1
|
Scarpazza C, Gramegna C, Costa C, Pezzetta R, Saetti MC, Preti AN, Difonzo T, Zago S, Bolognini N. The Emotion Authenticity Recognition (EAR) test: normative data of an innovative test using dynamic emotional stimuli to evaluate the ability to recognize the authenticity of emotions expressed by faces. Neurol Sci 2025; 46:133-145. [PMID: 39023709 DOI: 10.1007/s10072-024-07689-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Despite research has massively focused on how emotions conveyed by faces are perceived, the perception of emotions' authenticity is a topic that has been surprisingly overlooked. Here, we present the Emotion Authenticity Recognition (EAR) test, a test specifically developed using dynamic stimuli depicting authentic and posed emotions to evaluate the ability of individuals to correctly identify an emotion (emotion recognition index, ER Index) and classify its authenticity (authenticity recognition index (EA Index). The EAR test has been validated on 522 healthy participants and normative values are provided. Correlations with demographic characteristics, empathy and general cognitive status have been obtained revealing that both indices are negatively correlated with age, and positively with education, cognitive status and different facets of empathy. The EAR test offers a new ecological test to assess the ability to detect emotion authenticity that allow to explore the eventual social cognitive deficit even in patients otherwise cognitively intact.
Collapse
Affiliation(s)
- Cristina Scarpazza
- Department of General Psychology, University of Padova, Via Venezia 8, Padova, PD, Italy.
- IRCCS S Camillo Hospital, Venezia, Italy.
| | - Chiara Gramegna
- Ph.D. Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Cristiano Costa
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | | | - Maria Cristina Saetti
- Neurology Unit, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alice Naomi Preti
- Ph.D. Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Teresa Difonzo
- Neurology Unit, Foundation IRCCS Ca' Granda Hospital Maggiore Policlinico, Milano, Italy
| | - Stefano Zago
- Neurology Unit, Foundation IRCCS Ca' Granda Hospital Maggiore Policlinico, Milano, Italy
| | - Nadia Bolognini
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
- Laboratory of Neuropsychology, Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milano, Italy
| |
Collapse
|
2
|
Belliard S, Merck C. Is semantic dementia an outdated entity? Cortex 2024; 180:64-77. [PMID: 39378711 DOI: 10.1016/j.cortex.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/05/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Does it still make clinical sense to talk about semantic dementia? For more than 10 years, some researchers and clinicians have highlighted the need for new diagnostic criteria, arguing for this entity either to be redefined or, more recently, to be divided into two partially distinct entities, each with its own supposed characteristics, namely the semantic variant primary progressive aphasia and the semantic behavioral variant frontotemporal dementia. Why such a shift? Is it no longer appropriate to talk about semantic dementia? Is it really useful to divide the concept of semantic dementia into verbal and socioemotional semantic subcomponents? Does this proposal have any clinical merit or does it solely reflect theoretical considerations? To shed light on these questions, the purpose of the present review was to explore theoretical considerations on the nature of the knowledge that is disturbed in this disease which might justify such terminological changes.
Collapse
Affiliation(s)
- Serge Belliard
- Service de neurologie, CMRR Haute Bretagne, CHU Pontchaillou, 35000 Rennes, France; Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France.
| | - Catherine Merck
- Service de neurologie, CMRR Haute Bretagne, CHU Pontchaillou, 35000 Rennes, France; Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France
| |
Collapse
|
3
|
Rouse MA, Halai AD, Ramanan S, Rogers TT, Garrard P, Patterson K, Rowe JB, Lambon Ralph MA. Social-semantic knowledge in frontotemporal dementia and after anterior temporal lobe resection. Brain Commun 2024; 6:fcae378. [PMID: 39513090 PMCID: PMC11542483 DOI: 10.1093/braincomms/fcae378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/24/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
Degraded semantic memory is a prominent feature of frontotemporal dementia (FTD). It is classically associated with semantic dementia and anterior temporal lobe (ATL) atrophy, but semantic knowledge can also be compromised in behavioural variant FTD. Motivated by understanding behavioural change in FTD, recent research has focused selectively on social-semantic knowledge, with proposals that the right ATL is specialized for social concepts. Previous studies have assessed very different types of social concepts and have not compared performance with that of matched non-social concepts. Consequently, it remains unclear to what extent various social concepts are (i) concurrently impaired in FTD, (ii) distinct from general semantic memory and (iii) differentially supported by the left and right ATL. This study assessed multiple aspects of social-semantic knowledge and general conceptual knowledge across cohorts with ATL damage arising from either neurodegeneration or resection. We assembled a test battery measuring knowledge of multiple types of social concept. Performance was compared with non-social general conceptual knowledge, measured using the Cambridge Semantic Memory Test Battery and other matched non-social-semantic tests. Our trans-diagnostic approach included behavioural variant FTD, semantic dementia and 'mixed' intermediate cases to capture the FTD clinical spectrum, as well as age-matched healthy controls. People with unilateral left or right ATL resection for temporal lobe epilepsy were also recruited to assess how selective damage to the left or right ATL impacts social- and non-social-semantic knowledge. Social- and non-social-semantic deficits were severe and highly correlated in FTD. Much milder impairments were found after unilateral ATL resection, with no left versus right differences in social-semantic knowledge or general semantic processing and with only naming showing a greater deficit following left versus right damage. A principal component analysis of all behavioural measures in the FTD cohort extracted three components, interpreted as capturing (i) FTD severity, (ii) semantic memory and (iii) executive function. Social and non-social measures both loaded heavily on the same semantic memory component, and scores on this factor were uniquely associated with bilateral ATL grey matter volume but not with the degree of ATL asymmetry. Together, these findings demonstrate that both social- and non-social-semantic knowledge degrade in FTD (semantic dementia and behavioural variant FTD) following bilateral ATL atrophy. We propose that social-semantic knowledge is part of a broader conceptual system underpinned by a bilaterally implemented, functionally unitary semantic hub in the ATLs. Our results also highlight the value of a trans-diagnostic approach for investigating the neuroanatomical underpinnings of cognitive deficits in FTD.
Collapse
Affiliation(s)
- Matthew A Rouse
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Ajay D Halai
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Siddharth Ramanan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Timothy T Rogers
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peter Garrard
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London SW17 0RE, UK
| | - Karalyn Patterson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0SZ, UK
| | | |
Collapse
|
4
|
Ulugut H, Bertoux M, Younes K, Montembeault M, Fumagalli GG, Samanci B, Illán‐Gala I, Kuchcinski G, Leroy M, Thompson JC, Kobylecki C, Santillo AF, Englund E, Waldö ML, Riedl L, Van den Stock J, Vandenbulcke M, Vandenberghe R, Laforce Jr R, Ducharme S, Pressman PS, Caramelli P, de Souza LC, Takada LT, Gurvit H, Hansson O, Diehl‐Schmid J, Galimberti D, Pasquier F, Miller BL, Scheltens P, Ossenkoppele R, van der Flier WM, Barkhof F, Fox NC, Sturm VE, Miyagawa T, Whitwell JL, Boeve B, Rohrer JD, Gorno‐Tempini ML, Josephs KA, Snowden J, Warren JD, Rankin KP, Pijnenburg YAL. Clinical recognition of frontotemporal dementia with right anterior temporal predominance: A multicenter retrospective cohort study. Alzheimers Dement 2024; 20:5647-5661. [PMID: 38982845 PMCID: PMC11350044 DOI: 10.1002/alz.14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/15/2024] [Accepted: 05/26/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION Although frontotemporal dementia (FTD) with right anterior temporal lobe (RATL) predominance has been recognized, a uniform description of the syndrome is still missing. This multicenter study aims to establish a cohesive clinical phenotype. METHODS Retrospective clinical data from 18 centers across 12 countries yielded 360 FTD patients with predominant RATL atrophy through initial neuroimaging assessments. RESULTS Common symptoms included mental rigidity/preoccupations (78%), disinhibition/socially inappropriate behavior (74%), naming/word-finding difficulties (70%), memory deficits (67%), apathy (65%), loss of empathy (65%), and face-recognition deficits (60%). Real-life examples unveiled impairments regarding landmarks, smells, sounds, tastes, and bodily sensations (74%). Cognitive test scores indicated deficits in emotion, people, social interactions, and visual semantics however, lacked objective assessments for mental rigidity and preoccupations. DISCUSSION This study cumulates the largest RATL cohort unveiling unique RATL symptoms subdued in prior diagnostic guidelines. Our novel approach, combining real-life examples with cognitive tests, offers clinicians a comprehensive toolkit for managing these patients. HIGHLIGHTS This project is the first international collaboration and largest reported cohort. Further efforts are warranted for precise nomenclature reflecting neural mechanisms. Our results will serve as a clinical guideline for early and accurate diagnoses.
