1
|
Ozgür-Gunes Y, Le Stunff C, Bougnères P. Oligodendrocytes, the Forgotten Target of Gene Therapy. Cells 2024; 13:1973. [PMID: 39682723 DOI: 10.3390/cells13231973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
If the billions of oligodendrocytes (OLs) populating the central nervous system (CNS) of patients could express their feelings, they would undoubtedly tell gene therapists about their frustration with the other neural cell populations, neurons, microglia, or astrocytes, which have been the favorite targets of gene transfer experiments. This review questions why OLs have been left out of most gene therapy attempts. The first explanation is that the pathogenic role of OLs is still discussed in most CNS diseases. Another reason is that the so-called ubiquitous CAG, CBA, CBh, or CMV promoters-widely used in gene therapy studies-are unable or poorly able to activate the transcription of episomal transgene copies brought by adeno-associated virus (AAV) vectors in OLs. Accordingly, transgene expression in OLs has either not been found or not been evaluated in most gene therapy studies in rodents or non-human primates. The aims of the current review are to give OLs their rightful place among the neural cells that future gene therapy could target and to encourage researchers to test the effect of OL transduction in various CNS diseases.
Collapse
Affiliation(s)
- Yasemin Ozgür-Gunes
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Catherine Le Stunff
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l'Energie Atomique, 92260 Fontenay-aux-Roses, France
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm and University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Pierre Bougnères
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l'Energie Atomique, 92260 Fontenay-aux-Roses, France
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| |
Collapse
|
2
|
Sobek J, Li J, Combes BF, Gerez JA, Henrich MT, Geibl FF, Nilsson PR, Shi K, Rominger A, Oertel WH, Nitsch RM, Nordberg A, Ågren H, Ni R. Efficient characterization of multiple binding sites of small molecule imaging ligands on amyloid-beta, tau and alpha-synuclein. Eur J Nucl Med Mol Imaging 2024; 51:3960-3977. [PMID: 38953933 PMCID: PMC11527973 DOI: 10.1007/s00259-024-06806-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE There is an unmet need for compounds to detect fibrillar forms of alpha-synuclein (αSyn) and 4-repeat tau, which are critical in many neurodegenerative diseases. Here, we aim to develop an efficient surface plasmon resonance (SPR)-based assay to facilitate the characterization of small molecules that can bind these fibrils. METHODS SPR measurements were conducted to characterize the binding properties of fluorescent ligands/compounds toward recombinant amyloid-beta (Aβ)42, K18-tau, full-length 2N4R-tau and αSyn fibrils. In silico modeling was performed to examine the binding pockets of ligands on αSyn fibrils. Immunofluorescence staining of postmortem brain tissue slices from Parkinson's disease patients and mouse models was performed with fluorescence ligands and specific antibodies. RESULTS We optimized the protocol for the immobilization of Aβ42, K18-tau, full-length 2N4R-tau and αSyn fibrils in a controlled aggregation state on SPR-sensor chips and for assessing their binding to ligands. The SPR results from the analysis of binding kinetics suggested the presence of at least two binding sites for all fibrils, including luminescent conjugated oligothiophenes, benzothiazole derivatives, nonfluorescent methylene blue and lansoprazole. In silico modeling studies for αSyn (6H6B) revealed four binding sites with a preference for one site on the surface. Immunofluorescence staining validated the detection of pS129-αSyn positivity in the brains of Parkinson's disease patients and αSyn preformed-fibril injected mice, 6E10-positive Aβ in arcAβ mice, and AT-8/AT-100-positivity in pR5 mice. CONCLUSION SPR measurements of small molecules binding to Aβ42, K18/full-length 2N4R-tau and αSyn fibrils suggested the existence of multiple binding sites. This approach may provide efficient characterization of compounds for neurodegenerative disease-relevant proteinopathies.
