1
|
Mandelblatt J, Dage JL, Zhou X, Small BJ, Ahles TA, Ahn J, Artese A, Bethea TN, Breen EC, Carroll JE, Cohen HJ, Extermann M, Graham D, Claudine I, Jim HSL, McDonald BC, Nakamura ZM, Patel SK, Rebeck GW, Rentscher KE, Root JC, Russ KA, Tometich DB, Turner RS, Van Dyk K, Zhai W, Huang LW, Saykin AJ. Alzheimer disease-related biomarkers and cancer-related cognitive decline: the Thinking and Living with Cancer study. J Natl Cancer Inst 2024; 116:1495-1507. [PMID: 38788675 PMCID: PMC11378315 DOI: 10.1093/jnci/djae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
PURPOSE We evaluated whether plasma Alzheimer disease (AD)-related biomarkers were associated with cancer-related cognitive decline among older breast cancer survivors. METHODS We included survivors aged 60-90 years with primary stage 0-III breast cancers (n = 236) and frequency-matched noncancer control paricipant (n = 154) who passed a cognitive screen and had banked plasma specimens. Participants were assessed at baseline (presystemic therapy) and annually for up to 60 months. Cognition was measured using tests of attention, processing speed, and executive function and learning and memory; perceived cognition was measured by the Functional Assessment of Cancer Therapy-Cognitive Function v3 Perceived Cognitive Impairments. Baseline plasma neurofilament light, glial fibrillary acidic protein, β-amyloid 42 and 40 and phosphorylated tau 181 were assayed using single molecule arrays. Mixed models tested associations between cognition and baseline AD biomarkers, time, group (survivor vs control participant), and their 2- and 3-way interactions, controlling for age, race, Wide Range 4 Achievement Test Word Reading score, comorbidity, and body mass index; 2-sided P values of .05 were considered statistically significant. RESULTS There were no group differences in baseline AD-related biomarkers except survivors had higher baseline neurofilament light levels than control participants (P = .013). Survivors had lower adjusted longitudinal attention, processing speed, and executive function than control participants starting from baseline and continuing over time (P ≤ .002). However, baseline AD-related biomarker levels were not independently associated with adjusted cognition over time, except control participants had lower attention, processing speed, and executive function scores with higher glial fibrillary acidic protein levels (P = .008). CONCLUSION The results do not support a relationship between baseline AD-related biomarkers and cancer-related cognitive decline. Further investigation is warranted to confirm the findings, test effects of longitudinal changes in AD-related biomarkers, and examine other mechanisms and factors affecting cognition presystemic therapy.
Collapse
Affiliation(s)
- Jeanne Mandelblatt
- Georgetown Lombardi Institute for Cancer and Aging Research, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, USA
| | - Jeffrey L Dage
- Stark Neurosciences Research Institute, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xingtao Zhou
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, USA
| | - Brent J Small
- School of Aging Studies, University of South Florida, and Health Outcomes and Behavior Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Tim A Ahles
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jaeil Ahn
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, USA
| | - Ashley Artese
- Department of Exercise Science and Health Promotion, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Traci N Bethea
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, USA
| | - Elizabeth C Breen
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Judith E Carroll
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Harvey J Cohen
- Department of Medicine, Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA
| | - Martine Extermann
- Senior Adult Oncology Program, Department of Oncology, Moffitt Cancer Center, University of South Florida, Tampa, FL, USA
| | - Deena Graham
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Isaacs Claudine
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, USA
| | - Heather S L Jim
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL, USA
| | - Brenna C McDonald
- Department of Radiology and Imaging Sciences, Melvin and Bren Simon Comprehensive Cancer Center, and Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zev M Nakamura
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sunita K Patel
- Department of Population Sciences and Department of Supportive Care Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, Washington, DC, USA
| | - Kelly E Rentscher
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James C Root
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kristen A Russ
- Department of Medical and Molecular Genetics and National Centralized Repository for Alzheimer’s and Related Dementias, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Danielle B Tometich
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL, USA
| | - R Scott Turner
- Department of Neurology, Georgetown University, Washington, DC, USA
| | - Kathleen Van Dyk
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wanting Zhai
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, USA
| | - Li-Wen Huang
- Division of Hematology/Oncology, University of California San Francisco and San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Melvin and Bren Simon Comprehensive Cancer Center, and Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
2
|
Ma L, Low YLC, Zhuo Y, Chu C, Wang Y, Fowler CJ, Tan ECK, Masters CL, Jin L, Pan Y. Exploring the association between cancer and cognitive impairment in the Australian Imaging Biomarkers and Lifestyle (AIBL) study. Sci Rep 2024; 14:4364. [PMID: 38388558 PMCID: PMC10884016 DOI: 10.1038/s41598-024-54875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
An inverse association between cancer and Alzheimer's disease (AD) has been demonstrated; however, the association between cancer and mild cognitive impairment (MCI), and the association between cancer and cognitive decline are yet to be clarified. The AIBL dataset was used to address these knowledge gaps. The crude and adjusted odds ratios for MCI/AD and cognitive decline were compared between participants with/without cancer (referred to as C+ and C- participants). A 37% reduction in odds for AD was observed in C+ participants compared to C- participants after adjusting for all confounders. The overall risk for MCI and AD in C+ participants was reduced by 27% and 31%, respectively. The odds of cognitive decline from MCI to AD was reduced by 59% in C+ participants after adjusting for all confounders. The risk of cognitive decline from MCI to AD was halved in C+ participants. The estimated mean change in Clinical Dementia Rating-Sum of boxes (CDR-SOB) score per year was 0.23 units/year higher in C- participants than in C+ participants. Overall, an inverse association between cancer and MCI/AD was observed in AIBL, which is in line with previous reports. Importantly, an inverse association between cancer and cognitive decline has also been identified.
