1
|
Scalfari A, Traboulsee A, Oh J, Airas L, Bittner S, Calabrese M, Garcia Dominguez JM, Granziera C, Greenberg B, Hellwig K, Illes Z, Lycke J, Popescu V, Bagnato F, Giovannoni G. Smouldering-Associated Worsening in Multiple Sclerosis: An International Consensus Statement on Definition, Biology, Clinical Implications, and Future Directions. Ann Neurol 2024; 96:826-845. [PMID: 39051525 DOI: 10.1002/ana.27034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Despite therapeutic suppression of relapses, multiple sclerosis (MS) patients often experience subtle deterioration, which extends beyond the definition of "progression independent of relapsing activity." We propose the concept of smouldering-associated-worsening (SAW), encompassing physical and cognitive symptoms, resulting from smouldering pathological processes, which remain unmet therapeutic targets. We provide a consensus-based framework of possible pathological substrates and manifestations of smouldering MS, and we discuss clinical, radiological, and serum/cerebrospinal fluid biomarkers for potentially monitoring SAW. Finally, we share considerations for optimizing disease surveillance and implications for clinical trials to promote the integration of smouldering MS into routine practice and future research efforts. ANN NEUROL 2024;96:826-845.
Collapse
Affiliation(s)
- Antonio Scalfari
- Center of Neuroscience, Department of Medicine, Charing Cross Hospital, Imperial College, London, UK
| | | | - Jiwon Oh
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Canada
| | - Laura Airas
- University of Turku and Turku University Hospital, Turku, Finland
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | - Cristina Granziera
- Translational Imaging in Neurology (THiNK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Basel, Switzerland
- Department of Neurology and MS Center, University Hospital Basel Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Basel, Switzerland
| | | | | | - Zsolt Illes
- Department of Neurology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Jan Lycke
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Veronica Popescu
- University MS Centre Pelt-Hasselt, Noorderhart Hospital, Belgium Hasselt University, Pelt, Belgium
| | - Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, VA Hospital, TN Valley Healthcare System, Nashville, TN, USA
| | - Gavin Giovannoni
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Treaba CA, Herranz E, Barletta VT, Mehndiratta A, Sloane JA, Granberg T, Miscioscia A, Bomprezzi R, Loggia ML, Mainero C. Phenotyping in vivo chronic inflammation in multiple sclerosis by combined 11C-PBR28 MR-PET and 7T susceptibility-weighted imaging. Mult Scler 2024:13524585241284157. [PMID: 39436837 DOI: 10.1177/13524585241284157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BACKGROUND 11C-PBR28 positron emission tomography (PET), targeting the translocator protein, and paramagnetic rim lesions (PRL) have emerged as promising imaging markers of MS chronic inflammation. No consensus on which is the optimal marker exists. OBJECTIVES To investigate the ability of 11C-PBR28 PET and PRL assessment to identify chronic inflammation in white matter (WM) MS lesions and their relation to neurological impairment. METHODS Based on 11C-PBR28 uptake, brain WM lesions from 30 MS patients were classified as PET active or inactive. The PRL presence was assessed on 7T phase reconstructions, T1/T2 ratio was calculated to measure WM microstructural integrity. RESULTS Less than half (44%) of non-PRL WM lesions were active on 11C-PBR28 imaging either throughout the lesion (whole active) or at its periphery. PET peripherally active lesions and PRL did not differ in T1/T2 ratio and 11C-PBR28 uptake. A positive correlation was observed between PRL and active PET lesion count. Whole active PET lesion volume was the strongest predictor (β = 0.97, p < 0.001) of increased Expanded Disability Status Scale scores. CONCLUSION 11C-PBR28 imaging reveals more active WM lesions than 7T PRL assessment. Although PRL and PET active lesion counts are related, neurological disability is better explained by PET whole active lesion volume.
Collapse
Affiliation(s)
- Constantina A Treaba
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elena Herranz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Valeria T Barletta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ambica Mehndiratta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jacob A Sloane
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Alessandro Miscioscia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Roberto Bomprezzi
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Comi G, Dalla Costa G, Stankoff B, Hartung HP, Soelberg Sørensen P, Vermersch P, Leocani L. Assessing disease progression and treatment response in progressive multiple sclerosis. Nat Rev Neurol 2024; 20:573-586. [PMID: 39251843 DOI: 10.1038/s41582-024-01006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Progressive multiple sclerosis poses a considerable challenge in the evaluation of disease progression and treatment response owing to its multifaceted pathophysiology. Traditional clinical measures such as the Expanded Disability Status Scale are limited in capturing the full scope of disease and treatment effects. Advanced imaging techniques, including MRI and PET scans, have emerged as valuable tools for the assessment of neurodegenerative processes, including the respective role of adaptive and innate immunity, detailed insights into brain and spinal cord atrophy, lesion dynamics and grey matter damage. The potential of cerebrospinal fluid and blood biomarkers is increasingly recognized, with neurofilament light chain levels being a notable indicator of neuro-axonal damage. Moreover, patient-reported outcomes are crucial for reflecting the subjective experience of disease progression and treatment efficacy, covering aspects such as fatigue, cognitive function and overall quality of life. The future incorporation of digital technologies and wearable devices in research and clinical practice promises to enhance our understanding of functional impairments and disease progression. This Review offers a comprehensive examination of these diverse evaluation tools, highlighting their combined use in accurately assessing disease progression and treatment efficacy in progressive multiple sclerosis, thereby guiding more effective therapeutic strategies.
Collapse
Affiliation(s)
- Giancarlo Comi
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy.
| | | | - Bruno Stankoff
- Sorbonne Université, Paris Brain Institute, Institut du Cerveau et de la Moelle Épinière, Centre National de la Recherche Scientifique, Inserm, Paris, France
| | - Hans-Peter Hartung
- Brain and Mind Center, University of Sydney, Sydney, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Per Soelberg Sørensen
- Department of Neurology, Danish Multiple Sclerosis Center, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Patrick Vermersch
- University of Lille, Inserm U1172, Lille Neuroscience & Cognition, Centre Hospitalier Universitaire de Lille, Fédération Hospitalo-Universitaire Precision Medicine in Psychiatry, Lille, France
| | - Letizia Leocani
- Vita-Salute San Raffaele University, Milan, Italy
- Multiple Sclerosis Center, Casa di Cura Igea, Milan, Italy
| |
Collapse
|
4
|
Bagnato F, Sati P, Hemond CC, Elliott C, Gauthier SA, Harrison DM, Mainero C, Oh J, Pitt D, Shinohara RT, Smith SA, Trapp B, Azevedo CJ, Calabresi PA, Henry RG, Laule C, Ontaneda D, Rooney WD, Sicotte NL, Reich DS, Absinta M. Imaging chronic active lesions in multiple sclerosis: a consensus statement. Brain 2024; 147:2913-2933. [PMID: 38226694 PMCID: PMC11370808 DOI: 10.1093/brain/awae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
Chronic active lesions (CAL) are an important manifestation of chronic inflammation in multiple sclerosis and have implications for non-relapsing biological progression. In recent years, the discovery of innovative MRI and PET-derived biomarkers has made it possible to detect CAL, and to some extent quantify them, in the brain of persons with multiple sclerosis, in vivo. Paramagnetic rim lesions on susceptibility-sensitive MRI sequences, MRI-defined slowly expanding lesions on T1-weighted and T2-weighted scans, and 18-kDa translocator protein-positive lesions on PET are promising candidate biomarkers of CAL. While partially overlapping, these biomarkers do not have equivalent sensitivity and specificity to histopathological CAL. Standardization in the use of available imaging measures for CAL identification, quantification and monitoring is lacking. To fast-forward clinical translation of CAL, the North American Imaging in Multiple Sclerosis Cooperative developed a consensus statement, which provides guidance for the radiological definition and measurement of CAL. The proposed manuscript presents this consensus statement, summarizes the multistep process leading to it, and identifies the remaining major gaps in knowledge.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neurology, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Pascal Sati
- Neuroimaging Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christopher C Hemond
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | | | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, MD 21201, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5S, Canada
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Endeavor, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seth A Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Bruce Trapp
- Department on Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Christina J Azevedo
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90007, USA
| | - Peter A Calabresi
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Roland G Henry
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Cornelia Laule
- Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH 44195, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martina Absinta
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Translational Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| |
Collapse
|
5
|
Singh V, Zheng Y, Ontaneda D, Mahajan KR, Holloman J, Fox RJ, Nakamura K, Trapp BD. Disability independent of cerebral white matter demyelination in progressive multiple sclerosis. Acta Neuropathol 2024; 148:34. [PMID: 39217272 PMCID: PMC11365858 DOI: 10.1007/s00401-024-02796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The pathogenic mechanisms contributing to neurological disability in progressive multiple sclerosis (PMS) are poorly understood. Cortical neuronal loss independent of cerebral white matter (WM) demyelination in myelocortical MS (MCMS) and identification of MS patients with widespread cortical atrophy and disability progression independent of relapse activity (PIRA) support pathogenic mechanisms other than cerebral WM demyelination. The three-dimensional distribution and underlying pathology of myelinated T2 lesions were investigated in postmortem MCMS brains. Postmortem brain slices from previously characterized MCMS (10 cases) and typical MS (TMS) cases (12 cases) were co-registered with in situ postmortem T2 hyperintensities and T1 hypointensities. T1 intensity thresholds were used to establish a classifier that differentiates MCMS from TMS. The classifier was validated in 36 uncharacterized postmortem brains and applied to baseline MRIs from 255 living PMS participants enrolled in SPRINT-MS. Myelinated T2 hyperintensities in postmortem MCMS brains have a contiguous periventricular distribution that expands at the occipital poles of the lateral ventricles where a surface-in gradient of myelinated axonal degeneration was observed. The MRI classifier distinguished pathologically confirmed postmortem MCMS and TMS cases with an accuracy of 94%. For SPRINT-MS patients, the MRI classifier identified 78% as TMS, 10% as MCMS, and 12% with a paucity of cerebral T1 and T2 intensities. In SPRINT-MS, expanded disability status scale and brain atrophy measures were similar in MCMS and TMS cohorts. A paucity of cerebral WM demyelination in 22% of living PMS patients raises questions regarding a primary role for cerebral WM demyelination in disability progression in all MS patients and has implications for clinical management of MS patients and clinical trial outcomes in PMS. Periventricular myelinated fiber degeneration provides additional support for surface-in gradients of neurodegeneration in MS.
Collapse
Affiliation(s)
- Vikas Singh
- Department of Neurosciences, NC30, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Yufan Zheng
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Daniel Ontaneda
- Mellen Center for Treatment and Research in MS, Cleveland Clinic, Cleveland, OH, USA
| | - Kedar R Mahajan
- Department of Neurosciences, NC30, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Mellen Center for Treatment and Research in MS, Cleveland Clinic, Cleveland, OH, USA
| | - Jameson Holloman
- Department of Neurosciences, NC30, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Mellen Center for Treatment and Research in MS, Cleveland Clinic, Cleveland, OH, USA
| | - Robert J Fox
- Mellen Center for Treatment and Research in MS, Cleveland Clinic, Cleveland, OH, USA
| | - Kunio Nakamura
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bruce D Trapp
- Department of Neurosciences, NC30, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
6
|
Cagol A, Tsagkas C, Granziera C. Advanced Brain Imaging in Central Nervous System Demyelinating Diseases. Neuroimaging Clin N Am 2024; 34:335-357. [PMID: 38942520 DOI: 10.1016/j.nic.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
In recent decades, advances in neuroimaging have profoundly transformed our comprehension of central nervous system demyelinating diseases. Remarkable technological progress has enabled the integration of cutting-edge acquisition and postprocessing techniques, proving instrumental in characterizing subtle focal changes, diffuse microstructural alterations, and macroscopic pathologic processes. This review delves into state-of-the-art modalities applied to multiple sclerosis, neuromyelitis optica spectrum disorders, and myelin oligodendrocyte glycoprotein antibody-associated disease. Furthermore, it explores how this dynamic landscape holds significant promise for the development of effective and personalized clinical management strategies, encompassing support for differential diagnosis, prognosis, monitoring treatment response, and patient stratification.
Collapse
Affiliation(s)
- Alessandro Cagol
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Department of Neurology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Spitalstrasse 2, 4031 Basel, Switzerland; Department of Health Sciences, University of Genova, Via A. Pastore, 1 16132 Genova, Italy. https://twitter.com/CagolAlessandr0
| | - Charidimos Tsagkas
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Department of Neurology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Spitalstrasse 2, 4031 Basel, Switzerland.
| |
Collapse
|
7
|
Hemond CC, Gaitán MI, Absinta M, Reich DS. New Imaging Markers in Multiple Sclerosis and Related Disorders: Smoldering Inflammation and the Central Vein Sign. Neuroimaging Clin N Am 2024; 34:359-373. [PMID: 38942521 PMCID: PMC11213979 DOI: 10.1016/j.nic.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Concepts of multiple sclerosis (MS) biology continue to evolve, with observations such as "progression independent of disease activity" challenging traditional phenotypic categorization. Iron-sensitive, susceptibility-based imaging techniques are emerging as highly translatable MR imaging sequences that allow for visualization of at least 2 clinically useful biomarkers: the central vein sign and the paramagnetic rim lesion (PRL). Both biomarkers demonstrate high specificity in the discrimination of MS from other mimics and can be seen at 1.5 T and 3 T field strengths. Additionally, PRLs represent a subset of chronic active lesions engaged in "smoldering" compartmentalized inflammation behind an intact blood-brain barrier.
