1
|
Zecca C, Tortelli R, Carrera P, Dell'Abate MT, Logroscino G, Ferrari M. Genotype-phenotype correlation in the spectrum of frontotemporal dementia-parkinsonian syndromes and advanced diagnostic approaches. Crit Rev Clin Lab Sci 2022; 60:171-188. [PMID: 36510705 DOI: 10.1080/10408363.2022.2150833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The term frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders characterized mainly by atrophy of the frontal and anterior temporal lobes. Based on clinical presentation, three main clinical syndromes have traditionally been described: behavioral variant frontotemporal dementia (bvFTD), non-fluent/agrammatic primary progressive aphasia (nfPPA), and semantic variant PPA (svPPA). However, over the last 20 years, it has been recognized that cognitive phenotypes often overlap with motor phenotypes, either motor neuron diseases or parkinsonian signs and/or syndromes like progressive supranuclear palsy (PSP) and cortico-basal syndrome (CBS). Furthermore, FTD-related genes are characterized by genetic pleiotropy and can cause, even in the same family, pure motor phenotypes, findings that underlie the clinical continuum of the spectrum, which has pure cognitive and pure motor phenotypes as the extremes. The genotype-phenotype correlation of the spectrum, FTD-motor neuron disease, has been well defined and extensively investigated, while the continuum, FTD-parkinsonism, lacks a comprehensive review. In this narrative review, we describe the current knowledge about the genotype-phenotype correlation of the spectrum, FTD-parkinsonism, focusing on the phenotypes that are less frequent than bvFTD, namely nfPPA, svPPA, PSP, CBS, and cognitive-motor overlapping phenotypes (i.e. PPA + PSP). From a pathological point of view, they are characterized mainly by the presence of phosphorylated-tau inclusions, either 4 R or 3 R. The genetic correlate of the spectrum can be heterogeneous, although some variants seem to lead preferentially to specific clinical syndromes. Furthermore, we critically review the contribution of genome-wide association studies (GWAS) and next-generation sequencing (NGS) in disentangling the complex heritability of the FTD-parkinsonism spectrum and in defining the genotype-phenotype correlation of the entire clinical scenario, owing to the ability of these techniques to test multiple genes, and so to allow detailed investigations of the overlapping phenotypes. Finally, we conclude with the importance of a detailed genetic characterization and we offer to patients and families the chance to be included in future randomized clinical trials focused on autosomal dominant forms of FTLD.
Collapse
Affiliation(s)
- Chiara Zecca
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Rosanna Tortelli
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Paola Carrera
- Unit of Genomics for Human Disease Diagnosis and Clinical Molecular Biology Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Teresa Dell'Abate
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy.,Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | | |
Collapse
|
2
|
Staffaroni AM, Quintana M, Wendelberger B, Heuer HW, Russell LL, Cobigo Y, Wolf A, Goh SYM, Petrucelli L, Gendron TF, Heller C, Clark AL, Taylor JC, Wise A, Ong E, Forsberg L, Brushaber D, Rojas JC, VandeVrede L, Ljubenkov P, Kramer J, Casaletto KB, Appleby B, Bordelon Y, Botha H, Dickerson BC, Domoto-Reilly K, Fields JA, Foroud T, Gavrilova R, Geschwind D, Ghoshal N, Goldman J, Graff-Radford J, Graff-Radford N, Grossman M, Hall MGH, Hsiung GY, Huey ED, Irwin D, Jones DT, Kantarci K, Kaufer D, Knopman D, Kremers W, Lago AL, Lapid MI, Litvan I, Lucente D, Mackenzie IR, Mendez MF, Mester C, Miller BL, Onyike CU, Rademakers R, Ramanan VK, Ramos EM, Rao M, Rascovsky K, Rankin KP, Roberson ED, Savica R, Tartaglia MC, Weintraub S, Wong B, Cash DM, Bouzigues A, Swift IJ, Peakman G, Bocchetta M, Todd EG, Convery RS, Rowe JB, Borroni B, Galimberti D, Tiraboschi P, Masellis M, Finger E, van Swieten JC, Seelaar H, Jiskoot LC, Sorbi S, Butler CR, Graff C, Gerhard A, Langheinrich T, Laforce R, Sanchez-Valle R, de Mendonça A, Moreno F, Synofzik M, Vandenberghe R, Ducharme S, Le Ber I, Levin J, Danek A, Otto M, Pasquier F, Santana I, Kornak J, Boeve BF, Rosen HJ, Rohrer JD, Boxer AL. Temporal order of clinical and biomarker changes in familial frontotemporal dementia. Nat Med 2022; 28:2194-2206. [PMID: 36138153 PMCID: PMC9951811 DOI: 10.1038/s41591-022-01942-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 07/08/2022] [Indexed: 01/17/2023]
Abstract
Unlike familial Alzheimer's disease, we have been unable to accurately predict symptom onset in presymptomatic familial frontotemporal dementia (f-FTD) mutation carriers, which is a major hurdle to designing disease prevention trials. We developed multimodal models for f-FTD disease progression and estimated clinical trial sample sizes in C9orf72, GRN and MAPT mutation carriers. Models included longitudinal clinical and neuropsychological scores, regional brain volumes and plasma neurofilament light chain (NfL) in 796 carriers and 412 noncarrier controls. We found that the temporal ordering of clinical and biomarker progression differed by genotype. In prevention-trial simulations using model-based patient selection, atrophy and NfL were the best endpoints, whereas clinical measures were potential endpoints in early symptomatic trials. f-FTD prevention trials are feasible but will likely require global recruitment efforts. These disease progression models will facilitate the planning of f-FTD clinical trials, including the selection of optimal endpoints and enrollment criteria to maximize power to detect treatment effects.
Collapse
Affiliation(s)
- Adam M Staffaroni
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | | | | | - Hilary W Heuer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Yann Cobigo
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Amy Wolf
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sheng-Yang Matt Goh
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Carolin Heller
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Annie L Clark
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jack Carson Taylor
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Amy Wise
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Elise Ong
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Leah Forsberg
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Danielle Brushaber
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Julio C Rojas
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lawren VandeVrede
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Peter Ljubenkov
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Joel Kramer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kaitlin B Casaletto
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Appleby
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
| | - Yvette Bordelon
- Department of Neurology, University of California, Los Angeles, Los Angeles, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Tatiana Foroud
- Indiana University School of Medicine, National Centralized Repository for Alzheimer's, Indianapolis, IN, USA
| | | | - Daniel Geschwind
- Department of Neurology, University of California, Los Angeles, Los Angeles, USA
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nupur Ghoshal
- Departments of Neurology and Psychiatry, Washington University School of Medicine, Washington University, St. Louis, MO, USA
| | - Jill Goldman
- Department of Neurology, Columbia University, New York, NY, USA
| | | | | | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew G H Hall
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ging-Yuek Hsiung
- Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward D Huey
- Department of Neurology, Columbia University, New York, NY, USA
| | - David Irwin
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Kejal Kantarci
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Daniel Kaufer
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - David Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Walter Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Argentina Lario Lago
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Maria I Lapid
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Irene Litvan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Diane Lucente
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ian R Mackenzie
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mario F Mendez
- Department of Neurology, University of California, Los Angeles, Los Angeles, USA
| | - Carly Mester
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Eliana Marisa Ramos
- Department of Neurology, University of California, Los Angeles, Los Angeles, USA
| | - Meghana Rao
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Katya Rascovsky
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine P Rankin
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Erik D Roberson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - M Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Weintraub
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Bonnie Wong
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Imogen J Swift
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Georgia Peakman
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Emily G Todd
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Mario Masellis
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | | | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- Departments of Geriatric Medicine and Nuclear Medicine, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Tobias Langheinrich
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- Cerebral Function Unit, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Raquel Sanchez-Valle
- Alzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | | | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Simon Ducharme
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montreal, Québec, Canada
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology, Munich, Germany
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Florence Pasquier
- University of Lille, Lille, France
- Inserm, Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, Lille, France
| | - Isabel Santana
- Neurology Service, Faculty of Medicine, University Hospital of Coimbra (HUC), University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - John Kornak
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Plasma Small Extracellular Vesicles with Complement Alterations in GRN/ C9orf72 and Sporadic Frontotemporal Lobar Degeneration. Cells 2022; 11:cells11030488. [PMID: 35159297 PMCID: PMC8834212 DOI: 10.3390/cells11030488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Cutting-edge research suggests endosomal/immune dysregulation in GRN/C9orf72-associated frontotemporal lobar degeneration (FTLD). In this retrospective study, we investigated plasma small extracellular vesicles (sEVs) and complement proteins in 172 subjects (40 Sporadic FTLD, 40 Intermediate/Pathological C9orf72 expansion carriers, and 49 Heterozygous/Homozygous GRN mutation carriers, 43 controls). Plasma sEVs (concentration, size) were analyzed by nanoparticle tracking analysis; plasma and sEVs C1q, C4, C3 proteins were quantified by multiplex assay. We demonstrated that genetic/sporadic FTLD share lower sEV concentrations and higher sEV sizes. The diagnostic performance of the two most predictive variables (sEV concentration/size ratio) was high (AUC = 0.91, sensitivity 85.3%, specificity 81.4%). C1q, C4, and C3 cargo per sEV is increased in genetic and sporadic FTLD. C4 (cargo per sEV, total sEV concentration) is increased in Sporadic FTLD and reduced in GRN+ Homozygous, suggesting its specific unbalance compared with Heterozygous cases. C3 plasma level was increased in genetic vs. sporadic FTLD. Looking at complement protein compartmentalization, in control subjects, the C3 and C4 sEV concentrations were roughly half that in respect to those measured in plasma; interestingly, this compartmentalization was altered in different ways in patients. These results suggest sEVs and complement proteins as potential therapeutic targets to mitigate neurodegeneration in FTLD.
