1
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
2
|
Montefusco D, Jamil M, Canals D, Saligrama S, Yue Y, Allegood J, Cowart LA. SPTLC3 regulates plasma membrane sphingolipid composition to facilitate hepatic gluconeogenesis. Cell Rep 2024; 43:115054. [PMID: 39661520 DOI: 10.1016/j.celrep.2024.115054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 10/25/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024] Open
Abstract
SPTLC3, an inducible subunit of the serine palmitoyltransferase (SPT) complex, causes production of alternative sphingoid bases, including a 16-carbon dihydrosphingosine, whose biological function is only beginning to emerge. High-fat feeding induced SPTLC3 in the liver, prompting us to produce a liver-specific knockout mouse line. Following high-fat feeding, knockout mice showed decreased fasting blood glucose, and knockout primary hepatocytes showed suppressed glucose production, a core function of hepatocytes. Stable isotope tracing revealed suppression of the gluconeogenic pathway, finding that SPTLC3 was required to maintain expression of key gluconeogenic genes via adenylate cyclase/cyclic AMP (cAMP)/cAMP response element binding protein (CREB) signaling. Additionally, by employing a combination of a recently developed lipidomics methodology, exogenous C14/C16 fatty acid treatment, and in situ adenylate cyclase activity, we implicated a functional interaction between sphingomyelin with a d16 backbone and adenylate cyclase at the plasma membrane. This work pinpoints a specific sphingolipid-protein functional interaction with broad implications for understanding sphingolipid signaling and metabolic disease.
Collapse
Affiliation(s)
- David Montefusco
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Maryam Jamil
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Siri Saligrama
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yang Yue
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jeremy Allegood
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - L Ashley Cowart
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
3
|
Kuo A, Hla T. Regulation of cellular and systemic sphingolipid homeostasis. Nat Rev Mol Cell Biol 2024; 25:802-821. [PMID: 38890457 DOI: 10.1038/s41580-024-00742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
One hundred and fifty years ago, Johann Thudichum described sphingolipids as unusual "Sphinx-like" lipids from the brain. Today, we know that thousands of sphingolipid molecules mediate many essential functions in embryonic development and normal physiology. In addition, sphingolipid metabolism and signalling pathways are dysregulated in a wide range of pathologies, and therapeutic agents that target sphingolipids are now used to treat several human diseases. However, our understanding of sphingolipid regulation at cellular and organismal levels and their functions in developmental, physiological and pathological settings is rudimentary. In this Review, we discuss recent advances in sphingolipid pathways in different organelles, how secreted sphingolipid mediators modulate physiology and disease, progress in sphingolipid-targeted therapeutic and diagnostic research, and the trans-cellular sphingolipid metabolic networks between microbiota and mammals. Advances in sphingolipid biology have led to a deeper understanding of mammalian physiology and may lead to progress in the management of many diseases.