Collapse
Affiliation(s)
- Liwei Ma
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yi Ling Clare Low
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yuanhao Zhuo
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Chenyin Chu
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yihan Wang
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Christopher J Fowler
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Edwin C K Tan
- The University of Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Liang Jin
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - Yijun Pan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
3
|
Almeida OP, Etherton-Beer C, Sanfilippo F, Preen DB, Page A. Dispensing of antineoplastic medications and their impact on the dispensing of anti-dementia drugs for adults aged ≥60 years: A cohort study. Maturitas 2024; 180:107888. [PMID: 38006816 DOI: 10.1016/j.maturitas.2023.107888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/25/2023] [Accepted: 11/11/2023] [Indexed: 11/27/2023]
Abstract
History of cancer has been associated with decreased risk of dementia, but it is unclear if this is due to the use of antineoplastic medications. Participants were 442,795 adults aged ≥60 years, of whom 235,841 (53.26 %) were women. Those dispensed antineoplastic medications during 2012-2013 had lower odds of being dispensed an anti-dementia drug between 2015 and 2021 (age/sex-adjusted OR = 0.60, 95%CI = 0.55-0.66). The dispensing of antineoplastic medications was associated with an adjusted hazard ratio of 0.72 (95%CI = 0.65-0.80) of subsequent dispensing of an anti-dementia drug. Understanding the mechanisms that support this association may contribute to the introduction of novel approaches to dementia prevention.
Collapse
Affiliation(s)
| | | | - Frank Sanfilippo
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - David B Preen
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Amy Page
- School of Allied Health, University of Western Australia, Perth, Australia
| |
Collapse
|
4
|
Wang J, Sims KD, Ackley SF, Chen R, Kobayashi LC, Hayes‐Larson E, Mayeda ER, Buto P, Zimmerman SC, Graff RE, Glymour MM. Association of cancer history with structural brain aging markers of Alzheimer's disease and related dementias risk. Alzheimers Dement 2024; 20:880-889. [PMID: 37811979 PMCID: PMC10916958 DOI: 10.1002/alz.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Cancer survivors are less likely than comparably aged individuals without a cancer history to develop Alzheimer's disease and related dementias (ADRD). METHODS In the UK Biobank, we investigated associations between cancer history and five structural magnetic resonance imaging (MRI) markers for ADRD risk, using linear mixed-effects models to assess differences in mean values and quantile regression to examine whether associations varied across the distribution of MRI markers. RESULTS Cancer history was associated with smaller mean hippocampal volume (b = -19 mm3 , 95% CI = -36, -1) and lower mean cortical thickness in the Alzheimer's disease signature region (b = -0.004 mm, 95% CI = -0.007, -0.000). Quantile regressions indicated individuals most vulnerable to ADRD were more affected by cancer history. DISCUSSION Some brain MRI markers associated with ADRD risk were elevated in adults with a history of cancer. The magnitude of the adverse associations varied across quantiles of neuroimaging markers, and the pattern suggests possible harmful associations for individuals already at high ADRD risk. HIGHLIGHTS We found no evidence of an inverse association between cancer history and ADRD-related neurodegeneration. Cancer history was associated with smaller mean hippocampal volume and lower mean cortical thickness in the Alzheimer's disease signature region. Quantile regressions indicated individuals most vulnerable to ADRD were more affected by cancer history.