Collapse
Affiliation(s)
- Christopher C Hemond
- Department of Neurology, University of Massachusetts Memorial Medical Center and University of Massachusetts Chan Medical School, Worcester, MA, USA; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - María I Gaitán
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Martina Absinta
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Calabrese M, Preziosa P, Scalfari A, Colato E, Marastoni D, Absinta M, Battaglini M, De Stefano N, Di Filippo M, Hametner S, Howell OW, Inglese M, Lassmann H, Martin R, Nicholas R, Reynolds R, Rocca MA, Tamanti A, Vercellino M, Villar LM, Filippi M, Magliozzi R. Determinants and Biomarkers of Progression Independent of Relapses in Multiple Sclerosis. Ann Neurol 2024; 96:1-20. [PMID: 38568026 DOI: 10.1002/ana.26913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 06/20/2024]
Abstract
Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relentlessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving "chronic" worsening is likely linked with the early accumulation of compartmentalized inflammation within the central nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an overview of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical practice. ANN NEUROL 2024;96:1-20.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine, Imperial College, London, UK
| | - Elisa Colato
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Damiano Marastoni
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battaglini
- Siena Imaging S.r.l., Siena, Italy
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Owain W Howell
- Institute of Life Sciences, Swansea University Medical School, Swansea, UK
| | - Matilde Inglese
- Dipartimento di neuroscienze, riabilitazione, oftalmologia, genetica e scienze materno-infantili - DINOGMI, University of Genova, Genoa, Italy
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Therapeutic Design Unit, Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
- Cellerys AG, Schlieren, Switzerland
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Burlington Danes, Imperial College London, London, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Agnese Tamanti
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Marco Vercellino
- Multiple Sclerosis Center & Neurologia I U, Department of Neuroscience, University Hospital AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisa Maria Villar
- Department of Immunology, Ramon y Cajal University Hospital. IRYCIS. REI, Madrid, Spain
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Magliozzi
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| |
Collapse
|
9
|
Woo MS, Engler JB, Friese MA. The neuropathobiology of multiple sclerosis. Nat Rev Neurosci 2024; 25:493-513. [PMID: 38789516 DOI: 10.1038/s41583-024-00823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Chronic low-grade inflammation and neuronal deregulation are two components of a smoldering disease activity that drives the progression of disability in people with multiple sclerosis (MS). Although several therapies exist to dampen the acute inflammation that drives MS relapses, therapeutic options to halt chronic disability progression are a major unmet clinical need. The development of such therapies is hindered by our limited understanding of the neuron-intrinsic determinants of resilience or vulnerability to inflammation. In this Review, we provide a neuron-centric overview of recent advances in deciphering neuronal response patterns that drive the pathology of MS. We describe the inflammatory CNS environment that initiates neurotoxicity by imposing ion imbalance, excitotoxicity and oxidative stress, and by direct neuro-immune interactions, which collectively lead to mitochondrial dysfunction and epigenetic dysregulation. The neuronal demise is further amplified by breakdown of neuronal transport, accumulation of cytosolic proteins and activation of cell death pathways. Continuous neuronal damage perpetuates CNS inflammation by activating surrounding glia cells and by directly exerting toxicity on neighbouring neurons. Further, we explore strategies to overcome neuronal deregulation in MS and compile a selection of neuronal actuators shown to impact neurodegeneration in preclinical studies. We conclude by discussing the therapeutic potential of targeting such neuronal actuators in MS, including some that have already been tested in interventional clinical trials.
Collapse
Affiliation(s)
- Marcel S Woo
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
10
|
Cooze B, Neal J, Vineed A, Oliveira JC, Griffiths L, Allen KH, Hawkins K, Yadanar H, Gerhards K, Farkas I, Reynolds R, Howell O. Digital Pathology Identifies Associations between Tissue Inflammatory Biomarkers and Multiple Sclerosis Outcomes. Cells 2024; 13:1020. [PMID: 38920650 PMCID: PMC11201856 DOI: 10.3390/cells13121020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a clinically heterogeneous disease underpinned by inflammatory, demyelinating and neurodegenerative processes, the extent of which varies between individuals and over the course of the disease. Recognising the clinicopathological features that most strongly associate with disease outcomes will inform future efforts at patient phenotyping. AIMS We used a digital pathology workflow, involving high-resolution image acquisition of immunostained slides and opensource software for quantification, to investigate the relationship between clinical and neuropathological features in an autopsy cohort of progressive MS. METHODS Sequential sections of frontal, cingulate and occipital cortex, thalamus, brain stem (pons) and cerebellum including dentate nucleus (n = 35 progressive MS, females = 28, males = 7; age died = 53.5 years; range 38-98 years) were immunostained for myelin (anti-MOG), neurons (anti-HuC/D) and microglia/macrophages (anti-HLA). The extent of demyelination, neurodegeneration, the presence of active and/or chronic active lesions and quantification of brain and leptomeningeal inflammation was captured by digital pathology. RESULTS Digital analysis of tissue sections revealed the variable extent of pathology that characterises progressive MS. Microglia/macrophage activation, if found at a higher level in a single block, was typically elevated across all sampled blocks. Compartmentalised (perivascular/leptomeningeal) inflammation was associated with age-related measures of disease severity and an earlier death. CONCLUSION Digital pathology identified prognostically important clinicopathological correlations in MS. This methodology can be used to prioritise the principal pathological processes that need to be captured by future MS biomarkers.
Collapse
Affiliation(s)
- Benjamin Cooze
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - James Neal
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Alka Vineed
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - J. C. Oliveira
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Lauren Griffiths
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - K. H. Allen
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Kristen Hawkins
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Htoo Yadanar
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Krisjanis Gerhards
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Ildiko Farkas
- Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK; (I.F.); (R.R.)
| | - Richard Reynolds
- Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK; (I.F.); (R.R.)
| | - Owain Howell
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| |
Collapse
|
11
|
Nistri R, Ianniello A, Pozzilli V, Giannì C, Pozzilli C. Advanced MRI Techniques: Diagnosis and Follow-Up of Multiple Sclerosis. Diagnostics (Basel) 2024; 14:1120. [PMID: 38893646 PMCID: PMC11171945 DOI: 10.3390/diagnostics14111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Brain and spinal cord imaging plays a pivotal role in aiding clinicians with the diagnosis and monitoring of multiple sclerosis. Nevertheless, the significance of magnetic resonance imaging in MS extends beyond its clinical utility. Advanced imaging modalities have facilitated the in vivo detection of various components of MS pathogenesis, and, in recent years, MRI biomarkers have been utilized to assess the response of patients with relapsing-remitting MS to the available treatments. Similarly, MRI indicators of neurodegeneration demonstrate potential as primary and secondary endpoints in clinical trials targeting progressive phenotypes. This review aims to provide an overview of the latest advancements in brain and spinal cord neuroimaging in MS.
Collapse
Affiliation(s)
- Riccardo Nistri
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (A.I.); (C.G.); (C.P.)
| | - Antonio Ianniello
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (A.I.); (C.G.); (C.P.)
| | - Valeria Pozzilli
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Costanza Giannì
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (A.I.); (C.G.); (C.P.)
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Carlo Pozzilli
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (A.I.); (C.G.); (C.P.)
- MS Center Sant’Andrea Hospital, 00189 Rome, Italy
| |
Collapse
|
12
|
Oh J, Giacomini PS, Yong VW, Costello F, Blanchette F, Freedman MS. From progression to progress: The future of multiple sclerosis. J Cent Nerv Syst Dis 2024; 16:11795735241249693. [PMID: 38711957 PMCID: PMC11072059 DOI: 10.1177/11795735241249693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Significant advances have been made in the diagnosis and treatment of multiple sclerosis in recent years yet challenges remain. The current classification of MS phenotypes according to disease activity and progression, for example, does not adequately reflect the underlying pathophysiological mechanisms that may be acting in an individual with MS at different time points. Thus, there is a need for clinicians to transition to a management approach based on the underlying pathophysiological mechanisms that drive disability in MS. A Canadian expert panel convened in January 2023 to discuss priorities for clinical discovery and scientific exploration that would help advance the field. Five key areas of focus included: identifying a mechanism-based disease classification system; developing biomarkers (imaging, fluid, digital) to identify pathologic processes; implementing a data-driven approach to integrate genetic/environmental risk factors, clinical findings, imaging and biomarker data, and patient-reported outcomes to better characterize the many factors associated with disability progression; utilizing precision-based treatment strategies to target different disease processes; and potentially preventing disease through Epstein-Barr virus (EBV) vaccination, counselling about environmental risk factors (e.g. obesity, exercise, vitamin D/sun exposure, smoking) and other measures. Many of the tools needed to meet these needs are currently available. Further work is required to validate emerging biomarkers and tailor treatment strategies to the needs of individual patients. The hope is that a more complete view of the individual's pathobiology will enable clinicians to usher in an era of truly personalized medicine, in which more informed treatment decisions throughout the disease course achieve better long-term outcomes.
Collapse
Affiliation(s)
- Jiwon Oh
- St. Michael’s Hospital, Toronto, ON, Canada
| | | | - V. Wee Yong
- University of Calgary and Hotchkiss Brain Institute, Calgary, Canada
| | - Fiona Costello
- University of Calgary and Hotchkiss Brain Institute, Calgary, Canada
| | | | - Mark S. Freedman
- Department of Medicine¸ University of Ottawa, Ottawa, ON, Canada
- The Ottawa Hospital Research Institute, Ottawa, QC, Canada
| |
Collapse
|
13
|
Barrett A, Olayinka-Amao O, Ziemssen T, Bharadia T, Henke C, Kamudoni P. Understanding the Symptoms and Impacts Experienced by People with Relapsing-Remitting MS: A Qualitative Investigation Using Semi-Structured Interviews. Neurol Ther 2024; 13:449-464. [PMID: 38345742 PMCID: PMC10951163 DOI: 10.1007/s40120-024-00584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/17/2024] [Indexed: 03/20/2024] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is a disabling disease with unpredictable clinical manifestations. As clinical assessments may not fully capture the impact of MS on quality of life, they can be complemented by patient-reported outcome (PRO) measures to provide a more comprehensive picture of MS disease state and impact. The objectives of this study were to explore the experiences of people with relapsing-remitting MS, including symptoms and impacts on daily life, and to provide a conceptual model of MS outcomes. METHODS A literature review of studies that evaluated the experiences of people with MS was completed and combined with semi-structured concept elicitation interviews conducted with 14 people with relapsing-remitting MS in the USA. RESULTS The average age of the 14 participants was 43.9 (range 25-64) years, most were White (78.6%) and female (78.6%), and the mean duration since diagnosis was 6.6 (2-10) years. The most bothersome symptoms identified included fatigue (n = 9), cognitive dysfunction (n = 5), mobility/difficulty with walking (n = 3), and vision problems (n = 3). The most commonly reported impacts on daily life were balance problems/instability (n = 13), work life/productivity (n = 12), difficulty walking (n = 11), daily activities/household chores (n = 11), and leisure activities (n = 10). CONCLUSION There was a high frequency of concepts associated with physical function, fatigue, and sensory-motor actions. A conceptual model was developed that captures the disease symptoms, impairments, and impacts identified in the interviews as well as known processes and symptoms identified in the literature search. This model underpins the appropriateness of PRO instruments, such as the PROMIS Fatigue (MS) 8a and PROMIS Physical Function (MS) 15a, which evaluate symptoms and impacts that matter most to people with MS.
Collapse
Affiliation(s)
- Amy Barrett
- Patient-Centered Outcomes Assessment, RTI Health Solutions, Research Triangle Park, NC, USA
| | - Oyebimpe Olayinka-Amao
- Patient-Centered Outcomes Assessment, RTI Health Solutions, Research Triangle Park, NC, USA
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Neurological Clinic, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Christian Henke
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Paul Kamudoni
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany.
| |
Collapse
|
14
|
Laaksonen S, Saraste M, Nylund M, Hinz R, Snellman A, Rinne J, Matilainen M, Airas L. Sex-driven variability in TSPO-expressing microglia in MS patients and healthy individuals. Front Neurol 2024; 15:1352116. [PMID: 38445263 PMCID: PMC10913932 DOI: 10.3389/fneur.2024.1352116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Background Males with multiple sclerosis (MS) have a higher risk for disability progression than females, but the reasons for this are unclear. Objective We hypothesized that potential differences in TSPO-expressing microglia between female and male MS patients could contribute to sex differences in clinical disease progression. Methods The study cohort consisted of 102 MS patients (mean (SD) age 45.3 (9.7) years, median (IQR) disease duration 12.1 (7.0-17.2) years, 72% females, 74% relapsing-remitting MS) and 76 age- and sex-matched healthy controls. TSPO-expressing microglia were measured using the TSPO-binding radioligand [11C](R)-PK11195 and brain positron emission tomography (PET). TSPO-binding was quantified as distribution volume ratio (DVR) in normal-appearing white matter (NAWM), thalamus, whole brain and cortical gray matter (cGM). Results Male MS patients had higher DVRs compared to female patients in the whole brain [1.22 (0.04) vs. 1.20 (0.02), p = 0.002], NAWM [1.24 (0.06) vs. 1.21 (0.05), p = 0.006], thalamus [1.37 (0.08) vs. 1.32 (0.02), p = 0.008] and cGM [1.25 (0.04) vs. 1.23 (0.04), p = 0.028]. Similarly, healthy men had higher DVRs compared to healthy women except for cGM. Of the studied subgroups, secondary progressive male MS patients had the highest DVRs in all regions, while female controls had the lowest DVRs. Conclusion We observed higher TSPO-binding in males compared to females among people with MS and in healthy individuals. This sex-driven inherent variability in TSPO-expressing microglia may predispose male MS patients to greater likelihood of disease progression.
Collapse
Affiliation(s)
- Sini Laaksonen
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Maija Saraste
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Marjo Nylund
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom
| | - Anniina Snellman
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Juha Rinne
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Markus Matilainen
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Laura Airas
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| |
Collapse
|
15
|
Etebar F, Harkin DG, White AR, Dando SJ. Non-invasive in vivo imaging of brain and retinal microglia in neurodegenerative diseases. Front Cell Neurosci 2024; 18:1355557. [PMID: 38348116 PMCID: PMC10859418 DOI: 10.3389/fncel.2024.1355557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Microglia play crucial roles in immune responses and contribute to fundamental biological processes within the central nervous system (CNS). In neurodegenerative diseases, microglia undergo functional changes and can have both protective and pathogenic roles. Microglia in the retina, as an extension of the CNS, have also been shown to be affected in many neurological diseases. While our understanding of how microglia contribute to pathological conditions is incomplete, non-invasive in vivo imaging of brain and retinal microglia in living subjects could provide valuable insights into their role in the neurodegenerative diseases and open new avenues for diagnostic biomarkers. This mini-review provides an overview of the current brain and retinal imaging tools for studying microglia in vivo. We focus on microglia targets, the advantages and limitations of in vivo microglia imaging approaches, and applications for evaluating the pathogenesis of neurological conditions, such as Alzheimer's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Fazeleh Etebar
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Damien G. Harkin
- Centre for Vision and Eye Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Anthony R. White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Samantha J. Dando
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Vision and Eye Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
16
|
Kreiter D, Postma AA, Hupperts R, Gerlach O. Hallmarks of spinal cord pathology in multiple sclerosis. J Neurol Sci 2024; 456:122846. [PMID: 38142540 DOI: 10.1016/j.jns.2023.122846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
A disparity exists between spinal cord and brain involvement in multiple sclerosis (MS), each independently contributing to disability. Underlying differences between brain and cord are not just anatomical in nature (volume, white/grey matter organization, vascularization), but also in barrier functions (differences in function and composition of the blood-spinal cord barrier compared to blood-brain barrier) and possibly in repair mechanisms. Also, immunological phenotypes seem to influence localization of inflammatory activity. Whereas the brain has gained a lot of attention in MS research, the spinal cord lags behind. Advanced imaging techniques and biomarkers are improving and providing us with tools to uncover the mechanisms of spinal cord pathology in MS. In the present review, we elaborate on the underlying anatomical and physiological factors driving differences between brain and cord involvement in MS and review current literature on pathophysiology of spinal cord involvement in MS and the observed differences to brain involvement.
