1
|
Nussbaum C, Schirmer A, Schweinberger SR. Musicality - Tuned to the melody of vocal emotions. Br J Psychol 2024; 115:206-225. [PMID: 37851369 DOI: 10.1111/bjop.12684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/12/2023] [Accepted: 09/24/2023] [Indexed: 10/19/2023]
Abstract
Musicians outperform non-musicians in vocal emotion perception, likely because of increased sensitivity to acoustic cues, such as fundamental frequency (F0) and timbre. Yet, how musicians make use of these acoustic cues to perceive emotions, and how they might differ from non-musicians, is unclear. To address these points, we created vocal stimuli that conveyed happiness, fear, pleasure or sadness, either in all acoustic cues, or selectively in either F0 or timbre only. We then compared vocal emotion perception performance between professional/semi-professional musicians (N = 39) and non-musicians (N = 38), all socialized in Western music culture. Compared to non-musicians, musicians classified vocal emotions more accurately. This advantage was seen in the full and F0-modulated conditions, but was absent in the timbre-modulated condition indicating that musicians excel at perceiving the melody (F0), but not the timbre of vocal emotions. Further, F0 seemed more important than timbre for the recognition of all emotional categories. Additional exploratory analyses revealed a link between time-varying F0 perception in music and voices that was independent of musical training. Together, these findings suggest that musicians are particularly tuned to the melody of vocal emotions, presumably due to a natural predisposition to exploit melodic patterns.
Collapse
Affiliation(s)
- Christine Nussbaum
- Department for General Psychology and Cognitive Neuroscience, Friedrich Schiller University, Jena, Germany
- Voice Research Unit, Friedrich Schiller University, Jena, Germany
| | - Annett Schirmer
- Department for General Psychology and Cognitive Neuroscience, Friedrich Schiller University, Jena, Germany
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Stefan R Schweinberger
- Department for General Psychology and Cognitive Neuroscience, Friedrich Schiller University, Jena, Germany
- Voice Research Unit, Friedrich Schiller University, Jena, Germany
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Sihvonen AJ, Ferguson MA, Chen V, Soinila S, Särkämö T, Joutsa J. Focal Brain Lesions Causing Acquired Amusia Map to a Common Brain Network. J Neurosci 2024; 44:e1922232024. [PMID: 38423761 PMCID: PMC11007473 DOI: 10.1523/jneurosci.1922-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Music is a universal human attribute. The study of amusia, a neurologic music processing deficit, has increasingly elaborated our view on the neural organization of the musical brain. However, lesions causing amusia occur in multiple brain locations and often also cause aphasia, leaving the distinct neural networks for amusia unclear. Here, we utilized lesion network mapping to identify these networks. A systematic literature search was carried out to identify all published case reports of lesion-induced amusia. The reproducibility and specificity of the identified amusia network were then tested in an independent prospective cohort of 97 stroke patients (46 female and 51 male) with repeated structural brain imaging, specifically assessed for both music perception and language abilities. Lesion locations in the case reports were heterogeneous but connected to common brain regions, including bilateral temporoparietal and insular cortices, precentral gyrus, and cingulum. In the prospective cohort, lesions causing amusia mapped to a common brain network, centering on the right superior temporal cortex and clearly distinct from the network causally associated with aphasia. Lesion-induced longitudinal structural effects in the amusia circuit were confirmed as reduction of both gray and white matter volume, which correlated with the severity of amusia. We demonstrate that despite the heterogeneity of lesion locations disrupting music processing, there is a common brain network that is distinct from the language network. These results provide evidence for the distinct neural substrate of music processing, differentiating music-related functions from language, providing a testable target for noninvasive brain stimulation to treat amusia.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Centre of Excellence in Music, Mind, Body and Brain, University of Helsinki, Helsinki 00014, Finland
- Queensland Aphasia Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Neurology, Neurocenter, Helsinki University Hospital, Helsinki 00029, Finland
| | - Michael A Ferguson
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, Massachusetts 02115
- Harvard Medical School, Boston, Massachusetts 02115
- Center for the Study of World Religions, Harvard Divinity School, Cambridge, Massachusetts 02138
| | - Vicky Chen
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Seppo Soinila
- Division of Clinical Neurosciences, University of Turku and Neurocenter, Turku University Hospital, Turku 20521, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Centre of Excellence in Music, Mind, Body and Brain, University of Helsinki, Helsinki 00014, Finland
| | - Juho Joutsa
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku 20521, Finland
- Neurocenter and Turku PET Center, Turku University Hospital, Turku 20521, Finland
| |
Collapse
|
3
|
