1
|
Dong W, Liu S, Li S, Wang Z. Cell reprogramming therapy for Parkinson's disease. Neural Regen Res 2024; 19:2444-2455. [PMID: 38526281 PMCID: PMC11090434 DOI: 10.4103/1673-5374.390965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 10/08/2023] [Indexed: 03/26/2024] Open
Abstract
Parkinson's disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson's disease. The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson's disease, which could substantially alleviate the symptoms of Parkinson's disease in clinical practice. However, ethical issues and tumor formation were limitations of its clinical application. Induced pluripotent stem cells can be acquired without sacrificing human embryos, which eliminates the huge ethical barriers of human stem cell therapy. Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons, without the need for intermediate proliferation states, thus avoiding issues of immune rejection and tumor formation. Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson's disease. However, there are also ethical concerns and the risk of tumor formation that need to be addressed. This review highlights the current application status of cell reprogramming in the treatment of Parkinson's disease, focusing on the use of induced pluripotent stem cells in cell replacement therapy, including preclinical animal models and progress in clinical research. The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson's disease, as well as the controversy surrounding in vivo reprogramming. These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson's disease.
Collapse
Affiliation(s)
- Wenjing Dong
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shuyi Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shangang Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| |
Collapse
|
2
|
Daadi EW, Daadi ES, Oh T, Li M, Kim J, Daadi MM. Combining physical & cognitive training with iPSC-derived dopaminergic neuron transplantation promotes graft integration & better functional outcome in parkinsonian marmosets. Exp Neurol 2024; 374:114694. [PMID: 38272159 DOI: 10.1016/j.expneurol.2024.114694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Parkinson's disease (PD) is a relentlessly progressive and currently incurable neurodegenerative disease with significant unmet medical needs. Since PD stems from the degeneration of midbrain dopaminergic (DA) neurons in a defined brain location, PD patients are considered optimal candidates for cell replacement therapy. Clinical trials for cell transplantation in PD are beginning to re-emerge worldwide with a new focus on induced pluripotent stem cells (iPSCs) as a source of DA neurons since they can be derived from adult somatic cells and produced in large quantities under current good manufacturing practices. However, for this therapeutic strategy to be realized as a viable clinical option, fundamental translational challenges need to be addressed including the manufacturing process, purity and efficacy of the cells, the method of delivery, the extent of host reinnervation and the impact of patient-centered adjunctive interventions. In this study we report on the impact of physical and cognitive training (PCT) on functional recovery in the nonhuman primate (NHP) model of PD after cell transplantation. We observed that at 6 months post-transplant, the PCT group returned to normal baseline in their daily activity measured by actigraphy, significantly improved in their sensorimotor and cognitive tasks, and showed enhanced synapse formation between grafted cells and host cells. We also describe a robust, simple, efficient, scalable, and cost-effective manufacturing process of engraftable DA neurons derived from iPSCs. This study suggests that integrating PCT with cell transplantation therapy could promote optimal graft functional integration and better outcome for patients with PD.
Collapse
Affiliation(s)
- Etienne W Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - Elyas S Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - Thomas Oh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - Mingfeng Li
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jeffrey Kim
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA; Department of Cell Systems & Anatomy, Long School of Medicine, University of Texas Health at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA
| | - Marcel M Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA; Department of Cell Systems & Anatomy, Long School of Medicine, University of Texas Health at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA; Department of Radiology, Long School of Medicine, University of Texas Health at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA.
| |
Collapse
|
3
|
Lindvall O. History of cellular grafting for central nervous system repair-A clinical perspective. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:15-40. [PMID: 39341652 DOI: 10.1016/b978-0-323-90120-8.00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
As late as in the 1970s, the evidence supporting that brain function might be restored by replacing dead cells by transplantation of new healthy cells was scarce in experimental animals and lacking in humans. Repairing the human brain was regarded as completely unrealistic by clinicians. Fifty years later, the situation is very different, and cellular grafting has reached patient application in several conditions affecting the CNS. The clinical studies performed so far have shown that cellular grafts can survive, grow, and function also in the diseased adult human brain. However, no proven treatment based on cell transplantation is currently available for any brain disorder. Here, the history of cellular grafting is described from a clinical perspective, including some of the preclinical work that has formed the basis for its translation to patient application. The focus is on cell transplantation for Parkinson disease, which in many ways is paving the way for this field of research. The chapter gives an account of the scientific milestones, the ups and downs, as well as the positive and negative reactions from the scientific and clinical community, and how this research field despite many obstacles has continued to move forward over more than four decades.
Collapse
Affiliation(s)
- Olle Lindvall
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden; Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Polgar S, Finkelstein DI, Karimi L. Overcoming Methodological Challenges for Advancing Stem Cell Therapies in Parkinson's Disease. Cell Transplant 2024; 33:9636897241246355. [PMID: 38634440 PMCID: PMC11027592 DOI: 10.1177/09636897241246355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
The quest for new and improved therapies for Parkinson's disease (PD) remains of paramount importance, despite previous trial failures. There is a current debate regarding the potential of stem cell research as a therapeutic approach for PD. The studies of dopaminergic fetal stem cells for PD treatment, their design, and the results of the initial surgical placebo-controlled trials were reviewed in this study. Some of the fundamental methodological challenges and possible strategies to resolve them were proposed. In this article, we argue that the most important impact lies in the proof-of-principle demonstrated by clinical trials for cell replacement strategies in reconstructing the human brain. While some researchers argue that the considerable technical challenges associated with cell therapies for PD warrant the discontinuation of further development using stem cells, we believe that the opposing viewpoints are instrumental in identifying a series of methodological misunderstandings. Here, we propose to expose key challenges to ensure the advancement of the field and unlock the potential of stem cell therapies in PD treatment. Overall, this review underscores the need for further research and innovation to overcome the hurdles in realizing the potential of stem cell-based therapies for PD.
Collapse
Affiliation(s)
- Stephen Polgar
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - David I. Finkelstein
- University of Melbourne, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Leila Karimi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- School of Medicine and Healthcare Management, Caucasus University, Tbilisi, Georgia
| |
Collapse
|
5
|
Wang F, Sun Z, Peng D, Gianchandani S, Le W, Boltze J, Li S. Cell-therapy for Parkinson's disease: a systematic review and meta-analysis. J Transl Med 2023; 21:601. [PMID: 37679754 PMCID: PMC10483810 DOI: 10.1186/s12967-023-04484-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Cell-based strategies focusing on replacement or protection of dopaminergic neurons have been considered as a potential approach to treat Parkinson's disease (PD) for decades. However, despite promising preclinical results, clinical trials on cell-therapy for PD reported mixed outcomes and a thorough synthesis of these findings is lacking. We performed a systematic review and meta-analysis to evaluate cell-therapy for PD patients. METHODS We systematically identified all clinical trials investigating cell- or tissue-based therapies for PD published before July 2023. Out of those, studies reporting transplantation of homogenous cells (containing one cell type) were included in meta-analysis. The mean difference or standardized mean difference in quantitative neurological scale scores before and after cell-therapy was analyzed to evaluate treatment effects. RESULTS The systematic literature search revealed 106 articles. Eleven studies reporting data from 11 independent trials (210 patients) were eligible for meta-analysis. Disease severity and motor function evaluation indicated beneficial effects of homogenous cell-therapy in the 'off' state at 3-, 6-, 12-, or 24-month follow-ups, and for motor function even after 36 months. Most of the patients were levodopa responders (61.6-100% in different follow-ups). Cell-therapy was also effective in improving the daily living activities in the 'off' state of PD patients. Cells from diverse sources were used and multiple transplantation modes were applied. Autografts did not improve functional outcomes, while allografts exhibited beneficial effects. Encouragingly, both transplantation into basal ganglia and to areas outside the basal ganglia were effective to reduce disease severity. Some trials reported adverse events potentially related to the surgical procedure. One confirmed and four possible cases of graft-induced dyskinesia were reported in two trials included in this meta-analysis. CONCLUSIONS This meta-analysis provides preliminary evidence for the beneficial effects of homogenous cell-therapy for PD, potentially to the levodopa responders. Allogeneic cells were superior to autologous cells, and the effective transplantation sites are not limited to the basal ganglia. PROSPERO registration number: CRD42022369760.
Collapse
Affiliation(s)
- Fang Wang
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian, China
| | - Zhengwu Sun
- Department of Clinical Pharmacy, Central Hospital of Dalian University of Technology, Dalian, China
| | - Daoyong Peng
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian, China
| | - Shikha Gianchandani
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Weidong Le
- Institute of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial Hospital, Chengdu, China
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Beijing, 100038, China.
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Sanberg PR, Morrison D, Bjugstad KB. 30 years of American Society for Neural Therapy and Repair (ASNTR): A Personal Perspective at the Intersection of Science, Politics, and Culture. Neurosci Biobehav Rev 2023; 151:105234. [PMID: 37196924 DOI: 10.1016/j.neubiorev.2023.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
The American Society for Neural Therapy and Repair (ASNTR) started 30 years ago in 1993 as the American Society for Neural Transplantation (ASNT), with an emphasis on neural transplantation. Through the years, the Society has been shaped as much by our expanding knowledge of neurodegenerative disorders and how to treat them as it has by politics and culture. What once felt like a leash on neuroscience research, has turned into an advantage as neural transplantation evolved into neural therapy and repair. This brief commentary provides a personalized account of our research during the Society's years.
