1
|
Steele AG, Vette AH, Martin C, Masani K, Sayenko DG. Synergistic effects of transcutaneous spinal stimulation and neuromuscular electrical stimulation on lower limb force production: Time to deliver. PLoS One 2024; 19:e0296613. [PMID: 39213293 PMCID: PMC11364223 DOI: 10.1371/journal.pone.0296613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Transcutaneous spinal stimulation (TSS) and neuromuscular electrical stimulation (NMES) can facilitate self-assisted standing in individuals with paralysis. However, individual variability in responses to each modality may limit their effectiveness in generating the necessary leg extension force for full body weight standing. To address this challenge, we proposed combining TSS and NMES to enhance leg extensor muscle activation, with optimizing timing adjustment to maximize the interaction between the two modalities. METHODS To assess the effects of TSS and NMES on knee extension and plantarflexion force, ten neurologically intact participants underwent three conditions: (1) TSS control, (2) NMES control, and (3) TSS + NMES. TSS was delivered between the T10 and L2 vertebrae, while NMES was delivered to the skin over the right knee extensors and plantarflexors. TSS and NMES were administered using a 15 Hz train of three 0.5 ms biphasic pulses. During the TSS + NMES condition, the timing between modalities was adjusted in increments of ¼ the interval within a 15 Hz frequency, i.e., 66, 49.5, 33, 16.5, and 1 ms. RESULTS NMES combined with TSS, produced synergistic effects even on non-targeted muscle groups, thereby promoting leg extension across multiple joints in the kinematic chain. The sequence of NMES or TSS trains relative to each other did not significantly impact motor output. Notably, a delay of 16.5 to 49.5 ms between interleaved TSS and NMES pulses, each delivered at 15 Hz, results in more robust and synergistic responses in knee extensors and plantarflexors. CONCLUSIONS By adjusting the timing between TSS and NMES, we can optimize the combined use of these modalities for functional restoration. Our findings highlight the potential of integrated TSS and NMES protocols to enhance motor function, suggesting promising avenues for therapeutic applications, particularly in the rehabilitation of individuals with SCI.
Collapse
Affiliation(s)
- Alexander G. Steele
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Albert H. Vette
- Department of Mechanical Engineering, Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, Alberta, Canada
- Glenrose Rehabilitation Hospital, Alberta Health Services, Edmonton, Alberta, Canada
| | - Catherine Martin
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Kei Masani
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- KITE Research Institute–University Health Network, Toronto, ON, Canada
| | - Dimitry G. Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas, United States of America
| |
Collapse
|
2
|
Mokhtari T, Uludag K. Role of NLRP3 Inflammasome in Post-Spinal-Cord-Injury Anxiety and Depression: Molecular Mechanisms and Therapeutic Implications. ACS Chem Neurosci 2024; 15:56-70. [PMID: 38109051 DOI: 10.1021/acschemneuro.3c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
The majority of research on the long-term effects of spinal cord injury (SCI) has primarily focused on neuropathic pain (NP), psychological issues, and sensorimotor impairments. Among SCI patients, mood disorders, such as anxiety and depression, have been extensively studied. It has been found that chronic stress and NP have negative consequences and reduce the quality of life for individuals living with SCI. Our review examined both human and experimental evidence to explore the connection between mood changes following SCI and inflammatory pathways, with a specific focus on NLRP3 inflammasome signaling. We observed increased proinflammatory factors in the blood, as well as in the brain and spinal cord tissues of SCI models. The NLRP3 inflammasome plays a crucial role in various diseases by controlling the release of proinflammatory molecules like interleukin 1β (IL-1β) and IL-18. Dysregulation of the NLRP3 inflammasome in key brain regions associated with pain processing, such as the prefrontal cortex and hippocampus, contributes to the development of mood disorders following SCI. In this review, we summarized recent research on the expression and regulation of components related to NLRP3 inflammasome signaling in mood disorders following SCI. Finally, we discussed potential therapeutic approaches that target the NLRP3 inflammasome and regulate proinflammatory cytokines as a way to treat mood disorders following SCI.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China
| | - Kadir Uludag
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| |
Collapse
|
3
|
Moro V, Beccherle M, Scandola M, Aglioti SM. Massive body-brain disconnection consequent to spinal cord injuries drives profound changes in higher-order cognitive and emotional functions: A PRISMA scoping review. Neurosci Biobehav Rev 2023; 154:105395. [PMID: 37734697 DOI: 10.1016/j.neubiorev.2023.105395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
Spinal cord injury (SCI) leads to a massive disconnection between the brain and the body parts below the lesion level representing a unique opportunity to explore how the body influences a person's mental life. We performed a systematic scoping review of 59 studies on higher-order cognitive and emotional changes after SCI. The results suggest that fluid abilities (e.g. attention, executive functions) and emotional regulation (e.g. emotional reactivity and discrimination) are impaired in people with SCI, with progressive deterioration over time. Although not systematically explored, the factors that are directly (e.g. the severity and level of the lesion) and indirectly associated (e.g. blood pressure, sleeping disorders, medication) with the damage may play a role in these deficits. The inconsistency which was found in the results may derive from the various methods used and the heterogeneity of samples (i.e. the lesion completeness, the time interval since lesion onset). Future studies which are specifically controlled for methods, clinical and socio-cultural dimensions are needed to better understand the role of the body in cognition.
Collapse
Affiliation(s)
- Valentina Moro
- NPSY.Lab-VR, Department of Human Sciences, University of Verona, Lungadige Porta Vittoria, 17, 37129 Verona, Italy.
| | - Maddalena Beccherle
- NPSY.Lab-VR, Department of Human Sciences, University of Verona, Lungadige Porta Vittoria, 17, 37129 Verona, Italy; Department of Psychology, Sapienza University of Rome and cln2s@sapienza Istituto Italiano di Tecnologia, Italy.
| | - Michele Scandola
- NPSY.Lab-VR, Department of Human Sciences, University of Verona, Lungadige Porta Vittoria, 17, 37129 Verona, Italy
| | - Salvatore Maria Aglioti
- Department of Psychology, Sapienza University of Rome and cln2s@sapienza Istituto Italiano di Tecnologia, Italy; Fondazione Santa Lucia IRCCS, Roma, Italy
| |
Collapse
|
4
|
Chen X, Wang L, Zheng W, Yang Y, Yang B, Hu Y, Du J, Li X, Lu J, Chen N. The gray matter atrophy and related network changes occur in the higher cognitive region rather than the primary sensorimotor cortex after spinal cord injury. PeerJ 2023; 11:e16172. [PMID: 37842067 PMCID: PMC10569206 DOI: 10.7717/peerj.16172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/03/2023] [Indexed: 10/17/2023] Open
Abstract
Objective This study used functional magnetic resonance imaging (fMRI) to explore brain structural and related network changes in patients with spinal cord injury (SCI). Methods Thirty-one right-handed SCI patients and 31 gender- and age-matched healthy controls (HC) were included. The gray matter volume (GMV) changes in SCI patients were observed using voxel-based morphometry (VBM). Then, these altered gray matter clusters were used as the regions of interest (ROIs) for whole-brain functional connectivity (FC) analysis to detect related functional changes. The potential association between GMV and FC values with the visual analog scale (VAS), the American Spinal Injury Association (ASIA) score, and the course of injuries was investigated through partial correlation analysis. Results GMV of the frontal, temporal, and insular cortices was lower in the SCI group than in the HC group. No GMV changes were found in the primary sensorimotor area in the SCI group. Besides, the altered FC regions were not in the primary sensorimotor area but in the cingulate gyrus, supplementary motor area, precuneus, frontal lobe, and insular. Additionally, some of these altered GMV and FC regions were correlated with ASIA motor scores, indicating that higher cognitive regions can affect motor function in SCI patients. Conclusions This study demonstrated that gray matter and related network reorganization in patients with SCI occurred in higher cognitive regions. Future rehabilitation strategies should focus more on cognitive functions.
Collapse
Affiliation(s)
- Xin Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Ling Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Weimin Zheng
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yanhui Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Beining Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yongsheng Hu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jubao Du
- Department of Rehabilitation Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xuejing Li
- Department of Radiology, China Rehabilitation Research Center, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Nan Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| |
Collapse
|
5
|
Ortega MA, Fraile-Martinez O, García-Montero C, Haro S, Álvarez-Mon MÁ, De Leon-Oliva D, Gomez-Lahoz AM, Monserrat J, Atienza-Pérez M, Díaz D, Lopez-Dolado E, Álvarez-Mon M. A comprehensive look at the psychoneuroimmunoendocrinology of spinal cord injury and its progression: mechanisms and clinical opportunities. Mil Med Res 2023; 10:26. [PMID: 37291666 PMCID: PMC10251601 DOI: 10.1186/s40779-023-00461-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating and disabling medical condition generally caused by a traumatic event (primary injury). This initial trauma is accompanied by a set of biological mechanisms directed to ameliorate neural damage but also exacerbate initial damage (secondary injury). The alterations that occur in the spinal cord have not only local but also systemic consequences and virtually all organs and tissues of the body incur important changes after SCI, explaining the progression and detrimental consequences related to this condition. Psychoneuroimmunoendocrinology (PNIE) is a growing area of research aiming to integrate and explore the interactions among the different systems that compose the human organism, considering the mind and the body as a whole. The initial traumatic event and the consequent neurological disruption trigger immune, endocrine, and multisystem dysfunction, which in turn affect the patient's psyche and well-being. In the present review, we will explore the most important local and systemic consequences of SCI from a PNIE perspective, defining the changes occurring in each system and how all these mechanisms are interconnected. Finally, potential clinical approaches derived from this knowledge will also be collectively presented with the aim to develop integrative therapies to maximize the clinical management of these patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Sergio Haro
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Ángel Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Ana M. Gomez-Lahoz
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Mar Atienza-Pérez
- Service of Rehabilitation, National Hospital for Paraplegic Patients, Carr. de la Peraleda, S/N, 45004 Toledo, Spain
| | - David Díaz
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Elisa Lopez-Dolado
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology Service and Internal Medicine, University Hospital Príncipe de Asturias (CIBEREHD), 28806 Alcala de Henares, Spain
| |
Collapse
|
6
|
Pfyffer D, Zimmermann S, Şimşek K, Kreis R, Freund P, Seif M. Magnetic resonance spectroscopy investigation in the right human hippocampus following spinal cord injury. Front Neurol 2023; 14:1120227. [PMID: 37251221 PMCID: PMC10213741 DOI: 10.3389/fneur.2023.1120227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Objective Preclinical studies have shown that cognitive impairments following spinal cord injury (SCI), such as impaired spatial memory, are linked to inflammation, neurodegeneration, and reduced neurogenesis in the right hippocampus. This cross-sectional study aims to characterize metabolic and macrostructural changes in the right hippocampus and their association to cognitive function in traumatic SCI patients. Methods Within this cross-sectional study, cognitive function was assessed in 28 chronic traumatic SCI patients and 18 age-, sex-, and education-matched healthy controls by a visuospatial and verbal memory test. A magnetic resonance spectroscopy (MRS) and structural MRI protocol was performed in the right hippocampus of both groups to quantify metabolic concentrations and hippocampal volume, respectively. Group comparisons investigated changes between SCI patients and healthy controls and correlation analyses investigated their relationship to memory performance. Results Memory performance was similar in SCI patients and healthy controls. The quality of the recorded MR spectra was excellent in comparison to the best-practice reports for the hippocampus. Metabolite concentrations and volume of the hippocampus measured based on MRS and MRI were not different between two groups. Memory performance in SCI patients and healthy controls was not correlated with metabolic or structural measures. Conclusion This study suggests that the hippocampus may not be pathologically affected at a functional, metabolic, and macrostructural level in chronic SCI. This points toward the absence of significant and clinically relevant trauma-induced neurodegeneration in the hippocampus.