Collapse
|
4
|
Leveille E, Ross OA, Gan-Or Z. Tau and MAPT genetics in tauopathies and synucleinopathies. Parkinsonism Relat Disord 2021; 90:142-154. [PMID: 34593302 PMCID: PMC9310195 DOI: 10.1016/j.parkreldis.2021.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
MAPT encodes the microtubule-associated protein tau, which is the main component of neurofibrillary tangles (NFTs) and found in other protein aggregates. These aggregates are among the pathological hallmarks of primary tauopathies such as frontotemporal dementia (FTD). Abnormal tau can also be observed in secondary tauopathies such as Alzheimer's disease (AD) and synucleinopathies such as Parkinson's disease (PD). On top of pathological findings, genetic data also links MAPT to these disorders. MAPT variations are a cause or risk factors for many tauopathies and synucleinopathies and are associated with certain clinical and pathological features in affected individuals. In addition to clinical, pathological, and genetic overlap, evidence also suggests that tau and alpha-synuclein may interact on the molecular level, and thus might collaborate in the neurodegenerative process. Understanding the role of MAPT variations in tauopathies and synucleinopathies is therefore essential to elucidate the role of tau in the pathogenesis and phenotype of those disorders, and ultimately to develop targeted therapies. In this review, we describe the role of MAPT genetic variations in tauopathies and synucleinopathies, several genotype-phenotype and pathological features, and discuss their implications for the classification and treatment of those disorders.
Collapse
Affiliation(s)
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-hospital), McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
5
|
Coppola C, Saracino D, Oliva M, Puoti G, Lus G, Le Ber I, Pariente J, Tessitore A, Benussi L, Ghidoni R, Carrara M, Ricci M, Redaelli V, Tiraboschi P, Caroppo P, Giaccone G, Bonavita S, Rossi G. The Rise of the GRN C157KfsX97 Mutation in Southern Italy: Going Back to the Fall of the Western Roman Empire. J Alzheimers Dis 2020; 78:387-394. [PMID: 33016921 DOI: 10.3233/jad-200924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Frontotemporal lobar degeneration (FTLD) designates a group of neurodegenerative diseases with remarkable clinical, pathological, and genetic heterogeneity. Mutations in progranulin gene (GRN) are among the most common causes of familial FTLD. The GRN C157KfsX97 mutation is the most frequent mutation occurring in Southern Italy and has been already described in a previous work. OBJECTIVE In this study, we reported on additional cases carrying the same mutation and performed a genetic study on the whole cohort, aiming at demonstrating the existence of a founder effect and estimating the age of this mutation. METHODS/RESULTS Based on the haplotype sharing analysis, a founder effect was highly probable, while the age of the mutation, estimated by means of DMLE+ software, resulted in a range between 52 and 82 generations, with the highest frequency at about 62 generations, 1,550 years ago. CONCLUSION This is the first study that reports the age estimation of the most recent common ancestor for the GRN C157KfsX97 mutation recurring in Southern Italy. Mutation dating in a geographically restricted population may be useful in order to plan genetic counseling and screening programs in the field of public health.
Collapse
Affiliation(s)
- Cinzia Coppola
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Dario Saracino
- Sorbonne Université, Inserm U1127, CNRS UMR 7225, Institut du Cerveau (ICM), AP-HP - Hôpital Pitié-Salpêtrière, Paris, France and Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Mariano Oliva
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Gianfranco Puoti
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giacomo Lus
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Isabelle Le Ber
- Sorbonne Université, Inserm U1127, CNRS UMR 7225, Institut du Cerveau (ICM), AP-HP - Hôpital Pitié-Salpêtrière, Paris, France and Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Jérémie Pariente
- Department of Neurology, Toulouse University Hospital, Toulouse, France
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Matteo Carrara
- Service of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Martina Ricci
- Division of Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Veronica Redaelli
- Division of Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pietro Tiraboschi
- Division of Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Caroppo
- Division of Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giorgio Giaccone
- Division of Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giacomina Rossi
- Division of Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
6
|
Sandberg A, Ling H, Gearing M, Dombroski B, Cantwell L, R'Bibo L, Levey A, Schellenberg GD, Hardy J, Wood N, Fernius J, Nyström S, Svensson S, Thor S, Hammarström P, Revesz T, Mok KY. Fibrillation and molecular characteristics are coherent with clinical and pathological features of 4-repeat tauopathy caused by MAPT variant G273R. Neurobiol Dis 2020; 146:105079. [PMID: 32961270 DOI: 10.1016/j.nbd.2020.105079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 11/26/2022] Open
Abstract
Microtubule Associated Protein Tau (MAPT) forms proteopathic aggregates in several diseases. The G273R tau mutation, located in the first repeat region, was found by exome sequencing in a patient who presented with dementia and parkinsonism. We herein return to pathological examination which demonstrated tau immunoreactivity in neurons and glia consistent of mixed progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) features. To rationalize the pathological findings, we used molecular biophysics to characterize the mutation in more detail in vitro and in Drosophila. The G273R mutation increases the aggregation propensity of 4-repeat (4R) tau and alters the tau binding affinity towards microtubules (MTs) and F-actin. Tau aggregates in PSP and CBD are predominantly 4R tau. Our data suggest that the G273R mutation induces a shift in pool of 4R tau by lower F-actin affinity, alters the conformation of MT bound 4R tau, while increasing chaperoning of 3R tau by binding stronger to F-actin. The mutation augmented fibrillation of 4R tau initiation in vitro and in glial cells in Drosophila and showed preferential seeding of 4R tau in vitro suggestively causing a late onset 4R tauopathy reminiscent of PSP and CBD.
Collapse
Affiliation(s)
- Alexander Sandberg
- Department of Physics Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Helen Ling
- Queen Square Brain Bank for Neurological Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine, Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology and Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Beth Dombroski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Cantwell
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lea R'Bibo
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, University College London, London, UK
| | - Allan Levey
- Department of Neurology and Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Hardy
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Nicholas Wood
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, University College London, London, UK
| | - Josefin Fernius
- Department of Physics Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Sofie Nyström
- Department of Physics Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Samuel Svensson
- Department of Physics Chemistry and Biology, Linköping University, Linköping, Sweden; CBD Solutions, Stockholm, Sweden
| | - Stefan Thor
- School of Biomedical Sciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Per Hammarström
- Department of Physics Chemistry and Biology, Linköping University, Linköping, Sweden.
| | - Tamas Revesz
- Queen Square Brain Bank for Neurological Disorders, Queen Square Institute of Neurology, University College London, London, UK.
| | - Kin Y Mok
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK; Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, SAR, China.
| |
Collapse
|
7
|
Gossye H, Van Broeckhoven C, Engelborghs S. The Use of Biomarkers and Genetic Screening to Diagnose Frontotemporal Dementia: Evidence and Clinical Implications. Front Neurosci 2019; 13:757. [PMID: 31447625 PMCID: PMC6691066 DOI: 10.3389/fnins.2019.00757] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Within the wide range of neurodegenerative brain diseases, the differential diagnosis of frontotemporal dementia (FTD) frequently poses a challenge. Often, signs and symptoms are not characteristic of the disease and may instead reflect atypical presentations. Consequently, the use of disease biomarkers is of importance to correctly identify the patients. Here, we describe how neuropsychological characteristics, neuroimaging and neurochemical biomarkers and screening for causal gene mutations can be used to differentiate FTD from other neurodegenerative diseases as well as to distinguish between FTD subtypes. Summarizing current evidence, we propose a stepwise approach in the diagnostic evaluation. Clinical consensus criteria that take into account a full neuropsychological examination have relatively good accuracy (sensitivity [se] 75–95%, specificity [sp] 82–95%) to diagnose FTD, although misdiagnosis (mostly AD) is common. Structural brain MRI (se 70–94%, sp 89–99%) and FDG PET (se 47–90%, sp 68–98%) or SPECT (se 36–100%, sp 41–100%) brain scans greatly increase diagnostic accuracy, showing greater involvement of frontal and anterior temporal lobes, with sparing of hippocampi and medial temporal lobes. If these results are inconclusive, we suggest detecting amyloid and tau cerebrospinal fluid (CSF) biomarkers that can indicate the presence of AD with good accuracy (se 74–100%, sp 82–97%). The use of P-tau181 and the Aβ1–42/Aβ1–40 ratio significantly increases the accuracy of correctly identifying FTD vs. AD. Alternatively, an amyloid brain PET scan can be performed to differentiate FTD from AD. When autosomal dominant inheritance is suspected, or in early onset dementia, mutation screening of causal genes is indicated and may also be offered to at-risk family members. We have summarized genotype–phenotype correlations for several genes that are known to cause familial frontotemporal lobar degeneration, which is the neuropathological substrate of FTD. The genes most commonly associated with this disease (C9orf72, MAPT, GRN, TBK1) are discussed, as well as some less frequent ones (CHMP2B, VCP). Several other techniques, such as diffusion tensor imaging, tau PET imaging and measuring serum neurofilament levels, show promise for future implementation as diagnostic biomarkers.
Collapse
Affiliation(s)
- Helena Gossye
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Institute Born - Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Institute Born - Bunge, University of Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Institute Born - Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
8
|
Clinical variability and onset age modifiers in an extended Belgian GRN founder family. Neurobiol Aging 2018; 67:84-94. [PMID: 29653316 DOI: 10.1016/j.neurobiolaging.2018.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/06/2018] [Accepted: 03/03/2018] [Indexed: 12/12/2022]
Abstract
We previously reported a granulin (GRN) null mutation, originating from a common founder, in multiple Belgian families with frontotemporal dementia. Here, we used data of a 10-year follow-up study to describe in detail the clinical heterogeneity observed in this extended founder pedigree. We identified 85 patients and 40 unaffected mutation carriers, belonging to 29 branches of the founder pedigree. Most patients (74.4%) were diagnosed with frontotemporal dementia, while others had a clinical diagnosis of unspecified dementia, Alzheimer's dementia or Parkinson's disease. The observed clinical heterogeneity can guide clinical diagnosis, genetic testing, and counseling of mutation carriers. Onset of initial symptomatology is highly variable, ranging from age 45 to 80 years. Analysis of known modifiers, suggested effects of GRN rs5848, microtubule-associated protein tau H1/H2, and chromosome 9 open reading frame 72 G4C2 repeat length on onset age but explained only a minor fraction of the variability. Contrary, the extended GRN founder family is a valuable source for identifying other onset age modifiers based on exome or genome sequences. These modifiers might be interesting targets for developing disease-modifying therapies.