Collapse
Affiliation(s)
- Paul R Sanberg
- Center of Excellence for Aging and Brain Repair, Depts of Neurosurgery and Brain Repair, Pathology and Cell Biology, and Psychiatry. University of South Florida, Morsani College of Medicine, Tampa, FL 33612.
| | - Donna Morrison
- Center of Excellence for Aging and Brain Repair, Depts of Neurosurgery and Brain Repair, Pathology and Cell Biology, and Psychiatry. University of South Florida, Morsani College of Medicine, Tampa, FL 33612
| | - Kimberly B Bjugstad
- Center of Excellence for Aging and Brain Repair, Depts of Neurosurgery and Brain Repair, Pathology and Cell Biology, and Psychiatry. University of South Florida, Morsani College of Medicine, Tampa, FL 33612
| |
Collapse
|
7
|
Torrecuso R, Mueller K, Holiga Š, Sieger T, Vymazal J, Ružička F, Roth J, Ružička E, Schroeter ML, Jech R, Möller HE. Improving fMRI in Parkinson's disease by accounting for brain region-specific activity patterns. Neuroimage Clin 2023; 38:103396. [PMID: 37037118 PMCID: PMC10120395 DOI: 10.1016/j.nicl.2023.103396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/26/2023] [Accepted: 04/01/2023] [Indexed: 04/12/2023]
Abstract
In functional magnetic imaging (fMRI) in Parkinson's disease (PD), a paradigm consisting of blocks of finger tapping and rest along with a corresponding general linear model (GLM) is often used to assess motor activity. However, this method has three limitations: (i) Due to the strong magnetic field and the confined environment of the cylindrical bore, it is troublesome to accurately monitor motor output and, therefore, variability in the performed movement is typically ignored. (ii) Given the loss of dopaminergic neurons and ongoing compensatory brain mechanisms, motor control is abnormal in PD. Therefore, modeling of patients' tapping with a constant amplitude (using a boxcar function) and the expected Parkinsonian motor output are prone to mismatch. (iii) The motor loop involves structures with distinct hemodynamic responses, for which only one type of modeling (e.g., modeling the whole block of finger tapping) may not suffice to capture these structure's temporal activation. The first two limitations call for considering results from online recordings of the real motor output that may lead to significant sensitivity improvements. This was shown in previous work using a non-magnetic glove to capture details of the patients' finger movements in a so-called kinematic approach. For the third limitation, modeling motion initiation instead of the whole tapping block has been suggested to account for different temporal activation signatures of the motor loop's structures. In the present study we propose improvements to the GLM as a tool to study motor disorders. For this, we test the robustness of the kinematic approach in an expanded cohort (n = 31), apply more conservative statistics than in previous work, and evaluate the benefits of an event-related model function. Our findings suggest that the integration of the kinematic approach offers a general improvement in detecting activations in subcortical structures, such as the basal ganglia. Additionally, modeling motion initiation using an event-related design yielded superior performance in capturing medication-related effects in the putamen. Our results may guide adaptations in analysis strategies for functional motor studies related to PD and also in more general applications.
Collapse
Affiliation(s)
- Renzo Torrecuso
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Štefan Holiga
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Tomáš Sieger
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | | | - Filip Ružička
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic; Na Homolce Hospital, Prague, Czech Republic
| | - Jan Roth
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic; Na Homolce Hospital, Prague, Czech Republic
| | - Evzen Ružička
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic for Cognitive Neurology, Leipzig University Hospital, Leipzig, Germany
| | - Robert Jech
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic; Na Homolce Hospital, Prague, Czech Republic
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
8
|
Skidmore S, Barker RA. Challenges in the clinical advancement of cell therapies for Parkinson's disease. Nat Biomed Eng 2023; 7:370-386. [PMID: 36635420 PMCID: PMC7615223 DOI: 10.1038/s41551-022-00987-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 11/04/2022] [Indexed: 01/14/2023]
Abstract
Cell therapies as potential treatments for Parkinson's disease first gained traction in the 1980s, owing to the clinical success of trials that used transplants of foetal midbrain dopaminergic tissue. However, the poor standardization of the tissue for grafting, and constraints on its availability and ethical use, have hindered this treatment strategy. Recent advances in stem-cell technologies and in the understanding of the development of dopaminergic neurons have enabled preclinical advancements of promising stem-cell therapies. To move these therapies to the clinic, appropriate levels of safety screening, as well as optimization of the cell products and the scalability of their manufacturing, will be required. In this Review, we discuss how challenges pertaining to cell sources, functional and safety testing, manufacturing and storage, and clinical-trial design are being addressed to advance the translational and clinical development of cell therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Sophie Skidmore
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, UK
| | - Roger A Barker
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, UK.
- John van Geest Centre for Brain Repair, Department of Clinical Neuroscience, For vie Site, Cambridge, UK.
| |
Collapse
|
9
|
Xue J, Wu Y, Bao Y, Zhao M, Li F, Sun J, Sun Y, Wang J, Chen L, Mao Y, Schweitzer JS, Song B. Clinical considerations in Parkinson's disease cell therapy. Ageing Res Rev 2023; 83:101792. [PMID: 36402405 DOI: 10.1016/j.arr.2022.101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Cell replacement therapy is an area of increasing interest for treating Parkinson's disease (PD). However, to become a clinically practical option for PD patients, it must first overcome significant barriers, including establishment of safe and standardized surgical procedures, determination of appropriate perioperative medication regimens, demonstration of long-term graft survival and incorporation, and standardized, clinically meaningful follow-up measures. In this review, we will describe the current status of cell therapy for PD with special attention to these critical requirements, to define guideposts on the road to bring the benefit of this therapy to the Parkinson's clinic.
Collapse
Affiliation(s)
- Jun Xue
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Yifan Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Yuting Bao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Minglai Zhao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Fangzhou Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Jing Sun
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yimin Sun
- Institute of Neurology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jian Wang
- Institute of Neurology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China.
| | - Jeffrey S Schweitzer
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Bin Song
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
10
|
Identification of Potential Parkinson's Disease Drugs Based on Multi-Source Data Fusion and Convolutional Neural Network. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154780. [PMID: 35897954 PMCID: PMC9369596 DOI: 10.3390/molecules27154780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022]
Abstract
Parkinson’s disease (PD) is a serious neurodegenerative disease. Most of the current treatment can only alleviate symptoms, but not stop the progress of the disease. Therefore, it is crucial to find medicines to completely cure PD. Finding new indications of existing drugs through drug repositioning can not only reduce risk and cost, but also improve research and development efficiently. A drug repurposing method was proposed to identify potential Parkinson’s disease-related drugs based on multi-source data integration and convolutional neural network. Multi-source data were used to construct similarity networks, and topology information were utilized to characterize drugs and PD-associated proteins. Then, diffusion component analysis method was employed to reduce the feature dimension. Finally, a convolutional neural network model was constructed to identify potential associations between existing drugs and LProts (PD-associated proteins). Based on 10-fold cross-validation, the developed method achieved an accuracy of 91.57%, specificity of 87.24%, sensitivity of 95.27%, Matthews correlation coefficient of 0.8304, area under the receiver operating characteristic curve of 0.9731 and area under the precision–recall curve of 0.9727, respectively. Compared with the state-of-the-art approaches, the current method demonstrates superiority in some aspects, such as sensitivity, accuracy, robustness, etc. In addition, some of the predicted potential PD therapeutics through molecular docking further proved that they can exert their efficacy by acting on the known targets of PD, and may be potential PD therapeutic drugs for further experimental research. It is anticipated that the current method may be considered as a powerful tool for drug repurposing and pathological mechanism studies.
Collapse
|
11
|
Van den Bos J, Ouaamari YE, Wouters K, Cools N, Wens I. Are Cell-Based Therapies Safe and Effective in the Treatment of Neurodegenerative Diseases? A Systematic Review with Meta-Analysis. Biomolecules 2022; 12:340. [PMID: 35204840 PMCID: PMC8869169 DOI: 10.3390/biom12020340] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Over the past two decades, significant advances have been made in the field of regenerative medicine. However, despite being of the utmost clinical urgency, there remains a paucity of therapeutic strategies for conditions with substantial neurodegeneration such as (progressive) multiple sclerosis (MS), spinal cord injury (SCI), Parkinson's disease (PD) and Alzheimer's disease (AD). Different cell types, such as mesenchymal stromal cells (MSC), neuronal stem cells (NSC), olfactory ensheathing cells (OEC), neurons and a variety of others, already demonstrated safety and regenerative or neuroprotective properties in the central nervous system during the preclinical phase. As a result of these promising findings, in recent years, these necessary types of cell therapies have been intensively tested in clinical trials to establish whether these results could be confirmed in patients. However, extensive research is still needed regarding elucidating the exact mechanism of action, possible immune rejection, functionality and survival of the administered cells, dose, frequency and administration route. To summarize the current state of knowledge, we conducted a systematic review with meta-analysis. A total of 27,043 records were reviewed by two independent assessors and 71 records were included in the final quantitative analysis. These results show that the overall frequency of serious adverse events was low: 0.03 (95% CI: 0.01-0.08). In addition, several trials in MS and SCI reported efficacy data, demonstrating some promising results on clinical outcomes. All randomized controlled studies were at a low risk of bias due to appropriate blinding of the treatment, including assessors and patients. In conclusion, cell-based therapies in neurodegenerative disease are safe and feasible while showing promising clinical improvements. Nevertheless, given their high heterogeneity, the results require a cautious approach. We advocate for the harmonization of study protocols of trials investigating cell-based therapies in neurodegenerative diseases, adverse event reporting and investigation of clinical outcomes.
Collapse
Affiliation(s)
- Jasper Van den Bos
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Universiteitsplein 1, B-2610 Antwerpen, Belgium; (Y.E.O.); (N.C.); (I.W.)
| | - Yousra El Ouaamari
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Universiteitsplein 1, B-2610 Antwerpen, Belgium; (Y.E.O.); (N.C.); (I.W.)
| | - Kristien Wouters
- Clinical Trial Center (CTC), CRC Antwerp, Antwerp University Hospital, University of Antwerp, Drie Eikenstraat 655, B-2650 Edegem, Belgium;
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Universiteitsplein 1, B-2610 Antwerpen, Belgium; (Y.E.O.); (N.C.); (I.W.)
- Center for Cell Therapy and Regenerative Medicine (CCRG), Antwerp University Hospital, Drie Eikenstraat 655, B-2650 Edegem, Belgium
| | - Inez Wens
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Universiteitsplein 1, B-2610 Antwerpen, Belgium; (Y.E.O.); (N.C.); (I.W.)
| |
Collapse
|
12
|
Roles of Transcription Factors in the Development and Reprogramming of the Dopaminergic Neurons. Int J Mol Sci 2022; 23:ijms23020845. [PMID: 35055043 PMCID: PMC8775916 DOI: 10.3390/ijms23020845] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 02/04/2023] Open
Abstract
The meso-diencephalic dopaminergic (mdDA) neurons regulate various critical processes in the mammalian nervous system, including voluntary movement and a wide range of behaviors such as mood, reward, addiction, and stress. mdDA neuronal loss is linked with one of the most prominent human movement neurological disorders, Parkinson’s disease (PD). How these cells die and regenerate are two of the most hotly debated PD research topics. As for the latter, it has been long known that a series of transcription factors (TFs) involves the development of mdDA neurons, specifying cell types and controlling developmental patterns. In vitro and in vivo, TFs regulate the expression of tyrosine hydroxylase, a dopamine transporter, vesicular monoamine transporter 2, and L-aromatic amino acid decarboxylase, all of which are critical for dopamine synthesis and transport in dopaminergic neurons (DA neurons). In this review, we encapsulate the molecular mechanism of TFs underlying embryonic growth and maturation of mdDA neurons and update achievements on dopaminergic cell therapy dependent on knowledge of TFs in mdDA neuronal development. We believe that a deeper understanding of the extrinsic and intrinsic factors that influence DA neurons’ fate and development in the midbrain could lead to a better strategy for PD cell therapy.