Collapse
Affiliation(s)
- Hulya Ulugut
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCDe BoelelaanAmsterdamThe Netherlands
- Memory and Aging CenterDepartment of NeurologyUCSF Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Maxime Bertoux
- Lille Neuroscience & Cognition U1172, Univ. Lille, Inserm, CHU Lille, LiCEND & Labex DistALZLilleFrance
| | - Kyan Younes
- Memory and Aging CenterDepartment of NeurologyUCSF Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Stanford Neuroscience Health CenterDepartment of NeurologyStanford UniversityPalo AltoCaliforniaUSA
| | - Maxime Montembeault
- Memory and Aging CenterDepartment of NeurologyUCSF Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of PsychiatryDouglas Mental Health University InstituteMcGill University Health CentreMcGill UniversityMontrealQuebecCanada
| | - Giorgio G. Fumagalli
- Department of NeurologyUniversity of MilanMilanItaly
- Università degli Studi di Trento | UNITN·CIMEC ‐ Center for Mind/Brain SciencesMattarelloTrentinoItaly
| | - Bedia Samanci
- Department of NeurologyIstanbul UniversityFatihIstanbulTurkey
| | - Ignacio Illán‐Gala
- Sant Pau Memory UnitDepartment of NeurologyHospital de la Santa Creu i Sant PauBiomedical Research Institute Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Gregory Kuchcinski
- Lille Neuroscience & Cognition U1172, Univ. Lille, Inserm, CHU Lille, LiCEND & Labex DistALZLilleFrance
| | - Melanie Leroy
- Lille Neuroscience & Cognition U1172, Univ. Lille, Inserm, CHU Lille, LiCEND & Labex DistALZLilleFrance
| | - Jennifer C. Thompson
- Cerebral Function Unit, Greater Manchester Neuroscience CentreSalford Royal NHS Foundation TrustSalfordUK
- Division of Neuroscience and Experimental PsychologyFaculty of BiologyMedicine and HealthUniversity of ManchesterSalfordManchesterUK
| | - Christopher Kobylecki
- Department of NeurologyManchester Centre for Clinical Neurosciences NHS Foundation TrustSalfordUK
- Division of NeuroscienceUniversity of ManchesterSalfordManchesterUK
| | - Alexander F Santillo
- Clinical Memory Research UnitDepartment of Clinical SciencesFaculty of MedicineLund UniversityLundSweden
| | - Elisabet Englund
- Division of PathologyDepartment of Clinical SciencesLund UniversityLundSweden
| | - Maria Landqvist Waldö
- Division of Clinical Sciences HelsingborgDepartment of Clinical Sciences LundLund UniversityLundSweden
| | - Lina Riedl
- School of MedicineDepartment of Psychiatry and PsychotherapyTechnical University of MunichMunichGermany
| | - Jan Van den Stock
- Neuropsychiatry, Department of NeurosciencesLeuven Brain InstituteLeuvenBelgium
| | | | | | - Robert Laforce Jr
- Clinique Interdisciplinaire de Mémoire (CIME)Département des Sciences NeurologiquesLaval UniversityQuebec CityCanada
| | - Simon Ducharme
- Department of PsychiatryDouglas Mental Health University InstituteMcGill University Health CentreMcGill UniversityMontrealQuebecCanada
| | - Peter S. Pressman
- Anschutz Medical CampusBehavioral Neurology SectionDepartment of NeurologyUniversity of ColoradoAuroraColoradoUSA
| | - Paulo Caramelli
- Behavioral and Cognitive Neurology UnitDepartment of Internal MedicineFaculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Leonardo Cruz de Souza
- Behavioral and Cognitive Neurology UnitDepartment of Internal MedicineFaculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Leonel T. Takada
- Cognitive and Behavioral UnitHospital das ClinicasDepartment of NeurologyUniversity of São Paulo Medical SchoolPacaembuSão PauloBrazil
| | - Hakan Gurvit
- Department of NeurologyIstanbul UniversityFatihIstanbulTurkey
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical SciencesFaculty of MedicineLund UniversityLundSweden
| | - Janine Diehl‐Schmid
- School of MedicineDepartment of Psychiatry and PsychotherapyTechnical University of MunichMunichGermany
- Kbo‐Inn‐Salzach‐KlinikumClinical Center for PsychiatryPsychotherapy, Psychosomatic Medicine, Geriatrics and NeurologyWasserburg/InnGermany
| | - Daniela Galimberti
- Department of BiomedicalSurgical and Dental SciencesUniversity of MilanMilanItaly
- Fondazione IRCCS Ca’ GrandaOspedale Maggiore PoliclinicoMilanItaly
| | - Florence Pasquier
- Lille Neuroscience & Cognition U1172, Univ. Lille, Inserm, CHU Lille, LiCEND & Labex DistALZLilleFrance
| | - Bruce L. Miller
- Memory and Aging CenterDepartment of NeurologyUCSF Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Philip Scheltens
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCDe BoelelaanAmsterdamThe Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCDe BoelelaanAmsterdamThe Netherlands
- Alzheimer Center AmsterdamDepartment of RadiologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCDe BoelelaanAmsterdamThe Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCDe BoelelaanAmsterdamThe Netherlands
| | - Frederik Barkhof
- Alzheimer Center AmsterdamDepartment of RadiologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCDe BoelelaanAmsterdamThe Netherlands
- UCL Institutes of Neurology and Healthcare EngineeringUniversity College LondonLondonUK
| | - Nick C. Fox
- Dementia Research CentreUCL Queen Square Institute of NeurologyLondonUK
| | - Virginia E. Sturm
- Memory and Aging CenterDepartment of NeurologyUCSF Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Toji Miyagawa
- Department of NeurologyMayo Clinic, RochesterRochesterMinnesotaUSA
| | | | - Bradley Boeve
- Department of NeurologyMayo Clinic, RochesterRochesterMinnesotaUSA
| | | | - Maria Luisa Gorno‐Tempini
- Memory and Aging CenterDepartment of NeurologyUCSF Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Dyslexia CenterUniversity of California San FranciscoUCSF Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Keith A. Josephs
- Department of NeurologyMayo Clinic, RochesterRochesterMinnesotaUSA
| | - Julie Snowden
- Cerebral Function Unit, Greater Manchester Neuroscience CentreSalford Royal NHS Foundation TrustSalfordUK
- Division of Neuroscience and Experimental PsychologyFaculty of BiologyMedicine and HealthUniversity of ManchesterSalfordManchesterUK
| | - Jason D. Warren
- Dementia Research CentreUCL Queen Square Institute of NeurologyLondonUK
| | - Katherine P. Rankin
- Memory and Aging CenterDepartment of NeurologyUCSF Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Yolande A. L. Pijnenburg
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCDe BoelelaanAmsterdamThe Netherlands
| | | |
Collapse
|
5
|
Ding J, Yang Q, Drossinos N, Guo Q. Advances in semantic dementia: Neuropsychology, pathology & neuroimaging. Ageing Res Rev 2024; 99:102375. [PMID: 38866186 DOI: 10.1016/j.arr.2024.102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Semantic dementia is a kind of neurodegenerative disorder, characterized by prominent semantic impairments and anterior temporal lobe atrophy. Since 2010, more studies have devoted to this rare disorder, revealing that it is more complex than we think. Clinical advances include more specific findings of semantic impairments and other higher order cognitive deficits. Neuroimaging techniques can help revealing the different brain networks affected (both structurally and functionally) in this condition. Pathological and genetic studies have also found more complex situations of semantic dementia, which might explain the huge variance existing in semantic dementia. Moreover, the current diagnosis criteria mainly focus on semantic dementia's classical prototype. We further delineated the features of three subtypes of semantic dementia based on atrophy lateralization with three severity stages. In a broader background, as a part of the continuum of neurodegenerative disorders, semantic dementia is commonly compared with other resembling conditions. Therefore, we summarized the differential diagnosis between semantic dementia and them. Finally, we introduced the challenges and achievements of its diagnosis, treatment, care and cross cultural comparison. By providing a comprehensive picture of semantic dementia on different aspects of advances, we hope to deepen the understanding of semantic dementia and promote more inspirations on both clinical and theoretical studies about it.
Collapse
Affiliation(s)
- Junhua Ding
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Qing Yang
- Department of Rehabilitation, Hushan Hospital, Fudan University, Shanghai, China
| | - Niki Drossinos
- Division of Psychology, Communication and Human Neuroscience, University of Manchester, Manchester, UK
| | - Qihao Guo
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Balgova E, Diveica V, Jackson RL, Binney RJ. Overlapping neural correlates underpin theory of mind and semantic cognition: Evidence from a meta-analysis of 344 functional neuroimaging studies. Neuropsychologia 2024; 200:108904. [PMID: 38759780 DOI: 10.1016/j.neuropsychologia.2024.108904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/21/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Key unanswered questions for cognitive neuroscience include whether social cognition is underpinned by specialised brain regions and to what extent it simultaneously depends on more domain-general systems. Until we glean a better understanding of the full set of contributions made by various systems, theories of social cognition will remain fundamentally limited. In the present study, we evaluate a recent proposal that semantic cognition plays a crucial role in supporting social cognition. While previous brain-based investigations have focused on dissociating these two systems, our primary aim was to assess the degree to which the neural correlates are overlapping, particularly within two key regions, the anterior temporal lobe (ATL) and the temporoparietal junction (TPJ). We focus on activation associated with theory of mind (ToM) and adopt a meta-analytic activation likelihood approach to synthesise a large set of functional neuroimaging studies and compare their results with studies of semantic cognition. As a key consideration, we sought to account for methodological differences across the two sets of studies, including the fact that ToM studies tend to use nonverbal stimuli while the semantics literature is dominated by language-based tasks. Overall, we observed consistent overlap between the two sets of brain regions, especially in the ATL and TPJ. This supports the claim that tasks involving ToM draw upon more general semantic retrieval processes. We also identified activation specific to ToM in the right TPJ, bilateral anterior mPFC, and right precuneus. This is consistent with the view that, nested amongst more domain-general systems, there is specialised circuitry that is tuned to social processes.
