ethical considerations, and translation, are discussed. Advances in the development of lifelike materials will open new biomedical horizons, where perhaps what is currently envisioned as science fiction will become a science-driven reality in the future.
Collapse
Affiliation(s)
- Alicia Fernández‐Colino
- Department of Biohybrid & Medical Textiles (BioTex)AME‐Institute of Applied Medical EngineeringHelmholtz InstituteRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| | - Fabian Kiessling
- Institute for Experimental Molecular ImagingFaculty of MedicineRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| | - Ioana Slabu
- Institute of Applied Medical EngineeringHelmholtz InstituteMedical FacultyRWTH Aachen UniversityPauwelsstraße 2052074AachenGermany
| | - Laura De Laporte
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)RWTH Aachen UniversityWorringerweg 252074AachenGermany
- Advanced Materials for Biomedicine (AMB)Institute of Applied Medical Engineering (AME)University Hospital RWTH AachenCenter for Biohybrid Medical Systems (CMBS)Forckenbeckstraße 5552074AachenGermany
| | - Payam Akhyari
- Clinic for Cardiac SurgeryUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Saskia K. Nagel
- Applied Ethics GroupRWTH Aachen UniversityTheaterplatz 1452062AachenGermany
| | - Julia Stingl
- Institute of Clinical PharmacologyUniversity Hospital RWTH AachenWendlingweg 252074AachenGermany
| | - Stefanie Reese
- Institute of Applied MechanicsRWTH Aachen UniversityMies‐van‐der‐Rohe‐Str. 152074AachenGermany
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex)AME‐Institute of Applied Medical EngineeringHelmholtz InstituteRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| |
Collapse
|
3
|
Hemmami H, Seghir BB, Zeghoud S, Ben Amor I, Kouadri I, Rebiai A, Zaater A, Messaoudi M, Benchikha N, Sawicka B, Atanassova M. Desert Endemic Plants in Algeria: A Review on Traditional Uses, Phytochemistry, Polyphenolic Compounds and Pharmacological Activities. Molecules 2023; 28:molecules28041834. [PMID: 36838819 PMCID: PMC9959599 DOI: 10.3390/molecules28041834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Due to their robust antioxidant capabilities, potential health benefits, wide variety of biological activities, and strong antioxidant qualities, phenolic compounds are substances that have drawn considerable attention in recent years. The main goal of the review is to draw attention to saharian Algerian medicinal plants and the determination of their bioactivity (antioxidant, anti-cancer, and anti-inflammatory importance), and to present their chemical composition as well as in vivo and in vitro studies, clinical studies, and other studies confirming their real impact on human health. Research results have revealed a rich variety of medicinal plants used to treat various disease states in this region. Based on in vivo and in vitro studies, biological activity, and clinical studies, a list of 34 species of desert plants, belonging to 20 botanical families, useful both in preventive actions and in the treatment of neoplastic diseases has been established, and polyphenolic compounds have been identified as key to the health potential of endemic diseases and desert plants. It has been shown that people who follow a diet rich in polyphenols are less prone to the risk of many cancers and chronic diseases, such as obesity and diabetes. In view of the increasing antioxidant potential of these plant species, as well as the increasing trade in herbal products from the Sahara region, phytosanitary and pharmaceutical regulations must change in this respect and should be in line with Trade Related Aspects of Intellectual Property Rights (TRIPS), and the sustainable use and development of plant products must be addressed at the same time.