Collapse
|
13
|
Polgar S, Buultjens M, Wijeratne T, Finkelstein DI, Mohamed S, Karimi L. The Placebo Response in Double-Blind Randomised Trials Evaluating Regenerative Therapies for Parkinson's Disease: A Systematic Review and Meta-Analysis. JOURNAL OF PARKINSON'S DISEASE 2022; 12:759-771. [PMID: 35034910 DOI: 10.3233/jpd-212610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the field of stem cell technologies, exciting advances are taking place leading to translational research to develop cell-based therapies which may replace dopamine releasing neurons lost in patients with Parkinson's disease (PD). A major influence on trial design has been the assumption that the use of sham operated comparator groups is required in the implementation of randomised double-blind trials to evaluate the placebo response and effects associated with the surgical implantation of cells. The aim of the present review is to identify the improvements in motor functioning and striatal dopamine release in patients with PD who have undergone sham surgery. Of the nine published trials, there was at the designated endpoints, a pooled average improvement of 4.3 units, with 95% confidence interval of 3.1 to 5.6 on the motor subscale of the Unified Parkinson's Disease Scale in the 'OFF' state. This effect size indicates a moderate degree of improvement in the motor functioning of the patients in the sham surgical arms of the trials. Four of the nine trials reported the results of 18F-Fluorodopa PET scans, indicating no improvements of dopaminergic nigrostriatal neurones following sham surgery. Therefore, while the initial randomised trials relying on the use of sham operated controls were justified on methodological grounds, we suggest that the analysis of the evidence generated by the completed and published trials indicates that placebo controlled trials are not necessary to advance and evaluate the safety and efficacy of emerging regenerative therapies for PD.
Collapse
Affiliation(s)
- Stephen Polgar
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Melissa Buultjens
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | | | - David I Finkelstein
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Sheeza Mohamed
- School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Leila Karimi
- School of Psychology, RMIT University, Melbourne, VIC, Australia
- The Monash Alfred Psychiatry Research Centre, The Alfred and Monash University Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Shankar J, K.M G, Wilson B. Potential applications of nanomedicine for treating Parkinson's disease. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Li JY, Li W. Postmortem Studies of Fetal Grafts in Parkinson's Disease: What Lessons Have We Learned? Front Cell Dev Biol 2021; 9:666675. [PMID: 34055800 PMCID: PMC8155361 DOI: 10.3389/fcell.2021.666675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/06/2021] [Indexed: 12/28/2022] Open
Abstract
Neural transplantation is a potential therapeutic method for Parkinson’s disease (PD). Fetal dopaminergic (DA) neurons have been important transplantation cell sources in the history of replacement therapy for PD. Several decades of preclinical animal experiments and clinical trials using fetal DA neuron transplantation in PD therapy have shown not only promising results but also problems. In order to reveal possible factors influencing the clinical outcomes, we reviewed fetal DA neuron transplantation therapies from 1970s to present, with a special focus on postmortem studies. Firstly, we gave a general description of the clinical outcomes and neuroanatomy of grafted cases; secondly, we summarized the main available postmortem studies, including the cell survival, reinnervation, and pathology development. In the end, we further discussed the link between function and structure of the grafts, seeking for the possible factors contributing to a functional graft. With our review, we hope to provide references for future transplantation trials from a histological point of view.
Collapse
Affiliation(s)
- Jia-Yi Li
- Laboratory of Neurodegenerative Diseases and Repair, Institute of Health Sciences, China Medical University, Shenyang, China.,Neural Plasticity and Repair Unit, Wallenberg Neuroscience Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Wen Li
- Laboratory of Neurodegenerative Diseases and Repair, Institute of Health Sciences, China Medical University, Shenyang, China.,Neural Plasticity and Repair Unit, Wallenberg Neuroscience Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Ntetsika T, Papathoma PE, Markaki I. Novel targeted therapies for Parkinson's disease. Mol Med 2021; 27:17. [PMID: 33632120 PMCID: PMC7905684 DOI: 10.1186/s10020-021-00279-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is the second more common neurodegenerative disease with increasing incidence worldwide associated to the population ageing. Despite increasing awareness and significant research advancements, treatment options comprise dopamine repleting, symptomatic therapies that have significantly increased quality of life and life expectancy, but no therapies that halt or reverse disease progression, which remain a great, unmet goal in PD research. Large biomarker development programs are undertaken to identify disease signatures that will improve patient selection and outcome measures in clinical trials. In this review, we summarize PD-related mechanisms that can serve as targets of therapeutic interventions aiming to slow or modify disease progression, as well as previous and ongoing clinical trials in each field, and discuss future perspectives.
Collapse
Affiliation(s)
- Theodora Ntetsika
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Center of Neurology, Academic Specialist Center, Solnavägen 1E, 113 65, Stockholm, Sweden
| | - Paraskevi-Evita Papathoma
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Danderyd Hospital Stockholm, Stockholm, Sweden
| | - Ioanna Markaki
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. .,Center of Neurology, Academic Specialist Center, Solnavägen 1E, 113 65, Stockholm, Sweden.
| |
Collapse
|
17
|
Frederiksen HR, Doehn U, Tveden-Nyborg P, Freude KK. Non-immunogenic Induced Pluripotent Stem Cells, a Promising Way Forward for Allogenic Transplantations for Neurological Disorders. Front Genome Ed 2021; 2:623717. [PMID: 34713244 PMCID: PMC8525385 DOI: 10.3389/fgeed.2020.623717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
Neurological disorder is a general term used for diseases affecting the function of the brain and nervous system. Those include a broad range of diseases from developmental disorders (e.g., Autism) over injury related disorders (e.g., stroke and brain tumors) to age related neurodegeneration (e.g., Alzheimer's disease), affecting up to 1 billion people worldwide. For most of those disorders, no curative treatment exists leaving symptomatic treatment as the primary mean of alleviation. Human induced pluripotent stem cells (hiPSC) in combination with animal models have been instrumental to foster our understanding of underlying disease mechanisms in the brain. Of specific interest are patient derived hiPSC which allow for targeted gene editing in the cases of known mutations. Such personalized treatment would include (1) acquisition of primary cells from the patient, (2) reprogramming of those into hiPSC via non-integrative methods, (3) corrective intervention via CRISPR-Cas9 gene editing of mutations, (4) quality control to ensure successful correction and absence of off-target effects, and (5) subsequent transplantation of hiPSC or pre-differentiated precursor cells for cell replacement therapies. This would be the ideal scenario but it is time consuming and expensive. Therefore, it would be of great benefit if transplanted hiPSC could be modulated to become invisible to the recipient's immune system, avoiding graft rejection and allowing for allogenic transplantations. This review will focus on the current status of gene editing to generate non-immunogenic hiPSC and how these cells can be used to treat neurological disorders by using cell replacement therapy. By providing an overview of current limitations and challenges in stem cell replacement therapies and the treatment of neurological disorders, this review outlines how gene editing and non-immunogenic hiPSC can contribute and pave the road for new therapeutic advances. Finally, the combination of using non-immunogenic hiPSC and in vivo animal modeling will highlight the importance of models with translational value for safety efficacy testing; before embarking on human trials.
Collapse
Affiliation(s)
- Henriette Reventlow Frederiksen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Doehn
- Stem Cell Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Pernille Tveden-Nyborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine K. Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Kristine K. Freude
| |
Collapse
|
18
|
Jang SE, Qiu L, Chan LL, Tan EK, Zeng L. Current Status of Stem Cell-Derived Therapies for Parkinson's Disease: From Cell Assessment and Imaging Modalities to Clinical Trials. Front Neurosci 2020; 14:558532. [PMID: 33177975 PMCID: PMC7596695 DOI: 10.3389/fnins.2020.558532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/17/2020] [Indexed: 12/23/2022] Open
Abstract
Curative therapies or treatments reversing the progression of Parkinson’s disease (PD) have attracted considerable interest in the last few decades. PD is characterized by the gradual loss of dopaminergic (DA) neurons and decreased striatal dopamine levels. Current challenges include optimizing neuroprotective strategies, developing personalized drug therapy, and minimizing side effects from the long-term prescription of pharmacological drugs used to relieve short-term motor symptoms. Transplantation of DA cells into PD patients’ brains to replace degenerated DA has the potential to change the treatment paradigm. Herein, we provide updates on current progress in stem cell-derived DA neuron transplantation as a therapeutic alternative for PD. We briefly highlight cell sources for transplantation and focus on cell assessment methods such as identification of genetic markers, single-cell sequencing, and imaging modalities used to access cell survival and function. More importantly, we summarize clinical reports of patients who have undergone cell-derived transplantation in PD to better perceive lessons that can be drawn from past and present clinical outcomes. Modifying factors include (1) source of the stem cells, (2) quality of the stem cells, (3) age of the patient, (4) stage of disease progression at the time of cell therapy, (5) surgical technique/practices, and (6) the use of immunosuppression. We await the outcomes of joint efforts in clinical trials around the world such as NYSTEM and CiRA to further guide us in the selection of the most suitable parameters for cell-based neurotransplantation in PD.
Collapse
Affiliation(s)
- Se Eun Jang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, Singapore
| | - Lifeng Qiu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, Singapore
| | - Ling Ling Chan
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore, Singapore.,Neuroscience & Behavioral Disorders Program, Duke University and National University of Singapore (DUKE-NUS), Graduate Medical School, Singapore, Singapore
| | - Eng-King Tan
- Neuroscience & Behavioral Disorders Program, Duke University and National University of Singapore (DUKE-NUS), Graduate Medical School, Singapore, Singapore.,Department of Neurology, National Neuroscience Institute, Singapore General Hospital Campus, Singapore, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, Singapore.,Neuroscience & Behavioral Disorders Program, Duke University and National University of Singapore (DUKE-NUS), Graduate Medical School, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, Singapore, Singapore
| |
Collapse
|
19
|
Salado-Manzano C, Perpiña U, Straccia M, Molina-Ruiz FJ, Cozzi E, Rosser AE, Canals JM. Is the Immunological Response a Bottleneck for Cell Therapy in Neurodegenerative Diseases? Front Cell Neurosci 2020; 14:250. [PMID: 32848630 PMCID: PMC7433375 DOI: 10.3389/fncel.2020.00250] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders such as Parkinson's (PD) and Huntington's disease (HD) are characterized by a selective detrimental impact on neurons in a specific brain area. Currently, these diseases have no cures, although some promising trials of therapies that may be able to slow the loss of brain cells are underway. Cell therapy is distinguished by its potential to replace cells to compensate for those lost to the degenerative process and has shown a great potential to replace degenerated neurons in animal models and in clinical trials in PD and HD patients. Fetal-derived neural progenitor cells, embryonic stem cells or induced pluripotent stem cells are the main cell sources that have been tested in cell therapy approaches. Furthermore, new strategies are emerging, such as the use of adult stem cells, encapsulated cell lines releasing trophic factors or cell-free products, containing an enriched secretome, which have shown beneficial preclinical outcomes. One of the major challenges for these potential new treatments is to overcome the host immune response to the transplanted cells. Immune rejection can cause significant alterations in transplanted and endogenous tissue and requires immunosuppressive drugs that may produce adverse effects. T-, B-lymphocytes and microglia have been recognized as the main effectors in striatal graft rejection. This review aims to summarize the preclinical and clinical studies of cell therapies in PD and HD. In addition, the precautions and strategies to ensure the highest quality of cell grafts, the lowest risk during transplantation and the reduction of a possible immune rejection will be outlined. Altogether, the wide-ranging possibilities of advanced therapy medicinal products (ATMPs) could make therapeutic treatment of these incurable diseases possible in the near future.