Collapse
Affiliation(s)
- Eva Balgova
- Cognitive Neuroscience Institute, Department of Psychology, Bangor University, Gwynedd, Wales, UK; Department of Psychology, Aberystwyth University, Ceredigion, Wales, UK
| | - Veronica Diveica
- Cognitive Neuroscience Institute, Department of Psychology, Bangor University, Gwynedd, Wales, UK; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Rebecca L Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, Heslington, York, UK
| | - Richard J Binney
- Cognitive Neuroscience Institute, Department of Psychology, Bangor University, Gwynedd, Wales, UK.
| |
Collapse
|
7
|
Quesque F, Nivet M, Etchepare A, Wauquiez G, Prouteau A, Desgranges B, Bertoux M. Social cognition in neuropsychology: A nationwide survey revealing current representations and practices. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:689-702. [PMID: 35486070 DOI: 10.1080/23279095.2022.2061859] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
As a key domain of cognition, social cognition abilities are altered in a wide range of clinical groups. Accordingly, many clinical tests and theories of social cognition have been developed these last decades. Contrasting this abundant development from a research perspective, recent evidence suggests that social cognition remains rarely addressed from a clinial perspective. The aim of the present research was to characterize the current practices, representations, and needs linked to social cognition from the perspective of professional neuropsychologists and graduate students. A nationwide survey allowed us to determine the classical field conception of social cognition and its associated symptoms or notions. It also allowed us to quantify practice activities and the use of the different clinical tools available. This study revealed that neuropsychologists lack confidence regarding social cognition assessment and its rehabilitation, and that students are in demand for more knowledge and training. Suggestions of change in practices and dissemination of knowledge are discussed. Considering the importance of social cognition, an extension of initial and continuous training alongside an enrichment of interactions between researchers and clinicians were key recommendations to formulate, as well as the need for a consensual lexicon of current concepts.
Collapse
Affiliation(s)
- François Quesque
- Univ. Lille, Inserm, CHU Lille, U1172 - Lille Neuroscience & Cognition, LiCEND, DistALZ, Lille, France
- Centre National de Référence des Malformations et Maladies Congénitales du Cervelet, Département de Neurologie Pédiatrique, CHU de Lille, Lille, France
| | - Maxime Nivet
- Univ. Lille, Inserm, CHU Lille, U1172 - Lille Neuroscience & Cognition, LiCEND, DistALZ, Lille, France
| | - Aurore Etchepare
- Department of Adult Psychiatry, Hospital Center of Jonzac, Univ. Bordeaux, Bordeaux, France
| | - Grégoire Wauquiez
- Organisation Française des Psychologues spécialisés en Neuropsychologie, Paris, France
- Service de rééducation neurologique, CHU de Dijon, Dijon, France
| | - Antoinette Prouteau
- Department of Adult Psychiatry, Hospital Center of Jonzac, Univ. Bordeaux, Bordeaux, France
| | - Béatrice Desgranges
- Normandie Université, UNICAEN, PSL Université Paris, EPHE, Inserm, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, GIP Cyceron, Caen, France
| | - Maxime Bertoux
- Univ. Lille, Inserm, CHU Lille, U1172 - Lille Neuroscience & Cognition, LiCEND, DistALZ, Lille, France
| |
Collapse
|
8
|
Saliou P, Chavant J, Belliard S, Merck C, de La Sayette V, Wallon D, Martinaud O, Eustache F, Laisney M. MEM&SO protocol: understanding the determinants of social learning in neurodegenerative diseases. BMC Psychol 2024; 12:307. [PMID: 38807183 PMCID: PMC11134701 DOI: 10.1186/s40359-024-01791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND People with neurodegenerative diseases may have difficulty learning new information, owing to their cognitive impairments. Teaching them techniques for learning in social contexts could alleviate this difficulty. The present study will examine the performances of patients with Alzheimer's disease and patients with the semantic variant of primary progressive aphasia on a memory test administered in three social contexts. The protocol will make it possible to identify determinants of social interactions, social abilities, cognition, and personality that can explain the potentially beneficial effect of social context on learning in these patients. METHODS Thirty dyads (patient with primary memory impairment who meets criteria for Alzheimer's disease paired with caregiver), 16 dyads (patient meeting criteria for semantic variant of primary progressive aphasia paired with caregiver), and 46 dyads (healthy controls with no cognitive complaints) will be recruited. A nonverbal memory test (social memory task) will be administered to each dyad in three different social contexts (presence-only, observation, collaboration). Patients and healthy controls will also undergo a neuropsychological assessment to measure social (interactions and abilities), cognitive and personality aspects. Patients will be compared with controls on differential social scores calculated between the presence-only and collaboration contexts, and between the presence-only and observation contexts. A multiple comparative case study will be conducted to identify social, cognitive and personality variables that potentially explain the differential scores in the collaboration and observation contexts. DISCUSSION For the first time, memory will be assessed in patients with Alzheimer's disease and patients with the semantic variant of primary progressive aphasia in three different contexts (presence-only, observation, collaboration). The multiple comparative case study will make it possible to identify the determinants of memory performance in the social context, in order to create the most beneficial learning context for individual patients, according to their profile. TRIAL REGISTRATION This study was approved by the Ile de France XI institutional review board (2022-A00198-35), and registered on ClinicalTrials.gov (no. NCT05800028), on April 27, 2023.
Collapse
Affiliation(s)
- Pauline Saliou
- Inserm, U1077, EPHE, UNICAEN, Normandie Université, PSL Université Paris, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, 14000, France
| | - Julien Chavant
- Inserm, U1077, EPHE, UNICAEN, Normandie Université, PSL Université Paris, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, 14000, France
| | - Serge Belliard
- Département de Neurologie, CHU Pontchaillou, Rennes, France
| | | | - Vincent de La Sayette
- Inserm, U1077, EPHE, UNICAEN, Normandie Université, PSL Université Paris, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, 14000, France
| | - David Wallon
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Neurology and CNRMAJ, Rouen, F- 76000, France
| | - Olivier Martinaud
- Inserm, U1077, EPHE, UNICAEN, Normandie Université, PSL Université Paris, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, 14000, France
| | - Francis Eustache
- Inserm, U1077, EPHE, UNICAEN, Normandie Université, PSL Université Paris, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, 14000, France
| | - Mickaël Laisney
- Inserm, U1077, EPHE, UNICAEN, Normandie Université, PSL Université Paris, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, 14000, France.
| |
Collapse
|
9
|
Prigatano G. Love, anger and Primary Progressive Aphasia: Psychological care for a person with dementia. APPLIED NEUROPSYCHOLOGY. ADULT 2024:1-8. [PMID: 38422549 DOI: 10.1080/23279095.2024.2322633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
|
10
|
Hua AY, Roy ARK, Kosik EL, Morris NA, Chow TE, Lukic S, Montembeault M, Borghesani V, Younes K, Kramer JH, Seeley WW, Perry DC, Miller ZA, Rosen HJ, Miller BL, Rankin KP, Gorno-Tempini ML, Sturm VE. Diminished baseline autonomic outflow in semantic dementia relates to left-lateralized insula atrophy. Neuroimage Clin 2023; 40:103522. [PMID: 37820490 PMCID: PMC10582496 DOI: 10.1016/j.nicl.2023.103522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/28/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023]
Abstract
In semantic dementia (SD), asymmetric degeneration of the anterior temporal lobes is associated with loss of semantic knowledge and alterations in socioemotional behavior. There are two clinical variants of SD: semantic variant primary progressive aphasia (svPPA), which is characterized by predominant atrophy in the anterior temporal lobe and insula in the left hemisphere, and semantic behavioral variant frontotemporal dementia (sbvFTD), which is characterized by predominant atrophy in those structures in the right hemisphere. Previous studies of behavioral variant frontotemporal dementia, an associated clinical syndrome that targets the frontal lobes and anterior insula, have found impairments in baseline autonomic nervous system activity that correlate with left-lateralized frontotemporal atrophy patterns and disruptions in socioemotional functioning. Here, we evaluated whether there are similar impairments in resting autonomic nervous system activity in SD that also reflect left-lateralized atrophy and relate to diminished affiliative behavior. A total of 82 participants including 33 people with SD (20 svPPA and 13 sbvFTD) and 49 healthy older controls completed a laboratory-based assessment of respiratory sinus arrhythmia (RSA; a parasympathetic measure) and skin conductance level (SCL; a sympathetic measure) during a two-minute resting baseline period. Participants also underwent structural magnetic resonance imaging, and informants rated their current affiliative behavior on the Interpersonal Adjective Scale. Results indicated that baseline RSA and SCL were lower in SD than in healthy controls, with significant impairments present in both svPPA and sbvFTD. Voxel-based morphometry analyses revealed left-greater-than-right atrophy related to diminished parasympathetic and sympathetic outflow in SD. While left-lateralized atrophy in the mid-to-posterior insula correlated with lower RSA, left-lateralized atrophy in the ventral anterior insula correlated with lower SCL. In SD, lower baseline RSA, but not lower SCL, was associated with lower gregariousness/extraversion. Neither autonomic measure related to warmth/agreeableness, however. Through the assessment of baseline autonomic nervous system physiology, the present study contributes to expanding conceptualizations of the biological basis of socioemotional alterations in svPPA and sbvFTD.
Collapse
Affiliation(s)
- Alice Y Hua
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Ashlin R K Roy
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Eena L Kosik
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Nathaniel A Morris
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Tiffany E Chow
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Sladjana Lukic
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Maxime Montembeault
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | | | - Kyan Younes
- Department of Neurology, Stanford Neuroscience Health Center, Palo Alto, CA, USA
| | - Joel H Kramer
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - William W Seeley
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - David C Perry
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Zachary A Miller
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Howard J Rosen
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Bruce L Miller
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Katherine P Rankin
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Maria Luisa Gorno-Tempini
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Virginia E Sturm
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA.
| |
Collapse
|
11
|
Mancano M, Papagno C. Concrete and Abstract Concepts in Primary Progressive Aphasia and Alzheimer's Disease: A Scoping Review. Brain Sci 2023; 13:765. [PMID: 37239237 PMCID: PMC10216362 DOI: 10.3390/brainsci13050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The concreteness effect (CE), namely a better performance with concrete compared to abstract concepts, is a constant feature in healthy people, and it usually increases in persons with aphasia (PWA). However, a reversal of the CE has been reported in patients affected by the semantic variant of Primary Progressive Aphasia (svPPA), a neurodegenerative disease characterized by anterior temporal lobe (ATL) atrophy. The present scoping review aims at identifying the extent of evidence regarding the abstract/concrete contrast in Alzheimer's disease (AD) and svPPA and associated brain atrophy. Five online databases were searched up to January 2023 to identify papers where both concrete and abstract concepts were investigated. Thirty-one papers were selected and showed that while in patients with AD, concrete words were better processes than abstract ones, in most svPPA patients, there was a reversal of the CE, with five studies correlating the size of this effect with ATL atrophy. Furthermore, the reversal of CE was associated with category-specific impairments (living things) and with a selective deficit of social words. Future work is needed to disentangle the role of specific portions of the ATL in concept representation.