Collapse
Affiliation(s)
- Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Yao L, Cao Y, Zhang C, Huang X, Tian W, Cao L. Clinical and genetic characteristics in a Chinese cohort of complex spastic paraplegia type 4. Clin Genet 2024; 106:56-65. [PMID: 38403837 DOI: 10.1111/cge.14510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/27/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Spastic paraplegia type 4 (SPG4), caused by SPAST mutations, is the most predominant subtype of hereditary spastic paraplegia. Most documented SPG4 patients present as pure form, with the complex form rarely reported. We described the clinical and genetic features of 20 patients with complex phenotypes of SPG4 and further explored the genotype-phenotype correlations. We collected detailed clinical data of all SPG4 patients and assessed their phenotypes. SPAST gene mutations were identified by Multiplex ligation-dependent probe amplification in combination with whole exome sequencing. We further performed statistical analysis in genotype and phenotype among patients with various manifestations and different variants. Out of 90 SPG4 patients, 20 patients (male:female = 16:4) with additional neurologic deficits, namely complex form, were included in our study. The bimodal distribution of age of onset at 0-10 and 21-40 years old is concluded. On cranial MRI, obvious white matter lesions can be observed in five patients. We identified 9 novel and 8 reported SPAST mutations, of which 11 mutations were located in AAA (ATPase associated with various cellular activities) domain. The AAA cassette of spastin is the hottest mutated region among complex SPG4. All patients with cognitive impairment (CI) are males (n = 9/9). Additionally, 80% patients with ataxia are due to frameshift mutations (n = 4/5). Overall, our study summarized and analyzed the genetic and phenotypic characteristics of complex SPG4, making up over 1/5 of in-house SPG4 cohort, among which CI and ataxia are the most common features. Further studies are expected to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Li Yao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Yuwen Cao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Chao Zhang
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Xiaojun Huang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Wotu Tian
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Li Cao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| |
Collapse
|
5
|
Her Y, Pascual DM, Goldstone-Joubert Z, Marcogliese PC. Variant functional assessment in Drosophila by overexpression: what can we learn? Genome 2024; 67:158-167. [PMID: 38412472 DOI: 10.1139/gen-2023-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The last decade has been highlighted by the increased use of next-generation DNA sequencing technology to identify novel human disease genes. A critical downstream part of this process is assigning function to a candidate gene variant. Functional studies in Drosophila melanogaster, the common fruit fly, have made a prominent contribution in annotating variant impact in an in vivo system. The use of patient-derived knock-in flies or rescue-based, "humanization", approaches are novel and valuable strategies in variant testing but have been recently widely reviewed. An often-overlooked strategy for determining variant impact has been GAL4/upstream activation sequence-mediated tissue-defined overexpression in Drosophila. This mini-review will summarize the recent contribution of ectopic overexpression of human reference and variant cDNA in Drosophila to assess variant function, interpret the consequence of the variant, and in some cases infer biological mechanisms.
Collapse
Affiliation(s)
- Yina Her
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
| | - Danielle M Pascual
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
| | - Zoe Goldstone-Joubert
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
| | - Paul C Marcogliese
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
- Excellence in Neurodevelopment and Rehabilitation Research in Child Health (ENRRICH) Theme, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Dubot P, Sabourdy F, Levade T. Human genetic defects of sphingolipid synthesis. J Inherit Metab Dis 2024. [PMID: 38706107 DOI: 10.1002/jimd.12745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Sphingolipids are ubiquitous lipids, present in the membranes of all cell types, the stratum corneum and the circulating lipoproteins. Autosomal recessive as well as dominant diseases due to disturbed sphingolipid biosynthesis have been identified, including defects in the synthesis of ceramides, sphingomyelins and glycosphingolipids. In many instances, these gene variants result in the loss of catalytic function of the mutated enzymes. Additional gene defects implicate the subcellular localization of the sphingolipid-synthesizing enzyme, the regulation of its activity, or even the function of a sphingolipid-transporter protein. The resulting metabolic alterations lead to two major, non-exclusive types of clinical manifestations: a neurological disease, more or less rapidly progressive, associated or not with intellectual disability, and an ichthyotic-type skin disorder. These phenotypes highlight the critical importance of sphingolipids in brain and skin development and homeostasis. The present article reviews the clinical symptoms, genetic and biochemical alterations, pathophysiological mechanisms and therapeutic options of this relatively novel group of metabolic diseases.