Collapse
Affiliation(s)
- Jens Sobek
- Functional Genomics Center, University of Zurich & ETH Zurich, Zürich, Switzerland
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Benjamin F Combes
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Zürich, Switzerland
| | - Juan A Gerez
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zürich, Switzerland
| | - Martin T Henrich
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Fanni F Geibl
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Peter R Nilsson
- Divison of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wolfgang H Oertel
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Zürich, Switzerland
| | - Agneta Nordberg
- Divison of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Zürich, Switzerland.
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zürich, Switzerland.
| |
Collapse
|
3
|
Lau D, Tang Y, Kenche V, Copie T, Kempe D, Jary E, Graves NJ, Biro M, Masters CL, Dzamko N, Gambin Y, Sierecki E. Single-Molecule Fingerprinting Reveals Different Growth Mechanisms in Seed Amplification Assays for Different Polymorphs of α-Synuclein Fibrils. ACS Chem Neurosci 2024; 15:3270-3285. [PMID: 39197832 PMCID: PMC11413846 DOI: 10.1021/acschemneuro.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 09/01/2024] Open
Abstract
α-Synuclein (αSyn) aggregates, detected in the biofluids of patients with Parkinson's disease (PD), have the ability to catalyze their own aggregation, leading to an increase in the number and size of aggregates. This self-templated amplification is used by newly developed assays to diagnose Parkinson's disease and turns the presence of αSyn aggregates into a biomarker of the disease. It has become evident that αSyn can form fibrils with slightly different structures, called "strains" or polymorphs, but little is known about their differential reactivity in diagnostic assays. Here, we compared the properties of two well-described αSyn polymorphs. Using single-molecule techniques, we observed that one of the polymorphs had an increased tendency to undergo secondary nucleation and we showed that this could explain the differences in reactivity observed in in vitro seed amplification assay and cellular assays. Simulations and high-resolution microscopy suggest that a 100-fold difference in the apparent rate of growth can be generated by a surprisingly low number of secondary nucleation "points" (1 every 2000 monomers added by elongation). When both strains are present in the same seeded reaction, secondary nucleation displaces proportions dramatically and causes a single strain to dominate the reaction as the major end product.
Collapse
Affiliation(s)
- Derrick Lau
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Yuan Tang
- Brain
and Mind Centre and Faculty of Medicine and Health, School of Medical
Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Vijaya Kenche
- Florey
Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Thomas Copie
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Daryan Kempe
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Eve Jary
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Noah J. Graves
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Maté Biro
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Colin L. Masters
- Florey
Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicolas Dzamko
- Brain
and Mind Centre and Faculty of Medicine and Health, School of Medical
Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Yann Gambin
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Emma Sierecki
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Schepers J, Löser T, Behl C. Lipids and α-Synuclein: adding further variables to the equation. Front Mol Biosci 2024; 11:1455817. [PMID: 39188788 PMCID: PMC11345258 DOI: 10.3389/fmolb.2024.1455817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Aggregation of alpha-Synuclein (αSyn) has been connected to several neurodegenerative diseases, such as Parkinson's disease (PD), dementia with Lewy Bodies (DLB), and multiple system atrophy (MSA), that are collected under the umbrella term synucleinopathies. The membrane binding abilities of αSyn to negatively charged phospholipids have been well described and are connected to putative physiological functions of αSyn. Consequently, αSyn-related neurodegeneration has been increasingly connected to changes in lipid metabolism and membrane lipid composition. Indeed, αSyn aggregation has been shown to be triggered by the presence of membranes in vitro, and some genetic risk factors for PD and DLB are associated with genes coding for proteins directly involved in lipid metabolism. At the same time, αSyn aggregation itself can cause alterations of cellular lipid composition and brain samples of patients also show altered lipid compositions. Thus, it is likely that there is a reciprocal influence between cellular lipid composition and αSyn aggregation, which can be further affected by environmental or genetic factors and ageing. Little is known about lipid changes during physiological ageing and regional differences of the lipid composition of the aged brain. In this review, we aim to summarise our current understanding of lipid changes in connection to αSyn and discuss open questions that need to be answered to further our knowledge of αSyn related neurodegeneration.
