1
|
Lo YT, Lam JL, Jiang L, Lam WL, Edgerton VR, Liu CY. Cervical spinal cord stimulation for treatment of upper limb paralysis: a narrative review. J Hand Surg Eur Vol 2025:17531934241307515. [PMID: 39932700 DOI: 10.1177/17531934241307515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Recent advances in cervical spinal cord stimulation (SCS) have demonstrated improved efficacy as a therapeutic intervention for restoring hand functions in individuals with spinal cord injuries or stroke. Accumulating evidence consistently shows that cervical SCS yields significant improvements in grip force, proximal arm strength and muscle activation, with both immediate and sustained effects. This review synthesizes the evidence that electrical stimulations modulate the spinal and supraspinal organization of uninjured descending motor tracts, primarily the residual corticospinal tract, reticulospinal tract and propriospinal network of neurons, as well as increasing the sensitivity of spinal interneurons at the stimulated segments to these inputs. Additionally, we examine contemporary strategies aimed at achieving more precise patterned stimulations, including intraspinal microstimulation, ventral cord stimulation and closed-loop neuromodulation, and discuss the potential benefits of incorporating cervical SCS into a multimodal treatment paradigm.Level of evidence: V.
Collapse
Affiliation(s)
- Yu Tung Lo
- Department of Neurosurgery, National Neuroscience Institute, Singapore
- Department of Neurosurgery, Singapore General Hospital, Singapore
| | - Jordan Lw Lam
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Lei Jiang
- Department of Orthopaedic Surgery, Division of Spine Surgery, Singapore General Hospital, Singapore
| | - Wee Leon Lam
- Department of Hand Surgery, Singapore General Hospital, Singapore
| | - Victor R Edgerton
- Rancho Research Institute, Ranchos Los Amigos National Rehabilitation Hospital, Downey, California, United States
- Neurorestoration Center, University of Southern California, Los Angeles, California, United States
- Scientific Advisory Board, Guttmann Institute, Barcelona, Spain
| | - Charles Y Liu
- Scientific Advisory Board, Guttmann Institute, Barcelona, Spain
- Department of Neurosurgery, Ranchos Los Amigos National Rehabilitation Hospital, Downey, California, United States
| |
Collapse
|
2
|
Li J, Cui S, Li Y, Zhang C, Chang C, Jian F. Sirtuin1 in Spinal Cord Injury: Regulatory Mechanisms, Microenvironment Remodeling and Therapeutic Potential. CNS Neurosci Ther 2025; 31:e70244. [PMID: 39915897 PMCID: PMC11802336 DOI: 10.1111/cns.70244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a complex central nervous system disorder characterized by multifaceted pathological processes, including inflammation, oxidative stress, programmed cell death, autophagy, and mitochondrial dysfunction. Sirtuin 1 (Sirt1), a critical NAD+-dependent deacetylase, has emerged as a promising therapeutic target for SCI repair due to its potential to protect neurons, regulate glial and vascular cells, and optimize the injury microenvironment. However, the regulatory roles of Sirt1 in SCI are complex and challenging, as its effects vary depending on activation timing, expression levels, and cell types. METHODS A systematic literature review was conducted using PubMed, Scopus, and Web of Science to identify studies investigating Sirt1 in SCI. Relevant publications were analyzed to synthesize current evidence on Sirt1's mechanisms, therapeutic effects, and challenges in SCI repair. RESULTS Sirt1 exerts broad regulatory effects across diverse pathological processes and cell types post-SCI. It promotes neuronal survival and axonal regeneration, modulates astrocytes and microglia to resolve inflammation, supports oligodendrocyte-mediated myelination, and enhances vascular endothelial function. Proper Sirt1 activation may mitigate secondary injury, whereas excessive or prolonged activation could impair inflammatory resolution or disrupt cellular homeostasis. This review highlights Sirt1 activation as potential therapies, but challenges include optimizing spatiotemporal activation and addressing dual roles in different cell types. CONCLUSION Targeting Sirt1 represents a viable strategy for SCI repair, given its multifaceted regulation of neuroprotection, immunomodulation, and tissue remodeling. However, translating these findings into therapies requires resolving critical issues such as cell type-specific delivery, precise activation timing, and dosage control. This review provides a theoretical foundation and practical insights for advancing Sirt1-based treatments for SCI.