Collapse
Affiliation(s)
- Patricia Dubot
- Unité Mixte de Recherche INSERM 1037, CNRS 5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
- Laboratoire de Biochimie, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
- Centre de Recherches, CHU Sainte-Justine, Université de Montréal, Montréal, Canada
| | - Frédérique Sabourdy
- Unité Mixte de Recherche INSERM 1037, CNRS 5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
- Laboratoire de Biochimie, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Thierry Levade
- Unité Mixte de Recherche INSERM 1037, CNRS 5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
- Laboratoire de Biochimie, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| |
Collapse
|
7
|
Naruse H, Ishiura H, Esaki K, Mitsui J, Satake W, Greimel P, Shingai N, Machino Y, Kokubo Y, Hamaguchi H, Oda T, Ikkaku T, Yokota I, Takahashi Y, Suzuki Y, Matsukawa T, Goto J, Koh K, Takiyama Y, Morishita S, Yoshikawa T, Tsuji S, Toda T. SPTLC2 variants are associated with early-onset ALS and FTD due to aberrant sphingolipid synthesis. Ann Clin Transl Neurol 2024; 11:946-957. [PMID: 38316966 PMCID: PMC11021611 DOI: 10.1002/acn3.52013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/02/2024] [Accepted: 01/20/2024] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a devastating, incurable neurodegenerative disease. A subset of ALS patients manifests with early-onset and complex clinical phenotypes. We aimed to elucidate the genetic basis of these cases to enhance our understanding of disease etiology and facilitate the development of targeted therapies. METHODS Our research commenced with an in-depth genetic and biochemical investigation of two specific families, each with a member diagnosed with early-onset ALS (onset age of <40 years). This involved whole-exome sequencing, trio analysis, protein structure analysis, and sphingolipid measurements. Subsequently, we expanded our analysis to 62 probands with early-onset ALS and further included 440 patients with adult-onset ALS and 1163 healthy controls to assess the prevalence of identified genetic variants. RESULTS We identified heterozygous variants in the serine palmitoyltransferase long chain base subunit 2 (SPTLC2) gene in patients with early-onset ALS. These variants, located in a region closely adjacent to ORMDL3, bear similarities to SPTLC1 variants previously implicated in early-onset ALS. Patients with ALS carrying these SPTLC2 variants displayed elevated plasma ceramide levels, indicative of increased serine palmitoyltransferase (SPT) activity leading to sphingolipid overproduction. INTERPRETATION Our study revealed novel SPTLC2 variants in patients with early-onset ALS exhibiting frontotemporal dementia. The combination of genetic evidence and the observed elevation in plasma ceramide levels establishes a crucial link between dysregulated sphingolipid metabolism and ALS pathogenesis. These findings expand our understanding of ALS's genetic diversity and highlight the distinct roles of gene defects within SPT subunits in its development.
Collapse
Affiliation(s)
- Hiroya Naruse
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Precision Medicine Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of NeurologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kayoko Esaki
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life SciencesSojo UniversityKumamotoJapan
| | - Jun Mitsui
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Precision Medicine Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Wataru Satake
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Peter Greimel
- Laboratory for Cell Function Dynamics, RIKEN Centre for Brain SciencesWakoSaitamaJapan
| | - Nanoka Shingai
- Division of Applied Life Science, Graduate School of EngineeringSojo UniversityKumamotoJapan
| | - Yuka Machino
- Department of NeurologyNational Hospital Organization Mie National HospitalTsuMieJapan
| | - Yasumasa Kokubo
- Kii ALS/PDC Research Center, Graduate School of Regional Innovation StudiesMie UniversityTsuMieJapan
| | | | - Tetsuya Oda
- Department of NeurologyKita‐Harima Medical CenterOnoHyogoJapan
| | - Tomoko Ikkaku
- Division of NeurologyKobe University Graduate School of MedicineKobeHyogoJapan
- Department of NeurologyHyogo Prefectural Rehabilitation Central HospitalKobeHyogoJapan
| | - Ichiro Yokota
- Division of NeurologyKobe University Graduate School of MedicineKobeHyogoJapan
- Department of NeurologyNational Hospital Organization Hyogo‐Chuo National HospitalSandaHyogoJapan
| | - Yuji Takahashi
- Department of NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Yuta Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoChibaJapan
| | - Takashi Matsukawa