Asakura T. Subjective effects of broadband water sounds with inaudible high-frequency components. Sci Rep 2024; 14:7627. [PMID: 38561365 PMCID: PMC10984986 DOI: 10.1038/s41598-024-57749-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
This study aimed to investigate the effects of reproducing an ultrasonic sound above 20 kHz on the subjective impressions of water sounds using psychological and physiological information obtained by the semantic differential method and electroencephalography (EEG), respectively. The results indicated that the ultrasonic component affected the subjective impression of the water sounds. In addition, regarding the relationship between psychological and physiological aspects, a moderate correlation was confirmed between the EEG change rate and subjective impressions. However, no differences in characteristics were found between with and without the ultrasound component, suggesting that ultrasound does not directly affect the relationship between subjective impressions and EEG energy at the current stage. Furthermore, the correlations calculated for the left and right channels in the occipital region differed significantly, which suggests functional asymmetry for sound perception between the right and left hemispheres.
Collapse
Affiliation(s)
- Takumi Asakura
- Department of Mechanical and Aerospace Engineering, Faculty of Science and Engineering, Tokyo University of Science, Chiba, Japan.
| |
Collapse
|
4
|
Khalil R, Demarin V. Creative therapy in health and disease: Inner vision. CNS Neurosci Ther 2024; 30:e14266. [PMID: 37305955 PMCID: PMC10915997 DOI: 10.1111/cns.14266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Abstract
Can we better understand the unique mechanisms of de novo abilities in light of our current knowledge of the psychological and neuroscientific literature on creativity? This review outlines the state-of-the-art in the neuroscience of creativity and points out crucial aspects that still demand further exploration, such as brain plasticity. The progressive development of current neuroscience research on creativity presents a multitude of prospects and potentials for furnishing efficacious therapy in the context of health and illness. Therefore, we discuss directions for future studies, identifying a focus on pinpointing the neglected beneficial practices for creative therapy. We emphasize the neglected neuroscience perspective of creativity on health and disease and how creative therapy could offer limitless possibilities to improve our well-being and give hope to patients with neurodegenerative diseases to compensate for their brain injuries and cognitive impairments by expressing their hidden creativity.
Collapse
Affiliation(s)
- Radwa Khalil
- School of Business, Social and Decision SciencesConstructor UniversityBremenGermany
| | - Vida Demarin
- International Institute for Brain HealthZagrebCroatia
| |
Collapse
|
5
|
Geng P, Fan N, Ling R, Guo H, Lu Q, Chen X. The perception of Mandarin speech conveying communicative functions in Chinese heroin addicts. PLoS One 2024; 19:e0299331. [PMID: 38394164 PMCID: PMC10889662 DOI: 10.1371/journal.pone.0299331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Drug addiction can cause severe damage to the human brain, leading to significant problems in cognitive processing, such as irritability, speech distortions, and exaggeration of negative stimuli. Speech plays a fundamental role in social interaction, including both the production and perception. The ability to perceive communicative functions conveyed through speech is crucial for successful interpersonal communication and the maintaining good social relationships. However, due to the limited number of previous studies, it remains unclear whether the cognitive disorder caused by drug addiction affects the perception of communicative function conveyed in Mandarin speech. To address this question, we conducted a perception experiment involving sixty male participants, including 25 heroin addicts and 35 healthy controls. The experiment aimed to examine the perception of three communicative functions (i.e., statement, interrogative, and imperative) under three background noise conditions (i.e., no noise, SNR [Signal to Noise Ratio] = 10, and SNR = 0). Eight target sentences were first recorded by two native Mandarin speakers for each of the three communicative functions. Each half was then combined with Gaussian White Noise under two background noise conditions (i.e., SNR = 10 and SNR = 0). Finally, 48 speech stimuli were included in the experiment with four options provided for perceptual judgment. The results showed that, under the three noise conditions, the average perceptual accuracies of the three communicative functions were 80.66% and 38% for the control group and the heroin addicts, respectively. Significant differences were found in the perception of the three communicative functions between the control group and the heroin addicts under the three noise conditions, except for the recognition of imperative under strong noise condition (i.e., SNR = 0). Moreover, heroin addicts showed good accuracy (around 50%) in recognizing imperative and poor accuracy (i.e., lower than the chance level) in recognizing interrogative. This paper not only fills the research gap in the perception of communicative functions in Mandarin speech among drug addicts but also enhances the understanding of the effects of drugs on speech perception and provides a foundation for the speech rehabilitation of drug addicts.