Collapse
Affiliation(s)
- Daniel Kreiter
- Academic MS Center Zuyd, Department of Neurology, Zuyderland MC, Sittard-Geleen, the Netherlands; School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Alida A Postma
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Raymond Hupperts
- Academic MS Center Zuyd, Department of Neurology, Zuyderland MC, Sittard-Geleen, the Netherlands; School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Oliver Gerlach
- Academic MS Center Zuyd, Department of Neurology, Zuyderland MC, Sittard-Geleen, the Netherlands; School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
17
|
Husseini L, Geladaris A, Weber MS. Toward identifying key mechanisms of progression in multiple sclerosis. Trends Neurosci 2024; 47:58-70. [PMID: 38102058 DOI: 10.1016/j.tins.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
A major therapeutic goal in the treatment of multiple sclerosis (MS) is to prevent the accumulation of disability over an often decades-long disease course. Disability progression can result from acute relapses as well as from CNS intrinsic parenchymal disintegration without de novo CNS lesion formation. Research focus has shifted to progression not associated with acute inflammation, as it is not sufficiently controlled by currently available treatments. This review outlines how recent advances in the understanding of the pathogenesis of progressive MS have been facilitated by the development of more precise, less static pathogenetic concepts of progressive MS, as well as by new techniques for the analysis of region-specific proteomic and transcriptomic signatures in the human CNS. We highlight key drivers of MS disease progression and potential targets in its treatment.
Collapse
Affiliation(s)
- Leila Husseini
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Anastasia Geladaris
- Institute of Neuropathology, University Medical Center, Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, 37073 Göttingen, Germany
| | - Martin S Weber
- Department of Neurology, University Medical Center, Göttingen, Germany; Institute of Neuropathology, University Medical Center, Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, 37073 Göttingen, Germany.
| |
Collapse
|
18
|
Hammond BP, Panda SP, Kaushik DK, Plemel JR. Microglia and Multiple Sclerosis. ADVANCES IN NEUROBIOLOGY 2024; 37:445-456. [PMID: 39207707 DOI: 10.1007/978-3-031-55529-9_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Multiple sclerosis (MS) is a devastating autoimmune disease that leads to profound disability. This disability arises from the stochastic, regional loss of myelin-the insulating sheath surrounding neurons-in the central nervous system (CNS). The demyelinated regions are dominated by the brain's resident macrophages: microglia. Microglia perform a variety of functions in MS and are thought to initiate and perpetuate demyelination through their interactions with peripheral immune cells that traffic into the brain. However, microglia are also likely essential for recruiting and promoting the differentiation of cells that can restore lost myelin in a process known as remyelination. Given these seemingly opposing functions, an overarching beneficial or detrimental role is yet to be ascribed to these immune cells. In this chapter, we will discuss microglia dynamics throughout the MS disease course and probe the apparent dichotomy of microglia as the drivers of both demyelination and remyelination.
Collapse
Affiliation(s)
- Brady P Hammond
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Sharmistha P Panda
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Deepak K Kaushik
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
19
|
Kessler W, Thomas C, Kuhlmann T. Microglia activation in periplaque white matter in multiple sclerosis depends on age and lesion type, but does not correlate with oligodendroglial loss. Acta Neuropathol 2023; 146:817-828. [PMID: 37897549 PMCID: PMC10628007 DOI: 10.1007/s00401-023-02645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/30/2023]
Abstract
Multiple sclerosis (MS) is the most frequent inflammatory and demyelinating disease of the CNS. The disease course in MS is highly variable and driven by a combination of relapse-driven disease activity and relapse-independent disease progression. The formation of new focal demyelinating lesions is associated with clinical relapses; however, the pathological mechanisms driving disease progression are less well understood. Current concepts suggest that ongoing focal and diffuse inflammation within the CNS in combination with an age-associated failure of compensatory and repair mechanisms contribute to disease progression. The aim of our study was to characterize the diffuse microglia activation in periplaque white matter (PPWM) of MS patients, to identify factors modulating its extent and to determine its potential correlation with loss or preservation of oligodendrocytes. We analyzed microglial and oligodendroglial numbers in PPWM in a cohort of 96 tissue blocks from 32 MS patients containing 100 lesions as well as a control cohort (n = 37). Microglia activation in PPWM was dependent on patient age, proximity to lesion, lesion type, and to a lesser degree on sex. Oligodendrocyte numbers were decreased in PPWM; however, increased microglia densities did not correlate with lower oligodendroglial cell counts, indicating that diffuse microglia activation is not sufficient to drive oligodendroglial loss in PPWM. In summary, our findings support the notion of the close relationship between focal and diffuse inflammation in MS and that age is an important modulator of MS pathology.
Collapse
Affiliation(s)
- Wiebke Kessler
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149, Münster, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149, Münster, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149, Münster, Germany.
| |
Collapse
|
20
|
Oh J, Airas L, Harrison D, Järvinen E, Livingston T, Lanker S, Malik RA, Okuda DT, Villoslada P, de Vries HE. Neuroimaging to monitor worsening of multiple sclerosis: advances supported by the grant for multiple sclerosis innovation. Front Neurol 2023; 14:1319869. [PMID: 38107636 PMCID: PMC10722910 DOI: 10.3389/fneur.2023.1319869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Key unmet needs in multiple sclerosis (MS) include detection of early pathology, disability worsening independent of relapses, and accurate monitoring of treatment response. Collaborative approaches to address these unmet needs have been driven in part by industry-academic networks and initiatives such as the Grant for Multiple Sclerosis Innovation (GMSI) and Multiple Sclerosis Leadership and Innovation Network (MS-LINK™) programs. We review the application of recent advances, supported by the GMSI and MS-LINK™ programs, in neuroimaging technology to quantify pathology related to central pathology and disease worsening, and potential for their translation into clinical practice/trials. GMSI-supported advances in neuroimaging methods and biomarkers include developments in magnetic resonance imaging, positron emission tomography, ocular imaging, and machine learning. However, longitudinal studies are required to facilitate translation of these measures to the clinic and to justify their inclusion as endpoints in clinical trials of new therapeutics for MS. Novel neuroimaging measures and other biomarkers, combined with artificial intelligence, may enable accurate prediction and monitoring of MS worsening in the clinic, and may also be used as endpoints in clinical trials of new therapies for MS targeting relapse-independent disease pathology.
Collapse
Affiliation(s)
- Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Laura Airas
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Daniel Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
- Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, MD, United States
| | - Elina Järvinen
- Neurology and Immunology, Medical Unit N&I, Merck OY (an affiliate of Merck KGaA), Espoo, Finland
| | - Terrie Livingston
- Patient Solutions and Center of Excellence Strategic Engagement, EMD Serono, Inc., Rockland, MA, United States
| | - Stefan Lanker
- Neurology & Immunology, US Medical Affairs, EMD Serono Research & Development Institute, Inc., (an affiliate of Merck KGaA), Billerica, MA, United States
| | - Rayaz A. Malik
- Weill Cornell Medicine-Qatar, Research Division, Doha, Qatar
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Darin T. Okuda
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis and Neuroimmunology Imaging Program, Clinical Center for Multiple Sclerosis, UT Southwestern Medical Center, Dallas, TX, United States
| | - Pablo Villoslada
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Helga E. de Vries
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers (Amsterdam UMC), Location VUmc, Amsterdam, Netherlands
| |
Collapse
|
21
|
Elkjaer ML, Waede MR, Kingo C, Damsbo K, Illes Z. Expression of Bruton´s tyrosine kinase in different type of brain lesions of multiple sclerosis patients and during experimental demyelination. Front Immunol 2023; 14:1264128. [PMID: 38022591 PMCID: PMC10679451 DOI: 10.3389/fimmu.2023.1264128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background Inhibition of Bruton's tyrosine kinase (BTK) is an emerging multiple sclerosis (MS) therapy. BTK inhibitors (BTKi) cross the blood-brain barrier and modulate B cells and microglia, major cellular players in active and chronic active lesions. Objective To assess potential lesional and cellular targets of BTKi, we examined BTK expression in different type of MS white matter (WM) lesions, in unmanipulated CNS resident cells, and in a degenerative MS model associated with microglia activation in vivo. Methods We examined BTK expression by next-generation RNA-sequencing in postmortem 25 control WM, 19 NAWM, 6 remyelinating, 18 active, 13 inactive and 17 chronic active lesions. Presence of B cells and microglia were examined by immunohistochemistry. CNS resident cells were isolated from the mouse brain by magnetic sorting. BTK expression was examined by quantitative PCR in isolated cells and dissected corpus callosum from mice treated with cuprizone (CPZ). Results BTK expression was significantly increased in active and chronic active lesions with upregulated complement receptors and Fcγ receptors. Active lesions contained high number of perivascular B cells, microglia, and macrophages. Chronic active lesions were characterized by microglia/macrophages in the rim. Microglia expressed BTK at high level (120-fold) in contrast to other CNS cell types (2-4-fold). BTK expression was increasing during CPZ treatment reaching significance after stopping CPZ. Conclusion Considering BTK expression in MS lesions and resident cells, BTKi may exert effect on B cells, microglia/macrophages in active lesions, and limit microglia activation in chronic active lesions, where tissue damage propagates.
Collapse
Affiliation(s)
- Maria L. Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mie R. Waede
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Christina Kingo
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Karina Damsbo
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIDGE – Brain Research Interdisciplinary Guided Ecxellence, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
22
|
Müller J, Cagol A, Lorscheider J, Tsagkas C, Benkert P, Yaldizli Ö, Kuhle J, Derfuss T, Sormani MP, Thompson A, Granziera C, Kappos L. Harmonizing Definitions for Progression Independent of Relapse Activity in Multiple Sclerosis: A Systematic Review. JAMA Neurol 2023; 80:1232-1245. [PMID: 37782515 DOI: 10.1001/jamaneurol.2023.3331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Importance Emerging evidence suggests that progression independent of relapse activity (PIRA) is a substantial contributor to long-term disability accumulation in relapsing-remitting multiple sclerosis (RRMS). To date, there is no uniform agreed-upon definition of PIRA, limiting the comparability of published studies. Objective To summarize the current evidence about PIRA based on a systematic review, to discuss the various terminologies used in the context of PIRA, and to propose a harmonized definition for PIRA for use in clinical practice and future trials. Evidence Review A literature search was conducted using the search terms multiple sclerosis, PIRA, progression independent of relapse activity, silent progression, and progression unrelated to relapses in PubMed, Embase, Cochrane, and Web of Science, published between January 1990 and December 2022. Findings Of 119 identified single records, 48 eligible studies were analyzed. PIRA was reported to occur in roughly 5% of all patients with RRMS per annum, causing at least 50% of all disability accrual events in typical RRMS. The proportion of PIRA vs relapse-associated worsening increased with age, longer disease duration, and, despite lower absolute event numbers, potent suppression of relapses by highly effective disease-modifying therapy. However, different studies used various definitions of PIRA, rendering the comparability of studies difficult. Conclusion and Relevance PIRA is the most frequent manifestation of disability accumulation across the full spectrum of traditional MS phenotypes, including clinically isolated syndrome and early RRMS. The harmonized definition suggested here may improve the comparability of results in current and future cohorts and data sets.
Collapse
Affiliation(s)
- Jannis Müller
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Alessandro Cagol
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Johannes Lorscheider
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Charidimos Tsagkas
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Pascal Benkert
- Department of Clinical Research, Clinical Trial Unit, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Özgür Yaldizli
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Jens Kuhle
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Tobias Derfuss
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Maria Pia Sormani
- Department of Health Sciences, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alan Thompson
- Queen Square MS Centre, UCL Institute of Neurology, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Cristina Granziera
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Rosenstein I, Axelsson M, Novakova L, Malmeström C, Blennow K, Zetterberg H, Lycke J. Intrathecal kappa free light chain synthesis is associated with worse prognosis in relapsing-remitting multiple sclerosis. J Neurol 2023; 270:4800-4811. [PMID: 37314506 PMCID: PMC10511607 DOI: 10.1007/s00415-023-11817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND While kappa free light chain (KFLC) index has become a useful diagnostic biomarker in multiple sclerosis (MS), its prognostic properties are less explored. B cells play a crucial role in MS pathogenesis, but the impact from increased intrathecal production of immunoglobulins and KFLC remains to be determined. Recently, it has become evident that insidious worsening is not confined to progressive MS but is also common in relapsing-remitting MS (RRMS), a feature known as progression independent of relapse activity (PIRA). METHODS We retrospectively identified 131 patients with clinically isolated syndrome or early RRMS who had determined KFLC index as part of their diagnostic workup. Demographic and clinical data were extracted from the Swedish MS registry. Associations of baseline KFLC index with evidence of disease activity (EDA) and PIRA were investigated in multivariable cox proportional hazards regression models. RESULTS KFLC index was significantly higher in PIRA (median 148.5, interquartile range [IQR] 106.9-253.5) compared with non-PIRA (78.26, IQR 28.93-186.5, p = 0.009). In a multivariable cox regression model adjusted for confounders, KFLC index emerged as an independent risk factor for PIRA (adjusted hazard ratio [aHR] 1.005, 95% confidence interval [CI] 1.002-1.008, p = 0.002). Dichotomized by the cut-off value KFLC index > 100, patients with KFLC index > 100 had an almost fourfold increase in the risk for developing PIRA. KFLC index was also predictive of evidence of disease activity during follow-up. CONCLUSIONS Our data indicate that high KFLC index at baseline is predictive of PIRA, EDA-3, and overall worse prognosis in MS.