Collapse
Affiliation(s)
- Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
| | - Bachir Ben Seghir
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
- Laboratory of Industrial Analysis and Materials Engineering (LAGIM), University May 8, 1945, Guelma 24000, Algeria
| | - Soumeia Zeghoud
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
| | - Ilham Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
| | - Imane Kouadri
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
- Laboratory of Industrial Analysis and Materials Engineering (LAGIM), University May 8, 1945, Guelma 24000, Algeria
- Department of Process Engineering, Faculty of Technology, University May 8, 1945, Guelma 24000, Algeria
| | - Abdelkrim Rebiai
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
- Department of Chemistry, Faculty of Exact Sciences, University of El Oued, El Oued 39000, Algeria
| | - Abdelmalek Zaater
- Biodiversity Laboratory and Application of Biotechnology in Agriculture, University of El Oued, El Oued 39000, Algeria
- Department of Agronomy, Faculty of Nature and Life Sciences, University of El Oued, El Oued 39000, Algeria
| | - Mohammed Messaoudi
- Department of Chemistry, Faculty of Exact Sciences, University of El Oued, El Oued 39000, Algeria
- Nuclear Research Centre of Birine, Ain Oussera, Djelfa 17200, Algeria
| | - Naima Benchikha
- Department of Chemistry, Faculty of Exact Sciences, University of El Oued, El Oued 39000, Algeria
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities Science, University of Life Science in Lublin, 20-950 Lublin, Poland
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, University of Chemical Technology and Metallurgy, 1734 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
4
|
Alvites R, Branquinho M, Sousa AC, Lopes B, Sousa P, Maurício AC. Mesenchymal Stem/Stromal Cells and Their Paracrine Activity-Immunomodulation Mechanisms and How to Influence the Therapeutic Potential. Pharmaceutics 2022; 14:381. [PMID: 35214113 PMCID: PMC8875256 DOI: 10.3390/pharmaceutics14020381] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/07/2023] Open
Abstract
With high clinical interest to be applied in regenerative medicine, Mesenchymal Stem/Stromal Cells have been widely studied due to their multipotency, wide distribution, and relative ease of isolation and expansion in vitro. Their remarkable biological characteristics and high immunomodulatory influence have opened doors to the application of MSCs in many clinical settings. The therapeutic influence of these cells and the interaction with the immune system seems to occur both directly and through a paracrine route, with the production and secretion of soluble factors and extracellular vesicles. The complex mechanisms through which this influence takes place is not fully understood, but several functional manipulation techniques, such as cell engineering, priming, and preconditioning, have been developed. In this review, the knowledge about the immunoregulatory and immunomodulatory capacity of MSCs and their secretion products is revisited, with a special focus on the phenomena of migration and homing, direct cell action and paracrine activity. The techniques for homing improvement, cell modulation and conditioning prior to the application of paracrine factors were also explored. Finally, multiple assays where different approaches were applied with varying success were used as examples to justify their exploration.
Collapse
Affiliation(s)
- Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (R.A.); (M.B.); (A.C.S.); (B.L.); (P.S.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Mariana Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (R.A.); (M.B.); (A.C.S.); (B.L.); (P.S.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana C. Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (R.A.); (M.B.); (A.C.S.); (B.L.); (P.S.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (R.A.); (M.B.); (A.C.S.); (B.L.); (P.S.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (R.A.); (M.B.); (A.C.S.); (B.L.); (P.S.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (R.A.); (M.B.); (A.C.S.); (B.L.); (P.S.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| |
Collapse
|
5
|
Khamees N. The impact of media supplement on the viability, proliferation, and differentiation potential of bone marrow-derived mesenchymal stem cells. MUSTANSIRIYA MEDICAL JOURNAL 2022. [DOI: 10.4103/mj.mj_49_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Silva Junior JB, Rodrigues E Silva AA, Melo FCC, Kumoto MC, Parca RM. Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular Consensus on genetically modified cells. Special Article: Advanced therapy medicinal products in Brazil: regulatory panorama. Hematol Transfus Cell Ther 2021; 43 Suppl 2:S68-S77. [PMID: 34794800 PMCID: PMC8606716 DOI: 10.1016/j.htct.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022] Open
Abstract
Advanced therapy medicinal products, considered special medications, requires Anvisa approval for use and commercialization in Brazil. They include the advanced cellular therapy products, tissue engineering products and gene therapy products, which due to their complexity involve innovation and risks, optimized regulatory channels for their development and life cycle monitoring. The scientific elements and the compliance with applicable regulatory aspects are fundamental pillars for the advancement of clinical trials, the positive evidence of the benefit-risk profile and the definition of the critical quality attributes, from the perspective of making safe, effective and high-quality products available to the population. The approval models of these products in Brazil adapt to the specificities and characteristics of the technology and the patient target population, with accelerated regulatory analyses, use in emergency situations by risk controls and specific monitoring mechanisms, principally those related to rare diseases without other therapeutic alternatives. The opportune access to the advance therapy product with safety, efficacy and quality involves innovative normative elements that include the long-term follow-up of the safety and efficacy and of the adaptive pharmacovigilance requisites, as well as the traceability mechanisms for the start-off materials, products and patients.
Collapse
Affiliation(s)
- João Batista Silva Junior
- Faculdade de Ciências da Saúde da Universidade de Brasília (UnB), Brasília, DF, Brazil; Agência Nacional de Vigilância Sanitária (Anvisa), Brasília, DF, Brazil.
| | | | | | | | | |
Collapse
|
7
|
Isolation, Culture, Cryopreservation, and Preparation of Umbilical Cord-Derived Mesenchymal Stem Cells as a Final Cellular Product Under Good Manufacturing Practices-Compliant Conditions. Methods Mol Biol 2021. [PMID: 33349902 DOI: 10.1007/7651_2020_332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2024]
Abstract
Mesenchymal stem cells have gained popularity in cell-based therapies due to their regenerative capabilities, immunomodulation properties, and paracrine activity through trophic factors. It is of utmost importance to establish clinical-grade procedures for the preparation of the mesenchymal stem cells for clinical applications. Here, we describe detailed procedures for isolation, culture, cryopreservation, and preparation of mesenchymal stem cells derived from umbilical cord as a final product under good manufacturing practices-compliant conditions.