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Jun Goto
- Department of NeurologyInternational University of Health and Welfare Ichikawa HospitalChibaJapan
| | - Kishin Koh
- Department of Neurology, Graduate School of Medical SciencesUniversity of YamanashiYamanashiJapan
- Department of NeurologyYumura Onsen HospitalYamanashiJapan
| | - Yoshihisa Takiyama
- Department of Neurology, Graduate School of Medical SciencesUniversity of YamanashiYamanashiJapan
- Department of NeurologyFuefuki Central HospitalYamanashiJapan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoChibaJapan
| | - Takeo Yoshikawa
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain ScienceWakoSaitamaJapan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Institute of Medical GenomicsInternational University of Health and WelfareChibaJapan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
8
|
Dohrn MF, Beijer D, Lone MA, Bayraktar E, Oflazer P, Orbach R, Donkervoort S, Foley AR, Rose A, Lyons M, Louie RJ, Gable K, Dunn T, Chen S, Danzi MC, Synofzik M, Bönnemann CG, Nazlı Başak A, Hornemann T, Zuchner S. Recurrent de-novo gain-of-function mutation in SPTLC2 confirms dysregulated sphingolipid production to cause juvenile amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2024; 95:201-205. [PMID: 38041684 PMCID: PMC10922288 DOI: 10.1136/jnnp-2023-332130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/27/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) leads to paralysis and death by progressive degeneration of motor neurons. Recently, specific gain-of-function mutations in SPTLC1 were identified in patients with juvenile form of ALS. SPTLC2 encodes the second catalytic subunit of the serine-palmitoyltransferase (SPT) complex. METHODS We used the GENESIS platform to screen 700 ALS whole-genome and whole-exome data sets for variants in SPTLC2. The de-novo status was confirmed by Sanger sequencing. Sphingolipidomics was performed using liquid chromatography and high-resolution mass spectrometry. RESULTS Two unrelated patients presented with early-onset progressive proximal and distal muscle weakness, oral fasciculations, and pyramidal signs. Both patients carried the novel de-novo SPTLC2 mutation, c.203T>G, p.Met68Arg. This variant lies within a single short transmembrane domain of SPTLC2, suggesting that the mutation renders the SPT complex irresponsive to regulation through ORMDL3. Confirming this hypothesis, ceramide and complex sphingolipid levels were significantly increased in patient plasma. Accordingly, excessive sphingolipid production was shown in mutant-expressing human embryonic kindney (HEK) cells. CONCLUSIONS Specific gain-of-function mutations in both core subunits affect the homoeostatic control of SPT. SPTLC2 represents a new Mendelian ALS gene, highlighting a key role of dysregulated sphingolipid synthesis in the pathogenesis of juvenile ALS. Given the direct interaction of SPTLC1 and SPTLC2, this knowledge might open new therapeutic avenues for motor neuron diseases.
Collapse
Affiliation(s)
- Maike F Dohrn
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Danique Beijer
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Museer A Lone
- Institute of Clinical Chemistry, University Hospital Zürich, Zürich, Switzerland
| | - Elif Bayraktar
- Koç University, School of Medicine, Translational Medicine Research Center- NDAL, Istanbul, Turkey
| | - Piraye Oflazer
- Koç University, School of Medicine, Department of Neurology, Istanbul, Turkey
| | - Rotem Orbach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Bethesda, Maryland, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Bethesda, Maryland, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Bethesda, Maryland, USA
| | - Aubrey Rose
- Greenwood Genetic Center Foundation, Greenwood, South Carolina, USA
| | - Michael Lyons
- Greenwood Genetic Center Foundation, Greenwood, South Carolina, USA
| | - Raymond J Louie
- Greenwood Genetic Center Foundation, Greenwood, South Carolina, USA
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, Maryland, USA
| | - Teresa Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, Maryland, USA
| | - Sitong Chen
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Matt C Danzi
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Matthis Synofzik
- Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Bethesda, Maryland, USA
| | - A Nazlı Başak
- Koç University, School of Medicine, Translational Medicine Research Center- NDAL, Istanbul, Turkey
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zürich, Zürich, Switzerland
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
9
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