Collapse
Affiliation(s)
| | | | - Christian Behl
- The Autophagy Lab, Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
5
|
Woerman AL, Bartz JC. Effect of host and strain factors on α-synuclein prion pathogenesis. Trends Neurosci 2024; 47:538-550. [PMID: 38806297 PMCID: PMC11236502 DOI: 10.1016/j.tins.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 05/04/2024] [Indexed: 05/30/2024]
Abstract
Prion diseases are a group of neurodegenerative disorders caused by misfolding of proteins into pathogenic conformations that self-template to spread disease. Although this mechanism is largely associated with the prion protein (PrP) in classical prion diseases, a growing literature indicates that other proteins, including α-synuclein, rely on a similar disease mechanism. Notably, α-synuclein misfolds into distinct conformations, or strains, that cause discrete clinical disorders including multiple system atrophy (MSA) and Parkinson's disease (PD). Because the recognized similarities between PrP and α-synuclein are increasing, this review article draws from research on PrP to identify the host and strain factors that impact disease pathogenesis, predominantly in rodent models, and focuses on key considerations for future research on α-synuclein prions.
Collapse
Affiliation(s)
- Amanda L Woerman
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, USA.
| | - Jason C Bartz
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, USA; Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, USA.
| |
Collapse
|
6
|
Siwecka N, Saramowicz K, Galita G, Rozpędek-Kamińska W, Majsterek I. Inhibition of Protein Aggregation and Endoplasmic Reticulum Stress as a Targeted Therapy for α-Synucleinopathy. Pharmaceutics 2023; 15:2051. [PMID: 37631265 PMCID: PMC10459316 DOI: 10.3390/pharmaceutics15082051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
α-synuclein (α-syn) is an intrinsically disordered protein abundant in the central nervous system. Physiologically, the protein regulates vesicle trafficking and neurotransmitter release in the presynaptic terminals. Pathologies related to misfolding and aggregation of α-syn are referred to as α-synucleinopathies, and they constitute a frequent cause of neurodegeneration. The most common α-synucleinopathy, Parkinson's disease (PD), is caused by abnormal accumulation of α-syn in the dopaminergic neurons of the midbrain. This results in protein overload, activation of endoplasmic reticulum (ER) stress, and, ultimately, neural cell apoptosis and neurodegeneration. To date, the available treatment options for PD are only symptomatic and rely on dopamine replacement therapy or palliative surgery. As the prevalence of PD has skyrocketed in recent years, there is a pending issue for development of new disease-modifying strategies. These include anti-aggregative agents that target α-syn directly (gene therapy, small molecules and immunization), indirectly (modulators of ER stress, oxidative stress and clearance pathways) or combine both actions (natural compounds). Herein, we provide an overview on the characteristic features of the structure and pathogenic mechanisms of α-syn that could be targeted with novel molecular-based therapies.
Collapse
Affiliation(s)
| | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (N.S.); (K.S.); (G.G.); (W.R.-K.)