Collapse
|
9
|
Fostinelli S, Ciani M, Zanardini R, Zanetti O, Binetti G, Ghidoni R, Benussi L. The Heritability of Frontotemporal Lobar Degeneration: Validation of Pedigree Classification Criteria in a Northern Italy Cohort. J Alzheimers Dis 2017; 61:753-760. [DOI: 10.3233/jad-170661] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Silvia Fostinelli
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberta Zanardini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Orazio Zanetti
- Alzheimer’s Research Unit, MAC Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuliano Binetti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Alzheimer’s Research Unit, MAC Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
10
|
Huang R, Tian S, Cai R, Sun J, Xia W, Dong X, Shen Y, Wang S. Saitohin Q7R polymorphism is associated with late-onset Alzheimer's disease susceptibility among caucasian populations: a meta-analysis. J Cell Mol Med 2017; 21:1448-1456. [PMID: 28211174 PMCID: PMC5542912 DOI: 10.1111/jcmm.13079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/02/2016] [Indexed: 11/27/2022] Open
Abstract
Saitohin (STH) Q7R polymorphism has been reported to influence the individual's susceptibility to Alzheimer's disease (AD); however, conclusions remain controversial. Therefore, we performed this meta-analysis to explore the association between STH Q7R polymorphism and AD risk. Systematic literature searches were performed in the PubMed, Embase, Cochrane Library and Web of Science for studies published before 31 August 2016. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the strength of the association using a fixed- or random-effects model. Subgroup analyses, Galbraith plot and sensitivity analyses were also performed. All statistical analyses were performed with STATA Version 12.0. A total of 19 case-control studies from 17 publications with 4387 cases and 3972 controls were included in our meta-analysis. The results showed that the Q7R polymorphism was significantly associated with an increased risk of AD in a recessive model (RR versus QQ+QR, OR = 1.27, 95% CI = 1.01-1.60, P = 0.040). After excluding the four studies not carried out in caucasians, the overall association was unchanged in all comparison models. Further subgroup analyses stratified by the time of AD onset, and the quality of included studies provided statistical evidence of significant increased risk of AD in RR versus QQ+QR model only in late-onset subjects (OR = 1.56, 95% CI = 1.07-2.26, P = 0.021) and in studies with high quality (OR = 1.37, 95% CI = 1.01-1.86, P = 0.043). This meta-analysis suggests that the RR genotype in saitohin Q7R polymorphism may be a human-specific risk factor for AD, especially among late-onset AD subjects and caucasian populations.
Collapse
Affiliation(s)
- Rong Huang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Sai Tian
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Rongrong Cai
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Jie Sun
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Wenqing Xia
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Xue Dong
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Yanjue Shen
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Shaohua Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| |
Collapse
|
11
|
Coppola C, Saracino D, Puoti G, Lus G, Dato C, Le Ber I, Pariente J, Caroppo P, Piccoli E, Tagliavini F, Di Iorio G, Rossi G. A cluster of progranulin C157KfsX97 mutations in Southern Italy: clinical characterization and genetic correlations. Neurobiol Aging 2016; 49:219.e5-219.e13. [PMID: 27814992 DOI: 10.1016/j.neurobiolaging.2016.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/02/2016] [Indexed: 01/08/2023]
Abstract
Frontotemporal lobar degeneration (FTLD) is a group of neurodegenerative diseases displaying high clinical, pathologic, and genetic heterogeneity. Several autosomal dominant progranulin (GRN) mutations have been reported, accounting for 5%-10% of FTLD cases worldwide. In this study, we described the clinical characteristics of 7 Italian patients, 5 with a diagnosis of frontotemporal dementia behavioral variant and 2 of corticobasal syndrome (CBS), carrying the GRN deletion g.101349_101355delCTGCTGT, resulting in the C157KfsX97 null mutation, and hypothesized the existence of a founder effect by means of haplotype sharing analysis. We performed plasma progranulin dosage, GRN gene sequencing, and haplotype sharing study, analyzing 10 short tandem repeat markers, spanning a region of 11.08 Mb flanking GRN on chromosome 17q21. We observed shared alleles among 6 patients for 8 consecutive short tandem repeat markers spanning a 7.29 Mb region. Therefore, also with this particular mutation, the elevated clinical variability described among GRN-mutated FTLD cases is confirmed. Moreover, this is the first study reporting the likely existence of a founder effect for C157KfsX97 mutation in Southern Italy.
Collapse
Affiliation(s)
- Cinzia Coppola
- Second Division of Neurology, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy.
| | - Dario Saracino
- Second Division of Neurology, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy
| | - Gianfranco Puoti
- Second Division of Neurology, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy
| | - Giacomo Lus
- Second Division of Neurology, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy
| | - Clemente Dato
- Second Division of Neurology, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy
| | - Isabelle Le Ber
- Institut du Cerveau et de la Moelle épinière (ICM), INSERM U1127, CNRS UMR 7225, Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, UPMC-P6 UMR S 1127 Hôpital de la Pitié-Salpêtrière, Paris, France; AP-HP, Hôpital de la Pitié-Salpêtrière, Centre de Référence des Démences Rares & Fédération des maladies du système nerveux, Paris, France
| | | | - Paola Caroppo
- Division of Neurology V-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Piccoli
- Division of Neurology V-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fabrizio Tagliavini
- Division of Neurology V-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Di Iorio
- Second Division of Neurology, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy
| | - Giacomina Rossi
- Division of Neurology V-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
12
|
Arendt T, Stieler JT, Holzer M. Tau and tauopathies. Brain Res Bull 2016; 126:238-292. [DOI: 10.1016/j.brainresbull.2016.08.018] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
|
13
|
Benussi L, Ciani M, Tonoli E, Morbin M, Palamara L, Albani D, Fusco F, Forloni G, Glionna M, Baco M, Paterlini A, Fostinelli S, Santini B, Galbiati E, Gagni P, Cretich M, Binetti G, Tagliavini F, Prosperi D, Chiari M, Ghidoni R. Loss of exosomes in progranulin-associated frontotemporal dementia. Neurobiol Aging 2016; 40:41-49. [DOI: 10.1016/j.neurobiolaging.2016.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/04/2015] [Accepted: 01/02/2016] [Indexed: 02/04/2023]
|
14
|
Fontana F, Siva K, Denti MA. A network of RNA and protein interactions in Fronto Temporal Dementia. Front Mol Neurosci 2015; 8:9. [PMID: 25852467 PMCID: PMC4365750 DOI: 10.3389/fnmol.2015.00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/25/2015] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disorder characterized by degeneration of the fronto temporal lobes and abnormal protein inclusions. It exhibits a broad clinicopathological spectrum and has been linked to mutations in seven different genes. We will provide a picture, which connects the products of these genes, albeit diverse in nature and function, in a network. Despite the paucity of information available for some of these genes, we believe that RNA processing and post-transcriptional regulation of gene expression might constitute a common theme in the network. Recent studies have unraveled the role of mutations affecting the functions of RNA binding proteins and regulation of microRNAs. This review will combine all the recent findings on genes involved in the pathogenesis of FTD, highlighting the importance of a common network of interactions in order to study and decipher the heterogeneous clinical manifestations associated with FTD. This approach could be helpful for the research of potential therapeutic strategies.
Collapse
Affiliation(s)
- Francesca Fontana
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of TrentoTrento, Italy
| | - Kavitha Siva
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of TrentoTrento, Italy
| | - Michela A. Denti
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of TrentoTrento, Italy
- CNR, Institute of NeurosciencePadua, Italy
| |
Collapse
|
15
|
Ghetti B, Oblak AL, Boeve BF, Johnson KA, Dickerson BC, Goedert M. Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging. Neuropathol Appl Neurobiol 2015; 41:24-46. [PMID: 25556536 PMCID: PMC4329416 DOI: 10.1111/nan.12213] [Citation(s) in RCA: 310] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 12/29/2014] [Indexed: 12/12/2022]
Abstract
Hereditary frontotemporal dementia associated with mutations in the microtubule-associated protein tau gene (MAPT) is a protean disorder. Three neuropathologic subtypes can be recognized, based on the presence of inclusions made of tau isoforms with three and four repeats, predominantly three repeats and mostly four repeats. This is relevant for establishing a correlation between structural magnetic resonance imaging and positron emission tomography using tracers specific for aggregated tau. Longitudinal studies will be essential to determine the evolution of anatomical alterations from the asymptomatic stage to the various phases of disease following the onset of symptoms.
Collapse
Affiliation(s)
- B Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of MedicineIndianapolis, USA
| | - A L Oblak
- Department of Pathology and Laboratory Medicine, Indiana University School of MedicineIndianapolis, USA
| | - B F Boeve
- Department of Neurology, Mayo ClinicRochester, USA
| | - K A Johnson
- Department of Radiology, Massachusetts General Hospital and Harvard Medical SchoolBoston, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical SchoolBoston, USA
| | - B C Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical SchoolBoston, USA
| | - M Goedert
- Medical Research Council, Laboratory of Molecular BiologyCambridge, UK
| |
Collapse
|
16
|
Abstract
Primary progressive aphasia is a neurodegenerative syndrome characterized by progressive language dysfunction. The majority of primary progressive aphasia cases can be classified into three subtypes: nonfluent/agrammatic, semantic, and logopenic variants. Each variant presents with unique clinical features, and is associated with distinctive underlying pathology and neuroimaging findings. Unlike primary progressive aphasia, apraxia of speech is a disorder that involves inaccurate production of sounds secondary to impaired planning or programming of speech movements. Primary progressive apraxia of speech is a neurodegenerative form of apraxia of speech, and it should be distinguished from primary progressive aphasia given its discrete clinicopathological presentation. Recently, there have been substantial advances in our understanding of these speech and language disorders. The clinical, neuroimaging, and histopathological features of primary progressive aphasia and apraxia of speech are reviewed in this article. The distinctions among these disorders for accurate diagnosis are increasingly important from a prognostic and therapeutic standpoint.
Collapse
|
17
|
Banzhaf-Strathmann J, Claus R, Mücke O, Rentzsch K, van der Zee J, Engelborghs S, De Deyn PP, Cruts M, van Broeckhoven C, Plass C, Edbauer D. Promoter DNA methylation regulates progranulin expression and is altered in FTLD. Acta Neuropathol Commun 2013; 1:16. [PMID: 24252647 PMCID: PMC3893557 DOI: 10.1186/2051-5960-1-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 04/26/2013] [Indexed: 12/13/2022] Open
Abstract
Background Frontotemporal lobar degeneration (FTLD) is a heterogeneous group of neurodegenerative diseases associated with personality changes and progressive dementia. Loss-of-function mutations in the growth factor progranulin (GRN) cause autosomal dominant FTLD, but so far the pathomechanism of sporadic FTLD is unclear. Results We analyzed whether DNA methylation in the GRN core promoter restricts GRN expression and, thus, might promote FTLD in the absence of GRN mutations. GRN expression in human lymphoblast cell lines is negatively correlated with methylation at several CpG units within the GRN promoter. Chronic treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (DAC) strongly induces GRN mRNA and protein levels. In a reporter assay, CpG methylation blocks transcriptional activity of the GRN core promoter. In brains of FTLD patients several CpG units in the GRN promoter are significantly hypermethylated compared to age-matched healthy controls, Alzheimer and Parkinson patients. These CpG motifs are critical for GRN promoter activity in reporter assays. Furthermore, DNA methyltransferase 3a (DNMT3a) is upregulated in FTLD patients and overexpression of DNMT3a reduces GRN promoter activity and expression. Conclusion These data suggest that altered DNA methylation is a novel pathomechanism for FTLD that is potentially amenable to targeted pharmacotherapy.