Collapse
Affiliation(s)
- Jinze Li
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- Spine CenterChina International Neuroscience Institute (CHINA‐INI)BeijingChina
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHINA‐INI), Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Shengyu Cui
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- Spine CenterChina International Neuroscience Institute (CHINA‐INI)BeijingChina
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHINA‐INI), Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yanqiu Li
- Center for Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Can Zhang
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHINA‐INI), Xuanwu Hospital, Capital Medical UniversityBeijingChina
- Department of NeurosurgeryThe First Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Chao Chang
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- Spine CenterChina International Neuroscience Institute (CHINA‐INI)BeijingChina
| | - Fengzeng Jian
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- Spine CenterChina International Neuroscience Institute (CHINA‐INI)BeijingChina
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHINA‐INI), Xuanwu Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
3
|
Carmel JB. The ins and outs of spinal cord stimulation. Brain Commun 2025; 7:fcae416. [PMID: 39816190 PMCID: PMC11733736 DOI: 10.1093/braincomms/fcae416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025] Open
Abstract
This scientific commentary refers to 'Intraspinal microstimulation of the ventral horn has therapeutically relevant cross-modal effects on nociception', by Bandres et al. (https://doi.org/10.1093/braincomms/fcae280).
Collapse
Affiliation(s)
- Jason B Carmel
- Department of Neurology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
4
|
Lan T, Li Y, Chen X, Wang W, Wang C, Lou H, Chen S, Yu S. Exercise-Activated mPFC Tri-Synaptic Pathway Ameliorates Depression-Like Behaviors in Mouse. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408618. [PMID: 39574315 PMCID: PMC11744721 DOI: 10.1002/advs.202408618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/03/2024] [Indexed: 01/21/2025]
Abstract
Exercise is considered as playing a pivotal role in the modulation of emotional responses. However, a precise circuit that mediates the effects of exercise on depression have yet to be elucidated. Here, a molecularly defined tri-synaptic pathway circuit is identified that correlates motor inputs with antidepressant effects. With this pathway, initial inputs from neurons within the dorsal root ganglia (DRG) project to excitatory neurons in the gracile nucleus (GR), which in turn connect with 5-HTergic neurons in the dorsal raphe nucleus (DRN), eventually coursing to excitatory pyramidal neurons within the medial prefrontal cortex (mPFC). Exercise activates this pathway, with the result that depressive- and anxiety-like behaviors in mice are significantly reduced. In addition, it is found that exercise may exert antidepressant effects through regulating synaptic plasticity within this tri-synaptic pathway. These findings reveal a hindbrain-to-forebrain neuronal circuit that specifically modulates depression and provides a potential mechanism for the antidepressant effects of exercise.