Collapse
Affiliation(s)
- Puyang Geng
- Academy of Forensic Science, Shanghai, China
- Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, China
| | - Ningxue Fan
- Information Security and Social Management Innovation Lab, Shanghai Open University, Shanghai, China
| | - Rong Ling
- Academy of Forensic Science, Shanghai, China
- Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, China
| | - Hong Guo
- Academy of Forensic Science, Shanghai, China
- Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, China
| | - Qimeng Lu
- Academy of Forensic Science, Shanghai, China
- Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, China
| | - Xingwen Chen
- Network Security Team, Public Security Department of Guangxi Province, Nanning, Guangxi, China
| |
Collapse
|
6
|
Sun Y, Oxenham V, Lo CY, Walsh J, Martens WL, Cremer P, Thompson WF. Acquired amusia after a right middle cerebral artery infarction - a case study. Neurocase 2024; 30:18-28. [PMID: 38734872 DOI: 10.1080/13554794.2024.2350104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
A 62-year-old musician-MM-developed amusia after a right middle-cerebral-artery infarction. Initially, MM showed melodic deficits while discriminating pitch-related differences in melodies, musical memory problems, and impaired sensitivity to tonal structures, but normal pitch discrimination and spectral resolution thresholds, and normal cognitive and language abilities. His rhythmic processing was intact when pitch variations were removed. After 3 months, MM showed a large improvement in his sensitivity to tonality, but persistent melodic deficits and a decline in perceiving the metric structure of rhythmic sequences. We also found visual cues aided melodic processing, which is novel and beneficial for future rehabilitation practice.
Collapse
Affiliation(s)
- Yanan Sun
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Vincent Oxenham
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Neurology Department, Royal North Shore Hospital, Sydney, Australia
| | - Chi Yhun Lo
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Department of Psychology, Toronto Metropolitan University, Toronto, Canada
| | - Jessica Walsh
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Neurology Department, Royal North Shore Hospital, Sydney, Australia
| | - William L Martens
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Phillip Cremer
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Neurology Department, Royal North Shore Hospital, Sydney, Australia
| | - William Forde Thompson
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Faculty of Society and Design, Bond University, Queensland, Australia
| |
Collapse
|
7
|
Desbernats A, Martin E, Tallet J. Which factors modulate spontaneous motor tempo? A systematic review of the literature. Front Psychol 2023; 14:1161052. [PMID: 37920737 PMCID: PMC10619865 DOI: 10.3389/fpsyg.2023.1161052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/02/2023] [Indexed: 11/04/2023] Open
Abstract
Intentionally or not, humans produce rhythmic behaviors (e.g., walking, speaking, and clapping). In 1974, Paul Fraisse defined rhythmic behavior as a periodic movement that obeys a temporal program specific to the subject and that depends less on the conditions of the action (p. 47). Among spontaneous rhythms, the spontaneous motor tempo (SMT) corresponds to the tempo at which someone produces movements in the absence of external stimuli, at the most regular, natural, and pleasant rhythm for him/her. However, intra- and inter-individual differences exist in the SMT values. Even if several factors have been suggested to influence the SMT (e.g., the age of participants), we do not yet know which factors actually modulate the value of the SMT. In this context, the objectives of the present systematic review are (1) to characterize the range of SMT values found in the literature in healthy human adults and (2) to identify all the factors modulating the SMT values in humans. Our results highlight that (1) the reference value of SMT is far from being a common value of 600 ms in healthy human adults, but a range of SMT values exists, and (2) many factors modulate the SMT values. We discuss our results in terms of intrinsic factors (in relation to personal characteristics) and extrinsic factors (in relation to environmental characteristics). Recommendations are proposed to assess the SMT in future research and in rehabilitative, educative, and sport interventions involving rhythmic behaviors.