Collapse
Affiliation(s)
- Dario Pfyffer
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Sandra Zimmermann
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - Kadir Şimşek
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Roland Kreis
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Maryam Seif
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
7
|
Sargent L, Smitherman J, Sorenson M, Brown R, Starkweather A. Cognitive and physical impairment in spinal cord injury: A scoping review and call for new understanding. J Spinal Cord Med 2023; 46:343-366. [PMID: 36441038 PMCID: PMC10114976 DOI: 10.1080/10790268.2022.2134634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Study Design: Scoping review.Objective: To examine potential underlying mechanisms of cognitive and physical impairment in patients with spinal cord injury and identify current research gaps.Methods: A scoping review of the literature was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping reviews to identify primary studies that explored mechanisms of cognitive and/or physical impairment after spinal cord injury. The databases searched were PubMed/MEDLINE, EMBASE (OVID), Cumulative Index to Nursing and Allied Health Literature (CINAHL; EBSCO), Web of Science, Scopus, and PsycInfo. These databases were searched from inception through December 20, 2021.Results: Accumulating research suggests that neuroinflammation and neurodegeneration after a traumatic event may be possible mechanisms for cognitive impairment among patients with SCI. In addition, lack of physical activity due to impaired mobility is associated with an increased risk of cognitive impairment.Conclusion: While the results establish a foundation for understanding how cognitive impairment, mental health, and physical function independently affect patients with SCI, further research is warranted to understand how these factors systemically impact the patient and discover refined targets for future rehabilitation therapies. Studies should also explore potential predisposing factors for the relationship between cognitive and physical impairment among patients with SCI.
Collapse
Affiliation(s)
- Lana Sargent
- School of Nursing, Virginia Commonwealth University, Richmond, USA
- Geriatric Pharmacotherapy Program, Virginia Commonwealth University, Richmond, USA
- Institute for Inclusion, Inquiry & Innovation iCubed Health and Wellness in Aging Transdisciplinary Core, Richmond, USA
| | - Jonice Smitherman
- Institute for Inclusion, Inquiry & Innovation iCubed Health and Wellness in Aging Transdisciplinary Core, Richmond, USA
| | | | - Roy Brown
- Health Sciences Library, VCU Libraries, Richmond, USA
| | | |
Collapse
|
8
|
Zakani M, Nigritinou M, Ponleitner M, Takai Y, Hofmann D, Hillebrand S, Höftberger R, Bauer J, Lasztoczi B, Misu T, Kasprian G, Rommer P, Bradl M. Paths to hippocampal damage in neuromyelitis optica spectrum disorders. Neuropathol Appl Neurobiol 2023; 49:e12893. [PMID: 36811295 PMCID: PMC10947283 DOI: 10.1111/nan.12893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
AIMS Many patients with neuromyelitis optica spectrum disorders (NMOSD) suffer from cognitive impairment affecting memory, processing speed and attention and suffer from depressive symptoms. Because some of these manifestations could trace back to the hippocampus, several magnetic resonance imaging (MRI) studies have been performed in the past, with a number of groups describing volume loss of the hippocampus in NMOSD patients, whereas others did not observe such changes. Here, we addressed these discrepancies. METHODS We performed pathological and MRI studies on the hippocampi of NMOSD patients, combined with detailed immunohistochemical analysis of hippocampi from experimental models of NMOSD. RESULTS We identified different pathological scenarios for hippocampal damage in NMOSD and its experimental models. In the first case, the hippocampus was compromised by the initiation of astrocyte injury in this brain region and subsequent local effects of microglial activation and neuronal damage. In the second case, loss of hippocampal volume was seen by MRI in patients with large tissue-destructive lesions in the optic nerves or the spinal cord, and the pathological work-up of tissue derived from a patient with such lesions revealed subsequent retrograde neuronal degeneration affecting different axonal tracts and neuronal networks. It remains to be seen whether remote lesions and associated retrograde neuronal degeneration on their own are sufficient to cause extensive volume loss of the hippocampus, or whether they act in concert with small astrocyte-destructive, microglia-activating lesions in the hippocampus that escape detection by MRI, either due to their small size or due to the chosen time window for examination. CONCLUSIONS Different pathological scenarios can culminate in hippocampal volume loss in NMOSD patients.
Collapse
Affiliation(s)
- Mona Zakani
- Division of Neuroimmunology, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Magdalini Nigritinou
- Division of Neuroimmunology, Center for Brain ResearchMedical University of ViennaViennaAustria
| | | | - Yoshiki Takai
- Department of NeurologyTohoku University Graduate School of MedicineSendaiJapan
| | - Daniel Hofmann
- Division of Neuroimmunology, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Sophie Hillebrand
- Division of Neuroimmunology, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Romana Höftberger
- Department of Neurology, Division of Neuropathology and NeurochemistryMedical University of ViennaViennaAustria
| | - Jan Bauer
- Division of Neuroimmunology, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Balint Lasztoczi
- Division of Cognitive Neurobiology, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Tatsuro Misu
- Department of NeurologyTohoku University Graduate School of MedicineSendaiJapan
| | - Gregor Kasprian
- Division of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Paulus Rommer
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Monika Bradl
- Division of Neuroimmunology, Center for Brain ResearchMedical University of ViennaViennaAustria
| |
Collapse
|
9
|
Quan X, Yu C, Fan Z, Wu T, Qi C, Zhang H, Wu S, Wang X. Hydralazine plays an immunomodulation role of pro-regeneration in a mouse model of spinal cord injury. Exp Neurol 2023; 363:114367. [PMID: 36858281 DOI: 10.1016/j.expneurol.2023.114367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Spinal cord injury (SCI) results in severe motor and sensory dysfunction with no effective therapy. Spinal cord debris (sp) from injured spinal cord evokes secondary SCI continuously. We and other researchers have previously clarified that it is mainly bone marrow derived macrophages (BMDMs) infiltrating in the lesion epicenter to clear sp, rather than local microglia. Unfortunately, the pro-inflammatory phenotype of these infiltrating BMDMs is predominant which impairs wound healing. Hydralazine, as a potent vasodilator and scavenger of acrolein, has protective effects in many diseases. Hydralazine is also confirmed to promote motor function and hypersensitivity in SCI rats through scavenging acrolein. However, few studies have explored the effects of hydralazine on immunomodulation, as well as spontaneous pain and emotional response, the important syndromes in clinical patients. It remains unclear whether hydralazine affects infiltrating BMDMs after SCI. In this study, we targeted BMDMs to explore the influence of hydralazine on immune cells in a mouse model of SCI, and also investigated the contribution of polarized BMDMs to hydralazine-induced neurological function recovery after SCI in male mice. The adult male mice underwent T10 spinal cord compression. The results showed that in addition to improving motor function and hypersensitivity, hydralazine relieved SCI-induced spontaneous pain and emotional response, which is a newly discovered function of hydralazine. Hydralazine inhibited the recruitments of pro-inflammatory BMDMs and educated infiltrated BMDMs to a more reparative phenotype involving in multiple biological processes associated with SCI pathology, including immune/inflammation response, neurogenesis, lipid metabolism, oxidative stress, fibrosis formation, and angiogenesis, etc. As an overall effect, hydralazine-treated BMDMs loaden with sp partially rescued neurological function after SCI. It is concluded that hydralazine plays an immunomodulation role of educating pro-inflammatory BMDMs to a more reparative phenotype; and hydralazine-educated BMDMs contribute to hydralazine-induced improvement of neurological function in SCI mice, which provides support for drug and cell treatment options for SCI therapy.
Collapse
Affiliation(s)
- Xin Quan
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Caiyong Yu
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China; Military Medical Innovation Center, Fourth Military Medical University, Xi'an 710032, China
| | - Zhongmin Fan
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tong Wu
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Chuchu Qi
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Haoying Zhang
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Shengxi Wu
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Xi Wang
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China; The College of Life Sciences and Medicine, Northwest University, Xi'an 710069, China.
| |
Collapse
|
10
|
Pecchinenda A, Gonzalez Pizzio AP, Salera C, Pazzaglia M. The role of arousal and motivation in emotional conflict resolution: Implications for spinal cord injury. Front Hum Neurosci 2022; 16:927622. [PMID: 36277056 PMCID: PMC9579344 DOI: 10.3389/fnhum.2022.927622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/20/2022] [Indexed: 12/28/2022] Open
Abstract
Under many conditions, emotional information is processed with priority and it may lead to cognitive conflict when it competes with task-relevant information. Accordingly, being able to ignore emotional information relies on cognitive control. The present perspective offers an integrative account of the mechanism that may underlie emotional conflict resolution in tasks involving response activation. We point to the contribution of emotional arousal and primed approach or avoidance motivation in accounting for emotional conflict resolution. We discuss the role of arousal in individuals with impairments in visceral pathways to the brain due to spinal cord lesions, as it may offer important insights into the “typical” mechanisms of emotional conflict control. We argue that a better understanding of emotional conflict control could be critical for adaptive and flexible behavior and has potential implications for the selection of appropriate therapeutic interventions.
Collapse
Affiliation(s)
- Anna Pecchinenda
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Santa Lucia, Rome, Italy
- *Correspondence: Anna Pecchinenda,
| | - Adriana Patrizia Gonzalez Pizzio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ph.D. Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Claudia Salera
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ph.D. Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Mariella Pazzaglia
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Santa Lucia, Rome, Italy
- Mariella Pazzaglia,
| |
Collapse
|
11
|
Kalkhoran AK, Alipour MR, Jafarzadehgharehziaaddin M, Zangbar HS, Shahabi P. Intersection of hippocampus and spinal cord: a focus on the hippocampal alpha-synuclein accumulation, dopaminergic receptors, neurogenesis, and cognitive function following spinal cord injury in male rats. BMC Neurosci 2022; 23:44. [PMID: 35820831 PMCID: PMC9277791 DOI: 10.1186/s12868-022-00729-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/06/2022] [Indexed: 11/11/2022] Open
Abstract
Background Following Spinal Cord Injury (SCI), innumerable inflammatory and degenerative fluctuations appear in the injured site, and even remotely in manifold areas of the brain. Howbeit, inflammatory, degenerative, and oscillatory changes of motor cortices have been demonstrated to be due to SCI, according to recent studies confirming the involvement of cognitive areas of the brain, such as hippocampus and prefrontal cortex. Therefore, addressing SCI induced cognitive complications via different sights can be contributory in the treatment approaches. Results Herein, we used 16 male Wistar rats (Sham = 8, SCI = 8). Immunohistochemical results revealed that spinal cord contusion significantly increases the accumulation of alpha-synuclein and decreases the expression of Doublecortin (DCX) in the hippocampal regions like Cornu Ammonis1 (CA1) and Dentate Gyrus (DG). Theses degenerative manifestations were parallel with a low expression of Achaete-Scute Family BHLH Transcription Factor 1 (ASCL1), SRY (sex determining region Y)-box 2 (SOX2), and dopaminergic receptors (D1 and D5). Additionally, based on the TUNEL assay analysis, SCI significantly increased the number of apoptotic cells in the CA1 and DG regions. Cognitive function of the animals was assessed, using the O-X maze and Novel Object Recognition (NORT); the obtained findings indicted that after SCI, hippocampal neurodegeneration significantly coincides with the impairment of learning, memory and recognition capability of the injured animals. Conclusions Based on the obtained findings, herein SCI reduces neurogenesis, decreases the expression of D1 and D5, and increases apoptosis in the hippocampus, which are all associated with cognitive function deficits. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Ahad Karimzadeh Kalkhoran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, East Azarbayjan, Iran
| | - Mohammad Reza Alipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, East Azarbayjan, Iran
| | | | - Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azarbayjan, Iran.