Collapse
Affiliation(s)
- Martina Mancano
- Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy;
| | - Costanza Papagno
- Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy;
- CISMed Interdepartmental Center for Medical Sciences, University of Trento, 38122 Trento, Italy
| |
Collapse
|
12
|
Lenglin V, Wong S, O'Callaghan C, Erzinçlioğlu S, Hornberger M, Lebouvier T, Piguet O, Bourgeois-Gironde S, Bertoux M. Zero the hero: Evidence for involvement of the ventromedial prefrontal cortex in affective bias for free items. Cortex 2023; 160:24-42. [PMID: 36680922 DOI: 10.1016/j.cortex.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/31/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022]
Abstract
Recent evidence from psycho-economics shows that when the price of an item decreases to the extent that it becomes available for free, one can observe a remarkable increase of subjective utility toward this item. This phenomenon, which is not observed for any other price but zero, has been termed the zero-price effect (ZPE). The ZPE is attributed to an affective heuristic where the positive affect elicited by the free status of an item provides a mental shortcut biasing choice towards that item. Given that the ZPE relies on affective processing, a key role of the ventromedial prefrontal cortex (vmPFC) has been proposed, yet neuroscientific studies of the ZPE remain scarce. This study aimed to explore the role of the vmPFC in the ZPE using a novel, within-subject assessment in participants with either an acquired (lesion patients) or degenerative (behavioural-variant frontotemporal dementia patients) lesion of the vmPFC, and age-matched healthy controls. All participants were asked to make a series of choices between pairs of items that varied in price. One choice trial involved an equal decrease of both item prices, such that one of the items was priced zero. In contrast to controls, patients with both vmPFC-lesion and behavioural-variant frontotemporal dementia showed marked reductions in zero-related changes of preference in pairs of gift-cards, but not for pairs of food items. Our findings suggest that affective evaluations driving the ZPE are altered in patients with focal or degenerative damage to the vmPFC. This supports the notion of a key role of the vmPFC in the ZPE and, more generally, the importance of this region in value-based affective decision-making. Our findings also highlight the potential utility of affective heuristic tasks in future clinical assessments.
Collapse
Affiliation(s)
- V Lenglin
- Lille Neuroscience & Cognition, Univ. Lille, Inserm, CHU Lille, LiCEND & DistALZ, Lille, France; ETHICS EA7446, Lille Catholic University, Lille, France
| | - S Wong
- The University of Sydney, School of Psychology and Brain & Mind Centre, Sydney, Australia; Flinders University, College of Education, Psychology & Social Work, Adelaide, Australia
| | - C O'Callaghan
- The University of Sydney, Brain & Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, Sydney, Australia
| | - S Erzinçlioğlu
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge UK
| | - M Hornberger
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK; Norwich Medical School, University of East Anglia, Norwich, UK
| | - T Lebouvier
- Lille Neuroscience & Cognition, Univ. Lille, Inserm, CHU Lille, LiCEND & DistALZ, Lille, France
| | - O Piguet
- The University of Sydney, School of Psychology and Brain & Mind Centre, Sydney, Australia
| | - S Bourgeois-Gironde
- Department of Economics, Université Paris 2 - Panthéon-Assas, Paris, France; Institut Jean-Nicod, Ecole Normale Supérieure, PSL Research University, Paris, France.
| | - M Bertoux
- Lille Neuroscience & Cognition, Univ. Lille, Inserm, CHU Lille, LiCEND & DistALZ, Lille, France; Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Vandenbulcke M, Van de Vliet L, Sun J, Huang YA, Van Den Bossche MJA, Sunaert S, Peeters R, Zhu Q, Vanduffel W, de Gelder B, De Winter FL, Van den Stock J. A paleo-neurologic investigation of the social brain hypothesis in frontotemporal dementia. Cereb Cortex 2023; 33:622-633. [PMID: 35253853 DOI: 10.1093/cercor/bhac089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/03/2023] Open
Abstract
The social brain hypothesis posits that a disproportionate encephalization in primates enabled to adapt behavior to a social context. Also, it has been proposed that phylogenetically recent brain areas are disproportionally affected by neurodegeneration. Using structural and functional magnetic resonance imaging, the present study investigates brain-behavior associations and neural integrity of hyperspecialized and domain-general cortical social brain areas in behavioral variant frontotemporal dementia (bvFTD). The results revealed that both structure and function of hyperspecialized social areas in the middle portion of the superior temporal sulcus (STS) are compromised in bvFTD, while no deterioration was observed in domain general social areas in the posterior STS. While the structural findings adhered to an anterior-posterior gradient, the functional group differences only occurred in the hyperspecialized locations. Activity in specialized regions was associated with structural integrity of the amygdala and with social deficits in bvFTD. In conclusion, the results are in line with the paleo-neurology hypothesis positing that neurodegeneration primarily hits cortical areas showing increased specialization, but also with the compatible alternative explanation that anterior STS regions degenerate earlier, based on stronger connections to and trans-neuronal spreading from regions affected early in bvFTD.
Collapse
Affiliation(s)
- Mathieu Vandenbulcke
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
| | - Laura Van de Vliet
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Jiaze Sun
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Yun-An Huang
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Maarten J A Van Den Bossche
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
| | - Stefan Sunaert
- Department of Radiology, University Hospitals Leuven, Leuven 3000, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Ron Peeters
- Department of Radiology, University Hospitals Leuven, Leuven 3000, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Qi Zhu
- Laboratory for Neuro- and Psychophysiology, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - Beatrice de Gelder
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6229 EV, The Netherlands.,Department of Computer Science, University College London, London WC1E 6BT, UK
| | - François-Laurent De Winter
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
| | - Jan Van den Stock
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
14
|
Ruggero L, Croot K, Nickels L. Quality of Life Ratings and Proxy Bias in Primary Progressive Aphasia: Two Sides to the Story? Am J Alzheimers Dis Other Demen 2023; 38:15333175231177668. [PMID: 37247394 PMCID: PMC10623902 DOI: 10.1177/15333175231177668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A valid measure of quality of life is important for clinical goal setting and for evaluating interventions. In the amnestic dementias, proxy-raters (e.g. friends, families, clinicians) typically rate quality of life lower than the self-ratings given by the person with dementia - a proxy bias. This study investigated whether the same proxy bias occurs in Primary Progressive Aphasia (PPA), a language-led dementia.Quality of life was measured in 18 individuals with PPA using self-ratings, and proxy-ratings by their main communication partner, using the Quality of Life in Alzheimer's Disease Scale.There was no strong evidence for proxy bias at a group level, with no consistent pattern across dyads, where proxy- and self-ratings did not show good levels of agreement. We suggest that self-ratings and proxy-ratings of quality of life in PPA are not interchangeable. Higher-powered investigation of the patterns observed here is warranted in future studies.