Collapse
Affiliation(s)
- Cristina Salado-Manzano
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Unai Perpiña
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | | | - Francisco J. Molina-Ruiz
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Emanuele Cozzi
- Department of Cardio-Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
- Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| | - Anne E. Rosser
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
20
|
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease typified by a movement disorder consisting of bradykinesia, rest tremor, rigidity, and postural instability. Treatment options for PD are limited, with most of the current approaches based on restoration of dopaminergic tone in the striatum. However, these do not alter disease course and do not treat the non-dopamine-dependent features of PD such as freezing of gait, cognitive impairment, and other non-motor features of the disorder, which often have the greatest impact on quality of life. As understanding of PD pathogenesis grows, novel therapeutic avenues are emerging. These include treatments that aim to control the symptoms of PD without the problematic side effects seen with currently available treatments and those that are aimed towards slowing pathology, reducing neuronal loss, and attenuating disease course. In this latter regard, there has been much interest in drug repurposing (the use of established drugs for a new indication), with many drugs being reported to affect PD-relevant intracellular processes. This approach offers an expedited route to the clinic, given that pharmacokinetic and safety data are potentially already available. In terms of better symptomatic therapies that are also regenerative, gene therapies and cell-based treatments are beginning to enter clinical trials, and developments in other neurosurgical strategies such as more nuanced deep brain stimulation approaches mean that the landscape of PD treatment is likely to evolve considerably over the coming years. In this review, we provide an overview of the novel therapeutic approaches that are close to, or are already in, clinical trials.
Collapse
Affiliation(s)
- Thomas B Stoker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
- Department of Neurology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Development and Differentiation of Midbrain Dopaminergic Neuron: From Bench to Bedside. Cells 2020; 9:cells9061489. [PMID: 32570916 PMCID: PMC7349799 DOI: 10.3390/cells9061489] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/29/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s Disease (PD) is a neurodegenerative disorder affecting the motor system. It is primarily due to substantial loss of midbrain dopamine (mDA) neurons in the substantia nigra pars compacta and to decreased innervation to the striatum. Although existing drug therapy available can relieve the symptoms in early-stage PD patients, it cannot reverse the pathogenic progression of PD. Thus, regenerating functional mDA neurons in PD patients may be a cure to the disease. The proof-of-principle clinical trials showed that human fetal graft-derived mDA neurons could restore the release of dopamine neurotransmitters, could reinnervate the striatum, and could alleviate clinical symptoms in PD patients. The invention of human-induced pluripotent stem cells (hiPSCs), autologous source of neural progenitors with less ethical consideration, and risk of graft rejection can now be generated in vitro. This advancement also prompts extensive research to decipher important developmental signaling in differentiation, which is key to successful in vitro production of functional mDA neurons and the enabler of mass manufacturing of the cells required for clinical applications. In this review, we summarize the biology and signaling involved in the development of mDA neurons and the current progress and methodology in driving efficient mDA neuron differentiation from pluripotent stem cells.
Collapse
|
22
|
Henchcliffe C, Sarva H. Restoring Function to Dopaminergic Neurons: Progress in the Development of Cell-Based Therapies for Parkinson's Disease. CNS Drugs 2020; 34:559-577. [PMID: 32472450 DOI: 10.1007/s40263-020-00727-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is escalating interest in cell-based therapies to restore lost dopamine inputs in Parkinson's disease. This is based upon the rationale that implanting dopamine progenitors into the striatum can potentially improve dopamine-responsive motor symptoms. A rich body of data describing clinical trials of previous cell transplantation exists. These have included multiple cell sources for transplantation including allogeneic (human embryonic mesencephalic tissue, retinal pigment epithelial cells) and autologous (carotid body, adrenal medullary tissue) cells, as well as xenotransplantation. However, there are multiple limitations related to these cell sources, including availability of adequate numbers of cells for transplant, heterogeneity within cells transplanted, imprecisely defined mechanisms of action, and poor cell survival after transplantation in some cases. Nonetheless, evidence has accrued from a subset of trials to support the rationale for such a regenerative approach. Recent rapid advances in stem cell technology may now overcome these prior limitations. For example, dopamine neuron precursor cells for transplant can be generated from induced pluripotent cells and human embryonic stem cells. The benefits of these innovative approaches include: the possibility of scalability; a high degree of quality control; and improved understanding of mechanisms of action with rigorous preclinical testing. In this review, we focus on the potential for cell-based therapies in Parkinson's disease to restore the function of dopaminergic neurons, we critically review previous attempts to harness such strategies, we discuss potential benefits and predicted limitations, and we address how previous roadblocks may be overcome to bring a cell-based approach to the clinic.
Collapse
Affiliation(s)
- Claire Henchcliffe
- Department of Neurology, Weill Medical College of Cornell University, 428 East 72nd Street, Suite 400, New York, NY, 10021, USA.
| | - Harini Sarva
- Department of Neurology, Weill Medical College of Cornell University, 428 East 72nd Street, Suite 400, New York, NY, 10021, USA
| |
Collapse
|
23
|
Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci 2020; 21:103-115. [DOI: 10.1038/s41583-019-0257-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2019] [Indexed: 01/07/2023]
|
24
|
MHC matching fails to prevent long-term rejection of iPSC-derived neurons in non-human primates. Nat Commun 2019; 10:4357. [PMID: 31554807 PMCID: PMC6761126 DOI: 10.1038/s41467-019-12324-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/23/2019] [Indexed: 01/16/2023] Open
Abstract
Cell therapy products (CTP) derived from pluripotent stem cells (iPSCs) may constitute a renewable, specifically differentiated source of cells to potentially cure patients with neurodegenerative disorders. However, the immunogenicity of CTP remains a major issue for therapeutic approaches based on transplantation of non-autologous stem cell-derived neural grafts. Despite its considerable side-effects, long-term immunosuppression, appears indispensable to mitigate neuro-inflammation and prevent rejection of allogeneic CTP. Matching iPSC donors' and patients' HLA haplotypes has been proposed as a way to access CTP with enhanced immunological compatibility, ultimately reducing the need for immunosuppression. In the present work, we challenge this paradigm by grafting autologous, MHC-matched and mis-matched neuronal grafts in a primate model of Huntington's disease. Unlike previous reports in unlesioned hosts, we show that in the absence of immunosuppression MHC matching alone is insufficient to grant long-term survival of neuronal grafts in the lesioned brain.
Collapse
|
25
|
Barker RA. Designing stem-cell-based dopamine cell replacement trials for Parkinson's disease. Nat Med 2019; 25:1045-1053. [PMID: 31263283 DOI: 10.1038/s41591-019-0507-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
Abstract
Clinical studies of Parkinson's disease (PD) using a dopamine cell replacment strategy have been tried for more than 30 years. The outcomes following transplantation of human fetal ventral mesencephalic tissue (hfVM) have been variable, with some patients coming off their anti-PD treatment for many years and others not responding and/or developing significant side effects, including graft-induced dyskinesia. This led to a re-appraisal of the best way to do such trials, which resulted in a new European-Union-funded allograft trial with fetal dopamine cells across several centers in Europe. This new trial, TRANSEURO ( NCT01898390 ), is an open-label study in which some individuals in a large observational cohort of patients with mild PD who were undergoing identical assessments were randomly selected to receive transplants of hfVM. The TRANSEURO trial is currently ongoing as researchers have completed both recruitment into a large multicenter observational study of younger onset early-stage PD and transplantation of hfVM in 11 patients. While completion of TRANSEURO is not expected until 2021, we feel that sharing the rationale for the design of TRANSEURO, along with the lessons we have learned along the way, can help inform researchers and facilitate planning of transplants of dopamine-producing cells derived from human pluripotent stem cells for future clinical trials.
Collapse
Affiliation(s)
- Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and WT-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- John van Geest Centre for Brain Repair, Cambridge University, Cambridge, UK.
| |
Collapse
|
26
|
Hey SM, Jensen P, Ryding M, Martínez Serrano A, Kristensen BW, Meyer M. Nonhypoxic pharmacological stabilization of Hypoxia Inducible Factor 1α: Effects on dopaminergic differentiation of human neural stem cells. Eur J Neurosci 2018; 49:497-509. [PMID: 30471165 DOI: 10.1111/ejn.14284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/13/2018] [Accepted: 11/07/2018] [Indexed: 01/01/2023]
Abstract
Parkinson's disease is a neurodegenerative disease resulting in degeneration of midbrain dopaminergic neurons. Exploratory studies using human foetal tissue or predifferentiated stem cells have suggested that intracerebral transplantation of dopaminergic precursor cells may become an effective treatment for patients with Parkinson's disease. However, strategies for dopaminergic stem cell differentiation vary widely in efficiency, and better methods still need to be developed. Hypoxia Inducible Factor 1 (HIF-1) is a transcription factor involved in the regulation of genes important for cellular adaption to hypoxia and low glucose supply. HIF-1 is to a large degree regulated by the availability of oxygen as in its presence, the subunit HIF-1α is degraded by HIF prolyl hydroxylase enzymes (HPHs). Stabilization of HIF-1α through inhibition of HPHs has been shown to increase dopaminergic differentiation of stem cells and to protect dopaminergic neurons against neurotoxins. This study investigated the effects of noncompetitive (FG-0041) and competitive (Compound A and JNJ-42041935) HIF-1α stabilizing compounds on the dopaminergic differentiation of human neural stem cells. Treatment with all HPH inhibitors at high oxygen tension (20%) resulted in HIF-1α stabilization as assessed by immunocytochemistry for HIF-1α and detection of increased levels of vascular endothelial growth factor in the conditioned culture medium. Following 10 days of HIF-1α stabilization, the cultures displayed a slightly reduced proliferative activity and significantly increased relative levels of tyrosine hydroxylase-positive dopaminergic neurons. In conclusion, HIF-1α stabilization may represent a promising strategy for the generation of dopaminergic neurons intended for use in experimental in vitro studies and cell replacement therapies.