Collapse
Affiliation(s)
- Anaïs Desbernats
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | | | - Jessica Tallet
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
8
|
Tillmann B, Graves JE, Talamini F, Lévêque Y, Fornoni L, Hoarau C, Pralus A, Ginzburg J, Albouy P, Caclin A. Auditory cortex and beyond: Deficits in congenital amusia. Hear Res 2023; 437:108855. [PMID: 37572645 DOI: 10.1016/j.heares.2023.108855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/14/2023] [Accepted: 07/21/2023] [Indexed: 08/14/2023]
Abstract
Congenital amusia is a neuro-developmental disorder of music perception and production, with the observed deficits contrasting with the sophisticated music processing reported for the general population. Musical deficits within amusia have been hypothesized to arise from altered pitch processing, with impairments in pitch discrimination and, notably, short-term memory. We here review research investigating its behavioral and neural correlates, in particular the impairments at encoding, retention, and recollection of pitch information, as well as how these impairments extend to the processing of pitch cues in speech and emotion. The impairments have been related to altered brain responses in a distributed fronto-temporal network, which can be observed also at rest. Neuroimaging studies revealed changes in connectivity patterns within this network and beyond, shedding light on the brain dynamics underlying auditory cognition. Interestingly, some studies revealed spared implicit pitch processing in congenital amusia, showing the power of implicit cognition in the music domain. Building on these findings, together with audiovisual integration and other beneficial mechanisms, we outline perspectives for training and rehabilitation and the future directions of this research domain.
Collapse
Affiliation(s)
- Barbara Tillmann
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Université Claude Bernard Lyon 1, UMR5292, U1028, F-69500, Bron, France; Laboratory for Research on Learning and Development, Université de Bourgogne, LEAD - CNRS UMR5022, Dijon, France; LEAD-CNRS UMR5022; Université Bourgogne Franche-Comté; Pôle AAFE; 11 Esplanade Erasme; 21000 Dijon, France.
| | - Jackson E Graves
- Laboratoire des systèmes perceptifs, Département d'études cognitives, École normale supérieure, PSL University, Paris 75005, France
| | | | - Yohana Lévêque
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Université Claude Bernard Lyon 1, UMR5292, U1028, F-69500, Bron, France
| | - Lesly Fornoni
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Université Claude Bernard Lyon 1, UMR5292, U1028, F-69500, Bron, France
| | - Caliani Hoarau
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Université Claude Bernard Lyon 1, UMR5292, U1028, F-69500, Bron, France
| | - Agathe Pralus
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Université Claude Bernard Lyon 1, UMR5292, U1028, F-69500, Bron, France
| | - Jérémie Ginzburg
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Université Claude Bernard Lyon 1, UMR5292, U1028, F-69500, Bron, France
| | - Philippe Albouy
- CERVO Brain Research Center, School of Psychology, Laval University, Québec, G1J 2G3; International Laboratory for Brain, Music and Sound Research (BRAMS), CRBLM, Montreal QC, H2V 2J2, Canada
| | - Anne Caclin
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Université Claude Bernard Lyon 1, UMR5292, U1028, F-69500, Bron, France.