Collapse
Affiliation(s)
- Leanne Ruggero
- School of Psychological Sciences, Macquarie University, Sydney, AU -NSW, Australia
| | - Karen Croot
- School of Psychology, The University of Sydney, Sydney, AU -NSW, Australia
| | - Lyndsey Nickels
- School of Psychological Sciences, Macquarie University, Sydney, AU -NSW, Australia
| |
Collapse
|
15
|
Bertoux M. Cognizione sociale. Neurologia 2022. [DOI: 10.1016/s1634-7072(22)47091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
16
|
Quesque F, Coutrot A, Cox S, de Souza Leonardo C, Baez S, Cardona JF, Mulet-Perreault H, Flanagan E, Neely-Prado A, Clarens MF, Cassimiro L, Musa G, Kemp J, Botzung A, Philippi N, Cosseddu M, Trujillo C, Grisales JS, Fittipaldi S, Magrath Guimet N, Calandri IL, Crivelli L, Sedeno L, Garcia AM, Moreno F, Indakoetxea B, Benussi A, Brandão Moura MV, Santamaria-Garcia H, Matallana D, Prianishnikova G, Morozova A, Iakovleva O, Veryugina N, Levin O, Zhao L, Liang J, Duning T, Lebouvier T, Pasquier F, Huepe D, Barandiaran M, Johnen A, Lyashenko E, Allegri RF, Borroni B, Blanc F, Wang F, Yassuda MS, Lillo P, Teixeira AL, Caramelli P, Hudon C, Slachevsky A, Ibáñez A, Hornberger M, Bertoux M. Does culture shape our understanding of others' thoughts and emotions? An investigation across 12 countries. Neuropsychology 2022; 36:664-682. [PMID: 35834208 PMCID: PMC11186050 DOI: 10.1037/neu0000817] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Measures of social cognition have now become central in neuropsychology, being essential for early and differential diagnoses, follow-up, and rehabilitation in a wide range of conditions. With the scientific world becoming increasingly interconnected, international neuropsychological and medical collaborations are burgeoning to tackle the global challenges that are mental health conditions. These initiatives commonly merge data across a diversity of populations and countries, while ignoring their specificity. OBJECTIVE In this context, we aimed to estimate the influence of participants' nationality on social cognition evaluation. This issue is of particular importance as most cognitive tasks are developed in highly specific contexts, not representative of that encountered by the world's population. METHOD Through a large international study across 18 sites, neuropsychologists assessed core aspects of social cognition in 587 participants from 12 countries using traditional and widely used tasks. RESULTS Age, gender, and education were found to impact measures of mentalizing and emotion recognition. After controlling for these factors, differences between countries accounted for more than 20% of the variance on both measures. Importantly, it was possible to isolate participants' nationality from potential translation issues, which classically constitute a major limitation. CONCLUSIONS Overall, these findings highlight the need for important methodological shifts to better represent social cognition in both fundamental research and clinical practice, especially within emerging international networks and consortia. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- François Quesque
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LiCEND, F-59000 Lille, France
| | | | - Sharon Cox
- Department of Behavioural Science and Health, Institute of Epidemiology and Healthcare, University College London, London, UK
| | | | | | | | | | - Emma Flanagan
- Norwich Medical School, University of East Anglia, UK
- Department of Clinical Neurosciences, University of Cambridge, UK
| | - Alejandra Neely-Prado
- Center for Social and Cognitive Neuroscience, School of Psychology, Adolfo Ibáñez University, Santiago, Chile
| | | | - Luciana Cassimiro
- School of Arts, Sciences and Humanities, University of São Paulo, Department of Neurology, São Paulo, Brazil
| | - Gada Musa
- Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | - Sol Fittipaldi
- Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Argentina
| | | | | | - Lucia Crivelli
- FLENI Fondation, Department of Neurology, Buenos Aires, Argentina
| | - Lucas Sedeno
- National Scientific and Technical Research Council (CONICET), Argentina
| | - Adolfo M Garcia
- Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Argentina
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
- Global Brain Health Institute (GBHI), University of California-San Francisco (UCSF), San Francisco, California, United States
| | - Fermin Moreno
- Department of Neurology, Unit of Cognitive Disorders, Hospital Universitario Donostia, San Sebastian, Spain
| | - Begoña Indakoetxea
- Department of Neurology, Unit of Cognitive Disorders, Hospital Universitario Donostia, San Sebastian, Spain
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Hernando Santamaria-Garcia
- School of Medicine, Neuroscience Doctorate. Aging Institute, Physiology and Psychiatry Department. Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Diana Matallana
- School of Medicine, Neuroscience Doctorate. Aging Institute, Physiology and Psychiatry Department. Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Anna Morozova
- Central Clinic No 1 of the Ministry of Internal Affairs, Moskva, Russia
| | - Olga Iakovleva
- Central Clinic No 1 of the Ministry of Internal Affairs, Moskva, Russia
| | - Nadezda Veryugina
- Central Clinic No 1 of the Ministry of Internal Affairs, Moskva, Russia
| | - Oleg Levin
- Central Clinic No 1 of the Ministry of Internal Affairs, Moskva, Russia
| | - Lina Zhao
- Innovation center for neurological disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, 45 Changchun Street, Beijing
| | - Junhua Liang
- Innovation center for neurological disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, 45 Changchun Street, Beijing
| | - Thomas Duning
- Clinic of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster, Germany
| | - Thibaud Lebouvier
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LiCEND, F-59000 Lille, France
| | - Florence Pasquier
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LiCEND, F-59000 Lille, France
| | - David Huepe
- Center for Social and Cognitive Neuroscience, School of Psychology, Adolfo Ibáñez University, Santiago, Chile
| | - Myriam Barandiaran
- Department of Neurology, Unit of Cognitive Disorders, Hospital Universitario Donostia, San Sebastian, Spain
| | - Andreas Johnen
- Clinic of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster, Germany
| | - Elena Lyashenko
- Central Clinic No 1 of the Ministry of Internal Affairs, Moskva, Russia
| | | | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Fen Wang
- Innovation center for neurological disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, 45 Changchun Street, Beijing
| | - Monica Sanches Yassuda
- School of Arts, Sciences and Humanities, University of São Paulo, Department of Neurology, São Paulo, Brazil
| | | | | | | | - Carol Hudon
- Université Laval and CERVO Brain Research Centre, Québec, Canada
| | - Andrea Slachevsky
- Geroscience Center for Brain Health and Metabolism (GERO), Faculty of Medicine, University of Chile, Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - ICBM, Neurocience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
- Servicio de Neurología, Departamento de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Agustin Ibáñez
- Center for Social and Cognitive Neuroscience, School of Psychology, Adolfo Ibáñez University, Santiago, Chile
- Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Argentina
- Global Brain Health Institute (GBHI), University of California-San Francisco (UCSF), San Francisco, California, United States
- Universidad Autónoma del Caribe, Barranquilla, Colombia
| | - Michael Hornberger
- Norwich Medical School, University of East Anglia, UK
- Department of Clinical Neurosciences, University of Cambridge, UK
| | - Maxime Bertoux
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LiCEND, F-59000 Lille, France
- Department of Clinical Neurosciences, University of Cambridge, UK
| |
Collapse
|
17
|
Cruz de Souza L, Bertoux M, Radakovic R, Hornberger M, Mariano LI, de Paula França Resende E, Quesque F, Guimarães HC, Gambogi LB, Tumas V, Camargos ST, Costa Cardoso FE, Teixeira AL, Caramelli P. I’m Looking Through You: Mentalizing In Frontotemporal Dementia And Progressive Supranuclear Palsy. Cortex 2022; 155:373-389. [DOI: 10.1016/j.cortex.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/02/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022]
|
18
|
Emotion schema effects on associative memory differ across emotion categories at the behavioural, physiological and neural level: Emotion schema effects on associative memory differs for disgust and fear. Neuropsychologia 2022; 172:108257. [PMID: 35561814 DOI: 10.1016/j.neuropsychologia.2022.108257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/23/2022]
Abstract
Previous behavioural and neuroimaging studies have consistently reported that memory is enhanced for associations congruent or incongruent with the structure of prior knowledge, termed as schemas. However, it remains unclear if similar effects arise with emotion-related associations, and whether they depend on the type of emotions. Here, we addressed this question using a novel face-word pair association paradigm combined with fMRI and eye-tracking techniques. In two independent studies, we demonstrated and replicated that both congruency with emotion schemas and emotion category interact to affect associative memory. Overall, memory retrieval was higher for faces from pairs congruent vs. incongruent with emotion schemas, paralleled by a greater recruitment of left inferior frontal gyrus (IFG) during successful encoding. However, emotion schema effects differed across two negative emotion categories. Disgust was remembered better than fear, and only disgust activated left IFG stronger during encoding of congruent vs. incongruent pairs, suggestive of deeper semantic processing for the associations. On the contrary, encoding of congruent fear vs. disgust-related pairs was accompanied with greater activity in right fusiform gyrus (FG), suggesting a stronger sensory processing of faces. In addition, successful memory formation for congruent disgust pairs was associated with a higher pupil dilation index related to sympathetic activation, longer gaze time on words compared to faces, and more gaze switches between paired words and faces. This was reversed for fear-related congruent pairs where the faces attracted longer gaze time (compared to words). Overall, our results provide converging evidence from behavioural, physiological, and neural measures to suggest that congruency with available emotion schemas influence memory associations in a similar manner to semantic schemas. However, these effects vary across distinct emotion categories, pointing to a differential role of semantic processing and visual attention processes in the modulation of memory by disgust and fear, respectively.
Collapse
|
19
|
Setién-Suero E, Murillo-García N, Sevilla-Ramos M, Abreu-Fernández G, Pozueta A, Ayesa-Arriola R. Exploring the Relationship Between Deficits in Social Cognition and Neurodegenerative Dementia: A Systematic Review. Front Aging Neurosci 2022; 14:778093. [PMID: 35572150 PMCID: PMC9093607 DOI: 10.3389/fnagi.2022.778093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundNeurodegenerative diseases might affect social cognition in various ways depending on their components (theory of mind, emotional processing, attribution bias, and social perception) and the subtype of dementia they cause. This review aims to explore this difference in cognitive function among individuals with different aetiologies of dementia.MethodsThe following databases were explored: MEDLINE via PubMed, Cochrane Library, Lilacs, Web of Science, and PsycINFO. We selected studies examining social cognition in individuals with neurodegenerative diseases in which dementia was the primary symptom that was studied. The neurodegenerative diseases included Alzheimer's disease, Lewy body disease and frontotemporal lobar degeneration. The search yielded 2,803 articles.ResultsOne hundred twenty-two articles were included in the present review. The summarised results indicate that people with neurodegenerative diseases indeed have deficits in social cognitive performance. Both in populations with Alzheimer's disease and in populations with frontotemporal dementia, we found that emotional processing was strongly affected. However, although theory of mind impairment could also be observed in the initial stages of frontotemporal dementia, in Alzheimer's disease it was only appreciated when performing highly complex task or in advanced stages of the disease.ConclusionsEach type of dementia has a differential profile of social cognition deterioration. This review could provide a useful reference for clinicians to improve detection and diagnosis, which would undoubtedly guarantee better interventions.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020152562, PROSPERO, identifier: CRD42020152562.