Collapse
|
18
|
Sun L, Eriksen JL. Recent insights into the involvement of progranulin in frontotemporal dementia. Curr Neuropharmacol 2012; 9:632-42. [PMID: 22654721 PMCID: PMC3263457 DOI: 10.2174/157015911798376361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/04/2011] [Accepted: 03/21/2011] [Indexed: 12/12/2022] Open
Abstract
Progranulin is a widely expressed protein that is involved in the regulation of multiple biological processes, including embryogenesis, host defense, and wound repair. In the central nervous system, progranulin is constitutively expressed at modest levels in neurons and microglia, but shows dramatic microglial immunoreactivity in degenerative diseases that exhibit prominent neuroinflammation. In addition to the role that PGRN plays in the periphery, its expression is of critical importance in brain health, as demonstrated by recent discovery that progranulin haploinsufficiency results in familial frontotemporal lobar degeneration. Since progranulin deficiency was first described, there has been an intense ongoing effort to decipher the mysterious role that this protein plays in dementia. This review provides an update on our understanding of the possible neuronal function and discusses the challenging problems related to progranulin expression within genetics, cell biology, and neurodegeneration.
Collapse
Affiliation(s)
- Li Sun
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | | |
Collapse
|
19
|
Cerami C, Scarpini E, Cappa SF, Galimberti D. Frontotemporal lobar degeneration: current knowledge and future challenges. J Neurol 2012; 259:2278-86. [PMID: 22532172 DOI: 10.1007/s00415-012-6507-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/29/2012] [Indexed: 12/12/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is one of the most frequent neurodegenerative disorders with a presenile onset. It presents with a spectrum of clinical manifestations, ranging from behavioral and executive impairment to language disorders and motor dysfunction. New diagnostic criteria identified two main cognitive syndromes: behavioral variant frontotemporal dementia (bvFTD) and primary progressive aphasia. Regarding bvFTD, new criteria include the use of biomarkers. According to them, bvFTD can be classified in "possible" (clinical features only), "probable" (inclusion of imaging biomarkers) and "definite" (in the presence of a known causal mutation or at autopsy). Familial aggregation is frequently reported in FTLD, and about 10 % of cases have an autosomal dominant transmission. Microtubule-associated protein tau gene mutations have been the first ones identified, and are generally associated with early onset (40-50 years) and with the bvFTD phenotype. More recently, progranulin gene mutations were recognized in association with the familial form of FTLD and a hexanucleotide repetition in C9ORF72 has been shown to be responsible for familial FTLD and amyotrophic lateral sclerosis. In addition, other genes are linked to rare cases of familiar FTLD. Lastly, a number of genetic risk factors for sporadic forms have also been identified.
Collapse
Affiliation(s)
- Chiara Cerami
- Neurorehabilitation Unit, Department of Clinical Neurosciences, San Raffaele Scientific Institute, Vita Salute University, Milan, Italy
| | | | | | | |
Collapse
|
20
|
Clinical phenotypes and genetic biomarkers of FTLD. J Neural Transm (Vienna) 2012; 119:851-60. [DOI: 10.1007/s00702-012-0804-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/31/2012] [Indexed: 12/13/2022]
|
21
|
Ghidoni R, Paterlini A, Albertini V, Binetti G, Benussi L. Losing protein in the brain: the case of progranulin. Brain Res 2012; 1476:172-82. [PMID: 22348647 DOI: 10.1016/j.brainres.2012.01.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/18/2012] [Accepted: 01/28/2012] [Indexed: 01/22/2023]
Abstract
It is well known that progranulin protein is involved in wound repair, inflammation, and tumor formation. The wedding between progranulin and brain was celebrated in 2006 with the involvement of progranulin gene (GRN) in Frontotemporal lobar degeneration (FTLD), the most common form of early-onset dementia: up to date, 75 mutations have been detected in FTLD patients as well as in patients with widely variable clinical phenotypes. All pathogenic GRN mutations identified thus far cause the disease through a uniform mechanism, i.e. loss of functional progranulin or haploinsufficiency. Studies on GRN knockout mice suggest that progranulin-related neurodegenerative diseases may result from lifetime depletion of neurotrophic support together with cumulative damage in association with dysregulated inflammation, thus highlighting possible new molecular targets for GRN-related FTLD treatment. Recently, the dosage of plasma progranulin has been proposed as a useful tool for a quick and inexpensive large-scale screening of affected and unaffected carriers of GRN mutations. Before it is systematically translated into clinical practice and, more importantly, included into diagnostic criteria for dementias, further standardization of plasma progranulin test and harmonization of its use are required. Once a specific treatment becomes available for these pathologies, this test - being applicable on large scale - will represent an important step towards personalized healthcare. This article is part of a Special Issue entitled: Brain Integration.
Collapse
Affiliation(s)
- Roberta Ghidoni
- Proteomics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly, and is typically characterized by memory loss. In addition, during the disease progression, most patients develop behavioural and psychiatric symptoms of dementia (BPSD). Frontotemporal Lobar Degeneration (FTLD) is the most frequent neurodegenerative disorder with a presenile onset. It is characterized mainly by behavioural disturbances, whereas memory is conserved. The two major neuropathologic hallmarks of AD are extracellular Amyloid beta (Ab) plaques and intracellular neurofibrillary tangles (NFTs). Conversely, in FTLD the deposition of tau has been observed in a number of cases, but in several brains there is no deposition of tau but instead a positivity for ubiquitin. In some families these diseases are inherited in an autosomal dominant fashion. Genes responsible for familial AD include the Amyloid Precursor Protein (b-APP), Presenilin 1 (PS1)and Presenilin 2 (PS2). The majority of mutations in these genes are often associated with a very early onset (40–50 years of age). Regarding FTLD, the first mutations described are located in the Microtubule Associated Protein Tau gene(MAPT). Tau is a component of microtubules, which represent the internal support structures for the transport of nutrients, vesicles, mitochondria and chromosomes within the cell. Mutations in MAPT are associated with an early onset of the disease (40–50 years), and the clinical phenotype is consistent with Frontotemporal Dementia (FTD). Recently, mutations in a second gene, named progranulin(GRN), have been identified in some families with FTLD. The pathology associated with these mutations is most frequently characterized by the immunostaining of TAR DNA Binding Protein 43 (TDP-43), which is a transcription factor. The clinical phenotype associated with GRN mutations is highly heterogeneous,including FTD, Progressive Aphasia, Corticobasal Syndrome, and AD. Age at disease onset is variable, ranging from 45 to 85 years of age. The majority of cases of AD and FTLD are however sporadic, and likely several genetic and environmental factors contribute to their development. Concerning AD, it is known that the presence of the e4 allele of the Apolipoprotein E gene is a susceptibility factor,increasing the risk of about 4 fold. A number of additional genetic factors,including cytokines, chemokines, Nitric Oxide Synthases, contribute to the susceptibility for the disease. Some of them also influence the risk to develop FTLD.Variability in serotonin transporter gene could influence the development of BPSD. In this chapter, current knowledge on molecular mechanisms at the basis of AD and FTLD, as well as the role of genetics, will be presented and discussed.
Collapse
|
23
|
Sleegers K, Cruts M, Van Broeckhoven C. Molecular pathways of frontotemporal lobar degeneration. Annu Rev Neurosci 2011; 33:71-88. [PMID: 20415586 DOI: 10.1146/annurev-neuro-060909-153144] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is a neurodegenerative condition that predominantly affects behavior, social awareness, and language. It is characterized by extensive heterogeneity at the clinical, pathological, and genetic levels. Recognition of these levels of heterogeneity is important for proper disease management. The identification of progranulin and TDP-43 as key proteins in a significant proportion of FTLD patients has provided the impetus for a wealth of studies probing their role in neurodegeneration. This review highlights the most recent developments and future directions in this field and puts them in perspective of the novel insights into the neurodegenerative process, which have been gained from related disorders, e.g., the role of FUS in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Kristel Sleegers
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Universiteitsplein 1, B-2610 Antwerpen, Belgium.
| | | | | |
Collapse
|
24
|
Sleegers K, Brouwers N, Van Broeckhoven C. Role of progranulin as a biomarker for Alzheimer's disease. Biomark Med 2010; 4:37-50. [PMID: 20387302 DOI: 10.2217/bmm.09.82] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Serum or plasma progranulin (GRN) is a highly accurate of GRN-related frontotemporal lobar degeneration, which is caused by loss-of-function mutations in the GRN gene. Both null mutations and missense mutations in GRN have also been observed in patients with Alzheimer's disease. Here, the evidence for a role of circulating GRN as a biochemical biomarker in neurodegeneration is reviewed, with a specific focus on its relevance in Alzheimer's disease. We conclude that circulating GRN is a promising, nonintrusive biomarker that warrants screening in both patients with dementia of the Alzheimer type and people with mild cognitive impairment; specifically for, but not limited to, those that have a positive family history of neurodegenerative disease. Once a cure for GRN-related neurodegeneration becomes available, this biomarker will be an important tool in the effort to personalize treatment of dementia.
Collapse
|
25
|
Abstract
Frontotemporal lobar degeneration (FTLD) is a highly familial condition and is increasingly being recognized as an important form of dementia. The literature published on this disease is often difficult to collate due to the wide range in nomenclature used. Thankfully, consensus recommendations have now been published to address this issue and hopefully the community will adopt these as intended. Much progress has been made in our understanding of the clinical, pathological and genetic understanding of FTLD in recent years. Progranulin and TDP-43 have recently been identified as new important proteins involved in the pathophysiology of FTLD and this latter protein may have potential as a biomarker of this disease. However, much remains before we have a full picture of the genes that cause FTLD and the biological pathways in which they function. The purpose of this review is to summarize the current concepts and recent advances in our knowledge of this disease.