Collapse
Affiliation(s)
- Sabine Morris Hey
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Pia Jensen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Matias Ryding
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Alberto Martínez Serrano
- Department of Molecular Biology and Center of Molecular Biology Severo Ochoa, Autonomous University of Madrid-C.S.I.C Campus Cantoblanco, Madrid, Spain
| | - Bjarne W Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
27
|
Abstract
Parkinson's disease is the second most common neurodegenerative disorder. It is characterised by a typical movement disorder that occurs in part because of the selective degeneration of the dopaminergic neurons of the substantia nigra pars compacta. Current treatment for the motor disorder of Parkinson's disease consists of dopaminergic medications, but these come with significant adverse effects, themselves an important part of the clinical course of Parkinson's disease, particularly in advanced stages. Therefore, treatment is needed that can restore dopaminergic tone in the striatum in a physiological and targeted manner to avert these side effects. A number of potential regenerative treatments have been developed with a view to achieving this. Following decades of optimisation and development of stem-cell-based treatments and viral gene delivery, clinical trials are on the horizon. For these treatments to be widely useful, they must be clinically effective, cost efficient and safe, and a number of practical aspects regarding storage and delivery of treatment must be optimised. Many barriers have been overcome, and the field of regenerative medicine for Parkinson's disease is now increasingly focussed on how these treatments will be delivered, demonstrating the significant progress that has been made and the optimism surrounding these approaches.
Collapse
|
28
|
de Natale ER, Wilson H, Pagano G, Politis M. Imaging Transplantation in Movement Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 143:213-263. [PMID: 30473196 DOI: 10.1016/bs.irn.2018.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell replacement therapy with graft transplantation has been tested as a disease-modifying treatment in neurodegenerative diseases characterized by the damage of a predominant cell type, such as substantia nigra dopaminergic neurons in Parkinson's disease (PD) or striatal medium spiny projection neurons in Huntington's disease (HD). The results of these trials are mixed with success in preclinical and pilot open-label trials, which were not consistently reproduced in randomized controlled trials. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) molecular imaging and functional magnetic resonance imaging allow the graft survival, and its relationship with the host tissues to be studied in vivo. In PD, PET with [18F]DOPA showed that graft survival does not necessarily correlate with the clinical improvement and PD patients with worse outcome had lower binding in the ventral striatum and a high serotonin ([11C]DASB PET) to dopamine ([18F]DOPA PET) ratio in the grafted neurons. In HD, PET with [11C]PK11195 showed the graft survival and the clinical responses may be related to the reactive activation of the host inflammatory/immune system. Findings from these studies have been used to refine study protocols and patient selection in current clinical trials, which includes identifying suitable candidates for transplantation using imaging markers and employing multiple and/or novel PET tracers to better assess graft functions and inflammatory responses to grafts.
Collapse
Affiliation(s)
- Edoardo Rosario de Natale
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Heather Wilson
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Gennaro Pagano
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Marios Politis
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom.
| |
Collapse
|
29
|
Stoker TB, Torsney KM, Barker RA. Emerging Treatment Approaches for Parkinson's Disease. Front Neurosci 2018; 12:693. [PMID: 30349448 PMCID: PMC6186796 DOI: 10.3389/fnins.2018.00693] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease, manifesting as a characteristic movement disorder with a number of additional non-motor features. The pathological hallmark of PD is the presence of intra-neuronal aggregates of α-synuclein (Lewy bodies). The movement disorder of PD occurs largely due to loss of dopaminergic neurons of the substantia nigra, resulting in striatal dopamine depletion. There are currently no proven disease modifying treatments for PD, with management options consisting mainly of dopaminergic drugs, and in a limited number of patients, deep brain stimulation. Long-term use of established dopaminergic therapies for PD results in significant adverse effects, and there is therefore a requirement to develop better means of restoring striatal dopamine, as well as treatments that are able to slow progression of the disease. A number of exciting treatments have yielded promising results in pre-clinical and early clinical trials, and it now seems likely that the landscape for the management of PD will change dramatically in the short to medium term future. Here, we discuss the promising regenerative cell-based and gene therapies, designed to treat the dopaminergic aspects of PD whilst limiting adverse effects, as well as novel approaches to reducing α-synuclein pathology.
Collapse
Affiliation(s)
- Thomas B Stoker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Kelli M Torsney
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Department of Medicine for the Elderly, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
30
|
Rocco M, Juri C. Is treatment with stem cells effective in Parkinson's disease? Medwave 2018; 18:e7242. [PMID: 30240387 DOI: 10.5867/medwave.2018.05.7241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 08/14/2018] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION There are many patients with Parkinson's disease who have a limited response to conventional pharmacological treatment. The use of stem cells has been postulated as an alternative, although its effectiveness remains a matter of controversy. METHODS To answer this question we used Epistemonikos, the largest database of systematic reviews in health, which is maintained by screening multiple information sources, including MEDLINE, EMBASE, Cochrane, among others. We extracted data from the systematic reviews, reanalyzed data of primary studies, conducted a meta-analysis and generated a summary of findings table using the GRADE approach. RESULTS AND CONCLUSIONS We identified two systematic reviews including 21 studies overall, of which three were randomized trials. We concluded it is not clear whether stem cells have any effect on the symptoms of Parkinson's disease because the certainty of the available evidence is very low.
Collapse
Affiliation(s)
- Matías Rocco
- Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Proyecto Epistemonikos, Santiago, Chile
| | - Carlos Juri
- Proyecto Epistemonikos, Santiago, Chile; Departamento de Neurología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile. . Address: Centro Evidencia UC, Pontificia Universidad Católica de Chile, Av. Diagonal Paraguay 476, Santiago, Chile
| |
Collapse
|
31
|
Parmar M, Torper O, Drouin-Ouellet J. Cell-based therapy for Parkinson's disease: A journey through decades toward the light side of the Force. Eur J Neurosci 2018; 49:463-471. [PMID: 30099795 PMCID: PMC6519227 DOI: 10.1111/ejn.14109] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/09/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022]
Abstract
This review describes the history, development, and evolution of cell‐based replacement therapy for Parkinson's disease (PD), from the first pioneering trials with fetal ventral midbrain progenitors to future trials using stem cells as well as reprogrammed cells. In the spirit of Tom Isaacs, the review takes parallels to the storyline of Star Wars, including the temptations from the dark side and the continuous fight for the light side of the Force. It is subdivided into headings based on the original movies, spanning from A New Hope to the Last Jedi.
Collapse
Affiliation(s)
- Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Olof Torper
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Janelle Drouin-Ouellet
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
32
|
Moriarty N, Cabré S, Alamilla V, Pandit A, Dowd E. Encapsulation of young donor age dopaminergic grafts in a GDNF-loaded collagen hydrogel further increases their survival, reinnervation, and functional efficacy after intrastriatal transplantation in hemi-Parkinsonian rats. Eur J Neurosci 2018; 49:487-496. [PMID: 30054941 DOI: 10.1111/ejn.14090] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/10/2018] [Accepted: 07/23/2018] [Indexed: 11/30/2022]
Abstract
Biomaterials have been shown to significantly improve the outcome of cellular reparative approaches for Parkinson's disease in experimental studies because of their ability to provide transplanted cells with a supportive microenvironment and shielding from the host immune system. However, given that the margin for improvement in such reparative therapies is considerable, further studies are required to fully investigate and harness the potential of biomaterials in this context. Given that several recent studies have demonstrated improved brain repair in Parkinsonian models when using dopaminergic grafts derived from younger foetal donors, we hypothesized that encapsulating these cells in a supportive biomaterial would further improve their reparative efficacy. Thus, this study aimed to determine the impact of a GDNF-loaded collagen hydrogel on the survival, reinnervation, and functional efficacy of dopaminergic neurons derived from young donors. To do so, hemi-Parkinsonian (6-hydroxydopamine-lesioned) rats received intrastriatal transplants of embryonic day 12 cells extracted from the rat ventral mesencephalon either alone, in a collagen hydrogel, with GDNF, or in a GDNF-loaded collagen hydrogel. Methamphetamine-induced rotational behaviour was assessed at three weekly intervals for a total of 12 weeks, after which rats were sacrificed for postmortem assessment of graft survival. We found that, following intrastriatal transplantation to the lesioned striatum, the GDNF-loaded collagen hydrogel significantly increased the survival (4-fold), reinnervation (5.4-fold), and functional efficacy of the embryonic day 12 dopaminergic neurons. In conclusion, this study further demonstrates the significant potential of biomaterial hydrogel scaffolds for cellular brain repair approaches in neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Niamh Moriarty
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Sílvia Cabré
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Verónica Alamilla
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| |
Collapse
|
33
|
Shall G, Menosky M, Decker S, Nethala P, Welchko R, Leveque X, Lu M, Sandstrom M, Hochgeschwender U, Rossignol J, Dunbar G. Effects of Passage Number and Differentiation Protocol on the Generation of Dopaminergic Neurons from Rat Bone Marrow-Derived Mesenchymal Stem Cells. Int J Mol Sci 2018; 19:ijms19030720. [PMID: 29498713 PMCID: PMC5877581 DOI: 10.3390/ijms19030720] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/09/2018] [Accepted: 02/28/2018] [Indexed: 01/01/2023] Open
Abstract
Multiple studies have demonstrated the ability of mesenchymal stem cells (MSCs) to differentiate into dopamine-producing cells, in vitro and in vivo, indicating their potential to be used in the treatment of Parkinson’s disease (PD). However, there are discrepancies among studies regarding the optimal time (i.e., passage number) and method for dopaminergic induction, in vitro. In the current study, we compared the ability of early (P4) and later (P40) passaged bone marrow-derived MSCs to differentiate into dopaminergic neurons using two growth-factor-based approaches. A direct dopaminergic induction (DDI) was used to directly convert MSCs into dopaminergic neurons, and an indirect dopaminergic induction (IDI) was used to direct MSCs toward a neuronal lineage prior to terminal dopaminergic differentiation. Results indicate that both early and later passaged MSCs exhibited positive expression of neuronal and dopaminergic markers following either the DDI or IDI protocols. Additionally, both early and later passaged MSCs released dopamine and exhibited spontaneous neuronal activity following either the DDI or IDI. Still, P4 MSCs exhibited significantly higher spiking and bursting frequencies as compared to P40 MSCs. Findings from this study provide evidence that early passaged MSCs, which have undergone the DDI, are more efficient at generating dopaminergic-like cells in vitro, as compared to later passaged MSCs or MSCs that have undergone the IDI.