10
|
Yamamoto S, Kanca O, Wangler MF, Bellen HJ. Integrating non-mammalian model organisms in the diagnosis of rare genetic diseases in humans. Nat Rev Genet 2024; 25:46-60. [PMID: 37491400 DOI: 10.1038/s41576-023-00633-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/27/2023]
Abstract
Next-generation sequencing technology has rapidly accelerated the discovery of genetic variants of interest in individuals with rare diseases. However, showing that these variants are causative of the disease in question is complex and may require functional studies. Use of non-mammalian model organisms - mainly fruitflies (Drosophila melanogaster), nematode worms (Caenorhabditis elegans) and zebrafish (Danio rerio) - enables the rapid and cost-effective assessment of the effects of gene variants, which can then be validated in mammalian model organisms such as mice and in human cells. By probing mechanisms of gene action and identifying interacting genes and proteins in vivo, recent studies in these non-mammalian model organisms have facilitated the diagnosis of numerous genetic diseases and have enabled the screening and identification of therapeutic options for patients. Studies in non-mammalian model organisms have also shown that the biological processes underlying rare diseases can provide insight into more common mechanisms of disease and the biological functions of genes. Here, we discuss the opportunities afforded by non-mammalian model organisms, focusing on flies, worms and fish, and provide examples of their use in the diagnosis of rare genetic diseases.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
11
|
Dutta D, Kanca O, Byeon SK, Marcogliese PC, Zuo Z, Shridharan RV, Park JH, Lin G, Ge M, Heimer G, Kohler JN, Wheeler MT, Kaipparettu BA, Pandey A, Bellen HJ. A defect in mitochondrial fatty acid synthesis impairs iron metabolism and causes elevated ceramide levels. Nat Metab 2023; 5:1595-1614. [PMID: 37653044 PMCID: PMC11151872 DOI: 10.1038/s42255-023-00873-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
In most eukaryotic cells, fatty acid synthesis (FAS) occurs in the cytoplasm and in mitochondria. However, the relative contribution of mitochondrial FAS (mtFAS) to the cellular lipidome is not well defined. Here we show that loss of function of Drosophila mitochondrial enoyl coenzyme A reductase (Mecr), which is the enzyme required for the last step of mtFAS, causes lethality, while neuronal loss of Mecr leads to progressive neurodegeneration. We observe a defect in Fe-S cluster biogenesis and increased iron levels in flies lacking mecr, leading to elevated ceramide levels. Reducing the levels of either iron or ceramide suppresses the neurodegenerative phenotypes, indicating an interplay between ceramide and iron metabolism. Mutations in human MECR cause pediatric-onset neurodegeneration, and we show that human-derived fibroblasts display similar elevated ceramide levels and impaired iron homeostasis. In summary, this study identifies a role of mecr/MECR in ceramide and iron metabolism, providing a mechanistic link between mtFAS and neurodegeneration.
Collapse
Affiliation(s)
- Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Rishi V Shridharan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Guang Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ming Ge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Gali Heimer
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jennefer N Kohler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew T Wheeler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Benny A Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Manipal Academy of Higher Education, Manipal, India
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
12
|
Bhattacharya MRC. A nerve-wracking buzz: lessons from Drosophila models of peripheral neuropathy and axon degeneration. Front Aging Neurosci 2023; 15:1166146. [PMID: 37614471 PMCID: PMC10442544 DOI: 10.3389/fnagi.2023.1166146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
The degeneration of axons and their terminals occurs following traumatic, toxic, or genetically-induced insults. Common molecular mechanisms unite these disparate triggers to execute a conserved nerve degeneration cascade. In this review, we will discuss how models of peripheral nerve injury and neuropathy in Drosophila have led the way in advancing molecular understanding of axon degeneration and nerve injury pathways. Both neuron-intrinsic as well as glial responses to injury will be highlighted. Finally, we will offer perspective on what additional questions should be answered to advance these discoveries toward clinical interventions for patients with neuropathy.