Collapse
Affiliation(s)
- S M Pickering-Brown
- Clinical Neurosciences Research Group, Faculty of Human and Medical Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
26
|
Sleegers K, Brouwers N, Van Damme P, Engelborghs S, Gijselinck I, van der Zee J, Peeters K, Mattheijssens M, Cruts M, Vandenberghe R, De Deyn PP, Robberecht W, Van Broeckhoven C. Serum biomarker for progranulin-associated frontotemporal lobar degeneration. Ann Neurol 2009; 65:603-9. [PMID: 19288468 DOI: 10.1002/ana.21621] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Mutations that lead to a loss of progranulin (PGRN) explain a considerable portion of the occurrence of frontotemporal lobar degeneration. We tested a biomarker allowing rapid detection of a loss of PGRN. METHODS We used an enzyme-linked immunosorbent assay to measure in serum the PGRN protein levels of six affected and eight unaffected carriers from within an extended Belgian founder family segregating the null mutation IVS1+5G>C. Further, we measured serum PGRN levels in 2 patients with another null mutation (a Met1 and a frameshift mutation), in 4 patients carrying a predicted pathogenic missense mutation and in 5 patients carrying a benign missense polymorphism, in 9 unaffected noncarrier relatives, and in 22 community controls. RESULTS Serum PGRN levels were reduced in both affected and unaffected null mutation carriers compared with noncarrier relatives (p(exact) < 0.0001), and allowed perfect discrimination between carriers and noncarriers (sensitivity: 1.0; 1 - specificity: 0.0). Serum PGRN levels in Cys139Arg and Arg564Cys mutation carriers were significantly lower than in controls, but greater than in null mutation carriers, fitting the hypothesis of partial loss of function caused by these missense mutations. As expected, levels for carriers of benign missense polymorphisms were not significantly different from controls. INTERPRETATION Our results indicate that the serum PGRN level is a reliable biomarker for diagnosing and early detection of frontotemporal lobar degeneration caused by PGRN null mutations, and provided the first in vivo evidence that at least some missense mutations in PGRN may lead to a (partial) loss of PGRN.
Collapse
Affiliation(s)
- Kristel Sleegers
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB (Flanders Institute for Biotechnology), University of Antwerp, Universiteitsplein 1, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gijselinck I, Van Broeckhoven C, Cruts M. Granulin mutations associated with frontotemporal lobar degeneration and related disorders: an update. Hum Mutat 2009; 29:1373-86. [PMID: 18543312 DOI: 10.1002/humu.20785] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations in the gene encoding granulin (HUGO gene symbol GRN, also referred to as progranulin, PGRN), located at chromosome 17q21, were recently linked to tau-negative ubiquitin-positive frontotemporal lobar degeneration (FTLDU). Since then, 63 heterozygous mutations were identified in 163 families worldwide, all leading to loss of functional GRN, implicating a haploinsufficiency mechanism. Together, these mutations explained 5 to 10% of FTLD. The high mutation frequency, however, might still be an underestimation because not all patient samples were examined for all types of loss-of-function mutations and because several variants, including missense mutations, have a yet uncertain pathogenic significance. Although the complete phenotypic spectrum associated with GRN mutations is not yet fully characterized, it was shown that it is highly heterogeneous, suggesting the influence of modifying factors. A role of GRN in neuronal survival was suggested but the exact mechanism by which neurodegeneration and deposition of pathologic brain inclusions occur still has to be clarified.
Collapse
Affiliation(s)
- I Gijselinck
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, Flanders Institute for Biotechnology (VIB), Antwerpen, Belgium
| | | | | |
Collapse
|
28
|
Kaivorinne AL, Krüger J, Kuivaniemi K, Tuominen H, Moilanen V, Majamaa K, Remes AM. Role of MAPT mutations and haplotype in frontotemporal lobar degeneration in Northern Finland. BMC Neurol 2008; 8:48. [PMID: 19091059 PMCID: PMC2625345 DOI: 10.1186/1471-2377-8-48] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 12/17/2008] [Indexed: 11/29/2022] Open
Abstract
Background Frontotemporal lobar degeneration (FTLD) consists of a clinically and neuropathologically heterogeneous group of syndromes affecting the frontal and temporal lobes of the brain. Mutations in microtubule-associated protein tau (MAPT), progranulin (PGRN) and charged multi-vesicular body protein 2B (CHMP2B) are associated with familial forms of the disease. The prevalence of these mutations varies between populations. The H1 haplotype of MAPT has been found to be closely associated with tauopathies and with sporadic FTLD. Our aim was to investigate MAPT mutations and haplotype frequencies in a clinical series of patients with FTLD in Northern Finland. Methods MAPT exons 1, 2 and 9–13 were sequenced in 59 patients with FTLD, and MAPT haplotypes were analysed in these patients, 122 patients with early onset Alzheimer's disease (eoAD) and 198 healthy controls. Results No pathogenic mutations were found. The H2 allele frequency was 11.0% (P = 0.028) in the FTLD patients, 9.8% (P = 0.029) in the eoAD patients and 5.3% in the controls. The H2 allele was especially clustered in patients with a positive family history (P = 0.011) but did not lower the age at onset of the disease. The ApoE4 allele frequency was significantly increased in the patients with eoAD and in those with FTLD. Conclusion We conclude that although pathogenic MAPT mutations are rare in Northern Finland, the MAPT H2 allele may be associated with increased risks of FTLD and eoAD in the Finnish population.
Collapse
|
29
|
Borroni B, Ghezzi S, Agosti C, Archetti S, Fenoglio C, Galimberti D, Scarpini E, Di Luca M, Bresolin N, Comi GP, Padovani A, Del Bo R. Preliminary evidence that VEGF genetic variability confers susceptibility to frontotemporal lobar degeneration. Rejuvenation Res 2008; 11:773-80. [PMID: 18729809 DOI: 10.1089/rej.2008.0711] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) recognizes a strong genetic background, with 30-50% of cases with a positive family history. Despite several efforts to identify monogenic causes of the disease, no clear-cut genetic risk factors for sporadic FTLD are yet known. Recently, increasing evidence points to a pivotal role of vascular endothelial growth factor (VEGF) in the neurodegenerative process, suggesting functions not confined to its originally described vascular effects. The aim of this study was to investigate the role of VEGF as a genetic determinant to FTLD susceptibility. We evaluated a cohort of 274 unrelated Italian patients, including 161 subjects with frontotemporal dementia (FTD), 56 with corticobasal degeneration syndrome, and 57 with progressive supranuclear palsy. Genotype and allele frequencies of four well-known polymorphisms located within the VEGF promoter (-2578C/A, -1190G/A, -1154G/A, and -634G/C) were calculated in patients and in 216 age-matched healthy subjects. Genetic analysis revealed the presence of several significant changes in terms of allele, genotype, and haplotype frequency distributions between patients and controls. Marked differences were observed when the FTD patient subgroup was compared with healthy subjects. Overall, these data provide evidence for the first time that VEGF gene variability represents a susceptibility factor for sporadic FTLD, at least in an Italian population. Future confirmatory studies are mandatory.
Collapse
Affiliation(s)
- B Borroni
- Centre for Aging Brain and Neurodegenerative Disorders, Department of Neurology, University of Brescia, Piazza Spedali Civili, Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Liscic RM, Grinberg LT, Zidar J, Gitcho MA, Cairns NJ. ALS and FTLD: two faces of TDP-43 proteinopathy. Eur J Neurol 2008; 15:772-80. [PMID: 18684309 DOI: 10.1111/j.1468-1331.2008.02195.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Major discoveries have been made in the recent past in the genetics, biochemistry and neuropathology of frontotemporal lobar degeneration (FTLD). TAR DNA-binding protein 43 (TDP-43), encoded by the TARDBP gene, has been identified as the major pathological protein of FTLD with ubiquitin-immunoreactive (ub-ir) inclusions (FTLD-U) with or without amyotrophic lateral sclerosis (ALS) and sporadic ALS. Recently, mutations in the TARDBP gene in familial and sporadic ALS have been reported which demonstrate that abnormal TDP-43 alone is sufficient to cause neurodegeneration. Several familial cases of FTLD-U, however, are now known to have mutations in the progranulin (GRN) gene, but granulin is not a component of the TDP-43- and ub-ir inclusions. Further, TDP-43 is found to be a component of the inclusions of an increasing number of neurodegenerative diseases. Other FTLD-U entities with TDP-43 proteinopathy include: FTLD-U with valosin-containing protein (VCP) gene mutation and FTLD with ALS linked to chromosome 9p. In contrast, chromosome 3-linked dementia, FTLD-U with chromatin modifying protein 2B (CHMP2B) mutation, has ub-ir, TDP-43-negative inclusions. In summary, recent discoveries have generated new insights into the pathogenesis of a spectrum of disorders called TDP-43 proteinopathies including: FTLD-U, FTLD-U with ALS, ALS, and a broadening spectrum of other disorders. It is anticipated that these discoveries and a revised nosology of FTLD will contribute toward an accurate diagnosis, and facilitate the development of new diagnostic tests and therapeutics.
Collapse
Affiliation(s)
- R M Liscic
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | | | | | | |
Collapse
|
31
|
Skoglund L, Brundin R, Olofsson T, Kalimo H, Ingvast S, Blom ES, Giedraitis V, Ingelsson M, Lannfelt L, Basun H, Glaser A. Frontotemporal dementia in a large Swedish family is caused by a progranulin null mutation. Neurogenetics 2008; 10:27-34. [PMID: 18855025 DOI: 10.1007/s10048-008-0155-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
Mutations in the progranulin (PGRN) gene have recently been identified in families with frontotemporal lobar degeneration and ubiquitin-positive brain inclusions linked to chromosome 17q21. We have previously described a Swedish family displaying frontotemporal dementia with rapid progression and linkage to chromosome 17q21. In this study, we performed an extended clinical and neuropathological investigation of affected members of the family and a genetic analysis of the PGRN gene. There was a large variation of the initial presenting symptoms in this family, but common clinical features were non-fluent aphasia and loss of spontaneous speech as well as personality and behavioural changes. Mean age at onset was 54 years with disease duration of close to 4 years. Neuropathological examination revealed frontotemporal neurodegeneration with ubiquitin and TAR DNA binding protein-43 immunoreactive intraneuronal inclusions. Mutation screening of the PGRN gene identified a 1 bp deletion in exon 1 causing a frameshift of the coding sequence and introducing a premature termination codon in exon 2 (Gly35GlufsX19). Analysis of PGRN messenger RNA (mRNA) levels revealed a considerable decrease in lymphoblasts from mutation carriers and fragment size separation, and sequence analysis confirmed that the mutated mRNA allele was almost absent in these samples. In conclusion, the PGRN Gly35fs mutation causes frontotemporal dementia with variable clinical presentation in a large Swedish family, most likely through nonsense-mediated decay of mutant PGRN mRNA and resulting haploinsufficiency.