Collapse
Affiliation(s)
- Gabrielle Shall
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Megan Menosky
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Sarah Decker
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Priya Nethala
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Ryan Welchko
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Xavier Leveque
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Ming Lu
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Michael Sandstrom
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
- College of Humanities and Social and Behavioral Sciences, Psychology Department, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Ute Hochgeschwender
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859 USA.
- Field Neurosciences Institute, 4677 Towne Centre Rd. Suite 101, Saginaw, MI 48604, USA.
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859 USA.
| | - Gary Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
- College of Humanities and Social and Behavioral Sciences, Psychology Department, Central Michigan University, Mount Pleasant, MI 48859, USA.
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859 USA.
| |
Collapse
|
34
|
Dreyer-Andersen N, Almeida AS, Jensen P, Kamand M, Okarmus J, Rosenberg T, Friis SD, Martínez Serrano A, Blaabjerg M, Kristensen BW, Skrydstrup T, Gramsbergen JB, Vieira HLA, Meyer M. Intermittent, low dose carbon monoxide exposure enhances survival and dopaminergic differentiation of human neural stem cells. PLoS One 2018; 13:e0191207. [PMID: 29338033 PMCID: PMC5770048 DOI: 10.1371/journal.pone.0191207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/30/2017] [Indexed: 12/18/2022] Open
Abstract
Exploratory studies using human fetal tissue have suggested that intrastriatal transplantation of dopaminergic neurons may become a future treatment for patients with Parkinson's disease. However, the use of human fetal tissue is compromised by ethical, regulatory and practical concerns. Human stem cells constitute an alternative source of cells for transplantation in Parkinson's disease, but efficient protocols for controlled dopaminergic differentiation need to be developed. Short-term, low-level carbon monoxide (CO) exposure has been shown to affect signaling in several tissues, resulting in both protection and generation of reactive oxygen species. The present study investigated the effect of CO produced by a novel CO-releasing molecule on dopaminergic differentiation of human neural stem cells. Short-term exposure to 25 ppm CO at days 0 and 4 significantly increased the relative content of β-tubulin III-immunoreactive immature neurons and tyrosine hydroxylase expressing catecholaminergic neurons, as assessed 6 days after differentiation. Also the number of microtubule associated protein 2-positive mature neurons had increased significantly. Moreover, the content of apoptotic cells (Caspase3) was reduced, whereas the expression of a cell proliferation marker (Ki67) was left unchanged. Increased expression of hypoxia inducible factor-1α and production of reactive oxygen species (ROS) in cultures exposed to CO may suggest a mechanism involving mitochondrial alterations and generation of ROS. In conclusion, the present procedure using controlled, short-term CO exposure allows efficient dopaminergic differentiation of human neural stem cells at low cost and may as such be useful for derivation of cells for experimental studies and future development of donor cells for transplantation in Parkinson's disease.
Collapse
Affiliation(s)
- Nanna Dreyer-Andersen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ana Sofia Almeida
- Instituto de Biologia Experimental e Tecnológica (IBET), Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica (ITQB), Oeiras, Portugal
- CEDOC, NOVA Medical School/Faculdade de Ciência Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Pia Jensen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Morad Kamand
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Justyna Okarmus
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Tine Rosenberg
- Department of Pathology, Odense University Hospital, Denmark & Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Stig Düring Friis
- Center for Insoluble Protein Structures (inSPIN), Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Alberto Martínez Serrano
- Department of Molecular Biology and Center of Molecular Biology Severo Ochoa, University Autonoma Madrid-C.S.I.C Campus Cantoblanco, Madrid, Spain
| | - Morten Blaabjerg
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, Denmark & Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Troels Skrydstrup
- Center for Insoluble Protein Structures (inSPIN), Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Jan Bert Gramsbergen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Helena L. A. Vieira
- Instituto de Biologia Experimental e Tecnológica (IBET), Oeiras, Portugal
- CEDOC, NOVA Medical School/Faculdade de Ciência Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
35
|
Abstract
Neurotransplantation may be a promising approach for therapy of cerebellar diseases characterized by a substantial loss of neurons. Neurotransplantation could rescue neurons from degeneration and maintain cerebellar reserve, facilitate cerebellar compensation, or help reconstruct damaged neural circuits by cell substitution. These mechanisms of action can be of varying importance according to the type of cerebellar disease. Neurotransplantation therapy in cerebellar ataxias is still at the stage of experimental studies. There is currently little knowledge regarding cerebellar patients. Nevertheless, data provided by experiments in animal models of cerebellar degeneration and both clinical studies and experiences in patients with other neurologic diseases enable us to suggest basic principles, expectations, limitations, and future directions of neurotransplantation therapy for cerebellar diseases.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathological Physiology and Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic.
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
36
|
Liu ZY, Liu FT, Zuo CT, Koprich JB, Wang J. Update on Molecular Imaging in Parkinson's Disease. Neurosci Bull 2017; 34:330-340. [PMID: 29282614 DOI: 10.1007/s12264-017-0202-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 11/04/2017] [Indexed: 12/14/2022] Open
Abstract
Advances in radionuclide tracers have allowed for more accurate imaging that reflects the actions of numerous neurotransmitters, energy metabolism utilization, inflammation, and pathological protein accumulation. All of these achievements in molecular brain imaging have broadened our understanding of brain function in Parkinson's disease (PD). The implementation of molecular imaging has supported more accurate PD diagnosis as well as assessment of therapeutic outcome and disease progression. Moreover, molecular imaging is well suited for the detection of preclinical or prodromal PD cases. Despite these advances, future frontiers of research in this area will focus on using multi-modalities combining positron emission tomography and magnetic resonance imaging along with causal modeling with complex algorithms.
Collapse
Affiliation(s)
- Zhen-Yang Liu
- Department of Neurology and National Clinical Research Center for Ageing and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Feng-Tao Liu
- Department of Neurology and National Clinical Research Center for Ageing and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Chuan-Tao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200235, China
| | - James B Koprich
- Department of Neurology and National Clinical Research Center for Ageing and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,Krembil Institute, Toronto Western Hospital, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - Jian Wang
- Department of Neurology and National Clinical Research Center for Ageing and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
37
|
Abstract
Purpose of Review The purpose of this review was to review the imaging, particularly positron emission tomography (PET), findings in neurorestoration studies in movement disorders, with specific focus on neural transplantation in Parkinson’s disease (PD) and Huntington’s disease (HD). Recent Findings PET findings in PD transplantation studies have shown that graft survival as reflected by increases in dopaminergic PET markers does not necessarily correlate with clinical improvement. PD patients with more denervated ventral striatum and more imbalanced serotonin-to-dopamine ratio in the grafted neurons tended to have worse outcome. In HD transplantation studies, variable graft survival and clinical responses may be related to host inflammatory/immune responses to the grafts. Summary Information gleaned from imaging findings in previous neural transplantation studies has been used to refine study protocol and patient selection in future trials. This includes identifying suitable candidates for transplantation using imaging markers, employing multiple and/or novel PET tracers to better assess graft functions and inflammatory responses to grafts.
Collapse
|
38
|
Amer MH, Rose FRAJ, Shakesheff KM, Modo M, White LJ. Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges. NPJ Regen Med 2017; 2:23. [PMID: 29302358 PMCID: PMC5677964 DOI: 10.1038/s41536-017-0028-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 06/27/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
Significant progress has been made during the past decade towards the clinical adoption of cell-based therapeutics. However, existing cell-delivery approaches have shown limited success, with numerous studies showing fewer than 5% of injected cells persisting at the site of injection within days of transplantation. Although consideration is being increasingly given to clinical trial design, little emphasis has been given to tools and protocols used to administer cells. The different behaviours of various cell types, dosing accuracy, precise delivery, and cell retention and viability post-injection are some of the obstacles facing clinical translation. For efficient injectable cell transplantation, accurate characterisation of cellular health post-injection and the development of standardised administration protocols are required. This review provides an overview of the challenges facing effective delivery of cell therapies, examines key studies that have been carried out to investigate injectable cell delivery, and outlines opportunities for translating these findings into more effective cell-therapy interventions.
Collapse
Affiliation(s)
- Mahetab H. Amer
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| | | | | | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA USA
| | - Lisa J. White
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| |
Collapse
|
39
|
Duan WM, Rodrigures CMP, Zhao LR, Steer CJ, Low WC. Tauroursodeoxycholic Acid Improves the Survival and Function of Nigral Transplants in a Rat Model of Parkinson's Disease. Cell Transplant 2017; 11:195-205. [PMID: 28858601 DOI: 10.3727/096020198389960] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There is accumulating evidence showing that the majority of cell death in neural grafts results from apoptosis when cells are implanted into the brain. Tauroursodeoxycholic acid (TUDCA), a taurine-conjugated hydrophilic bile acid, has been found to possess antiapoptotic properties. In the present study we have examined whether the supplementation of TUDCA to cell suspensions prior to transplantation can lead to enhanced survival of nigral grafts. We first conducted an in vitro study to examine the effects of TUDCA on the survival of dopamine neurons in serum-free conditions. The number of tyrosine hydroxylase (TH)-positive neurons in the TUDCA-treated cultures was significantly greater than that of control cultures 7 days in vitro. In addition, a terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) assay showed that the number of apoptotic cells in the TUDCA-treated cultures was dramatically smaller than that in the control cultures. In the transplantation study, a 50 μM concentration of TUDCA was added to the media when nigral tissue from Sprague-Dawley (SD) rats was trypsinized and dissociated. Two microliters of cell suspension containing TUDCA was then stereotaxically injected into the striatum of adult SD rats subjected to an extensive unilateral 6-hydroxydopamine lesion of the nigrastriatal dopamine pathway. At 2 weeks after transplantation, the rats that received a cell suspension with TUDCA exhibited a significant reduction in amphetamine-induced rotation scores when compared with pretransplantation value. There was a significant increase (approximately threefold) in the number of TH-positive cells in the neural grafts for the TUDCA-treated group when compared with the controls 6 weeks postgrafting. The number of apoptotic cells was much smaller in the graft areas in the TUDCA-treated groups than in the control group 4 days after transplantation. These data demonstrate that pretreatment of the cell suspension with TUDCA can reduce apoptosis and increase the survival of grafted cells, resulting in an improvement of behavioral recovery.