Collapse
|
13
|
Gehin C, Lone MA, Lee W, Capolupo L, Ho S, Adeyemi AM, Gerkes EH, Stegmann AP, López-Martín E, Bermejo-Sánchez E, Martínez-Delgado B, Zweier C, Kraus C, Popp B, Strehlow V, Gräfe D, Knerr I, Jones ER, Zamuner S, Abriata LA, Kunnathully V, Moeller BE, Vocat A, Rommelaere S, Bocquete JP, Ruchti E, Limoni G, Van Campenhoudt M, Bourgeat S, Henklein P, Gilissen C, van Bon BW, Pfundt R, Willemsen MH, Schieving JH, Leonardi E, Soli F, Murgia A, Guo H, Zhang Q, Xia K, Fagerberg CR, Beier CP, Larsen MJ, Valenzuela I, Fernández-Álvarez P, Xiong S, Śmigiel R, López-González V, Armengol L, Morleo M, Selicorni A, Torella A, Blyth M, Cooper NS, Wilson V, Oegema R, Herenger Y, Garde A, Bruel AL, Tran Mau-Them F, Maddocks AB, Bain JM, Bhat MA, Costain G, Kannu P, Marwaha A, Champaigne NL, Friez MJ, Richardson EB, Gowda VK, Srinivasan VM, Gupta Y, Lim TY, Sanna-Cherchi S, Lemaitre B, Yamaji T, Hanada K, Burke JE, Jakšić AM, McCabe BD, De Los Rios P, Hornemann T, D’Angelo G, Gennarino VA. CERT1 mutations perturb human development by disrupting sphingolipid homeostasis. J Clin Invest 2023; 133:e165019. [PMID: 36976648 PMCID: PMC10178846 DOI: 10.1172/jci165019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome.
Collapse
Affiliation(s)
- Charlotte Gehin
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Museer A. Lone
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Winston Lee
- Department of Genetics and Development and
- Department Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA
| | - Laura Capolupo
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvia Ho
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Adekemi M. Adeyemi
- Department of Medical Genetics, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Erica H. Gerkes
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Alexander P.A. Stegmann
- Department of Clinical Genetics and School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, Netherlands
| | - Estrella López-Martín
- Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Bermejo-Sánchez
- Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Center of Functional Genomics, Berlin, Germany
| | - Vincent Strehlow
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Daniel Gräfe
- Department of Pediatric Radiology, University Hospital Leipzig, Leipzig, Leipzig, Germany
| | - Ina Knerr
- National Centre for Inherited Metabolic Disorders, Children’s Health Ireland (CHI) at Temple Street, Dublin, Ireland
- UCD School of Medicine, Dublin, Ireland
| | - Eppie R. Jones
- Genuity Science, Cherrywood Business Park, Dublin, Ireland
| | - Stefano Zamuner
- Institute of Physics, School of Basic Sciences, École Polytechnique Féderale de Lausanne (EPFL), Lausanne, Switzerland
| | - Luciano A. Abriata
- Laboratory for Biomolecular Modeling and Protein Purification and Structure Facility, EPFL and Swiss Institute of Bioinformatics, Lausanne Switzerland
| | - Vidya Kunnathully
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Brandon E. Moeller
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Anthony Vocat
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | - Evelyne Ruchti
- Brain Mind Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Greta Limoni
- Brain Mind Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | | | - Samuel Bourgeat
- Brain Mind Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Petra Henklein
- Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Gilissen
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Bregje W. van Bon
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, Netherlands
| | - Rolph Pfundt
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | | | - Jolanda H. Schieving
- Radboud University Medical Center, Department of Pediatric Neurology, Amalia Children’s Hospital and Donders Institute for Brain, Cognition and Behavior, Nijmegen, Netherlands
| | - Emanuela Leonardi
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica (IRP), Città della Speranza, Padova, Italy
| | - Fiorenza Soli
- Medical Genetics Department, APSS Trento, Trento, Italy
| | - Alessandra Murgia
- Fondazione Istituto di Ricerca Pediatrica (IRP), Città della Speranza, Padova, Italy
| | - Hui Guo
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qiumeng Zhang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Christina R. Fagerberg
- Department of Neurology, Odense University Hospital, and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Christoph P. Beier
- Department of Neurology, Odense University Hospital, and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Martin J. Larsen
- Department of Neurology, Odense University Hospital, and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, University Hospital Vall d′Hebron, Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Paula Fernández-Álvarez
- Department of Clinical and Molecular Genetics, University Hospital Vall d′Hebron, Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Shiyi Xiong