| |
Collapse
|
9
|
Bonakdarpour B, Zhou G, Huang D, Vidano CT, Schuele S, Zelano C, Takarabe C. Calming effect of Clinically Designed Improvisatory Music for patients admitted to the epilepsy monitoring unit during the COVID-19 pandemic: a pilot study. Front Neurol 2023; 14:1206171. [PMID: 37731858 PMCID: PMC10507627 DOI: 10.3389/fneur.2023.1206171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/04/2023] [Indexed: 09/22/2023] Open
Abstract
Background Epilepsy monitoring requires simulating seizure-inducing conditions which frequently causes discomfort to epilepsy monitoring unit (EMU) patients. COVID-19 hospital restrictions added another layer of stress during hospital admissions. The purpose of this pilot study was to provide evidence that live virtual Clinically Designed Improvisatory Music (CDIM) brings relief to EMU patients for their psychological distress. Methods Five persons with epilepsy (PWEs) in the EMU during the COVID-19 lockdown participated in the study (average age ± SD = 30.2 ± 6 years). Continuous electroencephalogram (EEG) and electrocardiogram (EKG) were obtained before, during, and after live virtual CDIM. CDIM consisted of 40 minutes of calming music played by a certified clinical music practitioner (CMP) on viola. Post-intervention surveys assessed patients' emotional state on a 1-10 Likert scale. Alpha/beta power spectral density ratio was calculated for each subject across the brain and was evaluated using one-way repeated analysis of variance, comparing 20 minutes before, during, and 20 minutes after CDIM. Post-hoc analysis was performed using paired t-test at the whole brain level and regions with peak changes. Results Patients reported enhanced emotional state (9 ± 1.26), decrease in tension (9.6 ± 0.49), decreased restlessness (8.6 ± 0.80), increased pleasure (9.2 ± 0.98), and likelihood to recommend (10 ± 0) on a 10-point Likert scale. Based on one-way repeated analysis of variance, alpha/beta ratio increased at whole-brain analysis (F3,12 = 5.01, P = 0.018) with a peak in midline (F3,12 = 6.63, P = 0.0068 for Cz) and anterior medial frontal region (F3,12 = 6.45, P = 0.0076 for Fz) during CDIM and showed a trend to remain increased post-intervention. Conclusion In this pilot study, we found positive effects of CDIM as reported by patients, and an increased alpha/beta ratio with meaningful electroencephalographic correlates due to the calming effects in response to CDIM. Our study provides proof of concept that live virtual CDIM offered demonstrable comfort with biologic correlations for patients admitted in the EMU during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Borna Bonakdarpour
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Feinberg School of Medicine, Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University, Chicago, IL, United States
| | - Guangyu Zhou
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniel Huang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Feinberg School of Medicine, Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University, Chicago, IL, United States
| | - Catherine T. Vidano
- Feinberg School of Medicine, Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University, Chicago, IL, United States
| | - Stephan Schuele
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Christina Zelano
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Clara Takarabe
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Feinberg School of Medicine, Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University, Chicago, IL, United States
| |
Collapse
|
10
|
Cossette-Roberge H, Li J, Citherlet D, Nguyen DK. Localizing and lateralizing value of auditory phenomena in seizures. Epilepsy Behav 2023; 145:109327. [PMID: 37422934 DOI: 10.1016/j.yebeh.2023.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Auditory seizures (AS) are a rare type of focal seizures. AS are classically thought to involve a seizure onset zone (SOZ) in the temporal lobe, but there remain uncertainties about their localizing and lateralizing value. We conducted a narrative literature review with the aim of providing an up-to-date description of the lateralizing and localizing value of AS. METHODS The databases PubMed, Scopus, and Google Scholar were searched for literature on AS in December 2022. All cortical stimulation studies, case reports, and case series were analyzed to assess for auditory phenomena that were suggestive of AS and to evaluate if the lateralization and/or localization of the SOZ could be determined. We classified AS according to their semiology (e.g., simple hallucination versus complex hallucination) and the level of evidence with which the SOZ could be predicted. RESULTS A total of 174 cases comprising 200 AS were analyzed from 70 articles. Across all studies, the SOZ of AS were more often in the left (62%) than in the right (38%) hemisphere. AS heard bilaterally followed this trend. Unilaterally heard AS were more often due to a SOZ in the contralateral hemisphere (74%), although they could also be ipsilateral (26%). The SOZ for AS was not limited to the auditory cortex, nor to the temporal lobe. The areas more frequently involved in the temporal lobe were the superior temporal gyrus (STG) and mesiotemporal structures. Extratemporal locations included parietal, frontal, insular, and rarely occipital structures. CONCLUSION Our review highlighted the complexity of AS and their importance in the identification of the SOZ. Due to the limited data and heterogeneous presentation of AS in the literature, the patterns associated with different AS semiologies warrant further research.