Collapse
Affiliation(s)
- Igal Rosenstein
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden.
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
| | - Lenka Novakova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
| | - Clas Malmeström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Hong Kong Centre for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
| |
Collapse
|
24
|
Sharrad D, Chugh P, Slee M, Bacchi S. Defining progression independent of relapse activity (PIRA) in adult patients with relapsing multiple sclerosis: A systematic review ✰. Mult Scler Relat Disord 2023; 78:104899. [PMID: 37499338 DOI: 10.1016/j.msard.2023.104899] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/26/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Progression Independent of Relapse Activity (PIRA) is heterogeneously described in patients with multiple sclerosis (MS) regarding the frequency and nature of PIRA. This systematic review was conducted to characterise and define the elements of PIRA. METHOD This systematic review was conducted and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A systematic search was conducted of the databases Embase, Medline, Cochrane Central Register of Controlled Trials, Scopus, Web of Science, ClinicalTrials.gov and Google Scholar. RESULTS 5,812 studies were identified by the initial search. 13 studies satisfied the inclusion criteria and were included in the systematic review. PIRA definitions varied considerably between studies. In the context of these variable definitions, along with other methodological differences relating to disease modifying therapy (DMT) use and follow-up duration, the reported proportion of patients experiencing PIRA varied from 4% to 24%. CONCLUSIONS The currently available research supports the presence of PIRA in relapsing MS. Based on review of the existing literature, we propose a definition of PIRA that is clinically relevant and minimises confounding from inclusion of patients who have reached the secondary progressive phase of the disease.
Collapse
Affiliation(s)
- Dale Sharrad
- SA Health, Department of Neurology, Flinders Medical Centre, Bedford Park SA 5042, Australia; College of Medicine and Public Health, Flinders University of South Australia, Bedford Park SA 5042, Australia
| | - Pooja Chugh
- SA Health, Department of Neurology, Flinders Medical Centre, Bedford Park SA 5042, Australia; College of Medicine and Public Health, Flinders University of South Australia, Bedford Park SA 5042, Australia.
| | - Mark Slee
- SA Health, Department of Neurology, Flinders Medical Centre, Bedford Park SA 5042, Australia; College of Medicine and Public Health, Flinders University of South Australia, Bedford Park SA 5042, Australia
| | - Stephen Bacchi
- SA Health, Department of Neurology, Flinders Medical Centre, Bedford Park SA 5042, Australia; College of Medicine and Public Health, Flinders University of South Australia, Bedford Park SA 5042, Australia
| |
Collapse
|
25
|
Pogoda-Wesołowska A, Dziedzic A, Maciak K, Stȩpień A, Dziaduch M, Saluk J. Neurodegeneration and its potential markers in the diagnosing of secondary progressive multiple sclerosis. A review. Front Mol Neurosci 2023; 16:1210091. [PMID: 37781097 PMCID: PMC10535108 DOI: 10.3389/fnmol.2023.1210091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Approximately 70% of relapsing-remitting multiple sclerosis (RRMS) patients will develop secondary progressive multiple sclerosis (SPMS) within 10-15 years. This progression is characterized by a gradual decline in neurological functionality and increasing limitations of daily activities. Growing evidence suggests that both inflammation and neurodegeneration are associated with various pathological processes throughout the development of MS; therefore, to delay disease progression, it is critical to initiate disease-modifying therapy as soon as it is diagnosed. Currently, a diagnosis of SPMS requires a retrospective assessment of physical disability exacerbation, usually over the previous 6-12 months, which results in a delay of up to 3 years. Hence, there is a need to identify reliable and objective biomarkers for predicting and defining SPMS conversion. This review presents current knowledge of such biomarkers in the context of neurodegeneration associated with MS, and SPMS conversion.
Collapse
Affiliation(s)
| | - Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Karina Maciak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Adam Stȩpień
- Clinic of Neurology, Military Institute of Medicine–National Research Institute, Warsaw, Poland
| | - Marta Dziaduch
- Medical Radiology Department of Military Institute of Medicine – National Research Institute, Warsaw, Poland
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
26
|
Brier MR, Taha F. Measuring Pathology in Patients with Multiple Sclerosis Using Positron Emission Tomography. Curr Neurol Neurosci Rep 2023; 23:479-488. [PMID: 37418219 DOI: 10.1007/s11910-023-01285-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE OF REVIEW Multiple sclerosis is characterized by a diverse and complex pathology. Clinical relapses, the hallmark of the disease, are accompanied by focal white matter lesions with intense inflammatory and demyelinating activity. Prevention of these relapses has been the major focus of pharmaceutical development, and it is now possible to dramatically reduce this inflammatory activity. Unfortunately, disability accumulation persists for many people living with multiple sclerosis owing to ongoing damage within existing lesions, pathology outside of discrete lesions, and other yet unknown factors. Understanding this complex pathological cascade will be critical to stopping progressive multiple sclerosis. Positron emission tomography uses biochemically specific radioligands to quantitatively measure pathological processes with molecular specificity. This review examines recent advances in the understanding of multiple sclerosis facilitated by positron emission tomography and identifies future avenues to expand understanding and treatment options. RECENT FINDINGS An increasing number of radiotracers allow for the quantitative measurement of inflammatory abnormalities, de- and re-myelination, and metabolic disruption associated with multiple sclerosis. The studies have identified contributions of ongoing, smoldering inflammation to accumulating tissue injury and clinical worsening. Myelin studies have quantified the dynamics of myelin loss and recovery. Lastly, metabolic changes have been found to contribute to symptom worsening. The molecular specificity facilitated by positron emission tomography in people living with multiple sclerosis will critically inform efforts to modulate the pathology leading to progressive disability accumulation. Existing studies show the power of this approach applied to multiple sclerosis. This armamentarium of radioligands allows for new understanding of how the brain and spinal cord of people is impacted by multiple sclerosis.
Collapse
Affiliation(s)
- Matthew R Brier
- Department of Neurology, John L Trotter MS Center, Washington University in St. Louis, St. Louis, USA.
| | - Farris Taha
- Department of Neurology, Medical University of South Carolina, Charleston, USA
| |
Collapse
|
27
|
Saraste M, Matilainen M, Vuorimaa A, Laaksonen S, Sucksdorff M, Leppert D, Kuhle J, Airas L. Association of serum neurofilament light with microglial activation in multiple sclerosis. J Neurol Neurosurg Psychiatry 2023; 94:698-706. [PMID: 37130728 PMCID: PMC10447382 DOI: 10.1136/jnnp-2023-331051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/09/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Translocator protein (TSPO)-PET and neurofilament light (NfL) both report on brain pathology, but their potential association has not yet been studied in multiple sclerosis (MS) in vivo. We aimed to evaluate the association between serum NfL (sNfL) and TSPO-PET-measurable microglial activation in the brain of patients with MS. METHODS Microglial activation was detected using PET and the TSPO-binding radioligand [11C]PK11195. Distribution volume ratio (DVR) was used to evaluate specific [11C]PK11195-binding. sNfL levels were measured using single molecule array (Simoa). The associations between [11C]PK11195 DVR and sNfL were evaluated using correlation analyses and false discovery rate (FDR) corrected linear regression modelling. RESULTS 44 patients with MS (40 relapsing-remitting and 4 secondary progressive) and 24 age-matched and sex-matched healthy controls were included. In the patient group with elevated brain [11C]PK11195 DVR (n=19), increased sNfL associated with higher DVR in the lesion rim (estimate (95% CI) 0.49 (0.15 to 0.83), p(FDR)=0.04) and perilesional normal appearing white matter (0.48 (0.14 to 0.83), p(FDR)=0.04), and with a higher number and larger volume of TSPO-PET-detectable rim-active lesions defined by microglial activation at the plaque edge (0.46 (0.10 to 0.81), p(FDR)=0.04 and 0.50 (0.17 to 0.84), p(FDR)=0.04, respectively). Based on the multivariate stepwise linear regression model, the volume of rim-active lesions was the most relevant factor affecting sNfL. CONCLUSIONS Our demonstration of an association between microglial activation as measured by increased TSPO-PET signal, and elevated sNfL emphasises the significance of smouldering inflammation for progression-promoting pathology in MS and highlights the role of rim-active lesions in promoting neuroaxonal damage.
Collapse
Affiliation(s)
- Maija Saraste
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Markus Matilainen
- Turku PET Centre, Turku, Finland
- Faculty of Science and Engineering, Åbo Akademi University, Abo, Finland
| | - Anna Vuorimaa
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Sini Laaksonen
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Marcus Sucksdorff
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - David Leppert
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Laura Airas
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| |
Collapse
|
28
|
Statsenko Y, Smetanina D, Arora T, Östlundh L, Habuza T, Simiyu GL, Meribout S, Talako T, King FC, Makhnevych I, Gelovani JG, Das KM, Gorkom KNV, Almansoori TM, Al Zahmi F, Szólics M, Ismail F, Ljubisavljevic M. Multimodal diagnostics in multiple sclerosis: predicting disability and conversion from relapsing-remitting to secondary progressive disease course - protocol for systematic review and meta-analysis. BMJ Open 2023; 13:e068608. [PMID: 37451729 PMCID: PMC10351237 DOI: 10.1136/bmjopen-2022-068608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/03/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND The number of patients diagnosed with multiple sclerosis (MS) has increased significantly over the last decade. The challenge is to identify the transition from relapsing-remitting to secondary progressive MS. Since available methods to examine patients with MS are limited, both the diagnostics and prognostication of disease progression would benefit from the multimodal approach. The latter combines the evidence obtained from disparate radiologic modalities, neurophysiological evaluation, cognitive assessment and molecular diagnostics. In this systematic review we will analyse the advantages of multimodal studies in predicting the risk of conversion to secondary progressive MS. METHODS AND ANALYSIS We will use peer-reviewed publications available in Web of Science, Medline/PubMed, Scopus, Embase and CINAHL databases. In vivo studies reporting the predictive value of diagnostic methods will be considered. Selected publications will be processed through Covidence software for automatic deduplication and blind screening. Two reviewers will use a predefined template to extract the data from eligible studies. We will analyse the performance metrics (1) for the classification models reflecting the risk of secondary progression: sensitivity, specificity, accuracy, area under the receiver operating characteristic curve, positive and negative predictive values; (2) for the regression models forecasting disability scores: the ratio of mean absolute error to the range of values. Then, we will create ranking charts representing performance of the algorithms for calculating disability level and MS progression. Finally, we will compare the predictive power of radiological and radiomical correlates of clinical disability and cognitive impairment in patients with MS. ETHICS AND DISSEMINATION The study does not require ethical approval because we will analyse publicly available literature. The project results will be published in a peer-review journal and presented at scientific conferences. PROSPERO REGISTRATION NUMBER CRD42022354179.
Collapse
Affiliation(s)
- Yauhen Statsenko
- Radiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
- Medical Imaging Platform, ASPIRE Precision Medicine Research Institute Abu Dhabi, Al Ain, Abu Dhabi Emirate, UAE
- Big Data Analytics Center, United Arab Emirates University, Al Ain, Abu Dhabi Emirate, UAE
| | - Darya Smetanina
- Radiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
- Medical Imaging Platform, ASPIRE Precision Medicine Research Institute Abu Dhabi, Al Ain, Abu Dhabi Emirate, UAE
| | - Teresa Arora
- Psychology Department, College of Natural and Health Sciences, Zayed University, Abu Dhabi, Abu Dhabi Emirate, UAE
| | - Linda Östlundh
- National Medical Library, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi Emirate, UAE
- Library, Örebro University, Örebro, Sweden
| | - Tetiana Habuza
- Big Data Analytics Center, United Arab Emirates University, Al Ain, Abu Dhabi Emirate, UAE
- Department of Computer Science, College of Information Technology, United Arab Emirates University, Al Ain, Abu Dhabi Emirate, UAE
| | - Gillian Lylian Simiyu
- Radiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
- Medical Imaging Platform, ASPIRE Precision Medicine Research Institute Abu Dhabi, Al Ain, Abu Dhabi Emirate, UAE
| | - Sarah Meribout
- Radiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
- Medical Imaging Platform, ASPIRE Precision Medicine Research Institute Abu Dhabi, Al Ain, Abu Dhabi Emirate, UAE
- Internal Medicine Department, Maimonides Medical Center, New York, New York, USA
| | - Tatsiana Talako
- Radiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
- Department of Oncohematology, Minsk Scientific and Practical Center for Surgery, Transplantology and Hematology, Minsk, Belarus
| | - Fransina Christina King
- Physiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
- Neuroscience Platform, ASPIRE Precision Medicine Research Institute Abu Dhabi, Al Ain, Abu Dhabi Emirate, UAE
| | - Iryna Makhnevych
- Radiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
| | - Juri George Gelovani
- Radiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
- Biomedical Engineering Department, Wayne State University, College of Engineering, Detroit, Michigan, USA
- Radiology Department, Siriraj Hospital, Faculty of Medicine, Mahidol University, Bangkok, Thailand
- Provost Office, United Arab Emirates University, Al Ain, Abu Dhabi Emirate, UAE
| | - Karuna M Das
- Radiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
| | - Klaus Neidl-Van Gorkom
- Radiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
| | - Taleb M Almansoori
- Radiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
| | - Fatmah Al Zahmi
- Neurology Department, Mediclinic Parkview Hospital, Dubai, Dubai Emirate, UAE
- Neurology Department, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, Dubai Emirate, UAE
| | - Miklós Szólics
- Internal Medicine Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
- Division of Neurology, Department of Medicine, Tawam Hospital, Al Ain, Abu Dhabi Emirate, UAE
| | - Fatima Ismail
- Pediatrics Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Milos Ljubisavljevic
- Physiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
- Neuroscience Platform, ASPIRE Precision Medicine Research Institute Abu Dhabi, Al Ain, Abu Dhabi Emirate, UAE
| |
Collapse
|
29
|
Temmerman J, Engelborghs S, Bjerke M, D’haeseleer M. Cerebrospinal fluid inflammatory biomarkers for disease progression in Alzheimer's disease and multiple sclerosis: a systematic review. Front Immunol 2023; 14:1162340. [PMID: 37520580 PMCID: PMC10374015 DOI: 10.3389/fimmu.2023.1162340] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/12/2023] [Indexed: 08/01/2023] Open
Abstract
Inflammatory processes are involved in the pathophysiology of both Alzheimer's disease (AD) and multiple sclerosis (MS) but their exact contribution to disease progression remains to be deciphered. Biomarkers are needed to define pathophysiological processes of these disorders, who may increasingly co-exist in the elderly generations of the future, due to the rising prevalence in both and ameliorated treatment options with improved life expectancy in MS. The purpose of this review was to provide a systematic overview of inflammatory biomarkers, as measured in the cerebrospinal fluid (CSF), that are associated with clinical disease progression. International peer-reviewed literature was screened using the PubMed and Web of Science databases. Disease progression had to be measured using clinically validated tests representing baseline functional and/or cognitive status, the evolution of such clinical scores over time and/or the transitioning from one disease stage to a more severe stage. The quality of included studies was systematically evaluated using a set of questions for clinical, neurochemical and statistical characteristics of the study. A total of 84 papers were included (twenty-five for AD and 59 for MS). Elevated CSF levels of chitinase-3-like protein 1 (YKL-40) were associated with disease progression in both AD and MS. Osteopontin and monocyte chemoattractant protein-1 were more specifically related to disease progression in AD, whereas the same was true for interleukin-1 beta, tumor necrosis factor alpha, C-X-C motif ligand 13, glial fibrillary acidic protein and IgG oligoclonal bands in MS. We observed a broad heterogeneity of studies with varying cohort characterization, non-disclosure of quality measures for neurochemical analyses and a lack of adequate longitudinal designs. Most of the retrieved biomarkers are related to innate immune system activity, which seems to be an important mediator of clinical disease progression in AD and MS. Overall study quality was limited and we have framed some recommendations for future biomarker research in this field. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42021264741.