Collapse
Affiliation(s)
- Tian Lan
- Shandong Key Laboratory of Mental Disorders and Intelligent ControlThe Second Hospital of Shandong UniversitySchool of Basic Medical SciencesShandong UniversityJinanShandong250012China
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Ye Li
- Shandong Key Laboratory of Mental Disorders and Intelligent ControlThe Second Hospital of Shandong UniversitySchool of Basic Medical SciencesShandong UniversityJinanShandong250012China
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Xiao Chen
- Shandong Key Laboratory of Mental Disorders and Intelligent ControlThe Second Hospital of Shandong UniversitySchool of Basic Medical SciencesShandong UniversityJinanShandong250012China
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Wenjing Wang
- Shandong Key Laboratory of Mental Disorders and Intelligent ControlThe Second Hospital of Shandong UniversitySchool of Basic Medical SciencesShandong UniversityJinanShandong250012China
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Changmin Wang
- Shandong Key Laboratory of Mental Disorders and Intelligent ControlThe Second Hospital of Shandong UniversitySchool of Basic Medical SciencesShandong UniversityJinanShandong250012China
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Haiyan Lou
- Shandong Key Laboratory of Mental Disorders and Intelligent ControlThe Second Hospital of Shandong UniversitySchool of Basic Medical SciencesShandong UniversityJinanShandong250012China
- Department of PharmacologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Shihong Chen
- Department of Endocrinology and MetabolismThe Second Hospital of Shandong UniversityJinanShandong250033China
| | - Shuyan Yu
- Shandong Key Laboratory of Mental Disorders and Intelligent ControlThe Second Hospital of Shandong UniversitySchool of Basic Medical SciencesShandong UniversityJinanShandong250012China
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
- Department of Medical Psychology and EthicsSchool of Basic Medical sciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| |
Collapse
|
5
|
Kolpek DJ, Kim J, Mohammed H, Gensel JC, Park J. Physicochemical Property Effects on Immune Modulating Polymeric Nanoparticles: Potential Applications in Spinal Cord Injury. Int J Nanomedicine 2024; 19:13357-13374. [PMID: 39691455 PMCID: PMC11649979 DOI: 10.2147/ijn.s497859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Nanoparticles (NPs) offer promising potential as therapeutic agents for inflammation-related diseases, owing to their capabilities in drug delivery and immune modulation. In preclinical studies focusing on spinal cord injury (SCI), polymeric NPs have demonstrated the ability to reprogram innate immune cells. This reprogramming results in redirecting immune cells away from the injury site, downregulating pro-inflammatory signaling, and promoting a regenerative environment post-injury. However, to fully understand the mechanisms driving these effects and maximize therapeutic efficacy, it is crucial to assess NP interactions with innate immune cells. This review examines how the physicochemical properties of polymeric NPs influence their modulation of the immune system. To achieve this, the review delves into the roles played by innate immune cells in SCI and investigates how various NP properties influence cellular interactions and subsequent immune modulation. Key NP properties such as size, surface charge, molecular weight, shape/morphology, surface functionalization, and polymer composition are thoroughly examined. Furthermore, the review establishes connections between these properties and their effects on the immunomodulatory functions of NPs. Ultimately, this review suggests that leveraging NPs and their physicochemical properties could serve as a promising therapeutic strategy for treating SCI and potentially other inflammatory diseases.
Collapse
Affiliation(s)
- Daniel J Kolpek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Jaechang Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Hisham Mohammed
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jonghyuck Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
6
|
Zareen N, Yung H, Kaczetow W, Glattstein A, Mazalkova E, Alexander H, Chen L, Parra LC, Martin JH. Molecular signaling predicts corticospinal axon growth state and muscle response plasticity induced by neuromodulation. Proc Natl Acad Sci U S A 2024; 121:e2408508121. [PMID: 39536089 PMCID: PMC11588127 DOI: 10.1073/pnas.2408508121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Electrical motor cortex stimulation can produce corticospinal system plasticity and enhance motor function after injury. We investigate molecular mechanisms of structural and physiological plasticity following electrical neuromodulation, focusing on identifying molecular predictors, or biomarkers, for durable plasticity. We used two neuromodulation protocols, repetitive multipulse stimulation (rMPS) and patterned intermittent theta burst stimulation (iTBS), incorporating different stimulation durations and follow-up periods. We compared neuromodulation efficacy in promoting corticospinal tract (CST) sprouting, motor cortex muscle evoked potential (MEP) LTP-like plasticity, and their associated molecular underpinnings. Only iTBS produced CST sprouting after short-term neuromodulation (1 d of stimulation; 9-d survival for sprouting expression); both iTBS and rMPS produced sprouting with long-term (10-d) neuromodulation. Significant mTOR signaling activation and phosphatase and tensin homolog (PTEN) protein deactivation predicted axon growth across all neuromodulation conditions that produced significant sprouting. Both neuromodulation protocols, regardless of duration, were effective in producing MEP enhancement. However, persistent LTP-like enhancement of MEPs at 30 d was only produced by long-term iTBS. Statistical modeling suggests that Stat3 signaling is the key mediator of MEP enhancement. Cervical spinal cord injury (SCI) alone did not affect baseline molecular signaling. Whereas iTBS and rMPS after SCI produced strong mTOR activation and PTEN deactivation, only iTBS produced Stat3 activation. Our findings support differential molecular biomarkers for neuromodulation-dependent structural and physiological plasticity and show that motor cortex epidural neuromodulation produces molecular changes in neurons that support axonal growth after SCI. iTBS may be more suitable for repair after SCI because it promotes molecular signaling for both CST growth and MEP plasticity.