Collapse
|
8
|
Abstract
Tissue engineering refers to the attempt to create functional human tissue from cells in a laboratory. This is a field that uses living cells, biocompatible materials, suitable biochemical and physical factors, and their combinations to create tissue-like structures. To date, no tissue engineered skeletal muscle implants have been developed for clinical use, but they may represent a valid alternative for the treatment of volumetric muscle loss in the near future. Herein, we reviewed the literature and showed different techniques to produce synthetic tissues with the same architectural, structural and functional properties as native tissues.
Collapse
|
9
|
Oberweis CV, Marchal JA, López-Ruiz E, Gálvez-Martín P. A Worldwide Overview of Regulatory Frameworks for Tissue-Based Products. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:181-196. [DOI: 10.1089/ten.teb.2019.0315] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Caroline Veronique Oberweis
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada—University of Granada, Granada, Spain
| | - Juan Antonio Marchal
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada—University of Granada, Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
| | - Elena López-Ruiz
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada—University of Granada, Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | - Patricia Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
- R&D Human Health, Bioibérica S.A.U., Barcelona, Spain
| |
Collapse
|
10
|
Jimenez-Puerta GJ, Marchal JA, López-Ruiz E, Gálvez-Martín P. Role of Mesenchymal Stromal Cells as Therapeutic Agents: Potential Mechanisms of Action and Implications in Their Clinical Use. J Clin Med 2020; 9:jcm9020445. [PMID: 32041213 PMCID: PMC7074225 DOI: 10.3390/jcm9020445] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
Due to the great therapeutic interest that involves the translation of mesenchymal stromal cells (MSCs) into clinical practice, they have been widely studied as innovative drugs, in order to treat multiple pathologies. MSC-based cell therapy involves the administration of MSCs either locally or systemically into the receptor body where they can traffic and migrate towards the affected tissue and participate in the process of healing. The therapeutic effects of MSCs compromise of different mechanisms such as the functional integration of differentiated MSCs into diseased host tissue after transplantation, their paracrine support, and their impact on the regulation of both the innate and the acquired immune system. Here, we establish and provide recent advances about the principal mechanisms of action through which MSCs can perform their activity and effect as a therapeutic tool. The purpose of this review is to examine and discuss the MSCs capacity of migration, their paracrine effect, as well as MSC-mediated modifications on immune cell responses.
Collapse
Affiliation(s)
- Gonzalo José Jimenez-Puerta
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, 18016 Granada, Spain; (G.J.J.-P.); (J.A.M.)
| | - Juan Antonio Marchal
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, 18016 Granada, Spain; (G.J.J.-P.); (J.A.M.)
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Elena López-Ruiz
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, 18016 Granada, Spain; (G.J.J.-P.); (J.A.M.)
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
- Correspondence: (E.L.-R.); or (P.G.-M.)
| | - Patricia Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18016 Granada, Spain
- R&D Human Health, Bioibérica S.A.U., 08029 Barcelona, Spain
- Correspondence: (E.L.-R.); or (P.G.-M.)
| |
Collapse
|
11
|
López-Beas J, Guadix JA, Clares B, Soriano-Ruiz JL, Zugaza JL, Gálvez-Martín P. An overview of international regulatory frameworks for mesenchymal stromal cell-based medicinal products: From laboratory to patient. Med Res Rev 2020; 40:1315-1334. [PMID: 32017179 DOI: 10.1002/med.21659] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
Human mesenchymal stromal cells (hMSCs) are emerging as one of the most important cell types in advanced therapies and regenerative medicine due to their great therapeutic potential. The development of hMSC-based products focuses on the use of hMSCs as biological active substances, and they are considered medicinal products by the primary health agencies worldwide. Due to their regulatory status, the development of hMSC-based products is regulated by specific criteria that range from the design phase, nonclinical studies, clinical studies, to the final registration and approval. Patients should only be administered hMSC-based products within the framework of a clinical trial or after the product has obtained marketing authorization; in both cases, authorization by health authorities is usually required. Considering the above, this paper describes the current general regulatory requirements for hMSC-based products, by jurisdiction, to be implemented throughout their entire development process. These measures may provide support for researchers from both public and private entities and academia to optimize the development of these products and their subsequent marketing, thereby improving access to them by patients.