Collapse
Affiliation(s)
- Joke Temmerman
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Jette, Brussels, Belgium
- Universiteit Antwerpen, Department of Biomedical Sciences and Institute Born-Bunge, Reference Center for Biological Markers of Dementia (BIODEM), Wilrijk, Antwerp, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Jette, Brussels, Belgium
| | - Sebastiaan Engelborghs
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Jette, Brussels, Belgium
- Universiteit Antwerpen, Department of Biomedical Sciences and Institute Born-Bunge, Reference Center for Biological Markers of Dementia (BIODEM), Wilrijk, Antwerp, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Jette, Brussels, Belgium
| | - Maria Bjerke
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Jette, Brussels, Belgium
- Universiteit Antwerpen, Department of Biomedical Sciences and Institute Born-Bunge, Reference Center for Biological Markers of Dementia (BIODEM), Wilrijk, Antwerp, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Jette, Brussels, Belgium
- Universitair Ziekenhuis Brussel, Department of Clinical Biology, Laboratory of Clinical Neurochemistry, Jette, Brussels, Belgium
| | - Miguel D’haeseleer
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Jette, Brussels, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Jette, Brussels, Belgium
- National MS Center (NMSC), Neurology, Melsbroek, Steenokkerzeel, Belgium
| |
Collapse
|
30
|
Evonuk KS, Wang S, Mattie J, Cracchiolo CJ, Mager R, Ferenčić Ž, Sprague E, Carrier B, Schofield K, Martinez E, Stewart Z, Petrosino T, Johnson GA, Yusuf I, Plaisted W, Naiman Z, Delp T, Carter L, Marušić S. Bruton's tyrosine kinase inhibition reduces disease severity in a model of secondary progressive autoimmune demyelination. Acta Neuropathol Commun 2023; 11:115. [PMID: 37438842 PMCID: PMC10337138 DOI: 10.1186/s40478-023-01614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023] Open
Abstract
Bruton's tyrosine kinase (BTK) is an emerging target in multiple sclerosis (MS). Alongside its role in B cell receptor signaling and B cell development, BTK regulates myeloid cell activation and inflammatory responses. Here we demonstrate efficacy of BTK inhibition in a model of secondary progressive autoimmune demyelination in Biozzi mice with experimental autoimmune encephalomyelitis (EAE). We show that late in the course of disease, EAE severity could not be reduced with a potent relapse inhibitor, FTY720 (fingolimod), indicating that disease was relapse-independent. During this same phase of disease, treatment with a BTK inhibitor reduced both EAE severity and demyelination compared to vehicle treatment. Compared to vehicle treatment, late therapeutic BTK inhibition resulted in fewer spinal cord-infiltrating myeloid cells, with lower expression of CD86, pro-IL-1β, CD206, and Iba1, and higher expression of Arg1, in both tissue-resident and infiltrating myeloid cells, suggesting a less inflammatory myeloid cell milieu. These changes were accompanied by decreased spinal cord axonal damage. We show similar efficacy with two small molecule inhibitors, including a novel, highly selective, central nervous system-penetrant BTK inhibitor, GB7208. These results suggest that through lymphoid and myeloid cell regulation, BTK inhibition reduced neurodegeneration and disease progression during secondary progressive EAE.
Collapse
Affiliation(s)
| | - Sen Wang
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Josh Mattie
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - C. J. Cracchiolo
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Reine Mager
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Željko Ferenčić
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Ethan Sprague
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Brandon Carrier
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Kai Schofield
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Evelyn Martinez
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Zachary Stewart
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Tara Petrosino
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | | | - Isharat Yusuf
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Warren Plaisted
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Zachary Naiman
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Timothy Delp
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Laura Carter
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Suzana Marušić
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| |
Collapse
|
31
|
Wang J, Ge J, Jin L, Deng B, Tang W, Yu H, Zhang X, Liu X, Xue L, Zuo C, Chen X. Characterization of neuroinflammation pattern in anti-LGI1 encephalitis based on TSPO PET and symptom clustering analysis. Eur J Nucl Med Mol Imaging 2023; 50:2394-2408. [PMID: 36929211 DOI: 10.1007/s00259-023-06190-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/05/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE TSPO PET with radioligand [18F]DPA-714 is an emerging molecular imaging technique that reflects cerebral inflammation and microglial activation, and it has been recently used in central nervous system diseases. In this study, we aimed to investigate the neuroinflammation pattern of anti-leucine-rich glioma-inactivated 1 (LGI1) protein autoimmune encephalitis (AIE) and to evaluate its possible correlation with clinical phenotypes. METHODS Twenty patients with anti-LGI1 encephalitis from the autoimmune encephalitis cohort in Huashan Hospital and ten with other AIE and non-inflammatory diseases that underwent TSPO PET imaging were included in the current study. Increased regional [18F]DPA-714 retention in anti-LGI1 encephalitis was detected on a voxel basis using statistic parametric mapping analysis. Multiple correspondence analysis and hierarchical clustering were conducted for discriminate subgroups in anti-LGI1 encephalitis. Standardized uptake value ratios normalized to the cerebellum (SUVRc) were calculated for semiquantitative analysis of TSPO PET features between different LGI1-AIE subgroups. RESULTS Increased regional retention of [18F]DPA-714 was identified in the bilateral hippocampus, caudate nucleus, and frontal cortex in LGI1-AIE patients. Two subgroups of LGI1-AIE patients were distinguished based on the top seven common symptoms. Patients in cluster 1 had a high frequency of facio-brachial dystonic seizures than those in cluster 2 (p = 0.004), whereas patients in cluster 2 had a higher frequency of general tonic-clonic (GTC) seizures than those in cluster 1 (p < 0.001). Supplementary motor area and superior frontal gyrus showed higher [18F]DPA-714 retention in cluster 2 patients compared with those in cluster 1 (p = 0.024; p = 0.04, respectively). CONCLUSIONS Anti-LGI1 encephalitis had a distinctive molecular imaging pattern presented by TSPO PET scan. LGI1-AIE patients with higher retention of [18F]DPA-714 in the frontal cortex were more prone to present with GTC seizures. Further studies are required for verifying its value in clinical application.
Collapse
Affiliation(s)
- Jingguo Wang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
- National Center for Neurological Disorders, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Jingjie Ge
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235, China
| | - Lei Jin
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
- National Center for Neurological Disorders, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Bo Deng
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
- National Center for Neurological Disorders, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital, Shanghai, 200040, China
| | - Hai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
- National Center for Neurological Disorders, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Xiang Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
- National Center for Neurological Disorders, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Xiaoni Liu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
- National Center for Neurological Disorders, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Le Xue
- Department of Nuclear Medicine, the Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Chuantao Zuo
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235, China.
| | - Xiangjun Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China.
- National Center for Neurological Disorders, 12 Wulumuqi Zhong Road, Shanghai, 200040, China.
- Human Phenome Institute, Fudan University, Shanghai, China.
| |
Collapse
|
32
|
Frisch ES, Häusler D, Weber MS. Natalizumab Promotes Activation of Peripheral Monocytes in Patients With Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/4/e200114. [PMID: 37072216 PMCID: PMC10112857 DOI: 10.1212/nxi.0000000000200114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVES Natalizumab (NTZ), a monoclonal antibody against very late antigen-4 (VLA-4), is one of the most efficient therapies to prevent acute relapses in multiple sclerosis (MS). VLA-4 is the key adhesion molecule for peripheral immune cells, especially lymphocytes to enter the CNS. While its blockade thus virtually abrogates CNS infiltration of these cells, long-term exposure to natalizumab may also affect immune cell function. METHODS In this study, we report that in patients with MS, NTZ treatment is associated with an enhanced activation status of peripheral monocytes. RESULTS Expression of 2 independent activation markers, CD69 and CD150, was significantly higher on blood monocytes from NTZ-treated patients when compared with those from matched untreated patients with MS, while other properties such as cytokine production remained unchanged. DISCUSSION These findings consolidate the concept that peripheral immune cells remain fully competent on NTZ treatment, an excellent asset rare among MS treatments. However, they also suggest that NTZ may exert nondesirable effects on the progressive aspect of MS, where myeloid cells and their chronic activation are attributed a prominent pathophysiologic role.
Collapse
Affiliation(s)
- Esther S Frisch
- From the Department of Neuropathology (E.S.F., D.H., M.S.W.), University Medical Center; Department of Neurology (E.S.F., M.S.W.), University Medical Center; and Fraunhofer-Institute for Translational Medicine and Pharmacology ITMP (D.H., M.S.W.), Göttingen, Germany
| | - Darius Häusler
- From the Department of Neuropathology (E.S.F., D.H., M.S.W.), University Medical Center; Department of Neurology (E.S.F., M.S.W.), University Medical Center; and Fraunhofer-Institute for Translational Medicine and Pharmacology ITMP (D.H., M.S.W.), Göttingen, Germany
| | - Martin S Weber
- From the Department of Neuropathology (E.S.F., D.H., M.S.W.), University Medical Center; Department of Neurology (E.S.F., M.S.W.), University Medical Center; and Fraunhofer-Institute for Translational Medicine and Pharmacology ITMP (D.H., M.S.W.), Göttingen, Germany.
| |
Collapse
|
33
|
Laaksonen S, Saraste M, Sucksdorff M, Nylund M, Vuorimaa A, Matilainen M, Heikkinen J, Airas L. Early prognosticators of later TSPO-PET-measurable microglial activation in multiple sclerosis. Mult Scler Relat Disord 2023; 75:104755. [PMID: 37216883 DOI: 10.1016/j.msard.2023.104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Factors driving increased innate immune cell activation in multiple sclerosis (MS) brain are not well understood. As higher prevalence of microglial/macrophage activation in association with chronic lesions and diffusely in the normal appearing white matter predict more rapid accumulation of clinical disability, it is of high importance to understand processes behind this. Objective of the study was to explore demographic, clinical and paraclinical variables associating with later positron emission tomography (PET)-measurable innate immune cell activation. METHODS PET-imaging using a TSPO-binding [11C]PK11195 was performed to evaluate microglial activation in patients with relapsing-remitting MS aged 40-55 years with a minimum disease duration of five years (n = 37). Medical records and diagnostic MR images were reviewed for relevant early MS disease-related clinical and paraclinical parameters. RESULTS More prominent microglial activation was associated with higher number of T2 lesions in the diagnostic MRI, a higher immunoglobulin G (IgG) index in the diagnostic CSF and Expanded Disability Status Scale (EDSS) ≥ 2.0 five years after diagnosis. CONCLUSION The number of T2 lesions in MRI, and CSF immunoglobulin content measured by IgG index at the time of MS diagnosis associated with later TSPO-PET-measurable innate immune cell activation. This suggests that both focal and diffuse early inflammatory phenomena impact the development of later progression-related pathology.
Collapse
Affiliation(s)
- S Laaksonen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Division of Clinical Neurosciences, University of Turku, Turku, Finland; Neurocenter Turku, University Hospital, Turku, Finland.
| | - M Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Division of Clinical Neurosciences, University of Turku, Turku, Finland; Neurocenter Turku, University Hospital, Turku, Finland
| | - M Sucksdorff
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Division of Clinical Neurosciences, University of Turku, Turku, Finland; Neurocenter Turku, University Hospital, Turku, Finland
| | - M Nylund
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Division of Clinical Neurosciences, University of Turku, Turku, Finland; Neurocenter Turku, University Hospital, Turku, Finland
| | - A Vuorimaa
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Division of Clinical Neurosciences, University of Turku, Turku, Finland; Neurocenter Turku, University Hospital, Turku, Finland
| | - M Matilainen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - J Heikkinen
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - L Airas
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Division of Clinical Neurosciences, University of Turku, Turku, Finland; Neurocenter Turku, University Hospital, Turku, Finland
| |
Collapse
|
34
|
Krämer J, Bar-Or A, Turner TJ, Wiendl H. Bruton tyrosine kinase inhibitors for multiple sclerosis. Nat Rev Neurol 2023; 19:289-304. [PMID: 37055617 PMCID: PMC10100639 DOI: 10.1038/s41582-023-00800-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/15/2023]
Abstract
Current therapies for multiple sclerosis (MS) reduce both relapses and relapse-associated worsening of disability, which is assumed to be mainly associated with transient infiltration of peripheral immune cells into the central nervous system (CNS). However, approved therapies are less effective at slowing disability accumulation in patients with MS, in part owing to their lack of relevant effects on CNS-compartmentalized inflammation, which has been proposed to drive disability. Bruton tyrosine kinase (BTK) is an intracellular signalling molecule involved in the regulation of maturation, survival, migration and activation of B cells and microglia. As CNS-compartmentalized B cells and microglia are considered central to the immunopathogenesis of progressive MS, treatment with CNS-penetrant BTK inhibitors might curtail disease progression by targeting immune cells on both sides of the blood-brain barrier. Five BTK inhibitors that differ in selectivity, strength of inhibition, binding mechanisms and ability to modulate immune cells within the CNS are currently under investigation in clinical trials as a treatment for MS. This Review describes the role of BTK in various immune cells implicated in MS, provides an overview of preclinical data on BTK inhibitors and discusses the (largely preliminary) data from clinical trials.