Collapse
Affiliation(s)
- Lena Skoglund
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Update on recent molecular and genetic advances in frontotemporal lobar degeneration. J Neuropathol Exp Neurol 2008; 67:635-48. [PMID: 18596549 DOI: 10.1097/nen.0b013e31817d751c] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Great strides have been made in the last 2 years in the field of frontotemporal lobar degeneration (FTLD), particularly with respect to the genetics and molecular biology of FTLD with ubiquitinated inclusions. It is now clear that most cases of familial FTLD with ubiquitinated inclusions have mutations in the progranulin gene, located on chromosome 17. It is also clear that most ubiquitinated inclusions in FTLD with ubiquitinated inclusions are composed primarily of TAR DNA-binding protein-43. Thus, FTLDs can be separated into 2 major groups (i.e. tauopathies and ubiquitinopathies), and most of the ubiquitinopathies can now be defined as TAR DNA-binding protein-43 proteinopathies. Many of the familial FTLDs are linked to chromosome 17, including both the familial tauopathies and the familial TAR DNA-binding protein-43 proteinopathies with progranulin mutations. This review highlights the neuropathologic features and the most important discoveries of the last 2 years and places these findings into the historical context of FTLD.
Collapse
|
33
|
Borroni B, Archetti S, Alberici A, Agosti C, Gennarelli M, Bigni B, Bonvicini C, Ferrari M, Bellelli G, Galimberti D, Scarpini E, Di Lorenzo D, Caimi L, Caltagirone C, Di Luca M, Padovani A. Progranulin genetic variations in frontotemporal lobar degeneration: evidence for low mutation frequency in an Italian clinical series. Neurogenetics 2008; 9:197-205. [PMID: 18392865 DOI: 10.1007/s10048-008-0127-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 03/12/2008] [Indexed: 12/12/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) recognises high familial incidence, with up to 50% of patients reported to have a family history of similar dementia. It has been reported that mutations within progranulin (PGRN) gene are a major cause of FTLD in the USA and worldwide, counting for 5-10% of FTLD and for 20-25% of familiar FTLD cases. The aim of the present study was to define the role of PGRN genetic variations in a large sample of consecutive patients with FTLD in Italy. Two-hundred forty-three FTLD patients were investigated. Each subject performed a clinical and neuropsychological evaluation, a functional and structural brain imaging, and the diagnosis was confirmed by at least 1 year follow-up. PGRN sequencing was performed in all FTLD patients and in 121 healthy age-matched controls drawn from the same geographic area. Only one PGRN pathogenetic mutation was found, consisting of a four-base pair deletion in the coding sequence of exon 8 (delCACT). This mutation was recognised in four patients, being the overall frequency of mutations in our clinical series of 1.64%. Considering only patients with a well-known family history for dementia, the frequency of this mutation was 6%. Moreover, four missense mutations within intron regions (g.100474G>A, g.100674G>A, g.101266G>A, g.102070G>A) were found. The frequency of these genetic variations did not differ in patients compared to controls, and they did not influence on clinical FTLD phenotype. In conclusion, this study supports a lower frequency of PGRN mutations amongst FTLD patients in Italy compared to literature data and further underlies the genetic heterogeneity of FTLD.
Collapse
Affiliation(s)
- Barbara Borroni
- Department of Neurology, University of Brescia, Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Boeve BF, Hutton M. Refining frontotemporal dementia with parkinsonism linked to chromosome 17: introducing FTDP-17 (MAPT) and FTDP-17 (PGRN). ARCHIVES OF NEUROLOGY 2008; 65:460-4. [PMID: 18413467 PMCID: PMC2746630 DOI: 10.1001/archneur.65.4.460] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Frontotemporal dementia with parkinsonism (FTDP) is a major neurodegenerative syndrome, particularly for those with symptoms beginning before age 65 years. A spectrum of degenerative disorders can present as sporadic or familial FTDP. Mutations in the gene encoding the microtubule-associated protein tau (MAPT; OMIM +157140) on chromosome 17 have been found in many kindreds with familial FTDP. Several other kindreds with FTDP had been linked to chromosome 17, but they had ubiquitin-positive inclusions rather than tauopathy pathology and no mutations in MAPT. This conundrum was solved in 2006 with the identification of mutations in the gene encoding progranulin (PGRN; OMIM *138945), which is only 1.7 Mb centromeric to MAPT on chromosome 17. In this review, we compare and contrast the demographic, clinical, radiologic, neuropathologic, genetic, and pathophysiologic features in patients with FTDP linked to mutations in MAPT and PGRN, highlighting the many similarities but also a few important differences. Our findings describe an intriguing oddity of nature in which 2 genes can cause a similar phenotype through apparently different mechanisms yet reside so near to each other on the same chromosome.
Collapse
Affiliation(s)
- Bradley F Boeve
- Division of Behavioral Neurology, Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, Minnesota,55905, USa.
| | | |
Collapse
|
35
|
Rohrer JD, Warren JD, Omar R, Mead S, Beck J, Revesz T, Holton J, Stevens JM, Al-Sarraj S, Pickering-Brown SM, Hardy J, Fox NC, Collinge J, Warrington EK, Rossor MN. Parietal lobe deficits in frontotemporal lobar degeneration caused by a mutation in the progranulin gene. ARCHIVES OF NEUROLOGY 2008; 65:506-13. [PMID: 18413474 PMCID: PMC2578869 DOI: 10.1001/archneur.65.4.506] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To describe the clinical, neuropsychologic, and radiologic features of a family with a C31LfsX35 mutation in the progranulin gene CCDS11483.1). DESIGN Case series. PATIENTS A large British kindred (DRC255) with a PGRN mutation was assessed. Affected individuals presented with a mean age of 57.8 years (range, 54-67 years) and a mean disease duration of 6.1 years (range, 2-11 years). RESULTS All patients exhibited a clinical and radiologic phenotype compatible with frontotemporal lobar degeneration based on current consensus criteria. However, unlike sporadic frontotemporal lobar degeneration, parietal deficits, consisting of dyscalculia, visuoperceptual /visuospatial dysfunction, and/or limb apraxia, were a common feature, and brain imaging showed posterior extension of frontotemporal atrophy to involve the parietal lobes. Other common clinical features included language output impairment with either dynamic aphasia or nonfluent aphasia and a behavioral syndrome dominated by apathy. CONCLUSION We suggest that parietal deficits may be a prominent feature of PGRN mutations and that these deficits may be caused by disruption of frontoparietal functional pathways.
Collapse
Affiliation(s)
- Jonathan D Rohrer
- Dementia Research Centre, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Jason D Warren
- Dementia Research Centre, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Rohani Omar
- Dementia Research Centre, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Simon Mead
- MRC Prion Unit, Department of Neurodegenerative Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Jonathan Beck
- MRC Prion Unit, Department of Neurodegenerative Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Tamas Revesz
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Janice Holton
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - John M Stevens
- Department of Clinical Neuroradiology, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Safa Al-Sarraj
- Department of Clinical Neuropathology, King’s College Hospital, Denmark Hill, London, UK
| | - Stuart M Pickering-Brown
- Division of Regenerative Medicine, Department of Medicine, University of Manchester, Manchester, UK
| | - John Hardy
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Nick C Fox
- Dementia Research Centre, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - John Collinge
- MRC Prion Unit, Department of Neurodegenerative Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Elizabeth K Warrington
- Dementia Research Centre, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Martin N Rossor
- Dementia Research Centre, Institute of Neurology, University College London, London, WC1N 3BG, UK
| |
Collapse
|
36
|
Loss of progranulin function in frontotemporal lobar degeneration. Trends Genet 2008; 24:186-94. [DOI: 10.1016/j.tig.2008.01.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/15/2008] [Accepted: 01/16/2008] [Indexed: 11/19/2022]
|
37
|
Beck J, Rohrer JD, Campbell T, Isaacs A, Morrison KE, Goodall EF, Warrington EK, Stevens J, Revesz T, Holton J, Al-Sarraj S, King A, Scahill R, Warren JD, Fox NC, Rossor MN, Collinge J, Mead S. A distinct clinical, neuropsychological and radiological phenotype is associated with progranulin gene mutations in a large UK series. Brain 2008; 131:706-20. [PMID: 18234697 PMCID: PMC2577762 DOI: 10.1093/brain/awm320] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in the progranulin gene (GRN) are a major cause of frontotemporal lobar degeneration with ubiquitin-positive, tau-negative inclusions (FTLD-U) but the distinguishing clinical and anatomical features of this subgroup remain unclear. In a large UK cohort we found five different frameshift and premature termination mutations likely to be causative of FTLD in 25 affected family members. A previously described 4-bp insertion mutation in GRN exon 2 comprised the majority of cases in our cohort (20/25), with four novel mutations being identified in the other five affected members. Additional novel missense changes were discovered, of uncertain pathogenicity, but deletion of the entire gene was not detected. The patient collection was investigated by a single tertiary referral centre and is enriched for familial early onset FTLD with a high proportion of patients undergoing neuropsychological testing, MRI and eventual neuropathological diagnosis. Age at onset was variable, but four mutation carriers presented in their 40s and when analysed as a group, the mean age at onset of disease in GRN mutation carriers was later than tau gene (MAPT) mutation carriers and duration of disease was shorter when compared with both MAPT and FTLD-U without mutation. The most common clinical presentation seen in GRN mutation carriers was behavioural variant FTLD with apathy as the dominant feature. However, many patients had language output impairment that was either a progressive non-fluent aphasia or decreased speech output consistent with a dynamic aphasia. Neurological and neuropsychological examination also suggests that parietal lobe dysfunction is a characteristic feature of GRN mutation and differentiates this group from other patients with FTLD. MR imaging showed evidence of strikingly asymmetrical atrophy with the frontal, temporal and parietal lobes all affected. Both right- and left-sided predominant atrophy was seen even within the same family. As a group, the GRN carriers showed more asymmetry than in other FTLD groups. All pathologically investigated cases showed extensive type 3 TDP-43-positive pathology, including frequent neuronal cytoplasmic inclusions, dystrophic neurites in both grey and white matter and also neuronal intranuclear inclusions. Finally, we confirmed a modifying effect of APOE-E4 genotype on clinical phenotype with a later onset in the GRN carriers suggesting that this gene has distinct phenotypic effects in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan Beck
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Jonathan D. Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Tracy Campbell
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Adrian Isaacs
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Karen E. Morrison
- Division of Neuroscience, the Medical School,University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Department of Neuroscience, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Emily F. Goodall
- Division of Neuroscience, the Medical School,University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Elizabeth K. Warrington
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - John Stevens
- Department of Clinical Neuroradiology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Tamas Revesz
- Department of Neuropathology, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Janice Holton
- Department of Neuropathology, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Safa Al-Sarraj
- Department of Clinical Neuropathology, King's College Hospital, Denmark Hill, London, UK
| | - Andrew King
- Department of Clinical Neuropathology, King's College Hospital, Denmark Hill, London, UK
| | - Rachael Scahill
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Jason D. Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Nick C. Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Martin N. Rossor
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - John Collinge
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Simon Mead
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
38
|
Benussi L, Binetti G, Sina E, Gigola L, Bettecken T, Meitinger T, Ghidoni R. A novel deletion in progranulin gene is associated with FTDP-17 and CBS. Neurobiol Aging 2008; 29:427-35. [PMID: 17157414 DOI: 10.1016/j.neurobiolaging.2006.10.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 10/26/2006] [Accepted: 10/30/2006] [Indexed: 10/23/2022]
Abstract
In the last decade familial frontotemporal dementia (FFTD) has emerged as a distinct clinical disease entity characterized by clinical and genetic heterogeneity. Here, we provide an extensive clinical and genetic characterization of two Italian pedigrees presenting with FFTD (FAM047: 5 patients, 5 unaffected; FAM071: 4 patients, 11 unaffected). Genetic analysis showed a conclusive linkage (LOD score for D17S791/D17S951: 4.173) to chromosome 17 and defined a candidate region containing MAPT and PGRN genes. Recombination analysis assigned two different disease haplotypes to FAM047 and FAM071. In affected subjects belonging to both families, we identified a novel 4 bp deletion mutation in exon 7 of PGRN gene (Leu271LeufsX10) associated with a variable clinical presentation ranging from FTDP-17 to corticobasal syndrome. The age-related penetrance was gender dependent. Both mutations in MAPT and PGRN genes are associated with highly variable clinical phenotypes. Despite the profound differences in the biological functions of the encoded proteins, it is not possible to define a clinical phenotype distinguishing the disease caused by mutations in MAPT and PGRN genes.