Collapse
Affiliation(s)
- Jingxuan Wang
- Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Kendra D. Sims
- Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Sarah F. Ackley
- Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Ruijia Chen
- Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Lindsay C. Kobayashi
- Department of EpidemiologyUniversity of Michigan School of Public HealthAnn ArborMichiganUSA
| | - Eleanor Hayes‐Larson
- Department of EpidemiologyFielding School of Public HealthUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Elizabeth Rose Mayeda
- Department of EpidemiologyFielding School of Public HealthUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Peter Buto
- Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Scott C. Zimmerman
- Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Rebecca E. Graff
- Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - M. Maria Glymour
- Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
5
|
Paudel B, Jeong SY, Martinez CP, Rickman A, Haluck-Kangas A, Bartom ET, Fredriksen K, Affaneh A, Kessler JA, Mazzulli JR, Murmann AE, Rogalski E, Geula C, Ferreira A, Heckmann BL, Green DR, Sadleir KR, Vassar R, Peter ME. Death Induced by Survival gene Elimination (DISE) correlates with neurotoxicity in Alzheimer's disease and aging. Nat Commun 2024; 15:264. [PMID: 38238311 PMCID: PMC10796375 DOI: 10.1038/s41467-023-44465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration, but the specific events that cause cell death remain poorly understood. Death Induced by Survival gene Elimination (DISE) is a cell death mechanism mediated by short (s) RNAs acting through the RNA-induced silencing complex (RISC). DISE is thus a form of RNA interference, in which G-rich 6mer seed sequences in the sRNAs (position 2-7) target hundreds of C-rich 6mer seed matches in genes essential for cell survival, resulting in the activation of cell death pathways. Here, using Argonaute precipitation and RNAseq (Ago-RP-Seq), we analyze RISC-bound sRNAs to quantify 6mer seed toxicity in several model systems. In mouse AD models and aging brain, in induced pluripotent stem cell-derived neurons from AD patients, and in cells exposed to Aβ42 oligomers, RISC-bound sRNAs show a shift to more toxic 6mer seeds compared to controls. In contrast, in brains of "SuperAgers", humans over age 80 who have superior memory performance, RISC-bound sRNAs are shifted to more nontoxic 6mer seeds. Cells depleted of nontoxic sRNAs are sensitized to Aβ42-induced cell death, and reintroducing nontoxic RNAs is protective. Altogether, the correlation between DISE and Aβ42 toxicity suggests that increasing the levels of nontoxic miRNAs in the brain or blocking the activity of toxic RISC-bound sRNAs could ameliorate neurodegeneration.
Collapse
Affiliation(s)
- Bidur Paudel
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Si-Yeon Jeong
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Ministry of Food and Drug Safety, Pharmaceutical Safety Bureau, Pharmaceutical Policy Division 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Carolina Pena Martinez
- USF Health Byrd Alzheimer's Center and Neuroscience Institute; Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Alexis Rickman
- USF Health Byrd Alzheimer's Center and Neuroscience Institute; Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Ashley Haluck-Kangas
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Preventive Medicine/Division of Biostatistics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Kristina Fredriksen
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Amira Affaneh
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - John A Kessler
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Joseph R Mazzulli
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Andrea E Murmann
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Healthy Aging & Alzheimer's Research Care (HAARC) Center, Department of Neurology, The University of Chicago, Chicago, IL, 60637, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Adriana Ferreira
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Bradlee L Heckmann
- USF Health Byrd Alzheimer's Center and Neuroscience Institute; Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Katherine R Sadleir
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Robert Vassar
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Marcus E Peter
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Bassil DT, Zheng B, Su B, Kafetsouli D, Udeh-Momoh C, Tzoulaki I, Ahmadi-Abhari S, Muller DC, Riboli E, Middleton LT. Lower Incidence of Dementia Following Cancer Diagnoses: Evidence from a Large Cohort and Mendelian Randomization Study. J Prev Alzheimers Dis 2024; 11:1397-1405. [PMID: 39350386 PMCID: PMC11436397 DOI: 10.14283/jpad.2024.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/07/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The reported inverse association between cancer and subsequent Alzheimer's disease and related dementias (ADRD) remains uncertain. OBJECTIVES To investigate the association between these common conditions of old age and explore possible causal factors. DESIGN, SETTING, PARTICIPANTS AND MEASUREMENTS We conducted a large population-based cohort analysis using data from 3,021,508 individuals aged 60 and over in the UK Clinical Practice Research Datalink (CPRD), over a period up to 30 years (1988-2018). Cox proportional hazards models were fitted to estimate hazard ratios (HR) for risk of dementia associated with previous cancer diagnosis. Competing risk models were employed to account for competing risk of death. Two-sample Mendelian Randomization analysis based on meta-analysis data from large-scale GWAS studies was also conducted. RESULTS In the CPRD cohort, 412,903 participants had cancer diagnosis and 230,558 were subsequently diagnosed with dementia over a median follow-up period of 7.9 years. Cancer survivors had a 25% lower risk of developing dementia (HR=0.75, 95% CI:0.74-0.76) after adjustment for potential confounders. Accounting for competing risk of death provided a sub-distribution HR of 0.56 (95% CI:0.55-0.56). Results were consistent for prevalent and incident cancer and different common cancer types. Two-sample Mendelian Randomization analysis, using 357 cancer-related instrumental single-nucleotide polymorphisms (SNPs) revealed evidence of vertical pleiotropy between genetically predicted cancer and reduced risk of Alzheimer's disease (OR=0.97,95% CI:0.95-0.99). CONCLUSION Our results provide strong epidemiological evidence of the inverse association between cancer and risk of ADRD and support the potential causal nature of this association via genetic instruments. Further investigations into the precise underlying biological mechanisms may reveal valuable information for new therapeutic approaches.