Collapse
Affiliation(s)
- Julia Krämer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Amit Bar-Or
- Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
35
|
Lehto J, Sucksdorff M, Nylund M, Raitanen R, Matilainen M, Airas L. PET-measurable innate immune cell activation reduction in chronic active lesions in PPMS brain after rituximab treatment: a case report. J Neurol 2023; 270:2329-2332. [PMID: 36576574 DOI: 10.1007/s00415-022-11539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To evaluate the effects of rituximab treatment on innate immune cell activation in primary progressive multiple sclerosis (PPMS). METHODS A 48-year-old woman with PPMS was started on rituximab shortly after diagnosis. [11C]PK11195 PET imaging was employed to assess innate immune cell activation with special interest in the white matter around chronic lesions. PET, MRI, and disability measurements were performed at baseline and after 18 months of rituximab treatment. Specific binding of [11C]PK11195 was quantified using mean distribution volume ratios (DVRs), and at voxel-level based on proportions of active voxels. RESULTS The PPMS patient had higher PK11195 DVRs and higher proportions of active voxels in the thalamus and the normal appearing white matter compared to the healthy control group. The thalamic and perilesional white matter DVRs and the proportions of active voxels decreased after rituximab treatment. The patient remained clinically stable during the 5-years follow-up. CONCLUSIONS This case suggests that while a degree of smoldering activity persists, high efficacy B-cell-targeting therapy may contribute to reduced innate immune cell activation in PPMS brain areas relevant for disease progression. This case supports the therapeutic concept that controlling smoldering brain inflammation is beneficial for slowing down progression independent of relapses.
Collapse
Affiliation(s)
- Jussi Lehto
- Turku PET Centre, Turku University Hospital, Po Box 52, 20521, Turku, Finland.
- Neurocenter, Turku University Hospital, Turku, Finland.
| | - Marcus Sucksdorff
- Turku PET Centre, Turku University Hospital, Po Box 52, 20521, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Marjo Nylund
- Turku PET Centre, Turku University Hospital, Po Box 52, 20521, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Roope Raitanen
- Turku PET Centre, Turku University Hospital, Po Box 52, 20521, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Markus Matilainen
- Turku PET Centre, Turku University Hospital, Po Box 52, 20521, Turku, Finland
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Laura Airas
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
36
|
In vivo characterization of microglia and myelin relation in multiple sclerosis by combined 11C-PBR28 PET and synthetic MRI. J Neurol 2023; 270:3091-3102. [PMID: 36859627 DOI: 10.1007/s00415-023-11621-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND The in vivo relation between microglia activation and demyelination in multiple sclerosis is still unclear. OBJECTIVE We combined 11C-PBR28 positron emission tomography and rapid estimation of myelin for diagnostic imaging (REMyDI) to characterize the relation between these pathological processes in a heterogeneous MS cohort. METHODS 11C-PBR28 standardized uptake values normalized by a pseudo-reference region (SUVR) were used to measure activated microglia. A voxelwise analysis compared 11C-PBR28 SUVR in the white matter of 38 MS patients and 16 matched healthy controls. The relative difference in SUVR served as a threshold to classify patients' lesioned, perilesional and normal-appearing white matter as active or inactive. REMyDI was acquired in 27 MS patients for assessing myelin content in active and inactive white matter and its relationship with SUVR. Finally, we investigated the contribution of radiological metrics to clinical outcomes. RESULTS 11C-PBR28 SUVR were abnormally higher in several white matter areas in MS. Myelin content was lower in active compared to inactive corresponding white matter regions. An inverse correlation between SUVR and myelin content was found. Radiological metrics correlated with both neurological and cognitive impairment. CONCLUSION our data suggest an inverse relation of microglia activation and myelination, particularly in perilesional white matter tissue.
Collapse
|
37
|
Hollen C, Neilson LE, Barajas RF, Greenhouse I, Spain RI. Oxidative stress in multiple sclerosis-Emerging imaging techniques. Front Neurol 2023; 13:1025659. [PMID: 36712455 PMCID: PMC9878592 DOI: 10.3389/fneur.2022.1025659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
While conventional magnetic resonance imaging (MRI) is central to the evaluation of patients with multiple sclerosis, its role in detecting the pathophysiology underlying neurodegeneration is more limited. One of the common outcome measures for progressive multiple sclerosis trials, atrophy on brain MRI, is non-specific and reflects end-stage changes after considerable neurodegeneration has occurred. Identifying biomarkers that identify processes underlying neurodegeneration before it is irreversible and that reflect relevant neurodegenerative pathophysiology is an area of significant need. Accumulating evidence suggests that oxidative stress plays a major role in the pathogenesis of multiple neurodegenerative diseases, including multiple sclerosis. Imaging markers related to inflammation, myelination, and neuronal integrity have been areas of advancement in recent years but oxidative stress has remained an area of unrealized potential. In this article we will begin by reviewing the role of oxidative stress in the pathogenesis of multiple sclerosis. Chronic inflammation appears to be directly related to the increased production of reactive oxygen species and the effects of subsequent oxidative stress appear to be amplified by aging and accumulating disease. We will then discuss techniques in development used in the assessment of MS as well as other models of neurodegenerative disease in which oxidative stress is implicated. Multiple blood and CSF markers of oxidative stress have been evaluated in subjects with MS, but non-invasive imaging offers major upside in that it provides real-time assessment within the brain.
Collapse
Affiliation(s)
- Christopher Hollen
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Lee E. Neilson
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Ramon F. Barajas
- Department of Radiology, Neuroradiology Section, Oregon Health & Sciences University, Portland, OR, United States
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Ian Greenhouse
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Rebecca I. Spain
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| |
Collapse
|
38
|
Boyko AN, Dolgushin MB, Karalkina MA. [New neuroimaging methods in assessing the activity of neuroinflammation in multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:8-14. [PMID: 37560828 DOI: 10.17116/jnevro20231230728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The review presents current data on the use of positron emission tomography and single-photon emission computed tomography in multiple sclerosis (MS) to assess the activity of the pathological process, including neuroinflammation, demyelination, activation of microglia, neurodegeneration and local blood flow disorders. These methodologies are a new approach for studying the mechanisms of action and evaluating the clinical effect of disease modifying therapy of MS, especially those capable of penetrating into brain tissue. Among them, the most attention is attracted by cladribine tablets acting on the mechanism of immune reconstitution therapy, most likely with the modulation of immune reactions directly in the brain tissue.
Collapse
Affiliation(s)
- A N Boyko
- Federal Center of Brain and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M B Dolgushin
- Federal Center of Brain and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
| | - M A Karalkina
- Federal Center of Brain and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
39
|
Yong VW. Microglia in multiple sclerosis: Protectors turn destroyers. Neuron 2022; 110:3534-3548. [PMID: 35882229 DOI: 10.1016/j.neuron.2022.06.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022]
Abstract
Microglia are implicated in all stages of multiple sclerosis (MS). Microglia alterations are detected by positron emission tomography in people living with MS prior to the formation of structural lesions determined through magnetic resonance imaging. In histological specimens, clusters of microglia form in normal-appearing tissue likely predating the development of lesions. Features of degeneration-associated/pro-inflammatory states of microglia increase with chronicity of MS. However, microglia play many beneficial roles including the removal of neurotoxins and in fostering repair. The protector-gone-rogue microglia in MS is featured herein. We consider mechanisms of microglia neurotoxicity and discuss factors, including aging, osteopontin, and iron metabolism, that cause microglia to lose their protective states and become injurious. We evaluate medications to affect microglia in MS, such as the emerging class of Bruton's tyrosine kinase inhibitors. The framework of microglia-turned-destroyers may instigate new approaches to counter microglia-driven neurodegeneration in MS.
Collapse
Affiliation(s)
- V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
40
|
Pitt D, Lo CH, Gauthier SA, Hickman RA, Longbrake E, Airas LM, Mao-Draayer Y, Riley C, De Jager PL, Wesley S, Boster A, Topalli I, Bagnato F, Mansoor M, Stuve O, Kister I, Pelletier D, Stathopoulos P, Dutta R, Lincoln MR. Toward Precision Phenotyping of Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/6/e200025. [PMID: 36041861 PMCID: PMC9427000 DOI: 10.1212/nxi.0000000000200025] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 02/07/2022] [Indexed: 11/15/2022]
Abstract
The classification of multiple sclerosis (MS) has been established by Lublin in 1996 and revised in 2013. The revision includes clinically isolated syndrome, relapsing-remitting, primary progressive and secondary progressive MS, and has added activity (i.e., formation of white matter lesions or clinical relapses) as a qualifier. This allows for the distinction between active and nonactive progression, which has been shown to be of clinical importance. We propose that a logical extension of this classification is the incorporation of additional key pathological processes, such as chronic perilesional inflammation, neuroaxonal degeneration, and remyelination. This will distinguish MS phenotypes that may present as clinically identical but are driven by different combinations of pathological processes. A more precise description of MS phenotypes will improve prognostication and personalized care as well as clinical trial design. Thus, our proposal provides an expanded framework for conceptualizing MS and for guiding development of biomarkers for monitoring activity along the main pathological axes in MS.
Collapse
Affiliation(s)
- David Pitt
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada.
| | - Chih Hung Lo
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Susan A Gauthier
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Richard A Hickman
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Erin Longbrake
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Laura M Airas
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Yang Mao-Draayer
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Claire Riley
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Philip Lawrence De Jager
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Sarah Wesley
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Aaron Boster
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Ilir Topalli
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Francesca Bagnato
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Mohammad Mansoor
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Olaf Stuve
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Ilya Kister
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Daniel Pelletier
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Panos Stathopoulos
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Ranjan Dutta
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Matthew R Lincoln
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| |
Collapse
|
41
|
Geladaris A, Torke S, Weber MS. Bruton's Tyrosine Kinase Inhibitors in Multiple Sclerosis: Pioneering the Path Towards Treatment of Progression? CNS Drugs 2022; 36:1019-1030. [PMID: 36178589 PMCID: PMC9550714 DOI: 10.1007/s40263-022-00951-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 11/03/2022]
Abstract
In multiple sclerosis (MS) persisting disability can derive from acute relapses or, alternatively, from slow and steady deterioration, termed chronic progression. Emerging data suggest that the latter process occurs largely independent from relapse activity or development of new central nervous system (CNS) inflammatory lesions. Pathophysiologically, acute relapses develop as a consequence of de novo CNS infiltration of immune cells, while MS progression appears to be driven by a CNS-trapped inflammatory circuit between CNS-established hematopoietic cells as well as CNS-resident cells, such as microglia, astrocytes, and oligodendrocytes. Within the last decades, powerful therapies have been developed to control relapse activity in MS. All of these agents were primarily designed to systemically target the peripheral immune system and/or to prevent CNS infiltration of immune cells. Based on the above described dichotomy of MS pathophysiology, it is understandable that these agents only exert minor effects on progression and that novel targets within the CNS have to be utilized to control MS progression independent of relapse activity. In this regard, one promising strategy may be the inhibition of the enzyme Bruton's tyrosine kinase (BTK), which is centrally involved in the activation of B cells as well as myeloid cells, such as macrophages and microglia. In this review, we discuss where and to what extent BTK is involved in the immunological and molecular cascades driving MS progression. We furthermore summarize all mechanistic, preclinical, and clinical data on the various BTK inhibitors (evobrutinib, tolebrutinib, fenebrutinib, remibrutinib, orelabrutinib, BIIB091) that are currently in development for treatment of MS, with a particular focus on the potential ability of either drug to control MS progression.
Collapse
Affiliation(s)
- Anastasia Geladaris
- Institute of Neuropathology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, 37075, Göttingen, Germany
| | - Sebastian Torke
- Institute of Neuropathology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Experimental and Clinical Research Center of the Charité, University Medical Center and the Max-Dellbrück-Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Martin S Weber
- Institute of Neuropathology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology, 37075, Göttingen, Germany.
- Department of Neurology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| |
Collapse
|
42
|
Xie F, Wei W. [ 64Cu]Cu-ATSM: an emerging theranostic agent for cancer and neuroinflammation. Eur J Nucl Med Mol Imaging 2022; 49:3964-3972. [PMID: 35918492 DOI: 10.1007/s00259-022-05887-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
43
|
Pitombeira MS, Koole M, Campanholo KR, Souza AM, Duran FLS, Solla DJF, Mendes MF, Pereira SLA, Rimkus CM, Busatto GF, Callegaro D, Buchpiguel CA, de Paula Faria D. Innate immune cells and myelin profile in multiple sclerosis: a multi-tracer PET/MR study. Eur J Nucl Med Mol Imaging 2022; 49:4551-4566. [PMID: 35838758 DOI: 10.1007/s00259-022-05899-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/30/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Neuropathological studies have demonstrated distinct profiles of microglia activation and myelin injury among different multiple sclerosis (MS) phenotypes and disability stages. PET imaging using specific tracers may uncover the in vivo molecular pathology and broaden the understanding of the disease heterogeneity. METHODS We used the 18-kDa translocator protein (TSPO) tracer (R)-[11C]PK11195 and [11C]PIB PET images acquired in a hybrid PET/MR 3 T system to characterize, respectively, the profile of innate immune cells and myelin content in 47 patients with MS compared to 18 healthy controls (HC). For the volume of interest (VOI)-based analysis of the dynamic data, (R)-[11C]PK11195 distribution volume (VT) was determined for each subject using a metabolite-corrected arterial plasma input function while [11C]PIB distribution volume ratio (DVR) was estimated using a reference region extracted by a supervised clustering algorithm. A voxel-based analysis was also performed using Statistical Parametric Mapping. Functional disability was evaluated by the Expanded Disability Status Scale (EDSS), Multiple Sclerosis Functional Composite (MSFC), and Symbol Digit Modality Test (SDMT). RESULTS In the VOI-based analysis, [11C]PIB DVR differed between patients and HC in the corpus callosum (P = 0.019) while no differences in (R)-[11C]PK11195 VT were observed in patients relative to HC. Furthermore, no correlations or associations were observed between both tracers within the VOI analyzed. In the voxel-based analysis, high (R)-[11C]PK11195 uptake was observed diffusively in the white matter (WM) when comparing the progressive phenotype and HC, and lower [11C]PIB uptake was observed in certain WM regions when comparing the relapsing-remitting phenotype and HC. None of the tracers were able to differentiate phenotypes at voxel or VOI level in our cohort. Linear regression models adjusted for age, sex, and phenotype demonstrated that higher EDSS was associated with an increased (R)-[11C]PK11195 VT and lower [11C]PIB DVR in corpus callosum (P = 0.001; P = 0.023), caudate (P = 0.015; P = 0.008), and total T2 lesion (P = 0.007; P = 0.012), while better cognitive scores in SDMT were associated with higher [11C]PIB DVR in the corpus callosum (P = 0.001), and lower (R)-[11C]PK11195 VT (P = 0.013). CONCLUSIONS Widespread innate immune cells profile and marked loss of myelin in T2 lesions and regions close to the ventricles may occur independently and are associated with disability, in both WM and GM structures.