Collapse
Affiliation(s)
- Neela Zareen
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Halley Yung
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Walter Kaczetow
- Department of Educational Psychology, Graduate Center of the City University of New York, New York, NY10016
| | - Aliya Glattstein
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Ekaterina Mazalkova
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Heather Alexander
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Liang Chen
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Lucas C. Parra
- Department of Biomedical Engineering, Grove School of Engineering, The City College of New York, New York, NY10031
| | - John H. Martin
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
- Neuroscience Program, Graduate Center of the City University of New York, New York, NY10016
| |
Collapse
|
7
|
Bandres MF, Gomes JL, McPherson JG. Intraspinal microstimulation of the ventral horn has therapeutically relevant cross-modal effects on nociception. Brain Commun 2024; 6:fcae280. [PMID: 39355006 PMCID: PMC11444082 DOI: 10.1093/braincomms/fcae280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2024] [Accepted: 08/15/2024] [Indexed: 10/03/2024] Open
Abstract
Electrical stimulation of spinal networks below a spinal cord injury is a promising approach to restore functions compromised by inadequate and/or inappropriate neural drive. The most translationally successful examples are paradigms intended to increase neural transmission in weakened yet spared descending motor pathways and spinal motoneurons rendered dormant after being severed from their inputs by lesion. Less well understood is whether spinal stimulation is also capable of reducing neural transmission in pathways made pathologically overactive by spinal cord injury. Debilitating spasms, spasticity and neuropathic pain are all common manifestations of hyperexcitable spinal responses to sensory feedback. Whereas spasms and spasticity can often be managed pharmacologically, spinal cord injury-related neuropathic pain is notoriously medically refractory. Interestingly, however, spinal stimulation is a clinically available option for ameliorating neuropathic pain arising from aetiologies other than spinal cord injury, and the limited evidence available to date suggests that it holds considerable promise for reducing spinal cord injury-related neuropathic pain, as well. Spinal stimulation for pain amelioration has traditionally been assumed to modulate sensorimotor networks overlapping with those engaged by spinal stimulation for rehabilitation of movement impairments. Thus, we hypothesize that spinal stimulation intended to increase the ability to move voluntarily may simultaneously reduce transmission in spinal pain pathways. To test this hypothesis, we coupled a rat model of incomplete thoracic spinal cord injury, which results in moderate to severe bilateral movement impairments and spinal cord injury-related neuropathic pain, with in vivo electrophysiological measures of neural transmission in networks of spinal neurons integral to the development and persistence of the neuropathic pain state. We find that when intraspinal microstimulation is delivered to the ventral horn with the intent of enhancing voluntary movement, transmission through nociceptive specific and wide dynamic range neurons is significantly depressed in response to pain-related sensory feedback. By comparison, spinal responsiveness to non-pain-related sensory feedback is largely preserved. These results suggest that spinal stimulation paradigms could be intentionally designed to afford multi-modal therapeutic benefits, directly addressing the diverse, intersectional rehabilitation goals of people living with spinal cord injury.