Collapse
Affiliation(s)
- Wei-Ming Duan
- Departments of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Cecilia M P Rodrigures
- Departments of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455.,Centro de Patogénese Molecular, Faculdade de Farmácia, University of Lisbon, Lisbon, Portugal
| | - Li-Ru Zhao
- Departments of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Clifford J Steer
- Departments of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Walter C Low
- Departments of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
40
|
Karlsson J, Petersén A, Gidö G, Wieloch T, Brundin P. Combining Neuroprotective Treatment of Embryonic Nigral Donor Tissue with Mild Hypothermia of the Graft Recipient. Cell Transplant 2017; 14:301-9. [PMID: 16052911 DOI: 10.3727/000000005783983089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Around 80–95% of the immature dopaminergic neurons die when embryonic ventral mesencephalic tissue is transplanted. Cell death occurs both during the preparation of donor tissue and after graft implantation, but the effect of combining successful neuroprotective treatments before and after transplantation has not been extensively investigated. We therefore treated embryonic rat mesencephalic tissue with a combination of the lipid peroxidation inhibitor tirilazad mesylate (3 μM) and the caspase inhibitor Ac.YVAD.cmk (500 μM) and transplanted the tissue into hemiparkinsonian rats kept hypothermic (32–33°C) or normothermic (37°C) during, and 90 min following, graft surgery. Suspension cell number did not differ between untreated or tirilazad/YVAD-treated preparations prior to transplantation. When graft survival was evaluated 6 weeks after implantation, both tirilazad/YVAD pretreatment and mild hypothermia increased the survival of transplanted dopaminergic neurons. Approximately 50–57% of the embryonic dopaminergic neurons survived the dissociation and grafting procedure in rats rendered hypothermic, but there was no significant additive effect on graft survival with a combined treatment. All groups of rats exhibited behavioral recovery in the amphetamine-induced rotation test. There was a significantly enhanced functional capacity of grafts placed in hypothermic as compared to normothermic rats. However, tirilazad/YVAD pretreated implants did not afford greater behavioral improvement than control-treated grafts. Our results suggest that neuroprotective treatments administered prior to and immediately after neural graft implantation may under certain conditions rescue, at least in part, the same subset of dopaminergic neurons. The study also emphasizes the importance of the immediate time after grafting for transplant survival, with relevance both for primary mesencephalic implants and stem cell grafts.
Collapse
Affiliation(s)
- Jenny Karlsson
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|
41
|
Jain M, Armstrong RJE, Elneil S, Barker RA. Transplanted Human Neural Precursor Cells Migrate Widely but Show no Lesion-Specific Tropism in the 6-Hydroxydopamine Rat Model of Parkinson's Disease. Cell Transplant 2017; 15:579-93. [PMID: 17176610 DOI: 10.3727/000000006783981684] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Parkinson's disease (PD), while primarily associated with degeneration of nigrostriatal dopamine neurons, is now increasingly recognized to have more widespread cell loss and so the most effective cell replacement therapy should target all these neuronal losses. Neural precursor cells might be ideal in this regard as in certain circumstances they have been shown to migrate widely following transplantation into the CNS. The aim of this study was to investigate whether transplanted human expanded neural precursor cells (hENPs) could migrate to sites of established or evolving pathology in the adult brain using the 6-hydroxydopamine (6-OHDA) rat model of PD. hENPs were grafted into the striatum prior to, at the same time as, or after the animals received a 6-OHDA lesion to the medial forebrain bundle. The presence of donor cells was then assessed in a distant site of cell loss (substantia nigra) or sites where cell death would not be expected (frontal cortex and globus pallidus). Donor cells were found distant from the site of implantation but the migration of these hENPs was not significantly greater in the 6-OHDA-lesioned brain and the cells did not specifically target the site of cell loss in the substantia nigra. The temporal relationship of grafting relative to the lesion, and therefore dopaminergic cell death, did not affect the migration of hENPs nor their differentiation. We conclude that while transplanted hENPs are capable of migration away from the site of implantation, they show no specific tropism for sites of ongoing or established nigral dopaminergic cell loss in this lesion model. Therefore, the use of such cells to replace the range of neurons lost in PD is likely to require a deeper understanding of the migratory cues in the damaged adult brain and some manipulation of these cells prior to transplantation.
Collapse
Affiliation(s)
- M Jain
- Cambridge University Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge CB2 2PY, UK
| | | | | | | |
Collapse
|
42
|
Soderstrom K, O'Malley J, Steece-Collier K, Kordower JH. Neural Repair Strategies for Parkinson's Disease: Insights from Primate Models. Cell Transplant 2017; 15:251-65. [PMID: 16719060 DOI: 10.3727/000000006783982025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nonhuman primate models of Parkinson's disease (PD) have been invaluable to our understanding of the human disease and in the advancement of novel therapies for its treatment. In this review, we attempt to give a brief overview of the animal models of PD currently used, with a more comprehensive focus on the advantages and disadvantages presented by their use in the nonhuman primate. In particular, discussion addresses the 6-hydroxydopamine (6-OHDA), 1-methyl-1,2,3,6-tetrahydopyridine (MPTP), rotenone, paraquat, and maneb parkinsonian models. Additionally, the role of primate PD models in the development of novel therapies, such as trophic factor delivery, grafting, and deep brain stimulation, are described. Finally, the contribution of primate PD models to our understanding of the etiology and pathology of human PD is discussed.
Collapse
Affiliation(s)
- Katherine Soderstrom
- Department of Neurological Science, Research Center for Brain Repair, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
43
|
Irons H, Lind JG, Wakade CG, Yu G, Hadman M, Carroll J, Hess DC, Borlongan CV. Intracerebral Xenotransplantation of GFP Mouse Bone Marrow Stromal Cells in Intact and Stroke Rat Brain: Graft Survival and Immunologic Response. Cell Transplant 2017; 13:283-94. [PMID: 15191166 DOI: 10.3727/000000004783983990] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The present study characterized survival and immunologic response of bone marrow stromal cells (BMSCs) following transplantation into intact and stroke brains. In the first study, intrastriatal transplantation of BMSC (60,000 in 3 μl) or vehicle was performed in normal adult Sprague-Dawley male rats that subsequently received daily cyclosporin A (CsA, 10 mg/kg, IP in 3 ml) or vehicle (olive oil, similar volume) starting on day of surgery up to 3 days posttransplantation. Animals were euthanized at 3 or 30 days posttransplantation and brains were processed either for green fluorescent protein (GFP) microscopy or flow cytometry (FACS). Both GFP epifluorescence and FACS scanning revealed GFP+ BMSCs in both groups of transplanted rats with or without CsA, although significantly increased (1.6- to 3-fold more) survival of GFP+ BMSCs was observed in the immunosuppressed animals. Further histologic examination revealed widespread dispersal of BMSCs away from the graft core accompanied by many long outgrowth processes in non-CsA-transplanted animals, whereas a very dense graft core, with cells expressing only sporadic short outgrowth processes, was observed in CsA-transplanted animals. There were no detectable GFP+ BMSCs in nontrans-planted rats that received CsA or vehicle. Immunologic response via FACS analysis revealed a decreased presence of cytotoxic cells, characterized by near complete absence of CD8+ cells, and lack of activation depicted by low CD69 expression in CsA-treated transplanted animals. In contrast, elevated levels of CD8+ cells and increased activation of CD69 expression were observed in transplanted animals that received vehicle alone. CD4+ helper cells were almost nondetectable in transplanted rats that received CsA, but also only minimally elevated in transplanted rats that received vehicle. Nontransplanted rats that received either CsA or vehicle displayed very minimal detectable levels of all three lymphocyte markers. In the second study, a new set of male Sprague-Dawley rats initially received bilateral stereotaxic intrastriatal transplantation of BMSCs and 3 days after were subjected to unilateral transient occlusion of middle cerebral artery. The animals were allowed to survive for 3 days after stroke without CsA immunosuppression. Epifluorescence microscopy revealed significantly higher (5-fold more) survival of transplanted GFP+ BMSCs in the stroke striatum compared with the intact striatum. The majority of the grafts remained within the original dorsal striatal transplant site, characterized by no obvious migration in intact striatum, but with long-distance migration along the ischemic penumbra in the stroke striatum. Moreover, FACS scanning analyses revealed low levels of immunologic response of grafted BMSCs in both stroke and intact striata. These results, taken together, suggest that xenotransplantation of mouse BMSCs into adult rats is feasible. Immunosuppression therapy can enhance xenograft survival and reduce graft-induced immunologic response; however, in the acute phase posttransplantation, BMSCs can survive in intact and stroke brain, and may even exhibit long-distance migration and increased outgrowth processes without immunosuppression.
Collapse
Affiliation(s)
- H Irons
- Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Dall AM, Danielsen EH, Sørensen JC, Andersen F, Møller A, Zimmer J, Gjedde AH, Cumming P, Zimmer J, Brevig T, Dall AM, Meyer M, Pedersen EB, Gjedde A, Danielsen EH, Cumming P, Andersen F, Bender D, Falborg L, Gee A, Gillings NM, Hansen SB, Hermansen F, Jørgensen HA, Munk O, Poulsen PH, Rodell AB, Sakoh M, Simonsen CZ, Smith DF, Sørensen JC, Østergård L, Moller A, Johansen TE. Quantitative [18F]Fluorodopa/PET and Histology of Fetal Mesencephalic Dopaminergic Grafts to the Striatum of MPTP-Poisoned Minipigs. Cell Transplant 2017. [DOI: 10.3727/000000002783985314] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The functional restoration of the dopamine innervation of striatum in MPTP-poisoned Göttingen minipigs was assessed for 6 months following grafting of fetal pig mesencephalic neurons. Pigs were assigned to a normal control group and a MPTP-poisoned group, members of which received no further treatment, or which received bilateral grafts to the striatum of tissue blocks harvested from E28 fetal pig mesencephalon with and without immunosuppressive treatment after grafting, or with additional co-grafting with immortalized rat neural cells transfected to produce GDNF. In the baseline condition, and again at 3 and 6 months postsurgery, all animals were subjected to quantitative [18F]fluorodopa PET scans and testing for motor impairment. At the end of 6 months, tyrosine hydroxylase (TH)-containing neurons were counted in the grafts by stereological methods. The MPTP poisoning persistently reduced the magnitude of k3D, the relative activity of DOPA decarboxylase in striatum, by 60%. Grafting restored the rate of [18F]fluorodopa decarboxylation to the normal range, and normalized the scores in motor function. The biochemical and functional recovery was associated with survival of approximately 100,000 TH-positive graft neurons in each hemisphere. Immunosuppression did not impart a greater recovery of [18F]fluorodopa uptake, nor were the number of TH-positive graft neurons or the volumes of the grafts increased in the immunosuppressed group. Contrary to expectation, co-grafting of transfected GDNF-expressing HiB5 cells, a rat-derived neural cell line, tended to impair the survival of the grafts with the lowest values for graft volumes, TH-positive cell numbers, behavioral scores, and relative DOPA decarboxylase activity. From the results we conclude that pig ventral mesencephalic allografts can restore functional dopamine innervation in adult MPTP-lesioned minipigs.