Collapse
Affiliation(s)
- Hélène Cossette-Roberge
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Neurology Division, Centre Hospitalier de l'Université de Sherbrooke (CHUS), Sherbrooke, QC, Canada.
| | - Jimmy Li
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Neurology Division, Centre Hospitalier de l'Université de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Daphné Citherlet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Dang Khoa Nguyen
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Department of Neurosciences, Université de Montréal, Montreal, QC, Canada; Neurology Division, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| |
Collapse
|
11
|
Benítez-Burraco A, Nikolsky A. The (Co)Evolution of Language and Music Under Human Self-Domestication. HUMAN NATURE (HAWTHORNE, N.Y.) 2023; 34:229-275. [PMID: 37097428 PMCID: PMC10354115 DOI: 10.1007/s12110-023-09447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
Together with language, music is perhaps the most distinctive behavioral trait of the human species. Different hypotheses have been proposed to explain why only humans perform music and how this ability might have evolved in our species. In this paper, we advance a new model of music evolution that builds on the self-domestication view of human evolution, according to which the human phenotype is, at least in part, the outcome of a process similar to domestication in other mammals, triggered by the reduction in reactive aggression responses to environmental changes. We specifically argue that self-domestication can account for some of the cognitive changes, and particularly for the behaviors conducive to the complexification of music through a cultural mechanism. We hypothesize four stages in the evolution of music under self-domestication forces: (1) collective protomusic; (2) private, timbre-oriented music; (3) small-group, pitch-oriented music; and (4) collective, tonally organized music. This line of development encompasses the worldwide diversity of music types and genres and parallels what has been hypothesized for languages. Overall, music diversity might have emerged in a gradual fashion under the effects of the enhanced cultural niche construction as shaped by the progressive decrease in reactive (i.e., impulsive, triggered by fear or anger) aggression and the increase in proactive (i.e., premeditated, goal-directed) aggression.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish Language, Linguistics and Literary Theory (Linguistics), Faculty of Philology, University of Seville, Seville, Spain.
- Departamento de Lengua Española, Facultad de Filología, Área de Lingüística General, Lingüística y Teoría de la Literatura, Universidad de Sevilla, C/ Palos de la Frontera s/n, Sevilla, 41007, España.
| | | |
Collapse
|
12
|
Music perception in acquired prosopagnosia. Neuropsychologia 2023; 183:108540. [PMID: 36913989 DOI: 10.1016/j.neuropsychologia.2023.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Acquired prosopagnosia is often associated with other deficits such as dyschromatopsia and topographagnosia, from damage to adjacent perceptual networks. A recent study showed that some subjects with developmental prosopagnosia also have congenital amusia, but problems with music perception have not been described with the acquired variant. OBJECTIVE Our goal was to determine if music perception was also impaired in subjects with acquired prosopagnosia, and if so, its anatomic correlate. METHOD We studied eight subjects with acquired prosopagnosia, all of whom had extensive neuropsychological and neuroimaging testing. They performed a battery of tests evaluating pitch and rhythm processing, including the Montréal Battery for the Evaluation of Amusia. RESULTS At the group level, subjects with anterior temporal lesions were impaired in pitch perception relative to the control group, but not those with occipitotemporal lesions. Three of eight subjects with acquired prosopagnosia had impaired musical pitch perception while rhythm perception was spared. Two of the three also showed reduced musical memory. These three reported alterations in their emotional experience of music: one reported music anhedonia and aversion, while the remaining two had changes consistent with musicophilia. The lesions of these three subjects affected the right or bilateral temporal poles as well as the right amygdala and insula. None of the three prosopagnosic subjects with lesions limited to the inferior occipitotemporal cortex exhibited impaired pitch perception or musical memory, or reported changes in music appreciation. CONCLUSION Together with the results of our previous studies of voice recognition, these findings indicate an anterior ventral syndrome that can include the amnestic variant of prosopagnosia, phonagnosia, and various alterations in music perception, including acquired amusia, reduced musical memory, and subjective reports of altered emotional experience of music.
Collapse
|
13
|
Jeong E, Ireland SJ. Criterion-Related Validation of a Music-Based Attention Assessment for Individuals with Traumatic Brain Injury. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16285. [PMID: 36498353 PMCID: PMC9738551 DOI: 10.3390/ijerph192316285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The music-based attention assessment (MAA) is a melody contour identification task that evaluates different types of attention. Previous studies have examined the psychometric and physiological validity of the MAA across various age groups in clinical and typical populations. The purpose of this study was to confirm the MAA's criterion validity in individuals with traumatic brain injury (TBI) and to correlate this with standardized neuropsychological measurements. The MAA and various neurocognitive tests (i.e., the Wechsler adult intelligence scale DST, Delis-Kaplan executive functioning scale color-word interference test, and Conner's continuous performance test) were administered to 38 patients within two weeks prior to or post to the MAA administration. Significant correlations between MAA and neurocognitive batteries were found, indicating the potential of MAA as a valid measure of different types of attention deficits. An additional multiple regression analysis revealed that MAA was a significant factor in predicting attention ability.