- Fetal Medicine Unit and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Robert Śmigiel
- Department of Family and Pediatric Nursing, Medical University, Wroclaw, Poland
| | - Vanesa López-González
- Sección de Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, CIBERER-ISCIII, Murcia, Spain
| | - Lluís Armengol
- Quantitative Genomic Medicine Laboratories, S.L., CSO & CEO, Esplugues del Llobregat, Barcelona, Catalunya, Spain
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Angelo Selicorni
- Department of Pediatrics, ASST Lariana Sant’ Anna Hospital, San Fermo Della Battaglia, Como, Italy
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Moira Blyth
- North of Scotland Regional Genetics Service, Clinical Genetics Centre, Ashgrove House, Foresterhill, Aberdeen, United Kingdom
| | - Nicola S. Cooper
- W Midlands Clinical Genetics Service, Birmingham Women’s Hospital, Edgbaston Birmingham, United Kingdom
| | - Valerie Wilson
- Northern Regional Genetics Laboratory, Newcastle upon Tyne, United Kingdom
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Yvan Herenger
- Genetica AG, Humangenetisches Labor und Beratungsstelle, Zürich, Switzerland
| | - Aurore Garde
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d’Enfants, CHU Dijon, Dijon, France
- UMR1231 GAD, INSERM – Université Bourgogne-Franche Comté, Dijon, France
| | - Ange-Line Bruel
- UMR1231 GAD, INSERM – Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Frederic Tran Mau-Them
- UMR1231 GAD, INSERM – Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Alexis B.R. Maddocks
- Department of Radiology at Columbia University Irving Medical Center, New York, New York, USA
| | - Jennifer M. Bain
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, Columbia University Medical Center, New York, New York, USA
| | - Musadiq A. Bhat
- Institute of Pharmacology and Toxicology University of Zürich, Zürich, Switzerland
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Peter Kannu
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Ashish Marwaha
- Department of Medical Genetics, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Neena L. Champaigne
- Greenwood Genetic Center and the Medical University of South Carolina, Greenwood, South Carolina, USA
| | - Michael J. Friez
- Greenwood Genetic Center and the Medical University of South Carolina, Greenwood, South Carolina, USA
| | - Ellen B. Richardson
- Greenwood Genetic Center and the Medical University of South Carolina, Greenwood, South Carolina, USA
| | - Vykuntaraju K. Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | | | - Yask Gupta
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York, USA
| | - Tze Y. Lim
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York, USA
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York, USA
| | | | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - John E. Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ana Marjia Jakšić
- Brain Mind Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Brian D. McCabe
- Brain Mind Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Paolo De Los Rios
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Physics, School of Basic Sciences, École Polytechnique Féderale de Lausanne (EPFL), Lausanne, Switzerland
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Giovanni D’Angelo
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
- Global Health Institute, School of Life Sciences and
| | - Vincenzo A. Gennarino
- Department of Genetics and Development and
- Department of Pediatrics
- Department of Neurology
- Columbia Stem Cell Initiative, and
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
14
|
Pan X, Dutta D, Lu S, Bellen HJ. Sphingolipids in neurodegenerative diseases. Front Neurosci 2023; 17:1137893. [PMID: 36875645 PMCID: PMC9978793 DOI: 10.3389/fnins.2023.1137893] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Neurodegenerative Diseases (NDDs) are a group of disorders that cause progressive deficits of neuronal function. Recent evidence argues that sphingolipid metabolism is affected in a surprisingly broad set of NDDs. These include some lysosomal storage diseases (LSDs), hereditary sensory and autonomous neuropathy (HSAN), hereditary spastic paraplegia (HSP), infantile neuroaxonal dystrophy (INAD), Friedreich's ataxia (FRDA), as well as some forms of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Many of these diseases have been modeled in Drosophila melanogaster and are associated with elevated levels of ceramides. Similar changes have also been reported in vertebrate cells and mouse models. Here, we summarize studies using fly models and/or patient samples which demonstrate the nature of the defects in sphingolipid metabolism, the organelles that are implicated, the cell types that are initially affected, and potential therapeutics for these diseases.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|