Collapse
Affiliation(s)
- Maria F Bandres
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Jefferson L Gomes
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Jacob Graves McPherson
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63108, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63108, USA
- Program in Neurosciences, Washington University School of Medicine, St. Louis, MO 63108, USA
| |
Collapse
|
8
|
McIntosh JR, Joiner EF, Goldberg JL, Greenwald P, Dionne AC, Murray LM, Thuet E, Modik O, Shelkov E, Lombardi JM, Sardar ZM, Lehman RA, Chan AK, Riew KD, Harel NY, Virk MS, Mandigo C, Carmel JB. Timing-dependent synergies between motor cortex and posterior spinal stimulation in humans. J Physiol 2024; 602:2961-2983. [PMID: 38758005 PMCID: PMC11178459 DOI: 10.1113/jp286183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024] Open
Abstract
Volitional movement requires descending input from the motor cortex and sensory feedback through the spinal cord. We previously developed a paired brain and spinal electrical stimulation approach in rats that relies on convergence of the descending motor and spinal sensory stimuli in the cervical cord. This approach strengthened sensorimotor circuits and improved volitional movement through associative plasticity. In humans, it is not known whether posterior epidural spinal cord stimulation targeted at the sensorimotor interface or anterior epidural spinal cord stimulation targeted within the motor system is effective at facilitating brain evoked responses. In 59 individuals undergoing elective cervical spine decompression surgery, the motor cortex was stimulated with scalp electrodes and the spinal cord was stimulated with epidural electrodes, with muscle responses being recorded in arm and leg muscles. Spinal electrodes were placed either posteriorly or anteriorly, and the interval between cortex and spinal cord stimulation was varied. Pairing stimulation between the motor cortex and spinal sensory (posterior) but not spinal motor (anterior) stimulation produced motor evoked potentials that were over five times larger than brain stimulation alone. This strong augmentation occurred only when descending motor and spinal afferent stimuli were timed to converge in the spinal cord. Paired stimulation also increased the selectivity of muscle responses relative to unpaired brain or spinal cord stimulation. Finally, clinical signs suggest that facilitation was observed in both injured and uninjured segments of the spinal cord. The large effect size of this paired stimulation makes it a promising candidate for therapeutic neuromodulation. KEY POINTS: Pairs of stimuli designed to alter nervous system function typically target the motor system, or one targets the sensory system and the other targets the motor system for convergence in cortex. In humans undergoing clinically indicated surgery, we tested paired brain and spinal cord stimulation that we developed in rats aiming to target sensorimotor convergence in the cervical cord. Arm and hand muscle responses to paired sensorimotor stimulation were more than five times larger than brain or spinal cord stimulation alone when applied to the posterior but not anterior spinal cord. Arm and hand muscle responses to paired stimulation were more selective for targeted muscles than the brain- or spinal-only conditions, especially at latencies that produced the strongest effects of paired stimulation. Measures of clinical evidence of compression were only weakly related to the paired stimulation effect, suggesting that it could be applied as therapy in people affected by disorders of the central nervous system.
Collapse
Affiliation(s)
- James R McIntosh
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- Department of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| | - Evan F Joiner
- Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Jacob L Goldberg
- Department of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| | - Phoebe Greenwald
- Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Alexandra C Dionne
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
| | - Lynda M Murray
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Med. Ctr., Bronx, NY, USA
| | - Earl Thuet
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Oleg Modik
- Department of Neurology, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| | - Evgeny Shelkov
- Department of Neurology, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| | - Joseph M Lombardi
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Zeeshan M Sardar
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Ronald A Lehman
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Andrew K Chan
- Department of Neurological Surgery, Columbia University, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - K Daniel Riew