Collapse
Affiliation(s)
- Javier López-Beas
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Juan A Guadix
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina (IBIMA), Campus de Teatinos s/n, University of Málaga, Málaga, Spain.,BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga), Málaga, Spain
| | - Beatriz Clares
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jose L Soriano-Ruiz
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - José L Zugaza
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Patricia Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain.,R&D Human Health, Bioibérica S.A.U., Barcelona, Spain
| |
Collapse
|
12
|
Guadix JA, López-Beas J, Clares B, Soriano-Ruiz JL, Zugaza JL, Gálvez-Martín P. Principal Criteria for Evaluating the Quality, Safety and Efficacy of hMSC-Based Products in Clinical Practice: Current Approaches and Challenges. Pharmaceutics 2019; 11:pharmaceutics11110552. [PMID: 31652984 PMCID: PMC6921040 DOI: 10.3390/pharmaceutics11110552] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
Human Mesenchymal Stem Cells (hMSCs) play an important role as new therapeutic alternatives in advanced therapies and regenerative medicine thanks to their regenerative and immunomodulatory properties, and ability to migrate to the exact area of injury. These properties have made hMSCs one of the more promising cellular active substances at present, particularly in terms of the development of new and innovative hMSC-based products. Currently, numerous clinical trials are being conducted to evaluate the therapeutic activity of hMSC-based products on specific targets. Given the rapidly growing number of hMSC clinical trials in recent years and the complexity of these products due to their cellular component characteristics and medicinal product status, there is a greater need to define more stringent, specific, and harmonized requirements to characterize the quality of the hMSCs and enhance the analysis of their safety and efficacy in final products to be administered to patients. These requirements should be implemented throughout the manufacturing process to guarantee the function and integrity of hMSCs and to ensure that the hMSC-based final product consistently meets its specifications across batches. This paper describes the principal phases involved in the design of the manufacturing process and updates the specific technical requirements needed to address the appropriate clinical use of hMSC-based products. The challenges and limitations to evaluating the safety, efficacy, and quality of hMSCs have been also reviewed and discussed.
Collapse
Affiliation(s)
- Juan Antonio Guadix
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Instituto Malagueño de Biomedicina (IBIMA), Campus de Teatinos s/n, Málaga E-29071, Spain.
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga), c/ Severo Ochoa nº25, Campanillas, Málaga E-29590, Spain.
| | - Javier López-Beas
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville 41092, Spain.
| | - Beatriz Clares
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada E-18071, Spain.
| | - José Luis Soriano-Ruiz
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada E-18071, Spain.
| | - José Luis Zugaza
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa E-48940, Spain.
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, building 205, Zamudio E-48170, Spain.
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Bilbao E-48013, Spain.
| | - Patricia Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada E-18071, Spain.
- R&D Human Health, Bioibérica S.A.U., Barcelona E-08029, Spain.
| |
Collapse
|
13
|
Soria-Juan B, Escacena N, Capilla-González V, Aguilera Y, Llanos L, Tejedo JR, Bedoya FJ, Juan V, De la Cuesta A, Ruiz-Salmerón R, Andreu E, Grochowicz L, Prósper F, Sánchez-Guijo F, Lozano FS, Miralles M, Del Río-Solá L, Castellanos G, Moraleda JM, Sackstein R, García-Arranz M, García-Olmo D, Martín F, Hmadcha A, Soria B. Cost-Effective, Safe, and Personalized Cell Therapy for Critical Limb Ischemia in Type 2 Diabetes Mellitus. Front Immunol 2019; 10:1151. [PMID: 31231366 PMCID: PMC6558400 DOI: 10.3389/fimmu.2019.01151] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022] Open
Abstract
Cell therapy is a progressively growing field that is rapidly moving from preclinical model development to clinical application. Outcomes obtained from clinical trials reveal the therapeutic potential of stem cell-based therapy to deal with unmet medical treatment needs for several disorders with no therapeutic options. Among adult stem cells, mesenchymal stem cells (MSCs) are the leading cell type used in advanced therapies for the treatment of autoimmune, inflammatory and vascular diseases. To date, the safety and feasibility of autologous MSC-based therapy has been established; however, their indiscriminate use has resulted in mixed outcomes in preclinical and clinical studies. While MSCs derived from diverse tissues share common properties depending on the type of clinical application, they markedly differ within clinical trials in terms of efficacy, resulting in many unanswered questions regarding the application of MSCs. Additionally, our experience in clinical trials related to critical limb ischemia pathology (CLI) shows that the therapeutic efficacy of these cells in different animal models has only been partially reproduced in humans through clinical trials. Therefore, it is crucial to develop new research to identify pitfalls, to optimize procedures and to clarify the repair mechanisms used by these cells, as well as to be able to offer a next generation of stem cell that can be routinely used in a cost-effective and safe manner in stem cell-based therapies targeting CLI.