| |
Collapse
|
7
|
Peelaerts W, Mercado G, George S, Villumsen M, Kasen A, Aguileta M, Linstow C, Sutter AB, Kuhn E, Stetzik L, Sheridan R, Bergkvist L, Meyerdirk L, Lindqvist A, Gavis MLE, Van den Haute C, Hultgren SJ, Baekelandt V, Pospisilik JA, Brudek T, Aznar S, Steiner JA, Henderson MX, Brundin L, Ivanova MI, Hannan TJ, Brundin P. Urinary tract infections trigger synucleinopathy via the innate immune response. Acta Neuropathol 2023; 145:541-559. [PMID: 36991261 PMCID: PMC10119259 DOI: 10.1007/s00401-023-02562-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
Symptoms in the urogenital organs are common in multiple system atrophy (MSA), also in the years preceding the MSA diagnosis. It is unknown how MSA is triggered and these observations in prodromal MSA led us to hypothesize that synucleinopathy could be triggered by infection of the genitourinary tract causing ɑ-synuclein (ɑSyn) to aggregate in peripheral nerves innervating these organs. As a first proof that peripheral infections could act as a trigger in MSA, this study focused on lower urinary tract infections (UTIs), given the relevance and high frequency of UTIs in prodromal MSA, although other types of infection might also be important triggers of MSA. We performed an epidemiological nested-case control study in the Danish population showing that UTIs are associated with future diagnosis of MSA several years after infection and that it impacts risk in both men and women. Bacterial infection of the urinary bladder triggers synucleinopathy in mice and we propose a novel role of ɑSyn in the innate immune system response to bacteria. Urinary tract infection with uropathogenic E. coli results in the de novo aggregation of ɑSyn during neutrophil infiltration. During the infection, ɑSyn is released extracellularly from neutrophils as part of their extracellular traps. Injection of MSA aggregates into the urinary bladder leads to motor deficits and propagation of ɑSyn pathology to the central nervous system in mice overexpressing oligodendroglial ɑSyn. Repeated UTIs lead to progressive development of synucleinopathy with oligodendroglial involvement in vivo. Our results link bacterial infections with synucleinopathy and show that a host response to environmental triggers can result in ɑSyn pathology that bears semblance to MSA.
Collapse
Affiliation(s)
- Wouter Peelaerts
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Louvain, Belgium
- Laboratory for Virology and Gene Therapy, Department of Pharmacy and Pharmaceutical Sciences, KU Leuven, Louvain, Belgium
| | - Gabriela Mercado
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Sonia George
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Marie Villumsen
- Center for Clinical Research and Disease Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Alysa Kasen
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Miguel Aguileta
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Christian Linstow
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Alexandra B Sutter
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily Kuhn
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Lucas Stetzik
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Rachel Sheridan
- Flow Cytometry Core Facility, Van Andel Institute, Grand Rapids, MI, USA
| | - Liza Bergkvist
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Lindsay Meyerdirk
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Allison Lindqvist
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Martha L Escobar Gavis
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Louvain, Belgium
- Leuven Viral Vector Core, Department of Neurosciences, KU Leuven, Louvain, Belgium
| | - Scott J Hultgren
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Louvain, Belgium
- Leuven Viral Vector Core, Department of Neurosciences, KU Leuven, Louvain, Belgium
| | | | - Tomasz Brudek
- Centre for Neuroscience and Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Susana Aznar
- Centre for Neuroscience and Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Jennifer A Steiner
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Michael X Henderson
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Lena Brundin
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Magdalena I Ivanova
- Neuroscience Graduate Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Biophysics Program, University of Michigan, Ann Arbor, MI, USA
| | - Tom J Hannan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrik Brundin
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA.
- Pharma Research and Early Development (pRED), F. Hoffmann-La Roche, Basel, Switzerland.
| |
Collapse
|
8
|
Stefanova N, Wenning GK. Multiple system atrophy: at the crossroads of cellular, molecular and genetic mechanisms. Nat Rev Neurosci 2023; 24:334-346. [PMID: 37085728 DOI: 10.1038/s41583-023-00697-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 04/23/2023]
Abstract
Multiple system atrophy (MSA) is a rare oligodendroglial α-synucleinopathy characterized by neurodegeneration in striatonigral and olivopontocerebellar regions and autonomic brain centres. It causes complex cumulative motor and non-motor disability with fast progression and effective therapy is currently lacking. The difficulties in the diagnosis and treatment of MSA are largely related to the incomplete understanding of the pathogenesis of the disease. The MSA pathogenic landscape is complex, and converging findings from genetic and neuropathological studies as well as studies in experimental models of MSA have indicated the involvement of genetic and epigenetic changes; α-synuclein misfolding, aggregation and spreading; and α-synuclein strain specificity. These studies also indicate the involvement of myelin and iron dyshomeostasis, neuroinflammation, mitochondrial dysfunction and other cell-specific aspects that are relevant to the fast progression of MSA. In this Review, we discuss these findings and emphasize the implications of the complexity of the multifactorial pathogenic cascade for future translational research and its impact on biomarker discovery and treatment target definitions.