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, East Azarbayjan, Iran.
| |
Collapse
|
12
|
Musleh-Vega S, Ojeda J, Vidal PM. Gut Microbiota–Brain Axis as a Potential Modulator of Psychological Stress after Spinal Cord Injury. Biomedicines 2022; 10:biomedicines10040847. [PMID: 35453597 PMCID: PMC9024710 DOI: 10.3390/biomedicines10040847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 12/12/2022] Open
Abstract
A growing body of evidence from preclinical and clinical studies has associated alterations of the gut microbiota–brain axis with the progression and development of a number of pathological conditions that also affect cognitive functions. Spinal cord injuries (SCIs) can be produced from traumatic and non-traumatic causes. It has been reported that SCIs are commonly associated with anxiety and depression-like symptoms, showing an incidence range between 11 and 30% after the injury. These psychological stress-related symptoms are associated with worse prognoses in SCIs and have been attributed to psychosocial stressors and losses of independence. Nevertheless, emotional and mental modifications after SCI could be related to changes in the volume of specific brain areas associated with information processing and emotions. Additionally, physiological modifications have been recognized as a predisposing factor for mental health depletion, including the development of gut dysbiosis. This condition of imbalance in microbiota composition has been shown to be associated with depression in clinical and pre-clinical models. Therefore, the understanding of the mechanisms underlying the relationship between SCIs, gut dysbiosis and psychological stress could contribute to the development of novel therapeutic strategies to improve SCI patients’ quality of life.
Collapse
|
13
|
Sun S, Sun S, Meng Y, Shi B, Chen Y. Elevated Serum Neuropeptide FF Levels Are Associated with Cognitive Decline in Patients with Spinal Cord Injury. DISEASE MARKERS 2021; 2021:4549049. [PMID: 34804262 PMCID: PMC8601828 DOI: 10.1155/2021/4549049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) has high incidence globally and is frequently accompanied by subsequent cognitive decline. Accurate early risk-categorization of SCI patients for cognitive decline using biomarkers can enable the timely application of appropriate neuroprotective measures and the development of new agents for the management of SCI-associated cognitive decline. Neuropeptide FF is an endogenous neuropeptide with a multitude of functions and is associated with neuroinflammatory processes. This prospective study investigated the predictive value of serum neuropeptide FF levels measured after acute SCI for subsequent cognitive decline. METHODS 88 patients presenting with acute SCI without preexisting neurological injury, brain trauma, or severe systemic illness and 60 healthy controls were recruited. Serum neuropeptide FF levels, clinical, and routine laboratory variables including low-density lipoprotein, high-density lipoprotein, fasting blood glucose, total triiodothyronine (TT3), total thyroxine (TT4), and thyroid-stimulating hormone (TSH) levels collected from all subjects were assessed. Montreal cognitive assessment (MoCA) was performed 3 months after enrollment. SCI patients were grouped according to quartile of serum neuropeptide FF level and MoCA scores were compared using ANOVA. Additionally, multivariate linear regression with clinical and laboratory variables was performed to predict MoCA scores. RESULTS SCI patients displayed significantly higher baseline serum neuropeptide FF levels than healthy controls (38.5 ± 4.1 versus 23.4 ± 2.0 pg/ml, p < 0.001∗∗). SCI patients in higher quartiles of baseline serum neuropeptide FF displayed significantly lower MoCA scores at 3 months. Linear regression analysis indicated serum neuropeptide FF levels as a significant independent predictor of worse MoCA scores after SCI (r = 0.331, p = 0.034∗). CONCLUSION Early serum neuropeptide FF levels significantly and independently predicted cognitive decline after acute SCI among patients without preexisting neurological disorders.
Collapse
Affiliation(s)
- Shifei Sun
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Shilong Sun
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yan Meng
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Bin Shi
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Yuanzhen Chen
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| |
Collapse
|
14
|
Zanin E, Leochico CFD, Salizzato S, Rey-Matias RR, Pauletto P, Masiero S, Cerrel-Bazo HA. Differences between males and females with spinal cord injury in the experience of subliminal and explicit sexual pictures. Spinal Cord 2021; 60:142-148. [PMID: 34719671 DOI: 10.1038/s41393-021-00723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Observational cross-sectional study. OBJECTIVES To determine the differences between persons with spinal cord injury (SCI) and control individuals in terms of conscious and unconscious sexual responses to subliminally presented visual sexual stimuli. SETTING Spinal cord injury rehabilitation center in northern Italy. METHODS A two-part behavioral experiment was conducted on 40 participants (27 individuals with SCI; 13 controls). In first part, all participants were subliminally exposed to a prime picture (neutral or sexual) and asked to rate the extent to which they were emotionally aroused, while watching a set of explicit target pictures (neutral or sexual). In the second part, choice reaction time task was employed, wherein participants were shown a subliminal prime picture (neutral or sexual) followed by an explicit target picture (neutral or sexual) superimposed by a black dot and were asked to locate the dot as fast as possible. RESULTS In the first part, men with SCI reported higher levels of emotional arousal to explicit sexual target pictures compared to other groups. In the second part, slower choice reaction times were found in the SCI group, particularly with sexual prime picture. Moreover, females with SCI spent more time during implicit motor learning tasks with sexual target pictures than other groups. CONCLUSION We found differences in the experience of subliminal and explicit sexual pictures not only between the two groups, but also between females and males with SCI. Attention should thus be paid when considering sexual experience at subliminal and conscious level in SCI population for future research and rehabilitative protocols.
Collapse
Affiliation(s)
- Elia Zanin
- Ospedale Riabilitativo di Alta Specializzazione (ORAS)-ULSS 2 TV, Motta di Livenza, TV, Italy.
| | - Carl Froilan D Leochico
- Department of Rehabilitation Medicine, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.,Department of Physical Medicine and Rehabilitation, St. Luke's Medical Center, Global City and Quezon City, Philippines
| | - Sara Salizzato
- Ospedale Riabilitativo di Alta Specializzazione (ORAS)-ULSS 2 TV, Motta di Livenza, TV, Italy
| | - Reynaldo R Rey-Matias
- Department of Rehabilitation Medicine, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.,Department of Physical Medicine and Rehabilitation, St. Luke's Medical Center, Global City and Quezon City, Philippines
| | - Paolo Pauletto
- Ospedale Riabilitativo di Alta Specializzazione (ORAS)-ULSS 2 TV, Motta di Livenza, TV, Italy
| | - Stefano Masiero
- Department of Neuroscience-Physical Medicine and Rehabilitation, University of Padova, Medical School, Padova, Italy
| | - Humberto A Cerrel-Bazo
- Ospedale Riabilitativo di Alta Specializzazione (ORAS)-ULSS 2 TV, Motta di Livenza, TV, Italy.,Department of Neuroscience-Physical Medicine and Rehabilitation, University of Padova, Medical School, Padova, Italy
| |
Collapse
|
15
|
Alizadeh M, Manmatharayan AR, Johnston T, Thalheimer S, Finley M, Detloff M, Sharan A, Harrop J, Newburg A, Krisa L, Mohamed FB. Graph theoretical structural connectome analysis of the brain in patients with chronic spinal cord injury: preliminary investigation. Spinal Cord Ser Cases 2021; 7:60. [PMID: 34274953 PMCID: PMC8286254 DOI: 10.1038/s41394-021-00424-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/09/2022] Open
Abstract
STUDY DESIGN Retrospective study. OBJECTIVES We aimed to characterize the convergent disruptions of the structural connectivity based on network modeling technique (i.e., graph theory) to identify significant changes in network organization/reorganization between uninjured and chronic spinal cord injury (SCI) participants. SETTING USA. METHODS Ten adult participants including 4 with chronic SCI and 6 uninjured were scanned using a multi-shell diffusion imaging on a 3.0 T MR scanner. Whole brain structural connectivity matrix was estimated by performing the quantification of the number of white matter fibers (called edges) connecting each possible pair of brain region (called nodes). Brain regions were defined according to Desikan-Killiany cortical atlas. Using connectivity matrix, connectivity strength as well as six different graph theoretical measurements were computed for each participant. They include: (1) global efficiency; (2) local efficiency; (3) degree; (4) betweenness centrality; (5) average shortest length and (6) clustering coefficient. Finally network based statistics was applied to extract nodes/connections with significant differences between groups (uninjured vs SCI). RESULTS The SCI group showed significant decreases in betweenness centrality in the left precentral gyrus (T-score=2.98, p value=0.02), and the right caudal middle frontal gyrus (score = 2.35, p value=0.047). It also showed significant decrease in left transverse temporal gyrus (T-score=2.36, p value=0.046) in clustering coefficient. In addition, altered regions in the occipital and parietal lobe were also identified. CONCLUSION These results suggest that not only local but also global alterations of the white matter occur after SCI. The proposed modeling technique has the potential to serve as a screening tool to identify any areas of the brain affected after SCI.
Collapse
Affiliation(s)
- Mahdi Alizadeh
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | - Therese Johnston
- Department of Physical Therapy, Jefferson College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sara Thalheimer
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Margaret Finley
- Department of Physical Therapy & Rehabilitation Science, Drexel University, Philadelphia, PA, USA
| | - Megan Detloff
- Department of Neurobiology & Anatomy, Marion Murray Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Ashwini Sharan
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - James Harrop
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew Newburg
- Marcus Institute of Integrative Health-Myrna Brind Center, Marcus Institute, Thomas Jefferson University, Villanova, PA, USA
| | - Laura Krisa
- Department of Physical Therapy, Jefferson College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Feroze B Mohamed
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
16
|
Soltani Zangbar H, Shahabi P, Seyedi Vafaee M, Ghadiri T, Ebrahimi Kalan A, Fallahi S, Ghorbani M, Jafarzadehgharehziaaddin M. Hippocampal neurodegeneration and rhythms mirror each other during acute spinal cord injury in male rats. Brain Res Bull 2021; 172:31-42. [PMID: 33848614 DOI: 10.1016/j.brainresbull.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/20/2021] [Accepted: 04/07/2021] [Indexed: 12/29/2022]
Abstract
Spinal Cord Injury (SCI), triggers neurodegenerative changes in the spinal cord, and simultaneously alters oscillatory manifestations of motor cortex. However, these disturbances may not be limited to motor areas and other parts such as hippocampus, which is vital in the neurogenesis and cognitive function, may be affected in the neurogenic and oscillatory manners. Addressing this remarkable complication of SCI, we evaluated the hippocampal neurogenesis and rhythms through acute phase of SCI. In the present study, we used 40 male rats (Sham.W1 = 10, SCI.W1 = 10, Sham.W2 = 10, SCI.W2 = 10), and findings revealed that contusive SCI declines hippocampal rhythms (Delta, Theta, Beta, Gamma) power and max-frequency. Also, there was a significant decrease in the DCX + and BrdU + cells of the dentate gyrus; correlated significantly with rhythms power decline. Considering the TUNEL assay analysis, there were significantly greater apoptotic cells, in the CA1, CA3, and DG regions of injured animals. Furthermore, according to the western blotting analysis, the expression of receptors (NMDA, GABAA, Muscarinic1), which are essential in the neurogenesis and generation of rhythms significantly attenuated following SCI. Our study demonstrated that acute SCI, alters the power and max-frequency of hippocampal rhythms parallel with changes in the hippocampal neurogenesis, apoptosis, and receptors expression.