Collapse
Affiliation(s)
| | - Natalia Escacena
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Vivian Capilla-González
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Yolanda Aguilera
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Lucía Llanos
- Fundación Jiménez Díaz Health Research Institute, Madrid, Spain
| | - Juan R Tejedo
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Francisco J Bedoya
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | | | - Antonio De la Cuesta
- Unidad de Isquemia Crónica de Miembros Inferiores, Hospital Victoria Eugenia de la Cruz Roja, Sevilla, Spain
| | | | | | | | | | | | | | - Manuel Miralles
- Department of Surgery, University of Valencia, Valencia, Spain
| | | | - Gregorio Castellanos
- Servicio Hematología y Hemoterapia, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - José M Moraleda
- Servicio Hematología y Hemoterapia, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Robert Sackstein
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | | | | | - Franz Martín
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Abdelkrim Hmadcha
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Bernat Soria
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | | |
Collapse
|
14
|
Chocarro-Wrona C, López-Ruiz E, Perán M, Gálvez-Martín P, Marchal JA. Therapeutic strategies for skin regeneration based on biomedical substitutes. J Eur Acad Dermatol Venereol 2019; 33:484-496. [PMID: 30520159 DOI: 10.1111/jdv.15391] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022]
Abstract
Regenerative medicine and tissue engineering (TE) have experienced significant advances in the development of in vitro engineered skin substitutes, either for replacement of lost tissue in skin injuries or for the generation of in vitro human skin models to research. However, currently available skin substitutes present different limitations such as expensive costs, abnormal skin microstructure and engraftment failure. Given these limitations, new technologies, based on advanced therapies and regenerative medicine, have been applied to develop skin substitutes with several pharmaceutical applications that include injectable cell suspensions, cell-spray devices, sheets or 3Dscaffolds for skin tissue regeneration and others. Clinical practice for skin injuries has evolved to incorporate these innovative applications to facilitate wound healing, improve the barrier function of the skin, prevent infections, manage pain and even to ameliorate long-term aesthetic results. In this article, we review current commercially available skin substitutes for clinical use, as well as the latest advances in biomedical and pharmaceutical applications used to design advanced therapies and medical products for wound healing and skin regeneration. We highlight the current progress in clinical trials for wound healing as well as the new technologies that are being developed and hold the potential to generate skin substitutes such as 3D bioprinting-based strategies.
Collapse
Affiliation(s)
- C Chocarro-Wrona
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - E López-Ruiz
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain.,Department of Health Sciences, University of Jaén, Jaén, Spain
| | - M Perán
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain.,Department of Health Sciences, University of Jaén, Jaén, Spain
| | - P Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Granada, Spain.,Advanced Therapies Area, Bioibérica S.A.U., Barcelona, Spain
| | - J A Marchal
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| |
Collapse
|
15
|
Clinical application of cell, gene and tissue therapies in Spain. Rev Clin Esp 2018. [DOI: 10.1016/j.rceng.2017.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Bicho D, Pina S, Reis RL, Oliveira JM. Commercial Products for Osteochondral Tissue Repair and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:415-428. [PMID: 29691833 DOI: 10.1007/978-3-319-76711-6_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The osteochondral tissue represents a complex structure composed of four interconnected structures, namely hyaline cartilage, a thin layer of calcified cartilage, subchondral bone, and cancellous bone. Due to the several difficulties associated with its repair and regeneration, researchers have developed several studies aiming to restore the native tissue, some of which had led to tissue-engineered commercial products. In this sense, this chapter discusses the good manufacturing practices, regulatory medical conditions and challenges on clinical translations that should be fulfilled regarding the safety and efficacy of the new commercialized products. Furthermore, we review the current osteochondral products that are currently being marketed and applied in the clinical setting, emphasizing the advantages and difficulties of each one.
Collapse
Affiliation(s)
- Diana Bicho
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco GMR, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Sandra Pina
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, University of Minho, Barco, Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, University of Minho, Barco, Guimarães, Portugal
| |
Collapse
|
17
|
Gálvez-Martín P, Ruiz A, Clares B. Clinical application of cell, gene and tissue therapies in Spain. Rev Clin Esp 2017; 218:199-206. [PMID: 29032959 DOI: 10.1016/j.rce.2017.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/26/2017] [Accepted: 08/13/2017] [Indexed: 11/30/2022]
Abstract
Scientific and technical advances in the areas of biomedicine and regenerative medicine have enabled the development of new treatments known as "advanced therapies", which encompass cell therapy, genetics and tissue engineering. The biologic products that can be manufactured from these elements are classified from the standpoint of the Spanish Agency of Medication and Health Products in advanced drug therapies, blood products and transplants. This review seeks to provide scientific and administrative information for clinicians on the use of these biologic resources.