Collapse
Affiliation(s)
- Luisa Benussi
- NeuroBioGen Lab-Memory Clinic, IRCCS Centro San Giovanni di Dio-Fatebenefratelli, via Pilastroni 4, 25125 Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The diagnosis of primary progressive aphasia (PPA) is made in any patient in whom a language impairment (aphasia), caused by a neurodegenerative disease (progressive), constitutes the most salient aspect of the clinical picture (primary). The language impairment can be fluent or nonfluent and may or may not interfere with word comprehension. Memory for recent events is relatively preserved although memory scores obtained in verbally mediated tests may be abnormal. Lesser changes in behavior and object recognition may be present but are not the leading factors that bring the patient to medical attention. This selective clinical pattern is most conspicuous in the initial stages of the disease. Progressive nonfluent aphasia and some types of semantic dementia can be considered subtypes of PPA. Initially brought to the attention of contemporary literature 25 years ago, PPA has recently witnessed substantial progress related to its neurolinguistic features, neuroanatomy, imaging, neuropathology, genetics, and risk factors.
Collapse
|
40
|
Founder mutation p.R1441C in the leucine-rich repeat kinase 2 gene in Belgian Parkinson's disease patients. Eur J Hum Genet 2008; 16:471-9. [DOI: 10.1038/sj.ejhg.5201986] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
41
|
Pickering-Brown SM, Rollinson S, Du Plessis D, Morrison KE, Varma A, Richardson AMT, Neary D, Snowden JS, Mann DMA. Frequency and clinical characteristics of progranulin mutation carriers in the Manchester frontotemporal lobar degeneration cohort: comparison with patients with MAPT and no known mutations. ACTA ACUST UNITED AC 2008; 131:721-31. [PMID: 18192287 DOI: 10.1093/brain/awm331] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Two hundred and twenty-three consecutive patients fulfilling clinical diagnostic criteria for frontotemporal lobar degeneration (FTLD), and 259 patients with motor neuron disease (MND), for whom genomic DNA was available, were investigated for the presence of mutations in tau (MAPT) and progranulin (PGRN) genes. All FTLD patients had undergone longitudinal neuropsychological and clinical assessment, and in 44 cases, the diagnosis had been pathologically confirmed at post-mortem. Six different PGRN mutations were found in 13 (6%) patients with FTLD. Four apparently unrelated patients shared exon Q415X 10 stop codon mutation. However, genotyping data revealed all four patients shared common alleles of 15 SNPs from rs708386 to rs5848, defining a 45.8-kb haplotype containing the whole PGRN gene, suggesting they are related. Three patients shared exon 11 R493X stop codon mutation. Four patients shared exon 10 V452WfsX38 frameshift mutation. Two of these patients were siblings, though not apparently related to the other patients who in turn appeared unrelated. One patient had exon 1 C31LfsX34 frameshift mutation, one had exon 4 Q130SfsX130 frameshift mutation and one had exon 10 Q468X stop codon mutation. In addition, two non-synonymous changes were detected: G168S change in exon 5 was found in a single patient, with no family history, who showed a mixed FTLD/MND picture and A324T change in exon 9 was found in two cases; one case of frontotemporal dementia (FTD) with a sister with FTD+MND and the other in a case of progressive non-fluent aphasia (PNFA) without any apparent family history. MAPT mutations were found in 17 (8%) patients. One patient bore exon 10 + 13 splice mutation, and 16 patients bore exon 10 + 16 splice mutation. When PGRN and MAPT mutation carriers were excluded, there were no significant differences in either the allele or genotype frequencies, or haplotype frequencies, between the FTLD cohort as a whole, or for any clinical diagnostic FTLD subgroup, and 286 controls or between MND cases and controls. However, possession of the A allele of SNP rs9897526, in intron 4 of PGRN, delayed mean age at onset by approximately 4 years. Patients with PGRN and MAPT mutations did not differ significantly from other FTLD cases in terms of gender distribution or total duration of illness. However, a family history of dementia in a first-degree relative was invariably present in MAPT cases, but not always so in PGRN cases. Onset of illness was earlier in MAPT cases compared to PGRN and other FTLD cases. PNFA, combined with limb apraxia was significantly more common in PGRN mutation cases than other FTLD cases. By contrast, the behavioural disorder of FTD combined with semantic impairment was a strong predictor of MAPT mutations. These findings complement recent clinico-pathological findings in suggesting identifiable associations between clinical phenotype and genotype in FTLD.
Collapse
Affiliation(s)
- Stuart M Pickering-Brown
- Clinical Neuroscience Research Group, Faculty of Medical and Human Sciences, University of Manchester, Oxford Rd, Manchester M13 9PT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mesulam M, Weintraub S. Primary progressive aphasia and kindred disorders. HANDBOOK OF CLINICAL NEUROLOGY 2008; 89:573-87. [PMID: 18631780 DOI: 10.1016/s0072-9752(07)01254-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Marsel Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | |
Collapse
|
43
|
Rademakers R, Baker M, Gass J, Adamson J, Huey ED, Momeni P, Spina S, Coppola G, Karydas AM, Stewart H, Johnson N, Hsiung GY, Kelley B, Kuntz K, Steinbart E, Wood EM, Yu CE, Josephs K, Sorenson E, Womack KB, Weintraub S, Pickering-Brown SM, Schofield PR, Brooks WS, Van Deerlin VM, Snowden J, Clark CM, Kertesz A, Boylan K, Ghetti B, Neary D, Schellenberg GD, Beach TG, Mesulam M, Mann D, Grafman J, Mackenzie IR, Feldman H, Bird T, Petersen R, Knopman D, Boeve B, Geschwind DH, Miller B, Wszolek Z, Lippa C, Bigio EH, Dickson D, Graff-Radford N, Hutton M. Phenotypic variability associated with progranulin haploinsufficiency in patients with the common 1477C-->T (Arg493X) mutation: an international initiative. Lancet Neurol 2007; 6:857-68. [PMID: 17826340 DOI: 10.1016/s1474-4422(07)70221-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The progranulin gene (GRN) is mutated in 5-10% of patients with frontotemporal lobar degeneration (FTLD) and in about 20% of patients with familial FTLD. The most common mutation in GRN is Arg493X. We aimed to establish the contribution of this mutation to FTLD and related disorders. METHODS We measured the frequency of Arg493X in 3405 unrelated patients with various neurodegenerative diseases using Taqman single-nucleotide polymorphism (SNP) genotyping. Clinicopathological characterisation and shared haplotype analysis were done for 30 families with FTLD who carry Arg493X. To investigate the effect of potential modifying loci, we did linear regression analyses with onset age as the covariate for GRN variants, for genotypes of the apolipoprotein E gene (APOE), and for haplotypes of the microtubule-associated protein tau gene (MAPT). FINDINGS Of 731 patients with FTLD, 16 (2%) carried Arg493X. This mutation was not detected in 2674 patients who did not have FTLD. In 37 patients with Arg493X from 30 families with FTLD, clinical diagnoses included frontotemporal dementia, primary progressive aphasia, corticobasal syndrome, and Alzheimer's disease. Range of onset age was 44-69 years. In all patients who came to autopsy (n=13), the pathological diagnosis was FTLD with neuronal inclusions that contained TAR DNA-binding protein or ubiquitin, but not tau. Neurofibrillary tangle pathology in the form of Braak staging correlated with overall neuropathology in the Arg493X carriers. Haplotype analyses suggested that Arg493X arose twice, with a single founder for 27 families. Linear regression analyses suggested that patients with SNP rs9897528 on their wild-type GRN allele have delayed symptom onset. Onset ages were not associated with the MAPT H1 or H2 haplotypes or APOE genotypes, but early memory deficits were associated with the presence of an APOE epsilon4 allele. INTERPRETATION Clinical heterogeneity is associated with GRN haploinsufficiency, and genetic variability on the wild-type GRN allele might have a role in the age-related disease penetrance of GRN mutations.