Collapse
Affiliation(s)
- Eunju Jeong
- Department of Music Therapy, Graduate School, Ewha Womans University, Seoul 03760, Republic of Korea
| | | |
Collapse
|
14
|
Semyachkina-Glushkovskaya O, Diduk S, Anna E, Elina D, Artem K, Khorovodov A, Shirokov A, Fedosov I, Dubrovsky A, Blokhina I, Terskov A, Navolokin N, Evsukova A, Elovenko D, Adushkina V, Kurths J. Music improves the therapeutic effects of bevacizumab in rats with glioblastoma: Modulation of drug distribution to the brain. Front Oncol 2022; 12:1010188. [PMID: 36313687 PMCID: PMC9606698 DOI: 10.3389/fonc.2022.1010188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background The development of new methods for modulation of drug distribution across to the brain is a crucial step in the effective therapies for glioblastoma (GBM). In our previous work, we discovered the phenomenon of music-induced opening of the blood-brain barrier (OBBB) in healthy rodents. In this pilot study on rats, we clearly demonstrate that music-induced BBB opening improves the therapeutic effects of bevacizumab (BZM) in rats with GBM via increasing BZM distribution to the brain along the cerebral vessels. Methods The experiments were performed on Wistar male rats (200–250 g, n=161) using transfected C6-TagRFP cell line and the loud rock music for OBBB. The OBBB was assessed by spectrofluorometric assay of Evans Blue (EB) extravasation and confocal imaging of fluorescent BZM (fBZM) delivery into the brain. Additionally, distribution of fBZM and Omniscan in the brain was studied using fluorescent and magnetic resonance imaging (MRI), respectively. To analyze the therapeutic effects of BZM on the GBM growth in rats without and with OBBB, the GBM volume (MRI scans), as well as immunohistochemistry assay of proliferation (Ki67 marker) and apoptosis (Bax marker) in the GBM cells were studied. The Mann–Whitney–Wilcoxon test was used for all analysis, the significance level was p < 0.05, n=7 in each group. Results Our finding clearly demonstrates that music-induced OBBB increases the delivery of EB into the brain tissues and the extravasation of BZM into the brain around the cerebral vessels of rats with GBM. Music significantly increases distribution of tracers (fBZM and Omniscan) in the rat brain through the pathways of brain drainage system (perivascular and lymphatic), which are an important route of drug delivery into the brain. The music-induced OBBB improves the suppressive effects of BZM on the GBM volume and the cellular mechanisms of tumor progression that was accompanied by higher survival among rats in the GBM+BZM+Music group vs. other groups. Conclusion We hypothesized that music improves the therapeutic effects of BZM via OBBB in the normal cerebral vessels and lymphatic drainage of the brain tissues. This contributes better distribution of BZM in the brain fluids and among the normal cerebral vessels, which are used by GBM for invasion and co-opt existing vessels as a satellite tumor form. These results open the new perspectives for an improvement of therapeutic effects of BZM via the music-induced OBBB for BZM in the normal cerebral vessels, which are used by GBM for migration and progression.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Humboldt University, Institute of Physics, Berlin, Germany
- Deparment of Biology, Saratov State University, Saratov, Russia
- *Correspondence: Oxana Semyachkina-Glushkovskaya,
| | - Sergey Diduk
- Laboratory of Pharmaceutical Biotechnology, Pushchino State Institute of Natural Science, Pushchino, Russia
- Department of Biotechnology, Leeners LLС, Moscow, Russia
| | - Eroshova Anna
- Laboratory of Pharmaceutical Biotechnology, Pushchino State Institute of Natural Science, Pushchino, Russia
- Department of Biotechnology, Leeners LLС, Moscow, Russia
| | - Dosadina Elina
- Laboratory of Pharmaceutical Biotechnology, Pushchino State Institute of Natural Science, Pushchino, Russia
- Department of Biotechnology, Leeners LLС, Moscow, Russia
| | - Kruglov Artem
- Laboratory of Pharmaceutical Biotechnology, Pushchino State Institute of Natural Science, Pushchino, Russia
- Department of Biotechnology, Leeners LLС, Moscow, Russia
| | | | - Alexander Shirokov
- Deparment of Biology, Saratov State University, Saratov, Russia
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov, Russia