Collapse
Affiliation(s)
- P Gálvez-Martín
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Granada, Granada, España.
| | - A Ruiz
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Granada, Granada, España
| | - B Clares
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Granada, Granada, España
| |
Collapse
|
18
|
Papadaki M. Adaptation through Collaboration: Developing Novel Platforms to Advance the Delivery of Advanced Therapies to Patients. Front Med (Lausanne) 2017; 4:56. [PMID: 28611985 PMCID: PMC5447030 DOI: 10.3389/fmed.2017.00056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/27/2017] [Indexed: 12/23/2022] Open
Abstract
For the nascent field of advanced therapies, collaboration will be a game-changer, turning scientific progress that was once unimaginable into transformative medical practice. Despite promise for lifelong management and even cure of disease, skepticism remains about the feasibility of their delivery to patients, fueling investment risks. With the potential for long-term effectiveness in need of frequent reassessment, current approaches to predict real-life drug performance bear little relevance, necessitating novel and iterative schemes to monitoring the benefit–risk profiles throughout the life span of advanced therapies. This work explains that reinventing an adoption route for Advanced Therapy Medicinal Products is as much about the scientific and clinical components, as it is about the organizational structures, requiring an unprecedented level of interactions between stakeholders not traditionally connected; from developers and regulators, to payers, patients, and funders. By reflecting on the successes and lessons learned from the growing space of global precompetitive consortia and public–private partnerships, as well as a number of emerging accelerated development pathways, this work aims to inform the foundations for a future roadmap that can smooth the path to approval, reimbursement, and access, while delivering value to all stakeholders. Echoing the growing demands to bring these transformative products to patients, it provides critical insights to enhance our capacity in three fundamental domains: deploying the operational flexibilities offered by the growing space of collaborations, utilizing emerging flexible and accelerated pathways to tackle challenges in quantifying long-term effectiveness, and building the necessary digital and clinical infrastructure for knowledge development.
Collapse
Affiliation(s)
- Magdalini Papadaki
- Association of the British Pharmaceutical Industry, London, United Kingdom
| |
Collapse
|
19
|
Characteristics, applications and prospects of mesenchymal stem cells in cell therapy. Med Clin (Barc) 2017; 148:408-414. [PMID: 28126234 DOI: 10.1016/j.medcli.2016.11.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/24/2016] [Indexed: 02/08/2023]
Abstract
Recent advances in the field of cell therapy and regenerative medicine describe mesenchymal stem cells (MSCs) as potential biological products due to their ability to self-renew and differentiate. MSCs are multipotent adult cells with immunomodulatory and regenerative properties, and, given their therapeutic potential, they are being widely studied in order to evaluate their viability, safety and efficacy. In this review, we describe the main characteristics and cellular sources of MSCs, in addition to providing an overview of their properties and current clinical applications, as well offering updated information on the regulatory aspects that define them as somatic cell therapy products. Cell therapy based on MSCs is offered nowadays as a pharmacological alternative, although there are still challenges to be addressed in this regard.
Collapse
|
20
|
Soria B, Montanya E, Martín F, Hmadcha A. A Role for the Host in the Roadmap to Diabetes Stem Cell Therapy. Diabetes 2016; 65:1155-7. [PMID: 27208184 DOI: 10.2337/dbi16-0003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Bernat Soria
- CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Eduard Montanya
- CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain Bellvitge Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Franz Martín
- CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Abdelkrim Hmadcha
- CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| |
Collapse
|
21
|
de Wilde S, Guchelaar HJ, Herberts C, Lowdell M, Hildebrandt M, Zandvliet M, Meij P. Development of cell therapy medicinal products by academic institutes. Drug Discov Today 2016; 21:1206-12. [PMID: 27117349 DOI: 10.1016/j.drudis.2016.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/30/2016] [Accepted: 04/18/2016] [Indexed: 02/01/2023]
Abstract
In the rapidly evolving fields of cellular immunotherapy, gene therapy and regenerative medicine, a wide range of promising cell therapy medicinal products are in clinical development. Most products originate from academic research and are explored in early exploratory clinical trials. However, the success rate toward approval for regular patient care is disappointingly low. In this paper, we define strengths and hurdles applying to the development of cell therapy medicinal products in academic institutes, and analyze why only a few promising cell therapies have reached late-stage clinical development. Subsequently, we provide recommendations to stakeholders involved in development of cell therapies to exploit their potential clinical benefit.