Collapse
Affiliation(s)
- D T Bassil
- Prof. Elio Riboli, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK. , +44 (0)20 7594 3426
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Das V, Hajdúch M. Randomizing for Alzheimer's disease drug trials should consider the cancer history of participants. Brain 2023; 146:e75-e76. [PMID: 37243427 DOI: 10.1093/brain/awad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Affiliation(s)
- Viswanath Das
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - Marián Hajdúch
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
8
|
Dong Z, Xu M, Sun X, Wang X. Mendelian randomization and transcriptomic analysis reveal an inverse causal relationship between Alzheimer's disease and cancer. J Transl Med 2023; 21:527. [PMID: 37542274 PMCID: PMC10403895 DOI: 10.1186/s12967-023-04357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/14/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) and cancer are common age-related diseases, and epidemiological evidence suggests an inverse relationship between them. However, investigating the potential mechanism underlying their relationship remains insufficient. METHODS Based on genome-wide association summary statistics for 42,034 AD patients and 609,951 cancer patients from the GWAS Catalog using the two-sample Mendelian randomization (MR) method. Moreover, we utilized two-step MR to identify metabolites mediating between AD and cancer. Furthermore, we employed colocalization analysis to identify genes whose upregulation is a risk factor for AD and demonstrated the genes' upregulation to be a favorable prognostic factor for cancer by analyzing transcriptomic data for 33 TCGA cancer types. RESULTS Two-sample MR analysis revealed a significant causal influence for increased AD risk on reduced cancer risk. Two-step MR analysis identified very low-density lipoprotein (VLDL) as a key mediator of the negative cause-effect relationship between AD and cancer. Colocalization analysis uncovered PVRIG upregulation to be a risk factor for AD. Transcriptomic analysis showed that PVRIG expression had significant negative correlations with stemness scores, and positive correlations with antitumor immune responses and overall survival in pan-cancer and multiple cancer types. CONCLUSION AD may result in lower cancer risk. VLDL is a significant intermediate variable linking AD with cancer. PVRIG abundance is a risk factor for AD but a protective factor for cancer. This study demonstrates a causal influence for AD on cancer and provides potential molecular connections between both diseases.
Collapse
Affiliation(s)
- Zehua Dong
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Mengli Xu
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Xu Sun
- Department of Pharmacy, Nanjing Luhe People's Hospital, Nanjing, 211500, China.
- Department of Pharmacy, Luhe Hospital Affiliated with Yangzhou University Medical College, Nanjing, 211500, China.
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
9
|
Zhao S, Ye B, Chi H, Cheng C, Liu J. Identification of peripheral blood immune infiltration signatures and construction of monocyte-associated signatures in ovarian cancer and Alzheimer's disease using single-cell sequencing. Heliyon 2023; 9:e17454. [PMID: 37449151 PMCID: PMC10336450 DOI: 10.1016/j.heliyon.2023.e17454] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023] Open
Abstract
Background Ovarian cancer (OC) is a common tumor of the female reproductive system, while Alzheimer's disease (AD) is a prevalent neurodegenerative disease that primarily affects cognitive function in the elderly. Monocytes are immune cells in the blood that can enter tissues and transform into macrophages, thus participating in immune and inflammatory responses. Overall, monocytes may play an important role in Alzheimer's disease and ovarian cancer. Methods The CIBERSORT algorithm results indicate a potential crucial role of monocytes/macrophages in OC and AD. To identify monocyte marker genes, single-cell RNA-seq data of peripheral blood mononuclear cells (PBMCs) from OC and AD patients were analyzed. Enrichment analysis of various cell subpopulations was performed using the "irGSEA" R package. The estimation of cell cycle was conducted with the "tricycle" R package, and intercellular communication networks were analyzed using "CellChat". For 134 monocyte-associated genes (MRGs), bulk RNA-seq data from two diseased tissues were obtained. Cox regression analysis was employed to develop risk models, categorizing patients into high-risk (HR) and low-risk (LR) groups. The model's accuracy was validated using an external GEO cohort. The different risk groups were evaluated in terms of immune cell infiltration, mutational status, signaling pathways, immune checkpoint expression, and immunotherapy. To identify characteristic MRGs in AD, two machine learning algorithms, namely random forest and support vector machine (SVM), were utilized. Results Based on Cox regression analysis, a risk model consisting of seven genes was developed in OC, indicating a better prognosis for patients in the LR group. The LR group had a higher tumor mutation burden, immune cell infiltration abundance, and immune checkpoint expression. The results of the TIDE algorithm and the IMvigor210 cohort showed that the LR group was more likely to benefit from immunotherapy. Finally, ZFP36L1 and AP1S2 were identified as characteristic MRGs affecting OC and AD progression. Conclusion The risk profile containing seven genes identified in this study may help further guide clinical management and targeted therapy for OC. ZFP36L1 and AP1S2 may serve as biomarkers and new therapeutic targets for patients with OC and AD.