Collapse
Affiliation(s)
- Rosa Rademakers
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kelley BJ, Haidar W, Boeve BF, Baker M, Graff-Radford NR, Krefft T, Frank AR, Jack CR, Shiung M, Knopman DS, Josephs KA, Parashos SA, Rademakers R, Hutton M, Pickering-Brown S, Adamson J, Kuntz KM, Dickson DW, Parisi JE, Smith GE, Ivnik RJ, Petersen RC. Prominent phenotypic variability associated with mutations in Progranulin. Neurobiol Aging 2007; 30:739-51. [PMID: 17949857 DOI: 10.1016/j.neurobiolaging.2007.08.022] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 07/27/2007] [Accepted: 08/26/2007] [Indexed: 12/12/2022]
Abstract
Mutations in progranulin (PGRN) are associated with frontotemporal dementia with or without parkinsonism. We describe the prominent phenotypic variability within and among eight kindreds evaluated at Mayo Clinic Rochester and/or Mayo Clinic Jacksonville in whom mutations in PGRN were found. All available clinical, genetic, neuroimaging and neuropathologic data was reviewed. Age of onset ranged from 49 to 88 years and disease duration ranged from 1 to 14 years. Clinical diagnoses included frontotemporal dementia (FTD), primary progressive aphasia, FTD with parkinsonism, parkinsonism, corticobasal syndrome, Alzheimer's disease, amnestic mild cognitive impairment, and others. One kindred exhibited maximal right cerebral hemispheric atrophy in all four affected individuals, while another had maximal left hemisphere involvement in all three of the affected. Neuropathologic examination of 13 subjects revealed frontotemporal lobar degeneration with ubiquitin-positive inclusions plus neuronal intranuclear inclusions in all cases. Age of onset, clinical phenotypes and MRI findings associated with most PGRN mutations varied significantly both within and among kindreds. Some kindreds with PGRN mutations exhibited lateralized topography of degeneration across all affected individuals.
Collapse
|
45
|
van der Zee J, Gijselinck I, Pirici D, Kumar-Singh S, Cruts M, Van Broeckhoven C. Frontotemporal lobar degeneration with ubiquitin-positive inclusions: a molecular genetic update. NEURODEGENER DIS 2007; 4:227-35. [PMID: 17596717 DOI: 10.1159/000101847] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) is a clinically, pathologically and genetically highly complex disorder. In the last few years enormous progress has been made in dissecting the genetic etiology of FTLD. Mutations have been identified in the progranulin gene (PGRN), the charged multivesicular body protein 2B gene (CHMP2B) and the valosin-containing protein gene (VCP). Mutations in these genes all lead to FTLD pathology characterized by ubiquitin-immunoreactive neuronal cytoplasmic and intranuclear lentiform inclusions (FTLD-U). The similar pathology suggests that these genes may be connected trough a common disease pathway leading to neurodegeneration and the formation of these pathognomic inclusions. This review focuses on the molecular genetic processes underlying FTLD-U pathology.
Collapse
Affiliation(s)
- Julie van der Zee
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Laboratory of Neurogenetics, Institute Born-Bunge, and University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
46
|
Le Ber I, van der Zee J, Hannequin D, Gijselinck I, Campion D, Puel M, Laquerrière A, De Pooter T, Camuzat A, Van den Broeck M, Dubois B, Sellal F, Lacomblez L, Vercelletto M, Thomas-Antérion C, Michel BF, Golfier V, Didic M, Salachas F, Duyckaerts C, Cruts M, Verpillat P, Van Broeckhoven C, Brice A. Progranulin null mutations in both sporadic and familial frontotemporal dementia. Hum Mutat 2007; 28:846-55. [PMID: 17436289 DOI: 10.1002/humu.20520] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Frontotemporal dementia (FTD) is the second most frequent type of neurodegenerative dementias. Mutations in the progranulin gene (GRN, PGRN) were recently identified in FTDU-17, an FTD subtype characterized by ubiquitin-immunoreactive inclusions and linkage to chromosome 17q21. We looked for PGRN mutations in a large series of 210 FTD patients (52 familial, 158 sporadic) to accurately evaluate the frequency of PGRN mutations in both sporadic and familial FTD, and FTD with associated motoneuron disease (FTD-MND), as well as to study the clinical phenotype of patients with a PGRN mutation. We identified nine novel PGRN null mutations in 10 index patients. The relative frequency of PGRN null mutations in FTD was 4.8% (10/210) and 12.8% (5/39) in pure familial forms. Interestingly, 5/158 (3.2%) apparently sporadic FTD patients carried a PGRN mutation, suggesting the possibility of de novo mutations or incomplete penetrance. In contrast, none of the 43 patients with FTD-MND had PGRN mutations, supporting that FTDU-17 and FTD-MND are genetically distinct. The clinical phenotype of PGRN mutation carriers was particular because of the wide range in onset age and the frequent occurrence of early apraxia (50%), visual hallucinations (30%), and parkinsonism (30%) during the course of the disease. This study supports that PGRN null mutations represent a more frequent cause of FTD than MAPT mutations (4.8% vs. 2.9%) but are not responsible for FTD-MND. It also demonstrates that half of the patients with a PGRN mutation in our series had no apparent family history of dementia. Taking this into account, genetic testing should be now considered more systematically, even in patients without obvious familial history of FTD.
Collapse
|
47
|
Pickering-Brown SM. Progranulin and frontotemporal lobar degeneration. Acta Neuropathol 2007; 114:39-47. [PMID: 17572900 DOI: 10.1007/s00401-007-0241-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 05/18/2007] [Accepted: 05/18/2007] [Indexed: 12/12/2022]
Abstract
Frontotemporal lobar degeneration is the term used to describe the non-Alzheimer clinical syndromes of frontotemporal dementia, semantic dementia and progressive non-fluent aphasia, regardless of the underlying neuropathological features. Considerable progress has been made in recent years in our understanding of the aetiology of this disorder, notably the identification of mutations in tau and progranulin genes, both on chromosome 17q21. Mutations in tau appear to affect the ability of tau to bind microtubules and/or increase this protein's ability to form fibrils. In contrast, progranulin mutations cause haploinsufficiency leading to TDP-43 accumulation. These genes collectively account for 10-20% of FTLD. However, it is clear that much remains to be discovered before our knowledge of this heterogeneous condition is complete.
Collapse
Affiliation(s)
- Stuart M Pickering-Brown
- Division of Regenerative Medicine, Stopford Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
48
|
Kumar-Singh S, Van Broeckhoven C. Frontotemporal lobar degeneration: current concepts in the light of recent advances. Brain Pathol 2007; 17:104-14. [PMID: 17493044 PMCID: PMC8095552 DOI: 10.1111/j.1750-3639.2007.00055.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Work done over the past decade has led to a molecular understanding of frontotemporal lobar degeneration (FTLD), a deadly disease that afflicts patients in mid-life. It is a common cause of dementia, second only to Alzheimer's disease in the population below 65 years of age. Neuroanatomical and neurobiological substrates have been identified for the three major subtypes of FTLD and these discoveries have broadened the FTLD spectrum to include amyotrophic lateral sclerosis (ALS). Mutations in MAPT were found to cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), a familial disorder with filamentous tau inclusions in nerve cells and glial cells. FTDP-17 can result in clinical syndromes that closely resemble progressive supranuclear palsy, corticobasal degeneration and Pick's disease. More recently, mutations in three genes (VCP, CHMP2B and PGRN) have been found to cause FTLD with ubiquitin-positive, tau-negative neuronal inclusions (FTLD-U). They explain a large proportion of inherited FTLD-U. It remains to be seen whether dementia lacking distinctive histopathology (DLDH) constitutes a third disease category, as many of these cases are now being reclassified as FTLD-U. Recently, TAR DNA-binding protein-43 (TDP-43) has been identified as a key protein of the ubiquitin inclusions of FTLD-U and ALS. Thus, for familial forms of FTLD and related disorders, we now know the primary etiologies and accumulating proteins. These findings are pivotal for dissecting the pathways by which different etiologies lead to the varied clinicopathological presentations of FTLD.
Collapse
Affiliation(s)
- Samir Kumar-Singh
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, Laboratory of Neurogenetics, VIB, Institute Born-Bunge and University of Antwerp, BE-2610 Antwerpen, Belgium.
| | | |
Collapse
|
49
|
Abstract
Tau protein is involved in microtubule assembly and stabilization. Filamentous deposits made of tau constitute a defining characteristic of several neurodegenerative diseases. The relevance of tau dysfunction for neurodegeneration has been clarified through the identification of mutations in the Tau gene in cases with frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Although the mechanisms by which these mutations lead to nerve cell death are only incompletely understood, it is clear that they cause the formation of tau filaments with distinct morphologies and isoform compositions. The range of tau pathology identified in FTDP-17 recapitulates that in sporadic tauopathies, indicating a major role for tau dysfunction in these diseases.
Collapse
|
50
|
Spina S, Murrell JR, Yoshida H, Ghetti B, Bermingham N, Sweeney B, Dlouhy SR, Crowther RA, Goedert M, Keohane C. The novel Tau mutation G335S: clinical, neuropathological and molecular characterization. Acta Neuropathol 2007; 113:461-70. [PMID: 17186252 DOI: 10.1007/s00401-006-0182-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 11/28/2006] [Accepted: 11/29/2006] [Indexed: 11/24/2022]
Abstract
Mutations in Tau cause the inherited neurodegenerative disease, frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). Known coding region mutations cluster in the microtubule-binding region, where they alter the ability of tau to promote microtubule assembly. Depending on the tau isoforms, this region consists of three or four imperfect repeats of 31 or 32 amino acids, each of which contains a characteristic and invariant PGGG motif. Here, we report the novel G335S mutation, which changes the PGGG motif of the third tau repeat to PGGS, in an individual who developed social withdrawal, emotional bluntness and stereotypic behavior at age 22, followed by disinhibition, hyperorality and ideomotor apraxia. Abundant tau-positive inclusions were present in neurons and glia in the frontotemporal cortex, hippocampus and brainstem. Sarkosyl-insoluble tau showed paired helical and straight filaments, as well as more irregular rope-like filaments. The pattern of pathological tau bands was like that of Alzheimer disease. Experimentally, the G335S mutation resulted in a greatly reduced ability of tau to promote microtubule assembly, while having no significant effect on heparin-induced assembly of recombinant tau into filaments.
Collapse
Affiliation(s)
- Salvatore Spina
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Drive MS A138, Indianapolis, IN, 46202, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|