- Department of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Noam Y Harel
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Med. Ctr., Bronx, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael S Virk
- Department of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| | - Christopher Mandigo
- Department of Neurological Surgery, Columbia University, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Jason B Carmel
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- Department of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| |
Collapse
|
9
|
McIntosh JR, Joiner EF, Goldberg JL, Greenwald P, Murray LM, Thuet E, Modik O, Shelkov E, Lombardi JM, Sardar ZM, Lehman RA, Chan AK, Riew KD, Harel NY, Virk MS, Mandigo C, Carmel JB. Timing dependent synergies between motor cortex and posterior spinal stimulation in humans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.18.23294259. [PMID: 37645795 PMCID: PMC10462218 DOI: 10.1101/2023.08.18.23294259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Volitional movement requires descending input from motor cortex and sensory feedback through the spinal cord. We previously developed a paired brain and spinal electrical stimulation approach in rats that relies on convergence of the descending motor and spinal sensory stimuli in the cervical cord. This approach strengthened sensorimotor circuits and improved volitional movement through associative plasticity. In humans it is not known whether dorsal epidural SCS targeted at the sensorimotor interface or anterior epidural SCS targeted within the motor system is effective at facilitating brain evoked responses. In 59 individuals undergoing elective cervical spine decompression surgery, the motor cortex was stimulated with scalp electrodes and the spinal cord with epidural electrodes while muscle responses were recorded in arm and leg muscles. Spinal electrodes were placed either posteriorly or anteriorly, and the interval between cortex and spinal cord stimulation was varied. Pairing stimulation between the motor cortex and spinal sensory (posterior) but not spinal motor (anterior) stimulation produced motor evoked potentials that were over five times larger than brain stimulation alone. This strong augmentation occurred only when descending motor and spinal afferent stimuli were timed to converge in the spinal cord. Paired stimulation also increased the selectivity of muscle responses relative to unpaired brain or spinal cord stimulation. Finally, paired stimulation effects were present regardless of the severity of myelopathy as measured by clinical signs or spinal cord imaging. The large effect size of this paired stimulation makes it a promising candidate for therapeutic neuromodulation.
Collapse
Affiliation(s)
- James R McIntosh
- Dept. of Neurology, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
- Dept. of Orthopedic Surgery, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
- Dept. of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, 1300 York Ave, New York, NY 10065
| | - Evan F Joiner
- Dept. of Neurological Surgery, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
| | - Jacob L Goldberg
- Dept. of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, 1300 York Ave, New York, NY 10065
| | - Phoebe Greenwald
- Dept. of Neurological Surgery, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
| | - Lynda M Murray
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- James J. Peters VA Med. Ctr., 130 West Kingsbridge Road, Bronx, NY 10468
| | - Earl Thuet
- New York Presbyterian, The Och Spine Hospital, 5141 Broadway, New York, NY 10034
| | - Oleg Modik
- Dept. of Neurology, Weill Cornell Medicine - New York Presbyterian, Och Spine, 1300 York Ave, New York, NY 10065
| | - Evgeny Shelkov
- Dept. of Neurology, Weill Cornell Medicine - New York Presbyterian, Och Spine, 1300 York Ave, New York, NY 10065
| | - Joseph M Lombardi
- Dept. of Neurology, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
- New York Presbyterian, The Och Spine Hospital, 5141 Broadway, New York, NY 10034
| | - Zeeshan M Sardar
- Dept. of Neurology, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
- New York Presbyterian, The Och Spine Hospital, 5141 Broadway, New York, NY 10034
| | - Ronald A Lehman
- Dept. of Neurology, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
- New York Presbyterian, The Och Spine Hospital, 5141 Broadway, New York, NY 10034
| | - Andrew K Chan
- Dept. of Neurological Surgery, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
- New York Presbyterian, The Och Spine Hospital, 5141 Broadway, New York, NY 10034
| | - K Daniel Riew
- Dept. of Neurology, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
- Dept. of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, 1300 York Ave, New York, NY 10065