Collapse
Affiliation(s)
- Annette Møller Dall
- Department of Anatomy and Neurobiology, University of Southern Denmark, 5000 Odense C, Denmark
| | | | | | | | | | - Jens Zimmer
- Department of Anatomy and Neurobiology, University of Southern Denmark, 5000 Odense C, Denmark
| | - Albert H. Gjedde
- Department of Anatomy and Neurobiology, University of Southern Denmark, 5000 Odense C, Denmark
- McGill University, Montreal, Quebec, Canada
| | - Paul Cumming
- PET Centre, Aarhus General Hospital, 8000 Aarhus C, Denmark
| | - J. Zimmer
- Department of Anatomy and Neurobiology, SDU Odense University
| | - T. Brevig
- Department of Anatomy and Neurobiology, SDU Odense University
| | - A. M. Dall
- Department of Anatomy and Neurobiology, SDU Odense University
| | - M. Meyer
- Department of Anatomy and Neurobiology, SDU Odense University
| | - E. B. Pedersen
- Department of Anatomy and Neurobiology, SDU Odense University
| | - A. Gjedde
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - E. H. Danielsen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - P. Cumming
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - F. Andersen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - D. Bender
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - L. Falborg
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - A. Gee
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - N. M. Gillings
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - S. B. Hansen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - F. Hermansen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - H. A. Jørgensen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - O. Munk
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - P. H. Poulsen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - A. B. Rodell
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - M. Sakoh
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - C. Z. Simonsen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - D. F. Smith
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - J. C. Sørensen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - L. Østergård
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | | | | | | |
Collapse
|
45
|
Seiler S, Di Santo S, Sahli S, Andereggen L, Widmer HR. Nogo-receptor 1 antagonization in combination with neurotrophin-4/5 is not superior to single factor treatment in promoting survival and morphological complexity of cultured dopaminergic neurons. Brain Res 2017; 1668:56-64. [PMID: 28535980 DOI: 10.1016/j.brainres.2017.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 01/25/2023]
Abstract
Cell transplantation using ventral mesencephalic tissue is an experimental approach to treat Parkinson's disease. This approach is limited by poor survival of the transplants and the high number of dopaminergic neurons needed for grafting. Increasing the yield of dopaminergic neurons in donor tissue is of great importance. We have previously shown that antagonization of the Nogo-receptor 1 by NEP1-40 promoted survival of cultured dopaminergic neurons and exposure to neurotrophin-4/5 increased dopaminergic cell densities in organotypic midbrain cultures. We investigated whether a combination of both treatments offers a novel tool to further improve dopaminergic neuron survival. Rat embryonic ventral mesencephalic neurons grown as organotypic free-floating roller tube or primary dissociated cultures were exposed to neurotrophin-4/5 and NEP1-40. The combined and single factor treatment resulted in significantly higher numbers of tyrosine hydroxylase positive neurons compared to controls. Significantly stronger tyrosine hydroxylase signal intensity was detected by Western blotting in the combination-treated cultures compared to controls but not compared to single factor treatments. Neurotrophin-4/5 and the combined treatment showed significantly higher signals for the neuronal marker microtubule-associated protein 2 in Western blots compared to control while no effects were observed for the astroglial marker glial fibrillary acidic protein between groups, suggesting that neurotrophin-4/5 targets mainly neuronal cells. Finally, NEP1-40 and the combined treatment significantly augmented tyrosine hydroxylase positive neurite length. Summarizing, our findings substantiate that antagonization of the Nogo-receptor 1 promotes dopaminergic neurons but does not further increase the yield of dopaminergic neurons and their morphological complexity when combined with neurotrophin-4/5 hinting to the idea that these treatments might exert their effects by activating common downstream pathways.
Collapse
Affiliation(s)
- Stefanie Seiler
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; Department of Clinical Research, University of Bern, Switzerland
| | - Stefano Di Santo
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; Department of Clinical Research, University of Bern, Switzerland
| | - Sebastian Sahli
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Lukas Andereggen
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; Department of Clinical Research, University of Bern, Switzerland
| | - Hans Rudolf Widmer
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; Department of Clinical Research, University of Bern, Switzerland.
| |
Collapse
|
46
|
Niclis JC, Gantner CW, Alsanie WF, McDougall SJ, Bye CR, Elefanty AG, Stanley EG, Haynes JM, Pouton CW, Thompson LH, Parish CL. Efficiently Specified Ventral Midbrain Dopamine Neurons from Human Pluripotent Stem Cells Under Xeno-Free Conditions Restore Motor Deficits in Parkinsonian Rodents. Stem Cells Transl Med 2016; 6:937-948. [PMID: 28297587 PMCID: PMC5442782 DOI: 10.5966/sctm.2016-0073] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/01/2016] [Indexed: 01/04/2023] Open
Abstract
Recent studies have shown evidence for the functional integration of human pluripotent stem cell (hPSC)‐derived ventral midbrain dopamine (vmDA) neurons in animal models of Parkinson’s disease. Although these cells present a sustainable alternative to fetal mesencephalic grafts, a number of hurdles require attention prior to clinical translation. These include the persistent use of xenogeneic reagents and challenges associated with scalability and storage of differentiated cells. In this study, we describe the first fully defined feeder‐ and xenogeneic‐free protocol for the generation of vmDA neurons from hPSCs and utilize two novel reporter knock‐in lines (LMX1A‐eGFP and PITX3‐eGFP) for in‐depth in vitro and in vivo tracking. Across multiple embryonic and induced hPSC lines, this “next generation” protocol consistently increases both the yield and proportion of vmDA neural progenitors (OTX2/FOXA2/LMX1A) and neurons (FOXA2/TH/PITX3) that display classical vmDA metabolic and electrophysiological properties. We identify the mechanism underlying these improvements and demonstrate clinical applicability with the first report of scalability and cryopreservation of bona fide vmDA progenitors at a time amenable to transplantation. Finally, transplantation of xeno‐free vmDA progenitors from LMX1A‐ and PITX3‐eGFP reporter lines into Parkinsonian rodents demonstrates improved engraftment outcomes and restoration of motor deficits. These findings provide important and necessary advancements for the translation of hPSC‐derived neurons into the clinic. Stem Cells Translational Medicine2017;6:937–948
Collapse
Affiliation(s)
- Jonathan C. Niclis
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Carlos W. Gantner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Walaa F. Alsanie
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Stuart J. McDougall
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Chris R. Bye
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew G. Elefanty
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Edouard G. Stanley
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - John M. Haynes
- Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, Victoria, Australia
| | - Colin W. Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, Victoria, Australia
| | - Lachlan H. Thompson
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Clare L. Parish
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
47
|
Grealish S, Drouin-Ouellet J, Parmar M. Brain repair and reprogramming: the route to clinical translation. J Intern Med 2016; 280:265-75. [PMID: 27539906 DOI: 10.1111/joim.12475] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The adult brain has a very limited capacity for generation of new neurons, and neurogenesis only takes place in restricted regions. Some evidence for neurogenesis after injury has been reported, but few, if any, neurons are replaced after brain injury or degeneration, and the permanent loss of neurons leads to long-term disability and loss of brain function. For decades, researchers have been developing cell transplantation using exogenous cell sources for brain repair, and this method has now been shown to successfully restore lost function in experimental and clinical trials. Here, we review the development of cell-replacement strategies for brain repair in Parkinson's disease using the example of human foetal brain cells being successfully translated from preclinical findings to clinical trials. These trials demonstrate that cell-replacement therapy is a viable option for patients with Parkinson's disease, but more importantly also show how the limited availability of foetal cells calls for development of novel cell sources and methods for generating new neurons for brain repair. We focus on new stem cell sources that are on the threshold of clinical application for brain repair and discuss emerging cellular reprogramming technologies. Reviewing the current status of direct neural conversion, both in vitro and in vivo, where somatic cells are directly reprogrammed into functional neurons without passing through a stem cell intermediate, we conclude that both methods result in the successful replacement of new neurons that mature and integrate into the host brain. Thus, this new field shows great promise for future brain repair, although much work is still needed in preclinical animal models before it can be seriously considered for clinical applications.
Collapse
Affiliation(s)
- S Grealish
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - J Drouin-Ouellet
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - M Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
48
|
Lindvall O. Treatment of Parkinson's disease using cell transplantation. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140370. [PMID: 26416681 DOI: 10.1098/rstb.2014.0370] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The clinical trials with intrastriatal transplantation of human fetal mesencephalic tissue, rich in dopaminergic neurons, in Parkinson's disease (PD) patients show that cell replacement can work and in some cases induce major, long-lasting improvement. However, owing to poor tissue availability, this approach can only be applied in very few patients, and standardization is difficult, leading to wide variation in functional outcome. Stem cells and reprogrammed cells could potentially be used to produce dopaminergic neurons for transplantation. Importantly, dopaminergic neurons of the correct substantia nigra phenotype can now be generated from human embryonic stem cells in large numbers and standardized preparations, and will soon be ready for application in patients. Also, human induced pluripotent stem cell-derived dopaminergic neurons are being considered for clinical translation. Available data justify moving forward in a responsible way with these dopaminergic neurons, which should be tested, using optimal patient selection, cell preparation and transplantation procedures, in controlled clinical studies.
Collapse
Affiliation(s)
- Olle Lindvall
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, 221 84 Lund, Sweden
| |
Collapse
|
49
|
|
50
|
Levy M, Boulis N, Rao M, Svendsen CN. Regenerative cellular therapies for neurologic diseases. Brain Res 2016; 1638:88-96. [PMID: 26239912 PMCID: PMC4733583 DOI: 10.1016/j.brainres.2015.06.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 06/15/2015] [Accepted: 06/23/2015] [Indexed: 12/14/2022]
Abstract
The promise of stem cell regeneration has been the hope of many neurologic patients with permanent damage to the central nervous system. There are hundreds of stem cell trials worldwide intending to test the regenerative capacity of stem cells in various neurological conditions from Parkinson's disease to multiple sclerosis. Although no stem cell therapy is clinically approved for use in any human disease indication, patients are seeking out trials and asking clinicians for guidance. This review summarizes the current state of regenerative stem cell transplantation divided into seven conditions for which trials are currently active: demyelinating diseases/spinal cord injury, amyotrophic lateral sclerosis, stroke, Parkinson's disease, Huntington's disease, macular degeneration and peripheral nerve diseases. This article is part of a Special Issue entitled SI: PSC and the brain.
Collapse
Affiliation(s)
- Michael Levy
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States.
| | - Nicholas Boulis
- Department of Neurosurgery, Emory University, Atlanta, GA, United States
| | - Mahendra Rao
- Center for Regenerative Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|