Collapse
Affiliation(s)
- Songyun Zhao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214000, China
| | - Bicheng Ye
- School of Clinical Medicine, Yangzhou Polytechnic College, Yangzhou, 225000, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214000, China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| |
Collapse
|
10
|
Almeida OP, Hankey GJ, Yeap BB, Golledge J, Etherton-Beer C, Robinson S, Flicker L. Is incident cancer in later life associated with lower incidence of dementia? Int Psychogeriatr 2023:1-5. [PMID: 36594424 DOI: 10.1017/s1041610222001119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cancer has been associated with lower risk of dementia, although methodological issues raise concerns about the validity of this association. We recruited 31,080 men aged 65-85 years who were free of cancer and dementia, and followed them for up to 22 years. We used health record linkage to identify incident cases of cancer and dementia, and split time span to investigate this association. 18,693 (60.1%) and 6897 (22.2%) participants developed cancer and dementia during follow-up. The hazard ratio (HR) of dementia associated with cancer was 1.13 (95% CI = 1.07, 1.20) and dropped to 0.85 (95% CI = 0.80, 0.91) when 449 participants who developed dementia within 2 years were excluded. The diagnosis of cancer seems to facilitate the early detection of dementia cases. Older participants who survive cancer for 2 or more years have lower risk of receiving the diagnosis of dementia over time. The factors that mediate this association remain unclear.
Collapse
Affiliation(s)
- Osvaldo P Almeida
- Medical School, University of Western Australia, Perth, Australia
- WA Centre for Health & Ageing, University of Western Australia, Perth, Australia
| | - Graeme J Hankey
- Medical School, University of Western Australia, Perth, Australia
- Department of Neurology, Sir Charles Gairdner Hospital, Perth, Australia
| | - Bu B Yeap
- Medical School, University of Western Australia, Perth, Australia
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia
- Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Australia
| | - Christopher Etherton-Beer
- Medical School, University of Western Australia, Perth, Australia
- WA Centre for Health & Ageing, University of Western Australia, Perth, Australia
| | - Suzanne Robinson
- Deakin Health Economics, Deakin University, Geelong, Victoria, Australia
| | - Leon Flicker
- Medical School, University of Western Australia, Perth, Australia
- WA Centre for Health & Ageing, University of Western Australia, Perth, Australia
| |
Collapse
|
11
|
Li SW, Han LF, He Y, Wang XS. Immunological classification of hepatitis B virus-positive hepatocellular carcinoma by transcriptome analysis. World J Hepatol 2022; 14:1997-2011. [PMID: 36618328 PMCID: PMC9813842 DOI: 10.4254/wjh.v14.i12.1997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/12/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is a major factor responsible for HBV+ hepatocellular carcinoma (HCC).
AIM An immunological classification of HBV+ HCC may provide both biological insights and clinical implications for this disease.
METHODS Based on the enrichment of 23 immune signatures, we identified two immune-specific subtypes (Imm-H and Imm-L) of HBV+ HCC by unsupervised clustering. We showed that this subtyping method was reproducible and predictable by analyzing three different datasets.
RESULTS Compared to Imm-L, Imm-H displayed stronger immunity, more stromal components, lower tumor purity, lower stemness and intratumor heterogeneity, lower-level copy number alterations, higher global methylation level, and better overall and disease-free survival prognosis. Besides immune-related pathways, stromal pathways (ECM receptor interaction, focal adhesion, and regulation of actin cytoskeleton) and neuro-related pathways (neuroactive ligand-receptor interaction, and prion diseases) were more highly enriched in Imm-H than in Imm-L. We identified nine proteins differentially expressed between Imm-H and Imm-L, of which MYH11, PDCD4, Dvl3, and Syk were upregulated in Imm-H, while PCNA, Acetyl-a-Tubulin-Lys40, ER-α_pS118, Cyclin E2, and β-Catenin were upregulated in Imm-L.