Collapse
Affiliation(s)
- Sofieke de Wilde
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carla Herberts
- Pharmacotherapeutic Group 3, Medicines Evaluation Board (MEB), Utrecht, The Netherlands
| | - Mark Lowdell
- Department of Hematology, Royal Free Hospital & University College London, UK
| | - Martin Hildebrandt
- Technical University Munich, Faculty of Medicine, TUM Cells Interdisciplinary Center for Cellular Therapies, Munich, Germany
| | - Maarten Zandvliet
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pauline Meij
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Gardner J, Faulkner A, Mahalatchimy A, Webster A. Are there specific translational challenges in regenerative medicine? Lessons from other fields. Regen Med 2015; 10:885-95. [PMID: 26541074 DOI: 10.2217/rme.15.50] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There is concern that translation 'from bench to bedside' within regenerative medicine (RM) will fail to materialize, or will be dismally slow, due to various challenges arising from the highly novel and disruptive nature of RM. In this article, we provide a summary of these challenges, and we critically engage with the notion that such challenges are specific to RM. It is important, we argue, not to overstate the exceptional nature of RM, as valuable lessons can be learned from elsewhere in medicine. Using several examples of technology adoption, we suggest that emerging RM products and procedures will have to work hard to find or create an adoption space if translation into the clinic is to be successful.
Collapse
Affiliation(s)
- John Gardner
- Science & Technology Studies Unit, Department of Sociology, University of York, Wentworth College, York, Y010 5DD, UK
| | - Alex Faulkner
- Sociology of Biomedicine & Healthcare Policy, Centre for Global Health Policy, University of Sussex, Brighton, BN1 9RH, UK
| | | | - Andrew Webster
- Science & Technology Studies Unit, Department of Sociology, University of York, Wentworth College, York, Y010 5DD, UK
| |
Collapse
|
23
|
Pacini S. Deterministic and stochastic approaches in the clinical application of mesenchymal stromal cells (MSCs). Front Cell Dev Biol 2014; 2:50. [PMID: 25364757 PMCID: PMC4206995 DOI: 10.3389/fcell.2014.00050] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/28/2014] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have enormous intrinsic clinical value due to their multi-lineage differentiation capacity, support of hemopoiesis, immunoregulation and growth factors/cytokines secretion. MSCs have thus been the object of extensive research for decades. After completion of many pre-clinical and clinical trials, MSC-based therapy is now facing a challenging phase. Several clinical trials have reported moderate, non-durable benefits, which caused initial enthusiasm to wane, and indicated an urgent need to optimize the efficacy of therapeutic, platform-enhancing MSC-based treatment. Recent investigations suggest the presence of multiple in vivo MSC ancestors in a wide range of tissues, which contribute to the heterogeneity of the starting material for the expansion of MSCs. This variability in the MSC culture-initiating cell population, together with the different types of enrichment/isolation and cultivation protocols applied, are hampering progress in the definition of MSC-based therapies. International regulatory statements require a precise risk/benefit analysis, ensuring the safety and efficacy of treatments. GMP validation allows for quality certification, but the prediction of a clinical outcome after MSC-based therapy is correlated not only to the possible morbidity derived by cell production process, but also to the biology of the MSCs themselves, which is highly sensible to unpredictable fluctuation of isolating and culture conditions. Risk exposure and efficacy of MSC-based therapies should be evaluated by pre-clinical studies, but the batch-to-batch variability of the final medicinal product could significantly limit the predictability of these studies. The future success of MSC-based therapies could lie not only in rational optimization of therapeutic strategies, but also in a stochastic approach during the assessment of benefit and risk factors.
Collapse
Affiliation(s)
- Simone Pacini
- Department of Clinical and Experimental Medicine, University of Pisa Pisa, Italy
| |
Collapse
|
24
|
EGF-induced adipose tissue mesothelial cells undergo functional vascular smooth muscle differentiation. Cell Death Dis 2014; 5:e1304. [PMID: 24967966 PMCID: PMC4611741 DOI: 10.1038/cddis.2014.271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/01/2014] [Accepted: 05/20/2014] [Indexed: 12/12/2022]
Abstract
Recent studies suggested that the post-natal mesothelium retain differentiative potential of the embryonic mesothelium, which generates fibroblasts and vascular smooth muscle cells (VSMCs), in developing coelomic organs via epithelial-to-mesenchymal transition (EMT). Whether adult mesothelial cells (MCs) are able to give rise to functional VSMCs in vitro and which are the factors and mechanisms directing this process remain largely unknown. Here, we isolated adipose tissue MCs (ATMCs) from adult mice, and demonstrated that ATMCs cultured in a serum-containing media supplemented with epidermal growth factor (EGF) efficiently increased both their proliferation and EMT above levels found in only serum-containing media cultures. EGF-induced ATMCs gained phosphorylation of the EGF receptor and activated simultaneously ILK/Erk1/2, PI3K/Akt and Smad2/3-dependent pathways. Sequential subculture onto collagen-I surface efficiently improved their vasculogenic EMT towards cells featuring VSMCs (α-SMA, calponin, caldesmon, SM22α, desmin, SM-MHC, smoothelin-B and PDGFR-β) that could actively contract in response to receptor and non-receptor-mediated vasoactive agonists. Overall, our results indentify EGF signalling as a robust vasculogenic inductive pathway for ATMCs, leading to their transdifferentiation into functional VSMC-like cells.