Collapse
Affiliation(s)
- Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Centre (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Centre (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Manouchehr Seyedi Vafaee
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Psychiatry, Odense University Hospital, Odense, Denmark
| | - Tahereh Ghadiri
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi Kalan
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Fallahi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Ghorbani
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
17
|
Lee J, Dudley-Javoroski S, Shields RK. Motor demands of cognitive testing may artificially reduce executive function scores in individuals with spinal cord injury. J Spinal Cord Med 2021; 44:253-261. [PMID: 30943119 PMCID: PMC7952072 DOI: 10.1080/10790268.2019.1597482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Objective: To determine whether the motor demands of cognitive tests contribute to differences in cognitive function scores in participants with and without spinal cord injury (SCI).Design: Cohort study.Setting: Rehabilitation research laboratory.Participants: 68 individuals without SCI ("NON") and 22 individuals with motor complete SCI ("SCI").Interventions: None.Outcome Measures: NIH Toolbox cognitive assessments, including two with motor demands and reaction-time based scoring (Dimensional Change Card Sort (DCCS), Flanker Inhibitory Control and Attention (Flanker) and two without timed scoring (List Sorting Working Memory (List Sorting), Picture Sequence Memory Test (Picture Sequence). Tests were administered with and without the assistance of a proctor on two randomly-determined days (>24 hr interval). For DCCS and Flanker, the motor-task score offset was estimated as the difference between the proctored and non-proctored scores.Results: For demographically-corrected data, proctoring reduced DCCS and Flanker scores (P < 0.001) but mitigated apparent differences between SCI and NON (all P > 0.403). SCI and NON did not differ for List Sorting (P > 0.072) but did differ significantly for Picture Sequence (P < 0.001). Significant practice effects existed for memory-based tests (List Sorting and Picture Sequence); all P < 0.015, effect size>0.645.Conclusions: DCCS and Flanker scores for individuals with SCI may be artificially reduced consequent to secondary motor demands of the tests. Proctoring and computation of a motor-response score offset enables comparisons to be made between individuals with SCI and a Non-SCI control cohort; however, further work is needed to determine whether offset-adjusted scores can be compared to standardized normative values.
Collapse
Affiliation(s)
- Jinhyun Lee
- Department of Physical Therapy and Rehabilitation Science, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Shauna Dudley-Javoroski
- Department of Physical Therapy and Rehabilitation Science, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Richard K. Shields
- Department of Physical Therapy and Rehabilitation Science, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA,Correspondence to: Richard K. Shields, Department of Physical Therapy and Rehabilitation Science, University of Iowa, 1-252 Medical Education Building, Iowa City, IA52242, USA.
| |
Collapse
|
18
|
Jing Y, Bai F, Yu Y. Spinal cord injury and gut microbiota: A review. Life Sci 2020; 266:118865. [PMID: 33301807 DOI: 10.1016/j.lfs.2020.118865] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
After spinal cord injury (SCI), intestinal dysfunction has a serious impact on physical and mental health, quality of life, and social participation. Recent data from rodent and human studies indicated that SCI causes gut dysbiosis. Remodeling gut microbiota could be beneficial for the recovery of intestinal function and motor function after SCI. However, few studies have explored SCI with focus on the gut microbiota and "microbiota-gut-brain" axis. In this review, the complications following SCI, including intestinal dysfunction, anxiety and depression, metabolic disorders, and neuropathic pain, are directly or indirectly related to gut dysbiosis, which may be mediated by "gut-brain" interactions. Furthermore, we discuss the research strategies that can be beneficial in this regard, including germ-free animals, fecal microbiota transplantation, probiotics, phages, and brain imaging techniques. The current microbial research has shifted from descriptive to mechanismal perspective, and future research using new technologies may further demonstrate the pathophysiological mechanism of association of SCI with gut microbiota, elucidate the mode of interaction of gut microbiota and hosts, and help develop personalized microbiota-targeted therapies and drugs based on microbiota or corresponding metabolites.
Collapse
Affiliation(s)
- Yingli Jing
- China Rehabilitation Science Institute, Beijing 100068, China; Institute of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing 100068, China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
| | - Fan Bai
- China Rehabilitation Science Institute, Beijing 100068, China; Institute of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing 100068, China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
| | - Yan Yu
- China Rehabilitation Science Institute, Beijing 100068, China; Institute of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing 100068, China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China.
| |
Collapse
|
19
|
Distel DF, Amodeo M, Joshi S, Abramoff BA. Cognitive Dysfunction in Persons with Chronic Spinal Cord Injuries. Phys Med Rehabil Clin N Am 2020; 31:345-368. [PMID: 32624099 DOI: 10.1016/j.pmr.2020.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cognitive dysfunction (CD) is pervasive in individuals who have chronic spinal cord injuries (SCI). Although classically associated with concomitant traumatic brain injuries, many other causes have been proposed, including premorbid neuropsychological conditions, mood disorders, substance abuse, polypharmacy, chronic pain and fatigue, sleep apnea, autonomic dysregulation, post-intensive care unit syndrome, cortical reorganizations, and neuroinflammation. The consequences of CD are likely widespread, affecting rehabilitation and function. CD in those with SCI should be recognized, and potentially treated, in order to provide the best patient care.
Collapse
Affiliation(s)
- Donald F Distel
- Department of Physical Medicine and Rehabilitation, University of Pennsylvania-Perelman School of Medicine, 1800 Lombard Street, Philadelphia, PA 19146, USA
| | - Matthew Amodeo
- Department of Physical Medicine and Rehabilitation, University of Pennsylvania-Perelman School of Medicine, 1800 Lombard Street, Philadelphia, PA 19146, USA
| | - Shawn Joshi
- Drexel School of Medicine, 2900 W. Queen Lane, Philadelphia, PA 19129, USA
| | - Benjamin A Abramoff
- Department of Physical Medicine and Rehabilitation, University of Pennsylvania-Perelman School of Medicine, 1800 Lombard Street, Philadelphia, PA 19146, USA.
| |
Collapse
|
20
|
Danilov CA, Gu Y, Punj V, Wu Z, Steward O, Schönthal AH, Tahara SM, Hofman FM, Chen TC. Intravenous delivery of microRNA-133b along with Argonaute-2 enhances spinal cord recovery following cervical contusion in mice. Spine J 2020; 20:1138-1151. [PMID: 32145360 DOI: 10.1016/j.spinee.2020.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Acute spinal cord injury (SCI) is a devastating condition for which spine decompression and stabilization of injury remains the only therapy available in the clinical setup. However, fibrous scar formation during the healing process significantly impairs full recovery. MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression by binding to target mRNA(s) and initiating translational repression or mRNA degradation. It has been reported that microRNA-133b (miR133b) is highly expressed in regenerating neurons following a SCI in zebrafish, and lentiviral delivery of miR133b at the time of SCI in mice resulted in improved functional recovery. PURPOSE The aim of this study was to investigate whether intravenous delivery of miR133b enhances spinal cord recovery when administered 24 hours following a cervical contusion injury in mice. STUDY DESIGN This is an experimental animal study of acute SCI, investigating the effect of miR133b on spinal cord recovery by targeting scar lesion formation. The approach involved setting an acute SCI in mice, which was followed 24 hours later by intravenous co-delivery of miR133b and Argonaute 2 (Ago2), a protein involved in miRNA stabilization. Readouts of the impact of this intervention included analysis of RNA and protein expression at the lesion site, in particular with regard to markers of scar tissue formation, and determination of motor function recovery by the grip strength meter task. METHODS C57BL6 female mice between 6 and 8 weeks of age were tested. The injury model employed was a unilateral moderate contusion at the cervical fifth level. Twenty-four hours following the injury, the authors co-delivered miR133b, or scrambled miRNA as negative control, along with Ago2 for 3 consecutive days, one dose per day via tail-vein injection. They first investigated the level of miR133b in the spinal cord and in spinal cord lesion after a single dose of injection. Next, they determined the efficacy of miR133b and/or Ago2 delivery in regulating gene and protein expression at the lesion site. Finally, they established the role of miR133b and/or Ago2 in enhancing forelimb gripping recovery as assessed by the grip strength meter task for 8 weeks post-SCI. RESULTS Intravenous delivery of miR133b and/or Ago2 targeted the microenvironment at the lesion site and prevented the increased expression of certain extracellular matrix proteins (ECM), in particular collagen type 1 alpha 1 and tenascin N, which are known to have a key role in scar formation. It also reduced microglia and/or macrophage recruitment to the lesion site. Functional recovery in mice treated with miR133b and/or Ago2 started around 2 weeks postinjury and continued to improve over time, whereas mice in the control group displayed significantly poorer recovery. CONCLUSIONS Our data indicate therapeutic activity of intravenous miR133b and/or Ago2 treatment, possibly via decreasing ECM protein expression and macrophage recruitment at the lesion site, thereby minimizing detrimental fibrous scar formation. CLINICAL SIGNIFICANCE There is an urgent medical need for better treatments of SCIs. Based on our findings in a preclinical model, the miR133b and/or Ago2 system specifically targets fibrous scar formation, a barrier in neuronal regrowth, by remodeling ECM molecules at the injury site. Prevention of scar formation is critical to improved outcomes of treatment. Of note, delivery of miR133b and/or Ago2 was initiated 24 hours after traumatic impact, thus indicating a fairly long window of opportunity providing more time and flexibility for therapeutic intervention. Intravenous miR133b may become a beneficial therapeutic strategy to treat patients with acute SCI.