CONCLUSION Our data suggest that “hot” tumors have a better prognosis than “cold” tumors in HBV+ HCC and that “hot” tumors respond better to immunotherapy.
Collapse
Affiliation(s)
- Sheng-Wei Li
- Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Li-Fan Han
- Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Yin He
- Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Xiao-Sheng Wang
- Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| |
Collapse
|
12
|
Hu HY, Zhang YR, Aerqin Q, Ou YN, Wang ZT, Cheng W, Feng JF, Tan L, Yu JT. Association between multimorbidity status and incident dementia: a prospective cohort study of 245,483 participants. Transl Psychiatry 2022; 12:505. [PMID: 36476644 PMCID: PMC9729184 DOI: 10.1038/s41398-022-02268-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Multimorbidity (the presence of two or more long-term conditions [LTCs]) was suggested to exacerbate the neuronal injuries. The impact of multimorbidity on dementia has not been fully elucidated. We aimed to investigate the association between multimorbidity and dementia risk. We used the prospective data from 245,483 UK Biobank participants during a 9-year follow-up. Multimorbidity status was evaluated based on the LTC counts and multimorbidity patterns. Cox regression models adjusted for potential confounders were used to examine the associations of multimorbidity status with all-cause dementia (ACD), Alzheimer's disease (AD) and vascular dementia (VD). Participants with multimorbidity at baseline had higher risks of ACD and VD, and the risks were elevated with the increase of LTC counts (ACD: hazard ratios [HR] = 1.15, 95% confidence intervals [CI] = 1.01-1.31 with 2 LTCs; HR = 1.18, CI = 1.01-1.39 with 3 LTCs; HR = 1.65, CI = 1.44-1.88 with ≥4 LTCs; VD: HR = 1. 66, CI = 1.24-2.21 with 2 LTCs; HR = 2.10, CI = 1.53-2.88 with 3 LTCs; HR = 3.17, CI = 2.43-4.13 with ≥4 LTCs). Participants with ≥4 LTCs also had a higher risk of AD (HR = 1.34, CI = 1.08-1.66]. Participants with the cardio-cerebrovascular/respiratory/metabolic/musculoskeletal/depressive multimorbidity were 1.46, 1.28, and 2.50 times more likely to develop ACD (HR = 1.46, 95% CI = 1.28-1.67), AD (HR = 1.28, CI = 1.04-1.58), and VD (HR = 2.50, CI = 1.90-3.27), respectively. Those with tumor/genitourinary/digestive disorders had a 11% higher hazard of ACD (HR = 1.11, CI = 1.00-1.24) and a 73% elevated risk of VD (HR = 1.73, CI = 1.37-2.18). The prevention of LTC accumulation and the identification of specific multimorbidity patterns might be beneficial to the prevention of dementia and its subtypes, AD as well as VD.
Collapse
Affiliation(s)
- He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiaolifan Aerqin
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Cheng
- The Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- The Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China. .,Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China. .,The Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Autoencoder Networks Decipher the Association between Lung Cancer and Alzheimer’s Disease. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2009545. [DOI: 10.1155/2022/2009545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Lung cancer is the most common malignancy and is responsible for the largest cancer-related mortality worldwide. Alzheimer’s disease is a degenerative neurological disease that burdens healthcare worldwide. While the two diseases are distinct, several transcriptomic studies have demonstrated they are linked. However, no concordant conclusion on how they are associated has been drawn. Since these studies utilized conventional bioinformatics methods, such as the differentially expressed gene (DEG) analysis, it is naturally expected that the proportion of DEGs having either the same or inverse directions in lung cancer and Alzheimer’s disease is substantial. This raises the inconsistency. Therefore, a novel bioinformatics method capable of determining the direction of association is desirable. In this study, the moderated t-tests were first used to identify DEGs that are shared by the two diseases. For the shared DEGs, separate autoencoder (AE) networks were trained to extract a one-dimensional representation (pseudogene) for each disease. Based on these pseudogenes, the association direction between lung cancer and Alzheimer’s disease was inferred. AE networks based on 266 shared DEGs revealed a comorbidity relationship between Alzheimer’s disease and lung cancer. Specifically, Spearman’s correlation coefficient between the predicted values using the two AE networks for the Alzheimer’s disease test set was 0.825 and for the lung cancer test set was 0.316. Novel bioinformatics methods such as an AE network may help decipher how distinct diseases are associated by providing the refined representations of dysregulated genes.