Collapse
Affiliation(s)
- Milena Sales Pitombeira
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Michel Koole
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Flanders, Belgium
| | - Kenia R Campanholo
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Aline M Souza
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fábio L S Duran
- Laboratory of Psychiatric Neuroimaging (LIM21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Davi J Fontoura Solla
- Department of Neurology, Division of Neurosurgery, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria F Mendes
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Carolina M Rimkus
- Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Geraldo Filho Busatto
- Laboratory of Psychiatric Neuroimaging (LIM21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Dagoberto Callegaro
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carlos A Buchpiguel
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
44
|
Misin O, Matilainen M, Nylund M, Honkonen E, Rissanen E, Sucksdorff M, Airas L. Innate Immune Cell–Related Pathology in the Thalamus Signals a Risk for Disability Progression in Multiple Sclerosis. NEUROLOGY - NEUROIMMUNOLOGY NEUROINFLAMMATION 2022; 9:9/4/e1182. [PMID: 35581004 PMCID: PMC9128041 DOI: 10.1212/nxi.0000000000001182] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives Our aim was to investigate whether 18-kDa translocator protein (TSPO) radioligand binding in gray matter (GM) predicts later disability progression in multiple sclerosis (MS). Methods In this prospective imaging study, innate immune cells were investigated in the MS patient brain using PET imaging. The distribution volume ratio (DVR) of the TSPO-binding radioligand [11C]PK11195 was determined in 5 GM regions: thalamus, caudate, putamen, pallidum, and cortical GM. Volumetric brain MRI parameters were obtained for comparison. The Expanded Disability Status Scale (EDSS) score was assessed at baseline and after follow-up of 3.0 ± 0.3 (mean ± SD) years. Disability progression was defined as an EDSS score increase of 1.0 point or 0.5 point if the baseline EDSS score was ≥6.0. A forward-type stepwise logistic regression model was constructed to compare multiple imaging and clinical variables in their ability to predict later disability progression. Results The cohort consisted of 66 patients with MS and 18 healthy controls. Patients with later disability progression (n = 17) had more advanced atrophy in the thalamus, caudate, and putamen at baseline compared with patients with no subsequent worsening. TSPO binding was significantly higher in the thalamus among the patients with later worsening. The thalamic DVR was the only measured imaging variable that remained a significant predictor of disability progression in the regression model. The final model predicted disability progression with 52.9% sensitivity and 93.9% specificity with an area under the curve value of 0.82 (receiver operating characteristic curve). Discussion Increased TSPO radioligand binding in the thalamus has potential in predicting short-term disability progression in MS and seems to be more sensitive for this than GM atrophy measures.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Microglia normally protects the central nervous system (CNS) against insults. However, their persistent activation in multiple sclerosis (MS) contributes to injury. Here, we review microglia activation in MS and their detection using positron emission tomography (PET). RECENT FINDINGS During lesion evolution and the progression of MS, microglia activity may contribute to neurotoxicity through the release of pro-inflammatory cytokines, reactive oxidative species, proteases and glutamate. A means to detect and monitor microglia activation in individuals living with MS is provided by positron emission tomography (PET) imaging using the mitochondrial 18-kDa translocator protein (TSPO) ligand. TSPO PET imaging shows increased microglial activation within the normal appearing white matter that precedes radiological signs of neurodegeneration measured by T2 lesion enlargement. PET-detected microglia activation increases with progression of MS. These findings demand the use of CNS penetrant inhibitors that affect microglia. Such therapies may include hydroxychloroquine that is recently reported in a small study to reduce the expected progression in primary progressive MS, and Bruton's tyrosine kinase inhibitors for which there are now eleven Phase 3 registered trials in MS. SUMMARY Microglial activation drives injury in MS. PET imaging with microglia-specific ligands offer new insights into progression of MS and as a monitor for treatment responses.
Collapse
|
46
|
Brusaferri L, Alshelh Z, Martins D, Kim M, Weerasekera A, Housman H, Morrissey EJ, Knight PC, Castro-Blanco KA, Albrecht DS, Tseng CE, Zürcher NR, Ratai EM, Akeju O, Makary MM, Catana C, Mercaldo ND, Hadjikhani N, Veronese M, Turkheimer F, Rosen BR, Hooker JM, Loggia ML. The pandemic brain: Neuroinflammation in non-infected individuals during the COVID-19 pandemic. Brain Behav Immun 2022; 102:89-97. [PMID: 35181440 PMCID: PMC8847082 DOI: 10.1016/j.bbi.2022.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 01/25/2023] Open
Abstract
While COVID-19 research has seen an explosion in the literature, the impact of pandemic-related societal and lifestyle disruptions on brain health among the uninfected remains underexplored. However, a global increase in the prevalence of fatigue, brain fog, depression and other "sickness behavior"-like symptoms implicates a possible dysregulation in neuroimmune mechanisms even among those never infected by the virus. We compared fifty-seven 'Pre-Pandemic' and fifteen 'Pandemic' datasets from individuals originally enrolled as control subjects for various completed, or ongoing, research studies available in our records, with a confirmed negative test for SARS-CoV-2 antibodies. We used a combination of multimodal molecular brain imaging (simultaneous positron emission tomography / magnetic resonance spectroscopy), behavioral measurements, imaging transcriptomics and serum testing to uncover links between pandemic-related stressors and neuroinflammation. Healthy individuals examined after the enforcement of 2020 lockdown/stay-at-home measures demonstrated elevated brain levels of two independent neuroinflammatory markers (the 18 kDa translocator protein, TSPO, and myoinositol) compared to pre-lockdown subjects. The serum levels of two inflammatory markers (interleukin-16 and monocyte chemoattractant protein-1) were also elevated, although these effects did not reach statistical significance after correcting for multiple comparisons. Subjects endorsing higher symptom burden showed higher TSPO signal in the hippocampus (mood alteration, mental fatigue), intraparietal sulcus and precuneus (physical fatigue), compared to those reporting little/no symptoms. Post-lockdown TSPO signal changes were spatially aligned with the constitutive expression of several genes involved in immune/neuroimmune functions. This work implicates neuroimmune activation as a possible mechanism underlying the non-virally-mediated symptoms experienced by many during the COVID-19 pandemic. Future studies will be needed to corroborate and further interpret these preliminary findings.
Collapse
Affiliation(s)
- Ludovica Brusaferri
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zeynab Alshelh
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF London, UK; NIHR Maudsley Biomedical Research Centre, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK
| | - Minhae Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Akila Weerasekera
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Hope Housman
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Erin J Morrissey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Paulina C Knight
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Kelly A Castro-Blanco
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Daniel S Albrecht
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Chieh-En Tseng
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Nicole R Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Eva-Maria Ratai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Meena M Makary
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, 12613 Giza, Egypt
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Nathaniel D Mercaldo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Nouchine Hadjikhani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF London, UK; NIHR Maudsley Biomedical Research Centre, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK; Department of Information Engineering, University of Padua, Padua, Italy
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF London, UK; NIHR Maudsley Biomedical Research Centre, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
47
|
Schroyen G, Sleurs C, Bartsoen E, Smeets D, van Weehaeghe D, Van Laere K, Smeets A, Deprez S, Sunaert S. Neuroinflammation as potential precursor of leukoencephalopathy in early-stage breast cancer patients: A cross-sectional PET-MRI study. Breast 2022; 62:61-68. [PMID: 35131644 PMCID: PMC8829129 DOI: 10.1016/j.breast.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/24/2022] Open
Abstract
Background Although chemotherapy-induced leukoencephalopathy has been described in case and cohort studies, literature remains inconclusive about its prevalence and mechanisms. Therefore, we investigated the presence of leukoencephalopathy after multiagent chemotherapy in women treated for breast cancer and potential underlying neuroinflammatory processes. Methods In this exploratory study, 15 chemotherapy-treated and 15 age-matched chemotherapy-naïve patients with early-stage breast cancer, as well as 15 healthy controls underwent simultaneous PET-MR neuroimaging, including T1-weighted MPRAGE, T2-weighted FLAIR and dynamic PET with the 18-kDA translocator protein (TSPO) radioligand [18F]DPA-714. Total and regional (juxtacortical, periventricular, deep white matter and infratentorial) lesion burden were compared between the groups with one-way ANOVA. With paired t-tests, [18F]DPA-714 volume of distribution [VT, including partial volume correction (PVC)] in lesioned and normal appearing white matter (NAWM) were compared within subjects, to investigate inflammation. Finally, two general linear models were used to examine the predictive values of neurofilament light-chain (NfL) serum levels on (1) total lesion burden or (2) PVC [18F]DPA-714 VT of lesions showing elevated inflammation. Results No significant differences were found in total or localized lesion burden. However, significantly higher (20–45%) TSPO uptake was observed in juxtacortical lesions (p ≤ 0.008, t ≥ 3.90) compared to NAWM in both cancer groups, but only persisted for chemotherapy-treated patients after PVC (p = 0.005, t = 4.30). NfL serum levels were not associated with total lesion volume or tracer uptake in juxtacortical lesions. Conclusion This multimodal neuroimaging study suggests that neuroinflammatory processes could be involved in the development of juxtacortical, but not periventricular or deep white matter, leukoencephalopathy shortly after chemotherapy for early-stage breast cancer. No increased white matter lesion load in breast cancer patients. No differences in TSPO uptake in periventricular or deep white matter lesions. Higher TSPO uptake in juxtacortical lesions in chemotherapy-treated breast cancer patients. TSPO uptake in inflammatory lesions and NfL levels not significantly associated, despite a trend.
Collapse
|
48
|
Wang J, Jin L, Zhang X, Yu H, Ge J, Deng B, Li M, Zuo C, Chen X. Activated microglia by 18F-DPA714 PET in a case of anti-LGI1 autoimmune encephalitis. J Neuroimmunol 2022; 368:577879. [DOI: 10.1016/j.jneuroim.2022.577879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022]
|
49
|
Portaccio E, Bellinvia A, Fonderico M, Pastò L, Razzolini L, Totaro R, Spitaleri D, Lugaresi A, Cocco E, Onofrj M, Di Palma F, Patti F, Maimone D, Valentino P, Confalonieri P, Protti A, Sola P, Lus G, Maniscalco GT, Brescia Morra V, Salemi G, Granella F, Pesci I, Bergamaschi R, Aguglia U, Vianello M, Simone M, Lepore V, Iaffaldano P, Filippi M, Trojano M, Amato MP. Progression is independent of relapse activity in early multiple sclerosis: a real-life cohort study. Brain 2022; 145:2796-2805. [PMID: 35325059 DOI: 10.1093/brain/awac111] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Disability accrual in multiple sclerosis may occur as relapse-associated worsening or progression independent of relapse activity. The role of progression independent of relapse activity in early MS is yet to be established. The objective of this multicentre, observational, retrospective cohort study was to investigate the contribution of relapse-associated worsening and progression independent of relapse activity to confirmed disability accumulation in patients with clinically isolated syndrome and early relapsing-remitting multiple sclerosis, assessed within one year from onset and with follow-up >/= 5 years (n = 5169). Data were extracted from the Italian Multiple Sclerosis Register. Confirmed disability accumulation was defined by an increase in Expanded Disability Status Scale score confirmed at 6 months, and classified per temporal association with relapses. Factors associated with progression independent of relapse activity and relapse-associated worsening were assessed using multivariable Cox regression models. Over a follow-up period of 11.5 ± 5.5 years, progression independent of relapse activity occurred in 1427 (27.6%) and relapse-associated worsening in 922 (17.8%) patients. Progression independent of relapse activity was associated with older age at baseline (HR = 1.19; 95CI 1.13-1.25, p < 0.001), having a relapsing-remitting course at baseline (HR = 1.44; 95CI 1.28-1.61, p < 0.001), longer disease duration at baseline (HR = 1.56; 95%CI 1.28-1.90, p < 0.001), lower Expanded Disability Status Scale at baseline (HR = 0.92; 95CI 0.88-0.96, p < 0.001), lower number of relapses before the event (HR = 0.76; 95CI 0.73-0.80, p < 0.001). Relapse-associated worsening was associated with younger age at baseline (HR = 0.87; 95CI 0.81-0.93, p < 0.001), having a relapsing-remitting course at baseline (HR = 1.55; 95CI 1.35-1.79, p < 0.001), lower Expanded Disability Status Scale at baseline (HR = 0.94; 95CI 0.89-0.99, p = 0.017), higher number of relapses before the event (HR = 1.04; 95CI 1.01-1.07, p < 0.001). Longer exposure to disease modifying drugs was associated with a lower risk of both progression independent of relapse activity and relapse-associated worsening (p < 0.001). This study provides evidence that in early relapsing-onset multiple sclerosis cohort, progression independent of relapse activity was an important contributor to confirmed disability accumulation. Our findings indicate that insidious progression appears even in the earliest phases of the disease, suggesting that inflammation and neurodegeneration can represent a single disease continuum, in which age is one of the main determinants of disease phenomenology.