Collapse
Affiliation(s)
- Esther Setién-Suero
- Department of Psychiatry, School of Medicine, University of Cantabria, University Hospital Marqués de Valdecilla, Santander, Spain
- IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
- *Correspondence: Esther Setién-Suero ; orcid.org/0000-0002-8027-6546
| | - Nancy Murillo-García
- Department of Psychiatry, School of Medicine, University of Cantabria, University Hospital Marqués de Valdecilla, Santander, Spain
- IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain
| | | | - Georgelina Abreu-Fernández
- Department of Psychiatry, School of Medicine, University of Cantabria, University Hospital Marqués de Valdecilla, Santander, Spain
- IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain
| | - Ana Pozueta
- Department of Psychiatry, School of Medicine, University of Cantabria, University Hospital Marqués de Valdecilla, Santander, Spain
- IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain
- Neurology Service and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Rosa Ayesa-Arriola
- Department of Psychiatry, School of Medicine, University of Cantabria, University Hospital Marqués de Valdecilla, Santander, Spain
- IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain
- CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| |
Collapse
|
20
|
Coundouris SP, Henry JD, Lehn AC. Moving beyond emotions in Parkinson's disease. BRITISH JOURNAL OF CLINICAL PSYCHOLOGY 2022; 61:647-665. [PMID: 35048398 DOI: 10.1111/bjc.12354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Emotion recognition is a fundamental neurocognitive capacity that is a critical predictor of interpersonal function and, in turn, mental health. Although people with Parkinson's disease (PD) often exhibit difficulties recognizing emotions, almost all studies to date have focused on basic emotions (happiness, sadness, anger, surprise, fear, and disgust), with little consideration of how more cognitively complex self-conscious emotions such as contempt, embarrassment, and pride might also be affected. Further, the few studies that have considered self-conscious emotions have relied on high intensity, static stimuli. The aim of the present study was to therefore provide the first examination of how self-conscious emotion recognition is affected by PD using a dynamic, dual-intensity measure that more closely captures how emotion recognition judgements are made in daily life. METHOD People with PD (n = 42) and neurotypical controls (n = 42) completed a validated measure of self-conscious facial emotion recognition. For comparative purposes, in addition to a broader clinical test battery, both groups also completed a traditional static emotion recognition measure and a measure of self-conscious emotional experience. RESULTS Relative to controls, the PD group did not differ in their capacity to recognize basic emotions but were impaired in their recognition of self-conscious emotions. These difficulties were associated with elevated negative affect and poorer subjective well-being. CONCLUSIONS Difficulties recognizing self-conscious emotions may be more problematic for people with PD than difficulties recognizing basic ones, with implications for interventions focused on helping people with this disorder develop and maintain strong social networks. PRACTITIONER POINTS This is the first direct investigation into how the recognition of self-conscious emotion is affected in Parkinson's disease using dynamic, dual-intensity stimuli, thus providing an important extension to prior literature that has focused solely on basic emotion recognition and/or relied on static, high-intensity stimuli. Results revealed preserved basic facial emotional recognition coexisting with impairment in all three self-conscious emotions assessed, therefore suggesting that the latter stimuli type may function as a more sensitive indicator of Parkinson's disease-related social cognitive impairment. Problems with self-conscious emotion recognition in people with Parkinson's disease were associated with poorer broader subjective well-being and increased negative affect. This aligns with the broader literature linking interpersonal difficulties with poorer clinical outcomes in this cohort.
Collapse
Affiliation(s)
- Sarah P Coundouris
- School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Julie D Henry
- School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Alexander C Lehn
- Department of Neurology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia.,The University of Queensland Princess Alexandra Hospital Clinical School, Woolloongabba, Queensland, Australia
| |
Collapse
|
21
|
Chaudhary S, Zhornitsky S, Chao HH, van Dyck CH, Li CSR. Cerebral Volumetric Correlates of Apathy in Alzheimer's Disease and Cognitively Normal Older Adults: Meta-Analysis, Label-Based Review, and Study of an Independent Cohort. J Alzheimers Dis 2022; 85:1251-1265. [PMID: 34924392 PMCID: PMC9215906 DOI: 10.3233/jad-215316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Affecting nearly half of the patients with Alzheimer's disease (AD), apathy is associated with higher morbidity and reduced quality of life. Basal ganglia and cortical atrophy have been implicated in apathy. However, the findings have varied across studies and left unclear whether subdomains of apathy may involve distinct neuroanatomical correlates. OBJECTIVE To identify neuroanatomical correlates of AD-associated apathy. METHODS We performed a meta-analysis and label-based review of the literature. Further, following published routines of voxel-based morphometry, we aimed to confirm the findings in an independent cohort of 19 patients with AD/mild cognitive impairment and 25 healthy controls assessed with the Apathy Evaluation Scale. RESULTS Meta-analysis of 167 AD and 56 healthy controls showed convergence toward smaller basal ganglia gray matter volume (GMV) in apathy. Label-based review showed anterior cingulate, putamen, insula, inferior frontal gyrus (IFG) and middle temporal gyrus (MTG) atrophy in AD apathy. In the independent cohort, with small-volume-correction, right putamen and MTG showed GMVs in negative correlation with Apathy Evaluation Scale total, behavioral, and emotional scores, and right IFG with emotional score (p < 0.05 family-wise error (FWE)-corrected), controlling for age, education, intracranial volume, and depression. With the Mini-Mental State Examination scores included as an additional covariate, the correlation of right putamen GMV with behavioral and emotional score, right MTG GMV with total and emotional score, and right IFG GMV with emotional score were significant. CONCLUSION The findings implicate putamen, MTG and IFG atrophy in AD associated apathy, potentially independent of cognitive impairment and depression, and suggest potentially distinct volumetric correlates of apathy.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Herta H Chao
- Comprehensive Cancer Center, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Cancer Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Christopher H van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
22
|
Borghesani V, DeLeon J, Gorno-Tempini ML. Frontotemporal dementia: A unique window on the functional role of the temporal lobes. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:429-448. [PMID: 35964986 PMCID: PMC9793689 DOI: 10.1016/b978-0-12-823493-8.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Frontotemporal dementia (FTD) is an umbrella term covering a plethora of progressive changes in executive functions, motor abilities, behavior, and/or language. Different clinical syndromes have been described in relation to localized atrophy, informing on the functional networks that underlie these specific cognitive, emotional, and behavioral processes. These functional declines are linked with the underlying neurodegeneration of frontal and/or temporal lobes due to diverse molecular pathologies. Initially, the accumulation of misfolded proteins targets specifically susceptible cell assemblies, leading to relatively focal neurodegeneration that later spreads throughout large-scale cortical networks. Here, we discuss the most recent clinical, neuropathological, imaging, and genetics findings in FTD-spectrum syndromes affecting the temporal lobe. We focus on the semantic variant of primary progressive aphasia and its mirror image, the right temporal variant of FTD. Incipient focal atrophy of the left anterior temporal lobe (ATL) manifests with predominant naming, word comprehension, reading, and object semantic deficits, while cases of predominantly right ATL atrophy present with impairments of socioemotional, nonverbal semantic, and person-specific knowledge. Overall, the observations in FTD allow for crucial clinical-anatomic inferences, shedding light on the role of the temporal lobes in both cognition and complex behaviors. The concerted activity of both ATLs is critical to ensure that percepts are translated into concepts, yet important hemispheric differences should be acknowledged. On one hand, the left ATL attributes meaning to linguistic, external stimuli, thus supporting goal-oriented, action-related behaviors (e.g., integrating sounds and letters into words). On the other hand, the right ATL assigns meaning to emotional, visceral stimuli, thus guiding socially relevant behaviors (e.g., integrating body sensations into feelings of familiarity).
Collapse
Affiliation(s)
- Valentina Borghesani
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, QC, Canada; Department of Psychology, Université de Montréal, Montréal, QC, Canada.
| | - Jessica DeLeon
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States; Department of Neurology, Dyslexia Center, University of California, San Francisco, CA, United States
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States; Department of Neurology, Dyslexia Center, University of California, San Francisco, CA, United States
| |
Collapse
|
23
|
Wang X, Li G, Zhao G, Li Y, Wang B, Lin CP, Liu X, Bi Y. Social and emotion dimensional organizations in the abstract semantic space: the neuropsychological evidence. Sci Rep 2021; 11:23572. [PMID: 34876617 PMCID: PMC8651696 DOI: 10.1038/s41598-021-02824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
An essential aspect of human cognition is supported by a rich reservoir of abstract concepts without tangible external referents (e.g., “honor”, “relationship”, “direction”). While decades of research showed that the neural organization of conceptual knowledge referring to concrete words respects domains of evolutionary salience and sensorimotor attributes, the organization principles of abstract word meanings are poorly understood. Here, we provide neuropsychological evidence for a domain (sociality) and attribute (emotion) structure in abstract word processing. Testing 34 brain-damaged patients on a word-semantic judgment task, we observed double dissociations between social and nonsocial words and a single dissociation of sparing of emotional (relative to non-emotional) words. The lesion profiles of patients with specific dissociations suggest potential neural correlates positively or negatively associated with each dimension. These results unravel a general domain-attribute architecture of word meanings and highlight the roles of the social domain and the emotional attribute in the non-object semantic space.
Collapse
Affiliation(s)
- Xiaosha Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Guochao Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Gang Zhao
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Yunqian Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Bijun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Ching-Po Lin
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China.,Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xinrui Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China.
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China. .,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China. .,Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
24
|
Souter NE, Lindquist KA, Jefferies E. Impaired emotion perception and categorization in semantic aphasia. Neuropsychologia 2021; 162:108052. [PMID: 34624259 DOI: 10.1016/j.neuropsychologia.2021.108052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022]
Abstract
According to a constructionist model of emotion, conceptual knowledge plays a foundational role in emotion perception; reduced availability of relevant conceptual knowledge should therefore impair emotion perception. Conceptual deficits can follow both degradation of semantic knowledge (e.g., semantic 'storage' deficits in semantic dementia) and deregulation of retrieval (e.g., semantic 'access' deficits in semantic aphasia). While emotion recognition deficits are known to accompany degraded conceptual knowledge, less is known about the impact of semantic access deficits. Here, we examined emotion perception and categorization tasks in patients with semantic aphasia, who have difficulty accessing semantic information in a flexible and controlled fashion following left hemisphere stroke. In Study 1, participants were asked to sort faces according to the emotion they portrayed - with numbers, written labels and picture examples each provided as category anchors across tasks. Semantic aphasia patients made more errors and showed a larger benefit from word anchors that reduced the need to internally constrain categorization than comparison participants. They successfully sorted portrayals that differed in valence (positive vs. negative) but had difficulty categorizing different negative emotions. They were unimpaired on a control task that involved sorting faces by identity. In Study 2, participants matched facial emotion portrayals to written labels following vocal emotion prosody cues, miscues, or no cues. Patients presented with overall poorer performance and benefited from cue trials relative to within-valence miscue trials. This same effect was seen in comparison participants, who also showed deleterious effects of within-valence miscue relative to no cue trials. Overall, we found that patients with deregulated semantic retrieval have deficits in emotional perception but that word anchors and cue conditions can facilitate emotion perception by increasing access to relevant emotion concepts and reducing reliance on semantic control. Semantic control may be of particular importance in emotion perception when it is necessary to interpret ambiguous inputs, or when there is interference between conceptually similar emotional states. These findings extend constructionist accounts of emotion to encompass difficulties in controlled semantic retrieval.