- New York Presbyterian, The Och Spine Hospital, 5141 Broadway, New York, NY 10034
| | - Noam Y Harel
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- James J. Peters VA Med. Ctr., 130 West Kingsbridge Road, Bronx, NY 10468
| | - Michael S Virk
- Dept. of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, 1300 York Ave, New York, NY 10065
| | - Christopher Mandigo
- Dept. of Neurological Surgery, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
- New York Presbyterian, The Och Spine Hospital, 5141 Broadway, New York, NY 10034
| | - Jason B Carmel
- Dept. of Neurology, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
- Dept. of Orthopedic Surgery, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
- Dept. of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, 1300 York Ave, New York, NY 10065
| |
Collapse
|
10
|
Bandres MF, Gomes JL, McPherson JG. Motor-targeted spinal stimulation promotes concurrent rebalancing of pathologic nociceptive transmission in chronic spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536477. [PMID: 37090665 PMCID: PMC10120632 DOI: 10.1101/2023.04.12.536477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Electrical stimulation of spinal networks below a spinal cord injury (SCI) is a promising approach to restore functions compromised by inadequate excitatory neural drive. The most translationally successful examples are paradigms intended to increase neural transmission in weakened yet spared motor pathways and spinal motor networks rendered dormant after being severed from their inputs by lesion. Less well understood is whether spinal stimulation is also capable of reducing neural transmission in pathways made pathologically overactive by SCI. Debilitating spasms, spasticity, and neuropathic pain are all common manifestations of hyperexcitable spinal responses to sensory feedback. But whereas spasms and spasticity can often be managed pharmacologically, SCI-related neuropathic pain is notoriously medically refractory. Interestingly, however, spinal stimulation is a clinically available option for ameliorating neuropathic pain arising from etiologies other than SCI, and it has traditionally been assumed to modulate sensorimotor networks overlapping with those engaged by spinal stimulation for motor rehabilitation. Thus, we reasoned that spinal stimulation intended to increase transmission in motor pathways may simultaneously reduce transmission in spinal pain pathways. Using a well-validated pre-clinical model of SCI that results in severe bilateral motor impairments and SCI-related neuropathic pain, we show that the responsiveness of neurons integral to the development and persistence of the neuropathic pain state can be enduringly reduced by motor-targeted spinal stimulation while preserving spinal responses to non-pain-related sensory feedback. These results suggest that spinal stimulation paradigms could be intentionally designed to afford multi-modal therapeutic benefits, directly addressing the diverse, intersectional rehabilitation goals of people living with SCI.
Collapse
|
11
|
Popp NM, Holmes TC, Streeter KA. Diaphragm stimulation elicits phrenic afferent-induced neuromuscular plasticity. Respir Physiol Neurobiol 2023; 310:104014. [PMID: 36642318 PMCID: PMC9945879 DOI: 10.1016/j.resp.2023.104014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
We hypothesized that activation of phrenic afferents induces diaphragm motor plasticity. In anesthetized and spontaneously breathing rats we delivered 40 Hz, low threshold (twitch and 1.5X twitch threshold), inspiratory-triggered stimulation to the left hemidiaphragm for 30 min to activate ipsilateral phrenic afferents. Diaphragm amplitude ipsilateral and contralateral to stimulation were increased for 60 min following both currents compared to time controls not receiving stimulation. Diaphragm stimulation was repeated in laminectomy controls or following a unilateral C3-C6 dorsal rhizotomy to eliminate phrenic afferent volleys. Laminectomy controls expressed neuromuscular plasticity post-stimulation. In contrast, ipsilateral and contralateral diaphragm amplitude following dorsal rhizotomy was lower than laminectomy controls and no different than time controls, suggesting diaphragm motor plasticity was not induced post-rhizotomy. Our results indicate that diaphragm stimulation induces a novel form of plasticity in the phrenic motor system which requires phrenic afferent activation. Respiratory motor plasticity elicited by diaphragm stimulation may have value as a therapeutic strategy to improve diaphragm output in neuromuscular conditions.
Collapse
Affiliation(s)
- Nicole M Popp
- Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| | - Taylor C Holmes
- Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| | - Kristi A Streeter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, United States.