Collapse
Affiliation(s)
- Emilio Portaccio
- University of Florence, Department of NEUROFARBA, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Department of Neurology, Florence, Italy
| | - Angelo Bellinvia
- University of Florence, Department of NEUROFARBA, Florence, Italy
| | - Mattia Fonderico
- University of Florence, Department of NEUROFARBA, Florence, Italy
| | - Luisa Pastò
- University of Florence, Department of NEUROFARBA, Florence, Italy
| | | | - Rocco Totaro
- San Salvatore Hospital, Demyelinating Disease Center, L'Aquila, Italy
| | - Daniele Spitaleri
- AORN San G. Moscati di Avellino, Department of Neurology, Avellino, Italy
| | - Alessandra Lugaresi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Riabilitazione Sclerosi Multipla, Bologna, Italy.,Università di Bologna, Dipartimento di Scienze Biomediche e Neuromotorie, Bologna, Italy
| | - Eleonora Cocco
- University of Cagliari, Department of Medical Science and Public health, Centro Sclerosi Multipla, Cagliari, Italy
| | - Marco Onofrj
- University G. d'Annunzio di Chieti-Pescara, Neuroscience, Imaging and Clinical Sciences, Chieti, Italy
| | - Franco Di Palma
- ASST Lariana Ospedale S. Anna, Department of Neurology, Como, Italy
| | - Francesco Patti
- University of Catania, Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Catania, Italy
| | - Davide Maimone
- Ospedale Garibaldi Centro, Department of Neurology, Catania, Italy
| | - Paola Valentino
- Institute of Neurology, University "Magna Graecia", Catanzaro, Italy
| | - Paolo Confalonieri
- Fondazione IRCCS Istituto Neurologico C. Besta, Neuroimmunology Unit, Milan, Italy
| | | | - Patrizia Sola
- University of Modena and Reggio Emilia, Department of Neurology, Modena, Italy
| | - Giacomo Lus
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Vincenzo Brescia Morra
- Federico II University, Naples, Multiple Sclerosis Clinical Care and Research Center, Department of Neuroscience (NSRO), Naples, Italy
| | - Giuseppe Salemi
- University of Palermo, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Palermo, Italy
| | - Franco Granella
- University of Parma, Unit of Neurosciences, Department of Medicine and Surgery, Parma, Italy
| | - Ilaria Pesci
- Ospedale VAIO di Fidenza AUSL PR, Department of Neurology, Fidenza, Italy
| | | | - Umberto Aguglia
- Magna Graecia University of Catanzaro, Department of Medical and Surgical Sciences, Catanzaro, Italy
| | - Marika Vianello
- Unit of Neurology, Ca' Fancello Hospital, AULSS2, Treviso, Italy
| | - Marta Simone
- University 'Aldo Moro' of Bari, Child Neuropsychiatric Unit, Department of Biomedical Sciences and Human Oncology, Bari, Italy
| | - Vito Lepore
- Public Health Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Pietro Iaffaldano
- University of Bari Aldo Moro, Department of Basic Medical Sciences, Neurosciences and Sense Organs, Bari, Italy
| | - Massimo Filippi
- San Raffaele Scientific Institute; Vita-Salute San Raffaele University, Milan, Italy.,Neurology Unit and MS Center, IRCCS San Raffaele Scientific Institute; Neuroimaging Research Unit, Division of Neuroscience; Neurorehabilitation Unit and Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Trojano
- University of Bari Aldo Moro, Department of Basic Medical Sciences, Neurosciences and Sense Organs, Bari, Italy
| | - Maria Pia Amato
- University of Florence, Department of NEUROFARBA, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Department of Neurology, Florence, Italy
| | | |
Collapse
|
50
|
Zinger N, Ponath G, Sweeney E, Nguyen TD, Lo CH, Diaz I, Dimov A, Teng L, Zexter L, Comunale J, Wang Y, Pitt D, Gauthier SA. Dimethyl Fumarate Reduces Inflammation in Chronic Active Multiple Sclerosis Lesions. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/2/e1138. [PMID: 35046083 PMCID: PMC8771666 DOI: 10.1212/nxi.0000000000001138] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022]
Abstract
Background and Objectives To determine the effects of dimethyl fumarate (DMF) and glatiramer acetate on iron content in chronic active lesions in patients with multiple sclerosis (MS) and in human microglia in vitro. Methods This was a retrospective observational study of 34 patients with relapsing-remitting MS and clinically isolated syndrome treated with DMF or glatiramer acetate. Patients had lesions with hyperintense rims on quantitative susceptibility mapping, were treated with DMF or glatiramer acetate (GA), and had a minimum of 2 on-treatment scans. Changes in susceptibility in rim lesions were compared among treatment groups in a linear mixed effects model. In a separate in vitro study, induced pluripotent stem cell–derived human microglia were treated with DMF or GA, and treatment-induced changes in iron content and activation state of microglia were compared. Results Rim lesions in patients treated with DMF had on average a 2.77-unit reduction in susceptibility per year over rim lesions in patients treated with GA (bootstrapped 95% CI −5.87 to −0.01), holding all other variables constant. Moreover, DMF but not GA reduced inflammatory activation and concomitantly iron content in human microglia in vitro. Discussion Together, our data indicate that DMF-induced reduction of susceptibility in MS lesions is associated with a decreased activation state in microglial cells. We have demonstrated that a specific disease modifying therapy, DMF, decreases glial activity in chronic active lesions. Susceptibility changes in rim lesions provide an in vivo biomarker for the effect of DMF on microglial activity. Classification of Evidence This study provided Class III evidence that DMF is superior to GA in the presence of iron as a marker of inflammation as measured by MRI quantitative susceptibility mapping.
Collapse
Affiliation(s)
- Nicole Zinger
- From the Department of Neurology (N.Z., L.Z., S.A.G.), Weill Cornell Medicine, New York; Department of Neurology (G.P., C.H.L., D.P.), Yale School of Medicine, New Haven, CT; Department of Population Health Sciences (E.S., I.D.), and Department of Radiology (T.D.N., A.D., J.C., Y.W., S.A.G.), Weil Cornell Medicine, New York; Department of Medicine (L.T.), Yale New Haven Hospital, New Haven, CT; Feil Family Brain and Mind Institute (S.A.G.), Weill Cornell Medicine, New York; and Lee Kong Chian School of Medicine (C.H.L.), Nanyang Technological University, Singapore
| | - Gerald Ponath
- From the Department of Neurology (N.Z., L.Z., S.A.G.), Weill Cornell Medicine, New York; Department of Neurology (G.P., C.H.L., D.P.), Yale School of Medicine, New Haven, CT; Department of Population Health Sciences (E.S., I.D.), and Department of Radiology (T.D.N., A.D., J.C., Y.W., S.A.G.), Weil Cornell Medicine, New York; Department of Medicine (L.T.), Yale New Haven Hospital, New Haven, CT; Feil Family Brain and Mind Institute (S.A.G.), Weill Cornell Medicine, New York; and Lee Kong Chian School of Medicine (C.H.L.), Nanyang Technological University, Singapore
| | - Elizabeth Sweeney
- From the Department of Neurology (N.Z., L.Z., S.A.G.), Weill Cornell Medicine, New York; Department of Neurology (G.P., C.H.L., D.P.), Yale School of Medicine, New Haven, CT; Department of Population Health Sciences (E.S., I.D.), and Department of Radiology (T.D.N., A.D., J.C., Y.W., S.A.G.), Weil Cornell Medicine, New York; Department of Medicine (L.T.), Yale New Haven Hospital, New Haven, CT; Feil Family Brain and Mind Institute (S.A.G.), Weill Cornell Medicine, New York; and Lee Kong Chian School of Medicine (C.H.L.), Nanyang Technological University, Singapore
| | - Thanh D Nguyen
- From the Department of Neurology (N.Z., L.Z., S.A.G.), Weill Cornell Medicine, New York; Department of Neurology (G.P., C.H.L., D.P.), Yale School of Medicine, New Haven, CT; Department of Population Health Sciences (E.S., I.D.), and Department of Radiology (T.D.N., A.D., J.C., Y.W., S.A.G.), Weil Cornell Medicine, New York; Department of Medicine (L.T.), Yale New Haven Hospital, New Haven, CT; Feil Family Brain and Mind Institute (S.A.G.), Weill Cornell Medicine, New York; and Lee Kong Chian School of Medicine (C.H.L.), Nanyang Technological University, Singapore
| | - Chih Hung Lo
- From the Department of Neurology (N.Z., L.Z., S.A.G.), Weill Cornell Medicine, New York; Department of Neurology (G.P., C.H.L., D.P.), Yale School of Medicine, New Haven, CT; Department of Population Health Sciences (E.S., I.D.), and Department of Radiology (T.D.N., A.D., J.C., Y.W., S.A.G.), Weil Cornell Medicine, New York; Department of Medicine (L.T.), Yale New Haven Hospital, New Haven, CT; Feil Family Brain and Mind Institute (S.A.G.), Weill Cornell Medicine, New York; and Lee Kong Chian School of Medicine (C.H.L.), Nanyang Technological University, Singapore
| | - Ivan Diaz
- From the Department of Neurology (N.Z., L.Z., S.A.G.), Weill Cornell Medicine, New York; Department of Neurology (G.P., C.H.L., D.P.), Yale School of Medicine, New Haven, CT; Department of Population Health Sciences (E.S., I.D.), and Department of Radiology (T.D.N., A.D., J.C., Y.W., S.A.G.), Weil Cornell Medicine, New York; Department of Medicine (L.T.), Yale New Haven Hospital, New Haven, CT; Feil Family Brain and Mind Institute (S.A.G.), Weill Cornell Medicine, New York; and Lee Kong Chian School of Medicine (C.H.L.), Nanyang Technological University, Singapore
| | - Alexey Dimov
- From the Department of Neurology (N.Z., L.Z., S.A.G.), Weill Cornell Medicine, New York; Department of Neurology (G.P., C.H.L., D.P.), Yale School of Medicine, New Haven, CT; Department of Population Health Sciences (E.S., I.D.), and Department of Radiology (T.D.N., A.D., J.C., Y.W., S.A.G.), Weil Cornell Medicine, New York; Department of Medicine (L.T.), Yale New Haven Hospital, New Haven, CT; Feil Family Brain and Mind Institute (S.A.G.), Weill Cornell Medicine, New York; and Lee Kong Chian School of Medicine (C.H.L.), Nanyang Technological University, Singapore
| | - Leilei Teng
- From the Department of Neurology (N.Z., L.Z., S.A.G.), Weill Cornell Medicine, New York; Department of Neurology (G.P., C.H.L., D.P.), Yale School of Medicine, New Haven, CT; Department of Population Health Sciences (E.S., I.D.), and Department of Radiology (T.D.N., A.D., J.C., Y.W., S.A.G.), Weil Cornell Medicine, New York; Department of Medicine (L.T.), Yale New Haven Hospital, New Haven, CT; Feil Family Brain and Mind Institute (S.A.G.), Weill Cornell Medicine, New York; and Lee Kong Chian School of Medicine (C.H.L.), Nanyang Technological University, Singapore
| | - Lily Zexter
- From the Department of Neurology (N.Z., L.Z., S.A.G.), Weill Cornell Medicine, New York; Department of Neurology (G.P., C.H.L., D.P.), Yale School of Medicine, New Haven, CT; Department of Population Health Sciences (E.S., I.D.), and Department of Radiology (T.D.N., A.D., J.C., Y.W., S.A.G.), Weil Cornell Medicine, New York; Department of Medicine (L.T.), Yale New Haven Hospital, New Haven, CT; Feil Family Brain and Mind Institute (S.A.G.), Weill Cornell Medicine, New York; and Lee Kong Chian School of Medicine (C.H.L.), Nanyang Technological University, Singapore
| | - Joseph Comunale
- From the Department of Neurology (N.Z., L.Z., S.A.G.), Weill Cornell Medicine, New York; Department of Neurology (G.P., C.H.L., D.P.), Yale School of Medicine, New Haven, CT; Department of Population Health Sciences (E.S., I.D.), and Department of Radiology (T.D.N., A.D., J.C., Y.W., S.A.G.), Weil Cornell Medicine, New York; Department of Medicine (L.T.), Yale New Haven Hospital, New Haven, CT; Feil Family Brain and Mind Institute (S.A.G.), Weill Cornell Medicine, New York; and Lee Kong Chian School of Medicine (C.H.L.), Nanyang Technological University, Singapore
| | - Yi Wang
- From the Department of Neurology (N.Z., L.Z., S.A.G.), Weill Cornell Medicine, New York; Department of Neurology (G.P., C.H.L., D.P.), Yale School of Medicine, New Haven, CT; Department of Population Health Sciences (E.S., I.D.), and Department of Radiology (T.D.N., A.D., J.C., Y.W., S.A.G.), Weil Cornell Medicine, New York; Department of Medicine (L.T.), Yale New Haven Hospital, New Haven, CT; Feil Family Brain and Mind Institute (S.A.G.), Weill Cornell Medicine, New York; and Lee Kong Chian School of Medicine (C.H.L.), Nanyang Technological University, Singapore
| | - David Pitt
- From the Department of Neurology (N.Z., L.Z., S.A.G.), Weill Cornell Medicine, New York; Department of Neurology (G.P., C.H.L., D.P.), Yale School of Medicine, New Haven, CT; Department of Population Health Sciences (E.S., I.D.), and Department of Radiology (T.D.N., A.D., J.C., Y.W., S.A.G.), Weil Cornell Medicine, New York; Department of Medicine (L.T.), Yale New Haven Hospital, New Haven, CT; Feil Family Brain and Mind Institute (S.A.G.), Weill Cornell Medicine, New York; and Lee Kong Chian School of Medicine (C.H.L.), Nanyang Technological University, Singapore
| | - Susan A Gauthier
- From the Department of Neurology (N.Z., L.Z., S.A.G.), Weill Cornell Medicine, New York; Department of Neurology (G.P., C.H.L., D.P.), Yale School of Medicine, New Haven, CT; Department of Population Health Sciences (E.S., I.D.), and Department of Radiology (T.D.N., A.D., J.C., Y.W., S.A.G.), Weil Cornell Medicine, New York; Department of Medicine (L.T.), Yale New Haven Hospital, New Haven, CT; Feil Family Brain and Mind Institute (S.A.G.), Weill Cornell Medicine, New York; and Lee Kong Chian School of Medicine (C.H.L.), Nanyang Technological University, Singapore.
| |
Collapse
|