Collapse
Affiliation(s)
| | - Kristen A Lindquist
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, 27599-3270, USA.
| | | |
Collapse
|
25
|
Legaz A, Abrevaya S, Dottori M, Campo CG, Birba A, Caro MM, Aguirre J, Slachevsky A, Aranguiz R, Serrano C, Gillan CM, Leroi I, García AM, Fittipaldi S, Ibañez A. Multimodal mechanisms of human socially reinforced learning across neurodegenerative diseases. Brain 2021; 145:1052-1068. [PMID: 34529034 PMCID: PMC9128375 DOI: 10.1093/brain/awab345] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Social feedback can selectively enhance learning in diverse domains. Relevant
neurocognitive mechanisms have been studied mainly in healthy persons, yielding
correlational findings. Neurodegenerative lesion models, coupled with multimodal
brain measures, can complement standard approaches by revealing direct
multidimensional correlates of the phenomenon. To this end, we assessed socially reinforced and non-socially reinforced learning
in 40 healthy participants as well as persons with behavioural variant
frontotemporal dementia (n = 21), Parkinson’s
disease (n = 31) and Alzheimer’s disease
(n = 20). These conditions are typified by
predominant deficits in social cognition, feedback-based learning and
associative learning, respectively, although all three domains may be partly
compromised in the other conditions. We combined a validated behavioural task
with ongoing EEG signatures of implicit learning (medial frontal negativity) and
offline MRI measures (voxel-based morphometry). In healthy participants, learning was facilitated by social feedback relative to
non-social feedback. In comparison with controls, this effect was specifically
impaired in behavioural variant frontotemporal dementia and Parkinson’s
disease, while unspecific learning deficits (across social and non-social
conditions) were observed in Alzheimer’s disease. EEG results showed
increased medial frontal negativity in healthy controls during social feedback
and learning. Such a modulation was selectively disrupted in behavioural variant
frontotemporal dementia. Neuroanatomical results revealed extended
temporo-parietal and fronto-limbic correlates of socially reinforced learning,
with specific temporo-parietal associations in behavioural variant
frontotemporal dementia and predominantly fronto-limbic regions in
Alzheimer’s disease. In contrast, non-socially reinforced learning was
consistently linked to medial temporal/hippocampal regions. No associations with
cortical volume were found in Parkinson’s disease. Results are consistent
with core social deficits in behavioural variant frontotemporal dementia, subtle
disruptions in ongoing feedback-mechanisms and social processes in
Parkinson’s disease and generalized learning alterations in
Alzheimer’s disease. This multimodal approach highlights the impact of
different neurodegenerative profiles on learning and social feedback. Our findings inform a promising theoretical and clinical agenda in the fields of
social learning, socially reinforced learning and neurodegeneration.
Collapse
Affiliation(s)
- Agustina Legaz
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, C1011ACC, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina.,Universidad Nacional de Córdoba. Facultad de Psicología, Córdoba, CU320, Argentina
| | - Sofía Abrevaya
- National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina.,Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, CONICET, Buenos Aires, C1021, Argentina
| | - Martín Dottori
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, C1011ACC, Argentina
| | - Cecilia González Campo
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, C1011ACC, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina
| | - Agustina Birba
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, C1011ACC, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina
| | - Miguel Martorell Caro
- National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina.,Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, CONICET, Buenos Aires, C1021, Argentina
| | - Julieta Aguirre
- Instituto de Investigaciones Psicológicas (IIPsi), CONICET, Universidad Nacional de Córdoba, Córdoba, CB5000, Argentina
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital delSalvador, SSMO & Faculty of Medicine, University of Chile, Santiago, Chile.,Gerosciences Center for Brain Health and Metabolism, Santiago, Chile.,Neuropsychology and Clinical Neuroscience Laboratory, Physiopathology Department, ICBM, Neurosciences Department, Faculty of Medicine, University of Chile, Chile.,Servicio de Neurología, Departamento de Medicina, Clínica Alemana-Universidad del Desarrollo, Chile
| | | | - Cecilia Serrano
- Neurología Cognitiva, Hospital Cesar Milstein, Buenos Aires, C1221, Argentina
| | - Claire M Gillan
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA 94158, USA.,Department of Psychology, Trinity College Dublin, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Iracema Leroi
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Adolfo M García
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, C1011ACC, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina.,Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA 94158, USA.,Global Brain Health Institute (GBHI), Trinity College Dublin (TCD), Dublin, Dublin 2, Ireland.,Faculty of Education, National University of Cuyo, Mendoza, M5502JMA, Argentina.,Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - Sol Fittipaldi
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, C1011ACC, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina.,Universidad Nacional de Córdoba. Facultad de Psicología, Córdoba, CU320, Argentina
| | - Agustín Ibañez
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, C1011ACC, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina.,Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA 94158, USA.,Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| |
Collapse
|
26
|
Sivasathiaseelan H, Marshall CR, Benhamou E, van Leeuwen JEP, Bond RL, Russell LL, Greaves C, Moore KM, Hardy CJD, Frost C, Rohrer JD, Scott SK, Warren JD. Laughter as a paradigm of socio-emotional signal processing in dementia. Cortex 2021; 142:186-203. [PMID: 34273798 PMCID: PMC8438290 DOI: 10.1016/j.cortex.2021.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/01/2021] [Accepted: 05/21/2021] [Indexed: 11/03/2022]
Abstract
Laughter is a fundamental communicative signal in our relations with other people and is used to convey a diverse repertoire of social and emotional information. It is therefore potentially a useful probe of impaired socio-emotional signal processing in neurodegenerative diseases. Here we investigated the cognitive and affective processing of laughter in forty-seven patients representing all major syndromes of frontotemporal dementia, a disease spectrum characterised by severe socio-emotional dysfunction (twenty-two with behavioural variant frontotemporal dementia, twelve with semantic variant primary progressive aphasia, thirteen with nonfluent-agrammatic variant primary progressive aphasia), in relation to fifteen patients with typical amnestic Alzheimer's disease and twenty healthy age-matched individuals. We assessed cognitive labelling (identification) and valence rating (affective evaluation) of samples of spontaneous (mirthful and hostile) and volitional (posed) laughter versus two auditory control conditions (a synthetic laughter-like stimulus and spoken numbers). Neuroanatomical associations of laughter processing were assessed using voxel-based morphometry of patients' brain MR images. While all dementia syndromes were associated with impaired identification of laughter subtypes relative to healthy controls, this was significantly more severe overall in frontotemporal dementia than in Alzheimer's disease and particularly in the behavioural and semantic variants, which also showed abnormal affective evaluation of laughter. Over the patient cohort, laughter identification accuracy was correlated with measures of daily-life socio-emotional functioning. Certain striking syndromic signatures emerged, including enhanced liking for hostile laughter in behavioural variant frontotemporal dementia, impaired processing of synthetic laughter in the nonfluent-agrammatic variant (consistent with a generic complex auditory perceptual deficit) and enhanced liking for numbers ('numerophilia') in the semantic variant. Across the patient cohort, overall laughter identification accuracy correlated with regional grey matter in a core network encompassing inferior frontal and cingulo-insular cortices; and more specific correlates of laughter identification accuracy were delineated in cortical regions mediating affective disambiguation (identification of hostile and posed laughter in orbitofrontal cortex) and authenticity (social intent) decoding (identification of mirthful and posed laughter in anteromedial prefrontal cortex) (all p < .05 after correction for multiple voxel-wise comparisons over the whole brain). These findings reveal a rich diversity of cognitive and affective laughter phenotypes in canonical dementia syndromes and suggest that laughter is an informative probe of neural mechanisms underpinning socio-emotional dysfunction in neurodegenerative disease.
Collapse
Affiliation(s)
- Harri Sivasathiaseelan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Charles R Marshall
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, United Kingdom
| | - Elia Benhamou
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Janneke E P van Leeuwen
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rebecca L Bond
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lucy L Russell
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Caroline Greaves
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Katrina M Moore
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Chris J D Hardy
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Chris Frost
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Medical Statistics, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sophie K Scott
- Institute of Cognitive Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jason D Warren
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
27
|
De Marco M, Blackburn DJ, Venneri A. Serial Recall Order and Semantic Features of Category Fluency Words to Study Semantic Memory in Normal Ageing. Front Aging Neurosci 2021; 13:678588. [PMID: 34413764 PMCID: PMC8370562 DOI: 10.3389/fnagi.2021.678588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Category Fluency Test (CFT) is a common measure of semantic memory (SM). Test performance, however, is also influenced by other cognitive functions. We here propose a scoring procedure that quantifies the correlation between the serial recall order (SRO) of words retrieved during the CFT and a number of linguistic features, to obtain purer SM measures. To put this methodology to the test, we addressed a proof-of-concept hypothesis whereby, in alignment with the literature, older adults would show better SM. Methods: Ninety participants (45 aged 18-21 years; 45 aged 70-81 years) with normal neurological and cognitive functioning completed a 1-min CFT. SRO was scored as an ordinal variable incrementing by one unit for each valid entry. Each word was also scored for 16 additional linguistic features. Participant-specific normalised correlation coefficients were calculated between SRO and each feature and were analysed with group comparisons and graph theory. Results: Younger adults showed more negative correlations between SRO and "valence" (a feature of words pleasantness). This was driven by the first five words generated. When analysed with graph theory, SRO had significantly higher degree and lower betweenness centrality among older adults. Conclusion: In older adults, SM relies significantly less on pleasantness of entries typically retrieved without semantic control. Moreover, graph-theory metrics indicated better optimised links between SRO and linguistic features in this group. These findings are aligned with the principle whereby SM processes tend to solidify with ageing. Although additional work is needed in support of an SRO-based item-level scoring procedure of CFT performance, these initial findings suggest that this methodology could be of help in characterising SM in a purer form.