Collapse
Affiliation(s)
- Camelia A Danilov
- Department of Neurological Surgery, University of Southern California, 2011 Zonal Ave, HMR 414, Los Angeles, CA 90033, USA
| | - Yifei Gu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Rd, Shanghai, China
| | - Vasu Punj
- Department of Medicine, University of Southern California, Health Sciences Campus, NRT G511, Los Angeles, CA 90033, USA
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education of the People's Republic of China, Shanghai 200072, China
| | - Oswald Steward
- Department of Anatomy and Neurobiology, University of California, Irvine, 1105 GNRF, Irvine, CA 92697, USA
| | - Axel H Schönthal
- Department of Molecular Microbiology and Immunology, University of Southern California, 2011 Zonal Ave, HMR 405A, Los Angeles, CA 90033, USA
| | - Stanley M Tahara
- Department of Molecular Microbiology and Immunology, University of Southern California, 2011 Zonal Ave, HMR 510A, Los Angeles, CA 90033, USA
| | - Florence M Hofman
- Department of Pathology, University of Southern California, 2011 Zonal Ave, HMR 315, Los Angeles, CA 90033, USA
| | - Thomas C Chen
- Department of Neurological Surgery, University of Southern California, 1520 San Pablo St, Los Angeles, CA 90089, USA.
| |
Collapse
|
21
|
Li Y, Cao T, Ritzel RM, He J, Faden AI, Wu J. Dementia, Depression, and Associated Brain Inflammatory Mechanisms after Spinal Cord Injury. Cells 2020; 9:cells9061420. [PMID: 32521597 PMCID: PMC7349379 DOI: 10.3390/cells9061420] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/28/2022] Open
Abstract
Evaluation of the chronic effects of spinal cord injury (SCI) has long focused on sensorimotor deficits, neuropathic pain, bladder/bowel dysfunction, loss of sexual function, and emotional distress. Although not well appreciated clinically, SCI can cause cognitive impairment including deficits in learning and memory, executive function, attention, and processing speed; it also commonly leads to depression. Recent large-scale longitudinal population-based studies indicate that patients with isolated SCI (without concurrent brain injury) are at a high risk of dementia associated with substantial cognitive impairments. Yet, little basic research has addressed potential mechanisms for cognitive impairment and depression after injury. In addition to contributing to disability in their own right, these changes can adversely affect rehabilitation and recovery and reduce quality of life. Here, we review clinical and experimental work on the complex and varied responses in the brain following SCI. We also discuss potential mechanisms responsible for these less well-examined, important SCI consequences. In addition, we outline the existing and developing therapeutic options aimed at reducing SCI-induced brain neuroinflammation and post-injury cognitive and emotional impairments.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.L.); (T.C.); (R.M.R.); (J.H.); (A.I.F.)
| | - Tuoxin Cao
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.L.); (T.C.); (R.M.R.); (J.H.); (A.I.F.)
| | - Rodney M. Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.L.); (T.C.); (R.M.R.); (J.H.); (A.I.F.)
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.L.); (T.C.); (R.M.R.); (J.H.); (A.I.F.)
| | - Alan I. Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.L.); (T.C.); (R.M.R.); (J.H.); (A.I.F.)
- University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.L.); (T.C.); (R.M.R.); (J.H.); (A.I.F.)
- University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-5189
| |
Collapse
|
22
|
Valenza G, Passamonti L, Duggento A, Toschi N, Barbieri R. Uncovering complex central autonomic networks at rest: a functional magnetic resonance imaging study on complex cardiovascular oscillations. J R Soc Interface 2020; 17:20190878. [PMID: 32183642 DOI: 10.1098/rsif.2019.0878] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This study aims to uncover brain areas that are functionally linked to complex cardiovascular oscillations in resting-state conditions. Multi-session functional magnetic resonance imaging (fMRI) and cardiovascular data were gathered from 34 healthy volunteers recruited within the human connectome project (the '100-unrelated subjects' release). Group-wise multi-level fMRI analyses in conjunction with complex instantaneous heartbeat correlates (entropy and Lyapunov exponent) revealed the existence of a specialized brain network, i.e. a complex central autonomic network (CCAN), reflecting what we refer to as complex autonomic control of the heart. Our results reveal CCAN areas comprised the paracingulate and cingulate gyri, temporal gyrus, frontal orbital cortex, planum temporale, temporal fusiform, superior and middle frontal gyri, lateral occipital cortex, angular gyrus, precuneous cortex, frontal pole, intracalcarine and supracalcarine cortices, parahippocampal gyrus and left hippocampus. The CCAN visible at rest does not include the insular cortex, thalamus, putamen, amygdala and right caudate, which are classical CAN regions peculiar to sympatho-vagal control. Our results also suggest that the CCAN is mainly involved in complex vagal control mechanisms, with possible links with emotional processing networks.
Collapse
Affiliation(s)
- Gaetano Valenza
- Bioengineering and Robotics Research Centre 'E. Piaggio', University of Pisa, Pisa, Italy.,Deparment of Information Engineering, University of Pisa, Pisa, Italy
| | - Luca Passamonti
- Institute of Bioimaging and Molecular Physiology, National Research Council, Milano, Italy.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andrea Duggento
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Riccardo Barbieri
- Department of Electronics, Informatics and Bioengineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
23
|
Karunakaran KD, Yuan R, He J, Zhao J, Cui JL, Zang YF, Zhang Z, Alvarez TL, Biswal BB. Resting-State Functional Connectivity of the Thalamus in Complete Spinal Cord Injury. Neurorehabil Neural Repair 2020; 34:122-133. [PMID: 31904298 DOI: 10.1177/1545968319893299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background. Neuroimaging studies of spinal cord injury (SCI) have mostly examined the functional organization of the cortex, with only limited focus on the subcortical substrates of the injury. However, thalamus is an important modulator and sensory relay that requires investigation at a subnuclei level to gain insight into the neuroplasticity following SCI. Objective. To use resting-state functional magnetic resonance imaging to examine the functional connectivity (FC) of thalamic subnuclei in complete SCI patients. Methods. A seed-based connectivity analysis was applied for 3 thalamic subnuclei: pulvinar, mediodorsal, and ventrolateral nucleus in each hemisphere. A nonparametric 2-sample t test with permutations was applied for each of the 6 thalamic seeds to compute FC differences between 22 healthy controls and 19 complete SCI patients with paraplegia. Results. Connectivity analysis showed a decrease in the FC of the bilateral mediodorsal nucleus with right superior temporal gyrus and anterior cingulate cortex in the SCI group. Similarly, the left ventrolateral nucleus exhibited decreased FC with left superior temporal gyrus in SCI group. In contrast, left pulvinar nucleus demonstrated an increase in FC with left inferior frontal gyrus and left inferior parietal lobule in SCI group. Our findings also indicate a negative relationship between postinjury durations and thalamic FC to regions of sensorimotor and visual cortices, where longer postinjury durations (~12 months) is associated with higher negative connectivity between these regions. Conclusion. This study provides evidence for reorganization in the thalamocortical connections known to be involved in multisensory integration and affective processing, with possible implications in the generation of sensory abnormalities after SCI.
Collapse
Affiliation(s)
| | - Rui Yuan
- Stanford School of Medicine, Stanford, CA, USA
| | - Jie He
- Hebei Medical University Third Affiliated Hospital, Shijazhuang, Hebei, China
| | - Jian Zhao
- Armed Police Force Hospital of Sichuan, Leshan, Sichuan, China
| | - Jian-Ling Cui
- Hebei Medical University Third Affiliated Hospital, Shijazhuang, Hebei, China
| | - Yu-Feng Zang
- Hangzhou Normal University Affiliated Hospital, Hangzhou, Zheijang, China
| | - Zhong Zhang
- Hebei Medical University Third Affiliated Hospital, Shijazhuang, Hebei, China
| | | | | |
Collapse
|
24
|
Kigerl KA, Zane K, Adams K, Sullivan MB, Popovich PG. The spinal cord-gut-immune axis as a master regulator of health and neurological function after spinal cord injury. Exp Neurol 2020; 323:113085. [PMID: 31654639 PMCID: PMC6918675 DOI: 10.1016/j.expneurol.2019.113085] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/24/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022]
Abstract
Most spinal cord injury (SCI) research programs focus only on the injured spinal cord with the goal of restoring locomotor function by overcoming mechanisms of cell death or axon regeneration failure. Given the importance of the spinal cord as a locomotor control center and the public perception that paralysis is the defining feature of SCI, this "spinal-centric" focus is logical. Unfortunately, such a focus likely will not yield new discoveries that reverse other devastating consequences of SCI including cardiovascular and metabolic disease, bladder/bowel dysfunction and infection. The current review considers how SCI changes the physiological interplay between the spinal cord, the gut and the immune system. A suspected culprit in causing many of the pathological manifestations of impaired spinal cord-gut-immune axis homeostasis is the gut microbiota. After SCI, the composition of the gut microbiota changes, creating a chronic state of gut "dysbiosis". To date, much of what we know about gut dysbiosis was learned from 16S-based taxonomic profiling studies that reveal changes in the composition and abundance of various bacteria. However, this approach has limitations and creates taxonomic "blindspots". Notably, only bacteria can be analyzed. Thus, in this review we also discuss how the application of emerging sequencing technologies can improve our understanding of how the broader ecosystem in the gut is affected by SCI. Specifically, metagenomics will provide researchers with a more comprehensive look at post-injury changes in the gut virome (and mycome). Metagenomics also allows changes in microbe population dynamics to be linked to specific microbial functions that can affect the development and progression of metabolic disease, immune dysfunction and affective disorders after SCI. As these new tools become more readily available and used across the research community, the development of an "ecogenomic" toolbox will facilitate an Eco-Systems Biology approach to study the complex interplay along the spinal cord-gut-immune axis after SCI.
Collapse
Affiliation(s)
- Kristina A Kigerl
- The Belford Center for Spinal Cord Injury, the Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center at The Ohio State University, USA
| | - Kylie Zane
- The Ohio State University College of Medicine, USA
| | - Kia Adams
- The Belford Center for Spinal Cord Injury, the Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center at The Ohio State University, USA
| | - Matthew B Sullivan
- Departments of Microbiology, Civil, Environmental and Geodetic Engineering at The Ohio State University, USA
| | - Phillip G Popovich
- The Belford Center for Spinal Cord Injury, the Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center at The Ohio State University, USA.
| |
Collapse
|
25
|
Cognitive and Emotional Empathy in Individuals with Spinal Cord Injury. Behav Neurol 2019; 2019:1312934. [PMID: 30881519 PMCID: PMC6387693 DOI: 10.1155/2019/1312934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 12/03/2018] [Accepted: 12/23/2018] [Indexed: 11/17/2022] Open
Abstract
Background Empathy has been conceptualized as comprising a cognitive and an emotional component, the latter being further divided into direct and indirect aspects, which refer, respectively, to the explicit evaluation of the observer's feelings while attending someone in an emotional situation and to the physiological response of the observer. Empathy has been previously investigated in several neurological disorders. Objective This study is aimed at investigating empathy in patients with spinal cord injury (SCI). We hypothesize that, due to deafferentation following their injury, SCI patients will display difficulty in the processing of emotional stimuli and blunted empathic responses as compared to healthy controls. Materials and Methods 20 patients with spinal cord injury (SCI) (12 males and 8 females, mean age = 50.9, standard deviation (SD) = 16.1 years; mean education = 10.9, SD = 4.1 years) were included in the study and compared to 20 matched healthy subjects. Participants were investigated using the State-Trait Anxiety Inventory (Form Y) (STAI-Y), the Beck Depression Scale, and the Toronto Alexithymia Scale. Moreover, participants were further evaluated by means of the Interpersonal Reactivity Index (IRI), which explores both cognitive and emotional aspects of empathy, and through an experimental protocol based on the use of a modified version of the computerized Multifaceted Empathy Test (MET) to evaluate emotional (direct and indirect) empathy and the ability to judge the valence of complex emotional scenes. Results As compared to healthy controls, SCI patients reported higher scores on the Perspective-Taking subscale of the IRI, while, on the modified MET, they were less accurate in identifying the valence of neutral scenes, notwithstanding their spared direct and indirect emotional empathy ability. Furthermore, we found a significant negative correlation between the time interval since injury and the direct emotional empathy scores on the positive images, as well as a negative correlation with the indirect emotional empathy scores on both positive and neutral images, indicating a blunting of the empathic responses as time elapses. Conclusion Results suggest that SCI patients, when analyzing the meaning of emotional stimuli, tend to rely on a cognitive empathy strategy rather than on emotion simulation.