Collapse
|
14
|
Ng CAS, Biran LP, Galvano E, Mandelblatt J, Vicini S, Rebeck GW. Chemotherapy promotes astrocytic response to Aβ deposition, but not Aβ levels, in a mouse model of amyloid and APOE. Neurobiol Dis 2022; 175:105915. [PMID: 36336241 PMCID: PMC9794416 DOI: 10.1016/j.nbd.2022.105915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Many cancer survivors experience cancer-related cognitive impairment (CRCI), which is characterized by problems of attention, working memory, and executive function following chemotherapy and/or hormonal treatment. APOE4, the strongest genetic risk factor for Alzheimer's Disease (AD), is also a risk factor for CRCI, especially among survivors exposed to chemotherapy. We explored whether the effects of APOE genotype to chemotherapy were associated with an increase in AD pathological processes, using a mouse model of amyloid (5XFAD) along with the E3 or E4 alleles of human APOE (E3FAD and E4FAD). Six-month-old female E3FAD mice (control n = 5, treated n = 5) and E4FAD (control n = 6, treated n = 6) were treated with two doses of doxorubicin (total 10 mg/kg) or DMSO vehicle. After six weeks, mice were euthanized and brains were analyzed by immunohistochemistry and biochemical assays. Doxorubicin-treated mice had the same level of Aβ in the brain as control mice, as measured by 6E10 immunohistochemistry, Aβ40 and Aβ42 ELISAs, and plaque morphologies. Doxorubicin significantly increased the level of the astrocytic response to Aβ deposits, which was independent of APOE genotype; no effects of doxorubicin were observed on the microglial responses. These data are consistent with a model in which the effects of doxorubicin on risk of CRCI are unrelated amyloid accumulation, but possibly related to glial responses to damage.
Collapse
Affiliation(s)
- Christi Anne S. Ng
- Department of Neuroscience, Georgetown University, Washington, DC, United States of America
| | - Lucas P. Biran
- Department of Neuroscience, Georgetown University, Washington, DC, United States of America
| | - Elena Galvano
- Department of Neuroscience, Georgetown University, Washington, DC, United States of America
| | - Jeanne Mandelblatt
- Department of Oncology, Cancer Prevention and Control Program and Georgetown Lombardi Institute for Cancer and Aging Research, Georgetown University, Washington, DC, United States of America
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States of America,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States of America
| | - G. William Rebeck
- Department of Neuroscience, Georgetown University, Washington, DC, United States of America,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States of America,Corresponding author at: 3970 Reservoir Rd, NW, Washington, DC 20007, United States of America. (G.W. Rebeck)
| |
Collapse
|
15
|
Lachner C, Day GS, Camsari GB, Kouri N, Ertekin-Taner N, Boeve BF, Labuzan SA, Lucas JA, Thompson EA, Siddiqui H, Crook JE, Cabrera-Rodriguez JN, Josephs KA, Petersen RC, Dickson DW, Reichard RR, Mielke MM, Knopman DS, Graff-Radford NR, Murray ME. Cancer and Vascular Comorbidity Effects on Dementia Risk and Neuropathology in the Oldest-Old. J Alzheimers Dis 2022; 90:405-417. [PMID: 36213996 PMCID: PMC9661335 DOI: 10.3233/jad-220440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Dementia, vascular disease, and cancer increase with age, enabling complex comorbid interactions. Understanding vascular and cancer contributions to dementia risk and neuropathology in oldest-old may improve risk modification and outcomes. OBJECTIVE Investigate the contributions of vascular factors and cancer to dementia and neuropathology. METHODS Longitudinal clinicopathologic study of prospectively followed Mayo Clinic participants dying≥95 years-old who underwent autopsy. Participants were stratified by dementia status and compared according to demographics, vascular risk factors, cancer, and neuropathology. RESULTS Participants (n = 161; 83% female; 99% non-Hispanic whites)≥95 years (95-106 years-old) with/without dementia did not differ based on demographics. APOE ɛ2 frequency was higher in no dementia (20/72 [28%]) versus dementia (11/88 [12%]; p = 0.03), but APOE ɛ4 frequency did not differ. Coronary artery disease was more frequent in no dementia (31/72 [43%]) versus dementia (23/89 [26%]; p = 0.03) associated with 56% lower dementia odds (odds ratio [OR] = 0.44 [confidence interval (CI) = 0.19-0.98]; p = 0.04) and fewer neuritic/diffuse plaques. Diabetes had an 8-fold increase in dementia odds (OR = 8.42 [CI = 1.39-163]; p = 0.02). Diabetes associated with higher cerebrovascular disease (Dickson score; p = 0.05). Cancer associated with 63% lower dementia odds (OR = 0.37 [CI = 0.17-0.78]; p < 0.01) and lower Braak stage (p = 0.01). CONCLUSION Cancer exposure in the oldest-old was associated with lower odds of dementia and tangle pathology, whereas history of coronary artery disease was associated with lower odds of dementia and amyloid-β plaque pathology. History of diabetes mellitus was associated with increased odds of dementia and cerebrovascular disease pathology. Cancer-related mechanisms and vascular risk factor reduction strategies may alter dementia risk and neuropathology in oldest-old.