Collapse
Affiliation(s)
- Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.
| | - Gregor K Wenning
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Peelaerts W, Baekelandt V. ⍺-Synuclein Structural Diversity and the Cellular Environment in ⍺-Synuclein Transmission Models and Humans. Neurotherapeutics 2023; 20:67-82. [PMID: 37052776 PMCID: PMC10119367 DOI: 10.1007/s13311-023-01365-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2023] [Indexed: 04/14/2023] Open
Abstract
Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA) are termed synucleinopathies, disorders that are characterized by the intracellular aggregation of the protein ɑ-synuclein. The cellular tropism of synuclein pathology in these syndromes is notably distinct since in the Lewy disorders, PD and DLB, ɑSyn forms aggregates in neurons whereas in MSA ɑSyn forms aggregates in oligodendrocytes. Studies examining ɑSyn pathology in experimental models and in human brain have now identified fibrillar ɑSyn with unique but distinct molecular signatures, suggesting that the structure of these ɑSyn fibrils might be closely tied to their cellular ontogeny. In contrast to the native structural heterogeneity of ɑSyn in vitro, the conformational landscape of fibrillar ɑSyn in human brain and in vivo transmission models appears to be remarkably uniform. Here, we review the studies by which we propose a hypothesis that the cellular host environment might be in part responsible for how ɑSyn filaments assemble into phenotype-specific strains. We postulate that the maturation of ɑSyn strains develops as a function of their in vivo transmission routes and cell-specific risk factors. The impact of the cellular environment on the structural diversity of ɑSyn might have important implications for the design of preclinical studies and their use for the development of ɑSyn-based biomarkers and therapeutic strategies. By combining phenotype-specific fibrils and relevant synucleinopathy transmission models, preclinical models might more closely reflect unique disease phenotypes.
Collapse
Affiliation(s)
- Wouter Peelaerts
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Stefanova N. A Mouse Model of Multiple System Atrophy: Bench to Bedside. Neurotherapeutics 2023; 20:117-126. [PMID: 35995919 PMCID: PMC10119356 DOI: 10.1007/s13311-022-01287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2022] [Indexed: 10/15/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disorder with unclear etiology, currently difficult and delayed diagnosis, and rapid progression, leading to disability and lethality within 6 to 9 years after symptom onset. The neuropathology of MSA classifies the disease in the group of a-synucleinopathies together with Parkinson's disease and other Lewy body disorders, but features specific oligodendroglial inclusions, which are pathognomonic for MSA. MSA has no efficient therapy to date. Development of experimental models is crucial to elucidate the disease mechanisms in progression and to provide a tool for preclinical screening of putative therapies for MSA. In vitro and in vivo models, based on selective neurotoxicity, a-synuclein oligodendroglial overexpression, and strain-specific propagation of a-synuclein fibrils, have been developed, reflecting various facets of MSA pathology. Over the years, the continuous exchange from bench to bedside and backward has been crucial for the advancing of MSA modelling, elucidating MSA pathogenic pathways, and understanding the existing translational gap to successful clinical trials in MSA. The review discusses specifically advantages and limitations of the PLP-a-syn mouse model of MSA, which recapitulates motor and non-motor features of the human disease with underlying striatonigral degeneration, degeneration of autonomic centers, and sensitized olivopontocerebellar system, strikingly mirroring human MSA pathology.
Collapse
Affiliation(s)
- Nadia Stefanova
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|