Collapse
|
26
|
Karunakaran KD, He J, Zhao J, Cui JL, Zang YF, Zhang Z, Biswal BB. Differences in Cortical Gray Matter Atrophy of Paraplegia and Tetraplegia after Complete Spinal Cord Injury. J Neurotrauma 2019; 36:2045-2051. [PMID: 30430910 DOI: 10.1089/neu.2018.6040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Anatomical studies of spinal cord injury (SCI) using magnetic resonance imaging (MRI) report diverging observations, from "no changes" to "tissue atrophy in motor and non-motor regions." These discrepancies among studies can be attributed to heterogeneity in extent, level, and post-injury duration observed within the SCI population. But, no studies have investigated structural changes associated with different levels of injury (paraplegia vs. tetraplegia). High-resolution MRI images were processed using a voxel-based morphometry technique to compare regional gray matter volume (GMV) between 16 complete paraplegia and 7 complete tetraplegia SCI subjects scanned within 2 years of injury when compared to 22 age-matched healthy controls using one-way analysis of covariance (ANCOVA). A post-hoc analysis using a region of interest-based approach was utilized to quantify GMV differences between healthy controls and subgroups of SCI. A voxel-wise one-sample t-test was also performed to evaluate the mean effect of post-injury duration on GMV of the SCI group. ANCOVA resulted in altered GMV in inferior frontal gyrus, bilateral mid orbital gyrus extending to rectal gyrus, and anterior cingulate cortex. Post-hoc analysis, in general, indicated GM atrophy after SCI, but tetraplegia showed a greater decrease in GMV when compared to paraplegia and healthy controls. Further, the GMV of the middle frontal gyrus, superior frontal gyrus, inferior frontal gyrus, insula, mid-orbital gyrus, and middle temporal gyrus was positively correlated with post-injury duration in both paraplegia and tetraplegia groups. GM atrophy after SCI is affected by level of cord injury, with higher levels of injury resulting in greater loss of GMV. Magnitude of GMV loss in the frontal cortex after SCI also appears to be dynamic within the first 2 years of injury. Understanding the effect of injury level and injury duration on structural changes after SCI can help to better understand the mechanisms leading to positive and negative clinical outcome in SCI patients.
Collapse
Affiliation(s)
| | - Jie He
- 2 Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, China
| | - Jian Zhao
- 3 Department of Radiology, Armed Police Force Hospital of Sichuan, Leshan, China
| | - Jian-Ling Cui
- 2 Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, China
| | - Yu-Feng Zang
- 4 Hangzhou Normal University Affiliated Hospital, Center for Cognition and Brain Disorders, Hangzhou, China
| | - Zhong Zhang
- 2 Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, China
| | - Bharat B Biswal
- 1 Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey
| |
Collapse
|
27
|
Abstract
Only a few studies have considered changes in brain structures other than sensory and motor cortex after spinal cord injury, although cognitive impairments have been reported in these patients. Spinal cord injury results in chronic brain neuroinflammation with consequent neurodegeneration and cognitive decline in rodents. Regarding the hippocampus, neurogenesis is reduced and reactive gliosis increased. These long-term abnormalities could explain behavioral impairments exhibited in humans patients suffering from spinal cord trauma.
Collapse
Affiliation(s)
- Ignacio Jure
- Laboratorio de Bioquímica Neuroendocrina, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratorio de Bioquímica Neuroendocrina, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina.,Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
28
|
Bodily Contributions to Emotion: Schachter’s Legacy for a Psychological Constructionist View on Emotion. EMOTION REVIEW 2016. [DOI: 10.1177/1754073916639664] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Although early emotion theorists posited that bodily changes contribute to emotion, the primary view in affective science over the last century has been that emotions produce bodily changes. Recent findings from physiology, neuroscience, and neuropsychology support the early intuition that body representations can help constitute emotion. These findings are consistent with the modern psychological constructionist hypothesis that emotions emerge when representations of bodily changes are conceptualized as an instance of emotion. We begin by introducing the psychological constructionist approach to emotion. With Schachter as inspiration, we next examine how embodied representations contribute to affective states, and ultimately emotion, with inflammation as a key example. We close by looking forward to future research on how body representations contribute to human experience.
Collapse
|
29
|
Hou J, Xiang Z, Yan R, Zhao M, Wu Y, Zhong J, Guo L, Li H, Wang J, Wu J, Sun T, Liu H. Motor recovery at 6 months after admission is related to structural and functional reorganization of the spine and brain in patients with spinal cord injury. Hum Brain Mapp 2016; 37:2195-209. [PMID: 26936834 DOI: 10.1002/hbm.23163] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 01/25/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022] Open
Abstract
This study aimed to explore structural and functional reorganization of the brain in the early stages of spinal cord injury (SCI) and identify brain areas that contribute to motor recovery. We studied 25 patients with SCI, including 10 with good motor recovery and 15 with poor motor recovery, along with 25 matched healthy controls. The mean period post-SCI was 9.2 ± 3.5 weeks in good recoverers and 8.8 ± 2.6 weeks in poor recoverers. All participants underwent structural and functional MRI on a 3-T magnetic resonance system. We evaluated differences in cross-sectional spinal cord area at the C2/C3 level, brain cortical thickness, white matter microstructure, and functional connectivity during the resting state among the three groups. We also evaluated associations between structural and functional reorganization and the rate of motor recovery. After SCI, compared with good recoverers, poor recoverers had a significantly decreased cross-sectional spinal cord area, cortical thickness in the right supplementary motor area and premotor cortex, and fractional anisotropy (FA) in the right primary motor cortex and posterior limb of the internal capsule. Meanwhile, poor recoverers showed decreased functional connectivity between the primary motor cortex and higher order motor areas (supplementary motor area and premotor cortex), while good recoverers showed increased functional connectivity among these regions. The structural and functional reorganization of the spine and brain was associated with motor recovery rate in all SCI patients. In conclusion, structural and functional reorganization of the spine and brain directly affected the motor recovery of SCI. Less structural atrophy and enhanced functional connectivity are associated with good motor recovery in patients with SCI. Multimodal imaging has the potential to predict motor recovery in the early stage of SCI. Hum Brain Mapp 37:2195-2209, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jingming Hou
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zimin Xiang
- Department of Orthopedics, Chinese PLA Beijing Army General Hospital, Beijing, China.,Department of Orthopedics, Fuzhou General Hospital, Nanjing Military Command, Fuzhou, China
| | - Rubing Yan
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ming Zhao
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yongtao Wu
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianfeng Zhong
- Department of Orthopedics, Chinese PLA Beijing Army General Hospital, Beijing, China
| | - Lei Guo
- Department of Orthopedics, Chinese PLA Beijing Army General Hospital, Beijing, China
| | - Haitao Li
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jixiang Wu
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Tiansheng Sun
- Department of Orthopedics, Chinese PLA Beijing Army General Hospital, Beijing, China
| | - Hongliang Liu
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
30
|
Discrepancies between dimensions of interoception in autism: Implications for emotion and anxiety. Biol Psychol 2016; 114:117-26. [DOI: 10.1016/j.biopsycho.2015.12.003] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 11/21/2022]
|
31
|
Faden AI, Wu J, Stoica BA, Loane DJ. Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury. Br J Pharmacol 2016; 173:681-91. [PMID: 25939377 PMCID: PMC4742301 DOI: 10.1111/bph.13179] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/31/2015] [Accepted: 04/14/2015] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) has been linked to dementia and chronic neurodegeneration. Described initially in boxers and currently recognized across high contact sports, the association between repeated concussion (mild TBI) and progressive neuropsychiatric abnormalities has recently received widespread attention, and has been termed chronic traumatic encephalopathy. Less well appreciated are cognitive changes associated with neurodegeneration in the brain after isolated spinal cord injury. Also under-recognized is the role of sustained neuroinflammation after brain or spinal cord trauma, even though this relationship has been known since the 1950s and is supported by more recent preclinical and clinical studies. These pathological mechanisms, manifested by extensive microglial and astroglial activation and appropriately termed chronic traumatic brain inflammation or chronic traumatic inflammatory encephalopathy, may be among the most important causes of post-traumatic neurodegeneration in terms of prevalence. Importantly, emerging experimental work demonstrates that persistent neuroinflammation can cause progressive neurodegeneration that may be treatable even weeks after traumatic injury.
Collapse
Affiliation(s)
- Alan I Faden
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Junfang Wu
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - David J Loane
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
32
|
Contribution of Interoceptive Information to Emotional Processing: Evidence from Individuals with Spinal Cord Injury. J Neurotrauma 2015; 32:1981-6. [DOI: 10.1089/neu.2015.3897] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
33
|
Owens AP, David AS, Low DA, Mathias CJ, Sierra-Siegert M. Abnormal cardiovascular sympathetic and parasympathetic responses to physical and emotional stimuli in depersonalization disorder. Front Neurosci 2015; 9:89. [PMID: 25859177 PMCID: PMC4374468 DOI: 10.3389/fnins.2015.00089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 03/03/2015] [Indexed: 12/30/2022] Open
Abstract
Background Depersonalization disorder (DPD) is characterized by a subjective sense of unreality, disembodiment, emotional numbing and reduced psychogenic (sudomotor) sympathoexcitation. Aims Three related experiments utilized escalating physical and emotional challenges in 14 DPD participants and 16 controls aimed to elucidate (i) whether the cardiovascular sympathetic (SNS) and parasympathetic (PNS) nervous systems are implicated in DPD pathophysiology and (ii) if possible, to determine whether the blunted sympathoexcitation in DPD is peripherally or centrally mediated. Method Participants completed the Beck Anxiety Inventory (BAI), Dissociative Experience Scale (DES), and Cambridge Depersonalization Scale (CDS). Study I recorded heart rate (HR) and blood pressure (BP) during 5 min supine baseline, 3 min sustained handgrip (HG), 3 min cold pressor (CP) and 5 min 60° head-up tilt (HUT). In study II, HR, BP, and heart rate variability (HRV) were recorded during 5 min simultaneous 60° HUT and continuous presentation of unpleasant images (5 s per image). Study III examined HR and BP orienting responses (ORs) to simultaneous 60° HUT and pseudorandom presentation of unpleasant, neutral and pleasant images (5 s per image 3 min 25 s). OR data was grouped by image valence post hoc. Results DPD BAI (p = 0.0004), DES (p = 0.0002), and CDS (p ≤ 0.0001) scores were higher than controls. The DPD group produced diminished diastolic BP (DBP) (p = 0.045) increases to HG. Other indices were comparable between groups. DPD participants produced diminished systolic BP (SBP) (p = 0.003) and DBP (p = 0.002) increases, but greater (p = 0.004) HR increases to CP. In study II, DPD high frequency HRV (HF-HRV)—indicating parasympathetic vagal activity–was reduced (p = 0.029). In study III, DPD DBP was higher throughout the 5 s duration of HUT/pseudorandom unpleasant image presentation (1 s, p = 0.002, 2 s p = 0.033, 3 s p = 0.001, 4 s p = 0.009, 5 s p = 0.029). Conclusions Study I's BP pressor data supports previous findings of suppressed sympathoexcitation in DPD. The greater HR increases to CP, decreased HF-HRV in study II, and increased DBP during unpleasant ORs in study III implicates the SNS and PNS in DPD pathophysiology. These studies suggest the cardiovascular autonomic dysregulation in DPD is likely to be centrally-mediated.