Collapse
Affiliation(s)
- Matteo De Marco
- Department of Life Sciences, Brunel University London, London, United Kingdom.,Department of Neuroscience, The University of Sheffield, Sheffield, United Kingdom
| | - Daniel J Blackburn
- Department of Neuroscience, The University of Sheffield, Sheffield, United Kingdom
| | - Annalena Venneri
- Department of Life Sciences, Brunel University London, London, United Kingdom.,Department of Neuroscience, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
28
|
Yang WFZ, Toller G, Shdo S, Kotz SA, Brown J, Seeley WW, Kramer JH, Miller BL, Rankin KP. Resting functional connectivity in the semantic appraisal network predicts accuracy of emotion identification. NEUROIMAGE-CLINICAL 2021; 31:102755. [PMID: 34274726 PMCID: PMC8319356 DOI: 10.1016/j.nicl.2021.102755] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Structural and task-based functional studies associate emotion reading with frontotemporal brain networks, though it remains unclear whether functional connectivity (FC) alone predicts emotion reading ability. The predominantly frontotemporal salience and semantic appraisal (SAN) networks are selectively impacted in neurodegenerative disease syndromes like behavioral-variant frontotemporal dementia (bvFTD) and semantic-variant primary progressive aphasia (svPPA). Accurate emotion identification diminishes in some of these patients, but studies investigating the source of this symptom in patients have predominantly examined structural rather than functional brain changes. Thus, we investigated the impact of altered connectivity on their emotion reading. METHODS One-hundred-eighty-five participants (26 bvFTD, 21 svPPA, 24 non-fluent variant PPA, 24 progressive supranuclear palsy, 49 Alzheimer's disease, 41 neurologically healthy older controls) underwent task-free fMRI, and completed the Emotion Evaluation subtest of The Awareness of Social Inference Test (TASIT-EET), watching videos and selecting labels for actors' emotions. RESULTS As expected, patients averaged significantly worse on emotion reading, but with wide inter-individual variability. Across all groups, lower mean FC in the SAN, but not other ICNs, predicted worse TASIT-EET performance. Node-pair analysis revealed that emotion identification was predicted by FC between 1) right anterior temporal lobe (RaTL) and right anterior orbitofrontal (OFC), 2) RaTL and right posterior OFC, and 3) left basolateral amygdala and left posterior OFC. CONCLUSION Emotion reading test performance predicts FC in specific SAN regions mediating socioemotional semantics, personalized evaluations, and salience-driven attention, highlighting the value of emotion testing in clinical and research settings to index neural circuit dysfunction in patients with neurodegeneration and other neurologic disorders.
Collapse
Affiliation(s)
- Winson F Z Yang
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94158, United States; Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands.
| | - Gianina Toller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94158, United States.
| | - Suzanne Shdo
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94158, United States.
| | - Sonja A Kotz
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands.
| | - Jesse Brown
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94158, United States.
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94158, United States.
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94158, United States.
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94158, United States.
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94158, United States.
| |
Collapse
|
29
|
Satpute AB, Lindquist KA. At the Neural Intersection Between Language and Emotion. AFFECTIVE SCIENCE 2021; 2:207-220. [PMID: 36043170 PMCID: PMC9382959 DOI: 10.1007/s42761-021-00032-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/25/2021] [Indexed: 10/21/2022]
Abstract
What role does language play in emotion? Behavioral research shows that emotion words such as "anger" and "fear" alter emotion experience, but questions still remain about mechanism. Here, we review the neuroscience literature to examine whether neural processes associated with semantics are also involved in emotion. Our review suggests that brain regions involved in the semantic processing of words: (i) are engaged during experiences of emotion, (ii) coordinate with brain regions involved in affect to create emotions, (iii) hold representational content for emotion, and (iv) may be necessary for constructing emotional experience. We relate these findings with respect to four theoretical relationships between language and emotion, which we refer to as "non-interactive," "interactive," "constitutive," and "deterministic." We conclude that findings are most consistent with the interactive and constitutive views with initial evidence suggestive of a constitutive view, in particular. We close with several future directions that may help test hypotheses of the constitutive view.
Collapse
Affiliation(s)
- Ajay B. Satpute
- Department of Psychology, Northeastern University, 360 Huntington Ave, 125 NI, Boston, MA 02115 USA
| | - Kristen A. Lindquist
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
30
|
Ibanez A, Schulte M. Situated minds: conceptual and emotional blending in neurodegeneration and beyond. Brain 2021; 143:3523-3525. [PMID: 33439982 DOI: 10.1093/brain/awaa392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This scientific commentary refers to ‘When affect overlaps with concept: emotion recognition in semantic variant of primary progressive aphasia’, by Bertoux et al. (doi:10.1093/brain/awaa313).
Collapse
Affiliation(s)
- Agustin Ibanez
- Cognitive Neurosience Center (CNC), Universidad de San Andrés, Argentina.,National Scientific and Technical Research Council (CONICET), Argentina.,Center for Social and Cognitive Neuroscience (CSCN), Universidad Adolfo Ibanez, Santiago de Chile, Chile.,Universidad Autónoma del Caribe, Colombia.,Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), USA
| | - Michael Schulte
- Cognitive Neurosience Center (CNC), Universidad de San Andrés, Argentina
| |
Collapse
|
31
|
Richter F, Ibáñez A. Time is body: Multimodal evidence of crosstalk between interoception and time estimation. Biol Psychol 2021; 159:108017. [PMID: 33450326 DOI: 10.1016/j.biopsycho.2021.108017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022]
Abstract
Theoretical approaches propose a blending between interoception and time estimation. Interoception might constitute a neurophysiological mechanism for encoding duration. However, no study has assessed the convergence between interoception and time estimation using behavioral, neurophysiological, and functional anatomy signatures. We examined the multimodal convergence between interoception and time estimation using a two-fold approach. In study 1, we developed a dual design combining interoception (measuring heartbeat detection - HBD, and heartbeat evoked potential - HEP) with a time estimation paradigm (TEP, estimation of duration of a 120 s interval). In study 2, we performed a conjoint metanalysis (Multi-level Kernel Density Analysis, MKDA) of neuroimaging, including reports of interoception and time estimation. Both studies provide convergent evidence of time estimation's significant involvement in behavioral, electrophysiological (enhanced HEP), and neuroimaging (overlapping cluster in the right insula and operculum) signatures of interoception. Convergent results from both studies offer direct support for a shared mechanism of interoception and time estimation.
Collapse
Affiliation(s)
- Fabian Richter
- Cognitive Neurosience Center (CNC), Universidad de San Andrés, Argentina.
| | - Agustín Ibáñez
- Cognitive Neurosience Center (CNC), Universidad de San Andrés, Argentina; National Scientific and Technical Research Council (CONICET), Argentina; Center for Social and Cognitive Neuroscience (CSCN), Latin American Institute of Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago de Chile, Chile; Universidad Autónoma del Caribe, Colombia; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), US.
| |
Collapse
|
32
|
Garcia-Cordero I, Migeot J, Fittipaldi S, Aquino A, Campo CG, García A, Ibáñez A. Metacognition of emotion recognition across neurodegenerative diseases. Cortex 2021; 137:93-107. [PMID: 33609899 DOI: 10.1016/j.cortex.2020.12.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/18/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Metacognition (monitoring) of emotion recognition is fundamental for social interactions. Correct recognition of and confidence in the emotional meaning inferred from others' faces are fundamental for guiding and adjusting interpersonal behavior. Yet, although emotion recognition impairments are well documented across neurodegenerative diseases, the role of metacognition in this domain remains poorly understood. Here, we evaluate multimodal neurocognitive markers of metacognition in 83 subjects, encompassing patients with behavioral variant frontotemporal dementia [bvFTD, n = 18], Alzheimer's disease [AD, n = 27], and demographically-matched controls (n = 38). Participants performed a classical facial emotion recognition task and, after each trial, they rated their confidence in their performance. We examined two measures of metacognition: (i) calibration: how well confidence tracks accuracy; and (ii) a metacognitive index (MI) capturing the magnitude of the difference between confidence and accuracy. Then, whole-brain grey matter volume and fMRI-derived resting-state functional connectivity were analyzed to track associations with metacognition. Results showed that metacognition deficits were linked to basic emotion recognition. Metacognition of negative emotions was compromised in patients, especially disgust in bvFTD as well as sadness in AD. Metacognition impairments were associated with reduced volume of fronto-temporo-insular and subcortical areas in bvFTD and fronto-parietal regions in AD. Metacognition deficits were associated with disconnection of large-scale fronto-posterior networks for both groups. This study reveals a link between emotion recognition and metacognition in neurodegenerative diseases. The characterization of metacognitive impairments in bvFTD and AD would be relevant for understanding patients' daily life changes in social behavior.
Collapse
Affiliation(s)
- Indira Garcia-Cordero
- Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Joaquín Migeot
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - Sol Fittipaldi
- Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | | | - Cecilia Gonzalez Campo
- Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Adolfo García
- Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Faculty of Education, National University of Cuyo, Mendoza, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile; Global Brain Health Institute, University of California, San Francisco, USA
| | - Agustín Ibáñez
- Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile; Global Brain Health Institute, University of California, San Francisco, USA.
| |
Collapse
|