Collapse
|
25
|
Gálvez P, Martín MJ, Calpena AC, Tamayo JA, Ruiz MA, Clares B. Enhancing effect of glucose microspheres in the viability of human mesenchymal stem cell suspensions for clinical administration. Pharm Res 2014; 31:3515-28. [PMID: 24962511 DOI: 10.1007/s11095-014-1438-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/10/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE A critical limiting factor of cell therapy is the short life of the stem cells. In this study, glucose containing alginate microspheres were developed and characterized to provide a sustained release system prolonging the viability of human mesenchymal stem cells (hMSCs) in a suspension for clinical application. METHODS The glucose microspheres were satisfactorily elaborated with alginate by emulsification/internal gelation method. Particle size was evaluated by light diffraction and optical microscopy. Shape and surface texture by scanning electron microscopy (SEM). Zeta potential, infrared spectra and release studies were also conducted. Also, rheological properties and stability of hMSCs suspensions with microspheres were tested. The viability of hMSCs was determined by trypan blue dye exclusion staining. RESULTS Microspheres of 86.62 μm, spherical shaped and -32.54 mV zeta potential with excellent stability, good encapsulation efficiency and providing an exponential release of glucose were obtained. hMSCs had better survival rate when they were packed with glucose microspheres. Microspheres maintained the aseptic conditions of the cell suspension without rheological, morphological or immunophenotypic disturbances on hMSCs. CONCLUSIONS Developed microspheres were able to enhance the functionality of hMSC suspension. This strategy could be broadly applied to various therapeutic approaches in which prolonged viability of cells is necessary.
Collapse
Affiliation(s)
- Patricia Gálvez
- Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Gálvez-Martín P, Hmadcha A, Soria B, Calpena-Campmany AC, Clares-Naveros B. Study of the stability of packaging and storage conditions of human mesenchymal stem cell for intra-arterial clinical application in patient with critical limb ischemia. Eur J Pharm Biopharm 2014; 86:459-68. [DOI: 10.1016/j.ejpb.2013.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/22/2013] [Accepted: 11/05/2013] [Indexed: 12/20/2022]
|
27
|
Gálvez P, Clares B, Bermejo M, Hmadcha A, Soria B. Standard requirement of a microbiological quality control program for the manufacture of human mesenchymal stem cells for clinical use. Stem Cells Dev 2014; 23:1074-83. [PMID: 24417334 DOI: 10.1089/scd.2013.0625] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The manufacturing of human mesenchymal stem cells (hMSCs) as cell-based products for clinical use should be performed with appropriate controls that ensure its safety and quality. The use of hMSCs in cell therapy has increased considerably in the past few years. In line with this, the assessment and management of contamination risks by microbial agents that could affect the quality of cells and the safety of patients have to be considered. It is necessary to implant a quality control program (QCP) covering the entire procedure of the ex vivo expansion, from the source of cells, starting materials, and reagents, such as intermediate products, to the final cellular medicine. We defined a QCP to detect microbiological contamination during manufacturing of autologous hMSCs for clinical application. The methods used include sterility test, Gram stain, detection of mycoplasma, endotoxin assay, and microbiological monitoring in process according to the European Pharmacopoeia (Ph. Eur.) and each analytical technique was validated in accordance with three different cell cultures. Results showed no microbiological contamination in any phases of the cultures, meeting all the acceptance criteria for sterility test, detection of mycoplasma and endotoxin, and environmental and staff monitoring. Each analytical technique was validated demonstrating the sensitivity, limit of detection, and robustness of the method. The quality and safety of MSCs must be controlled to ensure their final use in patients. The evaluation of the proposed QCP revealed satisfactory results in order to standardize this procedure for clinical use of cells.
Collapse
Affiliation(s)
- Patricia Gálvez
- 1 Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER) , Seville, Spain
| | | | | | | | | |
Collapse
|