Collapse
Affiliation(s)
- Andrew P Owens
- Autonomic and Neurovascular Medicine Unit, Institute of Neurology, Imperial College London London, UK ; Autonomic Unit, Institute of Neurology, University College London London, UK
| | - Anthony S David
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, King's College London London, UK
| | - David A Low
- Autonomic and Neurovascular Medicine Unit, Institute of Neurology, Imperial College London London, UK ; School of Sport and Exercise Sciences, Liverpool John Moores University Liverpool, UK
| | - Christopher J Mathias
- Autonomic and Neurovascular Medicine Unit, Institute of Neurology, Imperial College London London, UK ; Autonomic Unit, Institute of Neurology, University College London London, UK
| | | |
Collapse
|
34
|
Eccles JA, Owens AP, Mathias CJ, Umeda S, Critchley HD. Neurovisceral phenotypes in the expression of psychiatric symptoms. Front Neurosci 2015; 9:4. [PMID: 25713509 PMCID: PMC4322642 DOI: 10.3389/fnins.2015.00004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/05/2015] [Indexed: 12/01/2022] Open
Abstract
This review explores the proposal that vulnerability to psychological symptoms, particularly anxiety, originates in constitutional differences in the control of bodily state, exemplified by a set of conditions that include Joint Hypermobility, Postural Tachycardia Syndrome and Vasovagal Syncope. Research is revealing how brain-body mechanisms underlie individual differences in psychophysiological reactivity that can be important for predicting, stratifying and treating individuals with anxiety disorders and related conditions. One common constitutional difference is Joint Hypermobility, in which there is an increased range of joint movement as a result of a variant of collagen. Joint hypermobility is over-represented in people with anxiety, mood and neurodevelopmental disorders. It is also linked to stress-sensitive medical conditions such as irritable bowel syndrome, chronic fatigue syndrome and fibromyalgia. Structural differences in “emotional” brain regions are reported in hypermobile individuals, and many people with joint hypermobility manifest autonomic abnormalities, typically Postural Tachycardia Syndrome. Enhanced heart rate reactivity during postural change and as recently recognized factors causing vasodilatation (as noted post-prandially, post-exertion and with heat) is characteristic of Postural Tachycardia Syndrome, and there is a phenomenological overlap with anxiety disorders, which may be partially accounted for by exaggerated neural reactivity within ventromedial prefrontal cortex. People who experience Vasovagal Syncope, a heritable tendency to fainting induced by emotional challenges (and needle/blood phobia), are also more vulnerable to anxiety disorders. Neuroimaging implicates brainstem differences in vulnerability to faints, yet the structural integrity of the caudate nucleus appears important for the control of fainting frequency in relation to parasympathetic tone and anxiety. Together there is clinical and neuroanatomical evidence to show that common constitutional differences affecting autonomic responsivity are linked to psychiatric symptoms, notably anxiety.
Collapse
Affiliation(s)
- Jessica A Eccles
- Psychiatry, Brighton and Sussex Medical School Brighton, UK ; Sussex Partnership National Health Service Foundation Trust Brighton, UK
| | - Andrew P Owens
- National Hospital Neurology and Neurosurgery, UCL National Health Service Trust London, UK ; Institute of Neurology, University College London London, UK
| | - Christopher J Mathias
- National Hospital Neurology and Neurosurgery, UCL National Health Service Trust London, UK ; Institute of Neurology, University College London London, UK
| | - Satoshi Umeda
- National Hospital Neurology and Neurosurgery, UCL National Health Service Trust London, UK ; Department of Psychology, Keio University Tokyo, Japan
| | - Hugo D Critchley
- Psychiatry, Brighton and Sussex Medical School Brighton, UK ; Sussex Partnership National Health Service Foundation Trust Brighton, UK ; Sackler Centre for Consciousness Science, University of Sussex Falmer, UK
| |
Collapse
|
35
|
Kavussanu M, Ring C, Kavanagh J. Antisocial Behavior, Moral Disengagement, Empathy and Negative Emotion: A Comparison Between Disabled and Able-Bodied Athletes. ETHICS & BEHAVIOR 2014. [DOI: 10.1080/10508422.2014.930350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Hou JM, Sun TS, Xiang ZM, Zhang JZ, Zhang ZC, Zhao M, Zhong JF, Liu J, Zhang H, Liu HL, Yan RB, Li HT. Alterations of resting-state regional and network-level neural function after acute spinal cord injury. Neuroscience 2014; 277:446-54. [DOI: 10.1016/j.neuroscience.2014.07.045] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/20/2014] [Accepted: 07/21/2014] [Indexed: 01/12/2023]
|
37
|
De Ridder D, Vanneste S, Weisz N, Londero A, Schlee W, Elgoyhen AB, Langguth B. An integrative model of auditory phantom perception: Tinnitus as a unified percept of interacting separable subnetworks. Neurosci Biobehav Rev 2014; 44:16-32. [PMID: 23597755 DOI: 10.1016/j.neubiorev.2013.03.021] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/19/2013] [Accepted: 03/27/2013] [Indexed: 01/30/2023]
|
38
|
Hou JM, Yan RB, Xiang ZM, Zhang H, Liu J, Wu YT, Zhao M, Pan QY, Song LH, Zhang W, Li HT, Liu HL, Sun TS. Brain sensorimotor system atrophy during the early stage of spinal cord injury in humans. Neuroscience 2014; 266:208-15. [DOI: 10.1016/j.neuroscience.2014.02.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 01/01/2023]
|
39
|
The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neurosci 2013; 33:10503-11. [PMID: 23785162 DOI: 10.1523/jneurosci.1103-13.2013] [Citation(s) in RCA: 605] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The autonomic nervous system (ANS) is of paramount importance for daily life. Its regulatory action on respiratory, cardiovascular, digestive, endocrine, and many other systems is controlled by a number of structures in the CNS. While the majority of these nuclei and cortices have been identified in animal models, neuroimaging studies have recently begun to shed light on central autonomic processing in humans. In this study, we used activation likelihood estimation to conduct a meta-analysis of human neuroimaging experiments evaluating central autonomic processing to localize (1) cortical and subcortical areas involved in autonomic processing, (2) potential subsystems for the sympathetic and parasympathetic divisions of the ANS, and (3) potential subsystems for specific ANS responses to different stimuli/tasks. Across all tasks, we identified a set of consistently activated brain regions, comprising left amygdala, right anterior and left posterior insula and midcingulate cortices that form the core of the central autonomic network. While sympathetic-associated regions predominate in executive- and salience-processing networks, parasympathetic regions predominate in the default mode network. Hence, central processing of autonomic function does not simply involve a monolithic network of brain regions, instead showing elements of task and division specificity.
Collapse
|
40
|
Abstract
Mental processes and their neural substrates are intimately linked to the homeostatic control of internal bodily state. There are a set of distinct interoceptive pathways that directly and indirectly influence brain functions. The anatomical organization of these pathways and the psychological/behavioral expressions of their influence appear along discrete, evolutionarily conserved dimensions that are tractable to a mechanistic understanding. Here, we review the role of these pathways as sources of biases to perception, cognition, emotion, and behavior and arguably the dynamic basis to the concept of self.
Collapse
Affiliation(s)
- Hugo D Critchley
- Psychiatry, Brighton and Sussex Medical School, Brighton BN1 9RR, UK.
| | | |
Collapse
|
41
|
Brain areas controlling heart rate variability in tinnitus and tinnitus-related distress. PLoS One 2013; 8:e59728. [PMID: 23533644 PMCID: PMC3606109 DOI: 10.1371/journal.pone.0059728] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 02/21/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tinnitus is defined as an intrinsic sound perception that cannot be attributed to an external sound source. Distress in tinnitus patients is related to increased beta activity in the dorsal part of the anterior cingulate and the amount of distress correlates with network activity consisting of the amygdala-anterior cingulate cortex-insula-parahippocampus. Previous research also revealed that distress is associated to a higher sympathetic (OS) tone in tinnitus patients and tinnitus suppression to increased parasympathetic (PS) tone. METHODOLOGY The aim of the present study is to investigate the relationship between tinnitus distress and the autonomic nervous system and find out which cortical areas are involved in the autonomic nervous system influences in tinnitus distress by the use of source localized resting state electroencephalogram (EEG) recordings and electrocardiogram (ECG). Twenty-one tinnitus patients were included in this study. CONCLUSIONS The results indicate that the dorsal and subgenual anterior cingulate, as well as the left and right insula are important in the central control of heart rate variability in tinnitus patients. Whereas the sympathovagal balance is controlled by the subgenual and pregenual anterior cingulate cortex, the right insula controls sympathetic activity and the left insula the parasympathetic activity. The perceived distress in tinnitus patients seems to be sympathetically mediated.
Collapse
|
42
|
Prévost C, McNamee D, Jessup RK, Bossaerts P, O'Doherty JP. Evidence for model-based computations in the human amygdala during Pavlovian conditioning. PLoS Comput Biol 2013; 9:e1002918. [PMID: 23436990 PMCID: PMC3578744 DOI: 10.1371/journal.pcbi.1002918] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 12/27/2012] [Indexed: 01/08/2023] Open
Abstract
Contemporary computational accounts of instrumental conditioning have emphasized a role for a model-based system in which values are computed with reference to a rich model of the structure of the world, and a model-free system in which values are updated without encoding such structure. Much less studied is the possibility of a similar distinction operating at the level of Pavlovian conditioning. In the present study, we scanned human participants while they participated in a Pavlovian conditioning task with a simple structure while measuring activity in the human amygdala using a high-resolution fMRI protocol. After fitting a model-based algorithm and a variety of model-free algorithms to the fMRI data, we found evidence for the superiority of a model-based algorithm in accounting for activity in the amygdala compared to the model-free counterparts. These findings support an important role for model-based algorithms in describing the processes underpinning Pavlovian conditioning, as well as providing evidence of a role for the human amygdala in model-based inference. A hot topic in the neurobiology of learning is the idea that there may be two distinct mechanisms for learning in the brain: a model-based learning system in which predictions are made with respect to a rich internal model of the learning environment, versus a “model-free” mechanism in which trial-and-error learning occurs without any rich internal representation of the world. While the focus in the literature to date has been on the role of these mechanisms in instrumental conditioning, almost nothing is known about whether more fundamental kinds of learning such as Pavlovian conditioning also involve model-based processes. Furthermore, nothing is known about the extent to which the amygdala, which is known to be a core structure for Pavlovian learning, contains neural signals consistent with a model-based mechanism. To address this question, we used a novel Pavlovian conditioning task and scanned human volunteers with a special high-resolution fMRI sequence that enabled us to obtain signals within the amygdala with over four times the resolution of conventional imaging protocols. Using this approach in combination with sophisticated computational analyses, we find evidence to suggest that the human amygdala is involved in model-based computations during Pavlovian conditioning.