| |
Collapse
|
12
|
McIntosh JR, Joiner EF, Goldberg JL, Murray LM, Yasin B, Mendiratta A, Karceski SC, Thuet E, Modik O, Shelkov E, Lombardi JM, Sardar ZM, Lehman RA, Mandigo C, Riew KD, Harel NY, Virk MS, Carmel JB. Intraoperative electrical stimulation of the human dorsal spinal cord reveals a map of arm and hand muscle responses. J Neurophysiol 2023; 129:66-82. [PMID: 36417309 PMCID: PMC9799146 DOI: 10.1152/jn.00235.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Although epidural stimulation of the lumbar spinal cord has emerged as a powerful modality for recovery of movement, how it should be targeted to the cervical spinal cord to activate arm and hand muscles is not well understood, particularly in humans. We sought to map muscle responses to posterior epidural cervical spinal cord stimulation in humans. We hypothesized that lateral stimulation over the dorsal root entry zone would be most effective and responses would be strongest in the muscles innervated by the stimulated segment. Twenty-six people undergoing clinically indicated cervical spine surgery consented to mapping of motor responses. During surgery, stimulation was performed in midline and lateral positions at multiple exposed segments; six arm and three leg muscles were recorded on each side of the body. Across all segments and muscles tested, lateral stimulation produced stronger muscle responses than midline despite similar latency and shape of responses. Muscles innervated at a cervical segment had the largest responses from stimulation at that segment, but responses were also observed in muscles innervated at other cervical segments and in leg muscles. The cervical responses were clustered in rostral (C4-C6) and caudal (C7-T1) cervical segments. Strong responses to lateral stimulation are likely due to the proximity of stimulation to afferent axons. Small changes in response sizes to stimulation of adjacent cervical segments argue for local circuit integration, and distant muscle responses suggest activation of long propriospinal connections. This map can help guide cervical stimulation to improve arm and hand function.NEW & NOTEWORTHY A map of muscle responses to cervical epidural stimulation during clinically indicated surgery revealed strongest activation when stimulating laterally compared to midline and revealed differences to be weaker than expected across different segments. In contrast, waveform shapes and latencies were most similar when stimulating midline and laterally, indicating activation of overlapping circuitry. Thus, a map of the cervical spinal cord reveals organization and may help guide stimulation to activate arm and hand muscles strongly and selectively.
Collapse
Affiliation(s)
- James R McIntosh
- Department of Orthopedic Surgery, https://ror.org/00hj8s172Columbia University, New York, New York
- Department of Neurological Surgery, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| | - Evan F Joiner
- Department of Neurological Surgery, Columbia University, New York, New York
| | - Jacob L Goldberg
- Department of Neurological Surgery, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| | - Lynda M Murray
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
- James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Bushra Yasin
- Department of Orthopedic Surgery, https://ror.org/00hj8s172Columbia University, New York, New York
- Department of Neurological Surgery, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| | - Anil Mendiratta
- Department of Neurology, Columbia University, New York, New York
| | - Steven C Karceski
- Department of Neurology, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| | - Earl Thuet
- New York Presbyterian, Och Spine Hospital, New York, New York
| | - Oleg Modik
- Department of Neurology, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| | - Evgeny Shelkov
- Department of Neurology, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| | - Joseph M Lombardi
- Department of Orthopedic Surgery, https://ror.org/00hj8s172Columbia University, New York, New York
- New York Presbyterian, Och Spine Hospital, New York, New York
| | - Zeeshan M Sardar
- Department of Orthopedic Surgery, https://ror.org/00hj8s172Columbia University, New York, New York
- New York Presbyterian, Och Spine Hospital, New York, New York
| | - Ronald A Lehman
- Department of Orthopedic Surgery, https://ror.org/00hj8s172Columbia University, New York, New York
- New York Presbyterian, Och Spine Hospital, New York, New York
| | - Christopher Mandigo
- Department of Neurological Surgery, Columbia University, New York, New York
- New York Presbyterian, Och Spine Hospital, New York, New York
| | - K Daniel Riew
- Department of Orthopedic Surgery, https://ror.org/00hj8s172Columbia University, New York, New York
- Department of Neurological Surgery, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
- New York Presbyterian, Och Spine Hospital, New York, New York
| | - Noam Y Harel
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
- James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Michael S Virk
- Department of Neurological Surgery, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| | - Jason B Carmel
- Department of Orthopedic Surgery, https://ror.org/00hj8s172Columbia University, New York, New York
- Department of Neurology, Columbia University, New York, New York
- Department of Neurological Surgery, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| |
Collapse
|