Collapse
Affiliation(s)
- Christian Lachner
- Departments of Neurology, Mayo Clinic, Jacksonville, FL, USA,
Departments of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Gregory S. Day
- Departments of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Naomi Kouri
- Departments of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Departments of Neurology, Mayo Clinic, Jacksonville, FL, USA,
Departments of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - John A. Lucas
- Departments of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Habeeba Siddiqui
- Departments of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Julia E. Crook
- Departments of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | | | - R. Ross Reichard
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Michelle M. Mielke
- Departments of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | - Melissa E. Murray
- Departments of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,Correspondence to: Melissa E. Murray, PhD, Associate Professor, Translational Neuropathology Laboratory, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224, USA. Tel.: +1 904 953 1083; Fax: +1 904 953 7117; E-mail:
| |
Collapse
|
16
|
Passarella D, Ciampi S, Di Liberto V, Zuccarini M, Ronci M, Medoro A, Foderà E, Frinchi M, Mignogna D, Russo C, Porcile C. Low-Density Lipoprotein Receptor-Related Protein 8 at the Crossroad between Cancer and Neurodegeneration. Int J Mol Sci 2022; 23:ijms23168921. [PMID: 36012187 PMCID: PMC9408729 DOI: 10.3390/ijms23168921] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The low-density-lipoprotein receptors represent a family of pleiotropic cell surface receptors involved in lipid homeostasis, cell migration, proliferation and differentiation. The family shares common structural features but also has significant differences mainly due to tissue-specific interactors and to peculiar proteolytic processing. Among the receptors in the family, recent studies place low-density lipoprotein receptor-related protein 8 (LRP8) at the center of both neurodegenerative and cancer-related pathways. From one side, its overexpression has been highlighted in many types of cancer including breast, gastric, prostate, lung and melanoma; from the other side, LRP8 has a potential role in neurodegeneration as apolipoprotein E (ApoE) and reelin receptor, which are, respectively, the major risk factor for developing Alzheimer’s disease (AD) and the main driver of neuronal migration, and as a γ-secretase substrate, the main enzyme responsible for amyloid formation in AD. The present review analyzes the contributions of LDL receptors, specifically of LRP8, in both cancer and neurodegeneration, pointing out that depending on various interactions and peculiar processing, the receptor can contribute to both proliferative and neurodegenerative processes.
Collapse
Affiliation(s)
- Daniela Passarella
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Silvia Ciampi
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Mariachiara Zuccarini
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maurizio Ronci
- Department of Pharmacy, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Emanuele Foderà
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Donatella Mignogna
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Claudio Russo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence: ; Tel.: +39-0874404897
| | - Carola Porcile
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
17
|
Zhang H, Zhou Z. Fibrinogen in Alzheimer's Disease, Parkinson's Disease and Lewy Body Dementia: A Mendelian Randomization Study. Front Aging Neurosci 2022; 14:847583. [PMID: 35875802 PMCID: PMC9300417 DOI: 10.3389/fnagi.2022.847583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Fibrinogen is reportedly associated with neurodegenerative diseases (NDs), but the underlying causality remains controversial. Using Mendelian randomization (MR), this study aimed to assess the causal association between fibrinogen and Alzheimer’s disease (AD), Parkinson’s disease (PD), and Lewy body dementia (LBD). Genetic variants associated with fibrinogen and γ-fibrinogen were selected and used as instrumental variables. The effect estimates of the main analysis were obtained by inverse-variance weighting (IVW), complemented by sensitivity analyses to verify model assumptions, and multivariable MR was conducted to control for potential pleiotropic effect. Two-step MR was performed to assess the causal association through mediators. The main analysis suggested no causal association between genetically predicted plasma fibrinogen and γ-fibrinogen levels and the risk of AD, PD, and LBD. The effect estimates did not change in the follow-up sensitivity analyses and MVMR. However, the two-step MR analysis provides evidence that fibrinogen may contribute to the risk of AD via CRP levels. There was an inverse effect of adult height levels on the risk of AD. Our results support the effects of fibrinogen on the risk of AD through increasing plasma CRP levels. Our study found no evidence to support the effects of genetically determined fibrinogen and γ-fibrinogen levels on the risk of PD and LBD. Additionally, our findings suggested an inverse association between genetically determined adult height levels and the risk of AD. Future studies are needed to elucidate the underlying mechanisms and their clinical applications.
Collapse
Affiliation(s)
- Hanyu Zhang
- Department of General Practice, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Zengyuan Zhou
- Department of Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|