Collapse
Affiliation(s)
- Charlotte Prévost
- Trinity College Institute of Neuroscience and School of Psychology, Dublin, Ireland
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Daniel McNamee
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, California, United States of America
| | - Ryan K. Jessup
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California, United States of America
- Department of Management Sciences, Abilene Christian University, Abilene, Texas, United States of America
| | - Peter Bossaerts
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California, United States of America
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, California, United States of America
| | - John P. O'Doherty
- Trinity College Institute of Neuroscience and School of Psychology, Dublin, Ireland
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California, United States of America
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Interaction between cognition, emotion, and the autonomic nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2013; 117:59-77. [PMID: 24095116 DOI: 10.1016/b978-0-444-53491-0.00006-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mind and body are intrinsically and dynamically coupled. Perceptions, thoughts and feelings change, and respond to, the state of the body. This chapter describes the integration of cognitive and affective processes with the autonomic control of bodily arousal, focusing on reciprocal effects of autonomic responses on decision making, error detection, memory and emotions. Neuroimaging techniques are beginning to detail the neuronal substrates mediating these interactions between mental and physiological states, implicating cortical regions (specifically insular and cingulate cortices) alongside subcortical (amygdala) and brainstem (notably dorsal pons) in these mechanisms. The extent to which bodily states influence mental processes is determined in part by "interoceptive sensitivity," an index of individual differences in the ability to detect one's own bodily sensations. Moreover, the misidentification or misattribution of interoceptive responses is implicated in a number of pathologies such as depersonalization, schizophrenia, and anxiety. Increasing knowledge of the mechanisms of body-mind interactions has wide ranging implications, from decision making to empathy, and may serve elucidate potential avenues of intervention for stress-sensitive conditions in which psychological, cognitive, and emotional factors impact on the expression of physical symptoms.
Collapse
|
44
|
Freund P, Curt A, Friston K, Thompson A. Tracking changes following spinal cord injury: insights from neuroimaging. Neuroscientist 2012; 19:116-28. [PMID: 22730072 PMCID: PMC4107798 DOI: 10.1177/1073858412449192] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Traumatic spinal cord injury is often disabling and recovery of function is limited. As a
consequence of damage, both spinal cord and brain undergo anatomical and functional
changes. Besides clinical measures of recovery, biomarkers that can detect early
anatomical and functional changes might be useful in determining clinical outcome—during
the course of rehabilitation and recovery—as well as furnishing a tool to evaluate novel
treatment interventions and their mechanisms of action. Recent evidence suggests an
interesting three-way relationship between neurological deficit and changes in the spinal
cord and of the brain and that, importantly, noninvasive magnetic resonance imaging
techniques, both structural and functional, provide a sensitive tool to lay out these
interactions. This review describes recent findings from multimodal imaging studies of
remote anatomical changes (i.e., beyond the lesion site), cortical reorganization, and
their relationship to clinical disability. These developments in this field may improve
our understanding of effects on the nervous system that are attributable to the injury
itself and will allow their distinction from changes that result from rehabilitation
(i.e., functional retraining) and from interventions affecting the nervous system directly
(i.e., neuroprotection or regeneration).
Collapse
Affiliation(s)
- Patrick Freund
- Department of Brain Repair & Rehabilitation, UCL Institute of Neurology, UCL, London, UK.
| | | | | | | |
Collapse
|
45
|
Felix MS, Popa N, Djelloul M, Boucraut J, Gauthier P, Bauer S, Matarazzo VA. Alteration of forebrain neurogenesis after cervical spinal cord injury in the adult rat. Front Neurosci 2012; 6:45. [PMID: 22509147 PMCID: PMC3321502 DOI: 10.3389/fnins.2012.00045] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/19/2012] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) triggers a complex cellular response at the injury site, leading to the formation of a dense scar tissue. Despite this local tissue remodeling, the consequences of SCI at the cellular level in distant rostral sites (i.e., brain), remain unknown. In this study, we asked whether cervical SCI could alter cell dynamics in neurogenic areas of the adult rat forebrain. To this aim, we quantified BrdU incorporation and determined the phenotypes of newly generated cells (neurons, astrocytes, or microglia) during the subchronic and chronic phases of injury. We find that subchronic SCI leads to a reduction of BrdU incorporation and neurogenesis in the olfactory bulb and in the hippocampal dentate gyrus. By contrast, subchronic SCI triggers an increased BrdU incorporation in the dorsal vagal complex of the hindbrain, where most of the newly generated cells are identified as microglia. In chronic condition 90 days after SCI, BrdU incorporation returns to control levels in all regions examined, except in the hippocampus, where SCI produces a long-term reduction of neurogenesis, indicating that this structure is particularly sensitive to SCI. Finally, we observe that SCI triggers an acute inflammatory response in all brain regions examined, as well as a hippocampal-specific decline in BDNF levels. This study provides the first demonstration that forebrain neurogenesis is vulnerable to a distal SCI.
Collapse
Affiliation(s)
- Marie-Solenne Felix
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Aix-Marseille Université, CNRS-UMR 6231 Marseille, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Man MS, Mikheenko Y, Braesicke K, Cockcroft G, Roberts AC. Serotonin at the level of the amygdala and orbitofrontal cortex modulates distinct aspects of positive emotion in primates. Int J Neuropsychopharmacol 2012; 15:91-105. [PMID: 21726490 PMCID: PMC3243904 DOI: 10.1017/s1461145711000587] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 02/18/2011] [Accepted: 03/22/2011] [Indexed: 02/02/2023] Open
Abstract
Impaired top-down regulation of the amygdala, and its modulation by serotonin (5-HT), is strongly implicated in the dysregulation of negative emotion that characterizes a number of affective disorders. However, the contribution of these mechanisms to the regulation of positive emotion is not well understood. This study investigated the role of 5-HT within the amygdala and the orbitofrontal cortex (OFC), on the expression of appetitive Pavlovian conditioned emotional responses and their reversal in a primate, the common marmoset. Its effects were compared to those of the amygdala itself. Having developed conditioned autonomic and behavioural responses to an appetitive cue prior to surgery, marmosets with excitotoxic amygdala lesions failed to display such conditioned autonomic arousal at retention, but still displayed intact cue-directed conditioned behaviours. In contrast, 5,7-DHT infusions into the amygdala, reducing extracellular 5-HT levels, selectively enhanced the expression of appetitive conditioned behaviour at retention. Similar infusions into the OFC, producing marked reductions in post-mortem 5-HT tissue levels, had no overall effect on autonomic or behavioural responses, either at retention or during reversal learning, but caused an uncoupling of these responses, thereby fractionating emotional output. These data demonstrate the critical role of the amygdala in the expression of appetitive autonomic conditioning, and the region-selective contribution of 5-HT in the amygdala and OFC, respectively, to the expression of conditioned behaviour and the overall coordination of the emotional response. They provide insight into the neurochemical mechanisms underlying the regulation of positive emotional responses, advancing our understanding of the neural basis of pathologically dysregulated emotion.
Collapse
Affiliation(s)
- Mei-See Man
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Downing Street, UK
| | - Yevheniia Mikheenko
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Downing Street, UK
| | - Katrin Braesicke
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Downing Street, UK
| | - Gemma Cockcroft
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Downing Street, UK
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge, UK
| | - Angela C. Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Downing Street, UK
| |
Collapse
|
47
|
Linnman C, Moulton EA, Barmettler G, Becerra L, Borsook D. Neuroimaging of the periaqueductal gray: state of the field. Neuroimage 2011; 60:505-22. [PMID: 22197740 DOI: 10.1016/j.neuroimage.2011.11.095] [Citation(s) in RCA: 290] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 01/18/2023] Open
Abstract
This review and meta-analysis aims at summarizing and integrating the human neuroimaging studies that report periaqueductal gray (PAG) involvement; 250 original manuscripts on human neuroimaging of the PAG were identified. A narrative review and meta-analysis using activation likelihood estimates is included. Behaviors covered include pain and pain modulation, anxiety, bladder and bowel function and autonomic regulation. Methods include structural and functional magnetic resonance imaging, functional connectivity measures, diffusion weighted imaging and positron emission tomography. Human neuroimaging studies in healthy and clinical populations largely confirm the animal literature indicating that the PAG is involved in homeostatic regulation of salient functions such as pain, anxiety and autonomic function. Methodological concerns in the current literature, including resolution constraints, imaging artifacts and imprecise neuroanatomical labeling are discussed, and future directions are proposed. A general conclusion is that PAG neuroimaging is a field with enormous potential to translate animal data onto human behaviors, but with some growing pains that can and need to be addressed in order to add to our understanding of the neurobiology of this key region.
Collapse
Affiliation(s)
- Clas Linnman
- Pain and Analgesia Imaging Neuroscience group, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | | | |
Collapse
|
48
|
Smith SD, Kornelsen J. Emotion-dependent responses in spinal cord neurons: A spinal fMRI study. Neuroimage 2011; 58:269-74. [DOI: 10.1016/j.neuroimage.2011.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 05/30/2011] [Accepted: 06/03/2011] [Indexed: 11/27/2022] Open
|
49
|
Critchley HD, Nagai Y, Gray MA, Mathias CJ. Dissecting axes of autonomic control in humans: Insights from neuroimaging. Auton Neurosci 2011; 161:34-42. [DOI: 10.1016/j.autneu.2010.09.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 12/30/2022]
|
50
|
Deady DK, North NT, Allan D, Smith MJL, O'Carroll RE. Examining the effect of spinal cord injury on emotional awareness, expressivity and memory for emotional material. PSYCHOL HEALTH MED 2010; 15:406-19. [PMID: 20677079 DOI: 10.1080/13548506.2010.482138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The prevailing view on the effects of spinal cord injury (SCI) on emotion is that it dampens emotional experience due to a loss of peripheral bodily feedback, with the higher the lesion on the spinal cord the greater the reduction in the intensity of emotional experience. This view persists despite many studies showing an absence of such an emotional impairment in people with SCI. This study specifically aimed to investigate whether total cervical-6 spinal cord transection (i) reduces emotional expressivity and emotional awareness (ii) impairs memory for emotional material. The study contained three groups: 24 patients with SCI, 20 orthopaedic injury control (OIC) patients and 20 young adult controls. A mixed factor design was employed to examine between group and within subject differences. Participants completed the Levels of Emotional Awareness Scale (LEAS), the Berkeley Expressivity Questionnaire (BEQ), and viewed an emotionally arousing slide presentation. Thirty minutes post viewing, participants completed memory tests for the presentation. SCI patients reported greater present levels of emotional expressivity compared with perceived levels prior to their injuries. SCI and OIC groups did not differ on any of the emotional awareness variables. There was also no evidence that SCI leads to impairment in memory for emotional events. This study's findings contradict the mainstream view in the cognitive neuroscience of emotion that SCI dampens emotional experience.
Collapse
Affiliation(s)
- D K Deady
- Department of Psychology, University of Stirling, Stirling, UK.
| | | | | | | | | |
Collapse
|