| | - Ivan Fedosov
- Deparment of Biology, Saratov State University, Saratov, Russia
| | | | - Inna Blokhina
- Deparment of Biology, Saratov State University, Saratov, Russia
| | - Andrey Terskov
- Deparment of Biology, Saratov State University, Saratov, Russia
| | - Nikita Navolokin
- Deparment of Biology, Saratov State University, Saratov, Russia
- Department of Pathological Anatomy, Saratov Medical State University, Saratov, Russia
| | - Arina Evsukova
- Deparment of Biology, Saratov State University, Saratov, Russia
| | - Daria Elovenko
- Deparment of Biology, Saratov State University, Saratov, Russia
| | | | - Jürgen Kurths
- Humboldt University, Institute of Physics, Berlin, Germany
- Deparment of Biology, Saratov State University, Saratov, Russia
- Potsdam Institute for Climate Impact Research, Department of Complexity Science, Potsdam, Germany
| |
Collapse
|
15
|
Wired for sound: The effect of sound on the epileptic brain. Seizure 2022; 102:22-31. [PMID: 36179456 DOI: 10.1016/j.seizure.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Sound waves are all around us resonating at audible and inaudible frequencies. Our ability to hear is crucial in providing information and enabling interaction with our environment. The human brain generates neural oscillations or brainwaves through synchronised electrical impulses. In epilepsy these brainwaves can change and form rhythmic bursts of abnormal activity outwardly appearing as seizures. When two waveforms meet, they can superimpose onto one another forming constructive, destructive or mixed interference. The effects of audible soundwaves on epileptic brainwaves has been largely explored with music. The Mozart Sonata for Two Pianos in D major, K. 448 has been examined in a number of studies where significant clinical and methodological heterogeneity exists. These studies report variable reductions in seizures and interictal epileptiform discharges. Treatment effects of Mozart Piano Sonata in C Major, K.545 and other composer interventions have been examined with some musical exposures, for example Hayden's Symphony No. 94 appearing pro-epileptic. The underlying anti-epileptic mechanism of Mozart music is currently unknown, but interesting research is moving away from dopamine reward system theories to computational analysis of specific auditory parameters. In the last decade several studies have examined inaudible low intensity focused ultrasound as a neuro-modulatory intervention in focal epilepsy. Whilst acute and chronic epilepsy rodent model studies have consistently demonstrated an anti-epileptic treatment effect this is yet to be reported within large scale human trials. Inaudible infrasound is of concern since at present there are no reported studies on the effects of exposure to infrasound on epilepsy. Understanding the impact of infrasound on epilepsy is critical in an era where sustainable energies are likely to increase exposure.
Collapse
|
16
|
Disturbed Pitch Perception during Antidepressant Therapy of a Combination of Lithium, Nortriptyline, and Oxazepam: A Rare Unexpected and Undesirable Side Effect for a Violinist. Case Rep Otolaryngol 2022; 2022:4494284. [PMID: 35911473 PMCID: PMC9334125 DOI: 10.1155/2022/4494284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Disturbed pitch perception is a rare but well-known side effect of the antiepileptic drug carbamazepine and its derivates. A patient is presented who used three antidepressants because of depression. After recovering, the medication was continued, but as a violinist, the patient was told that his intonation was too low with the consequence that he was not allowed to participate in the orchestra where he had been for years. After phasing out the medications, his pitch perception returned to normal. This observation is unique as no other examples of this side effect are found in the literature in relation to antidepressants.
Collapse
|
17
|
Sihvonen AJ, Särkämö T. Music processing and amusia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:55-67. [PMID: 35964992 DOI: 10.1016/b978-0-12-823493-8.00014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Music is a universal and important human trait, which is orchestrated by complex brain network centered in the temporal lobe but connecting broadly to multiple cortical and subcortical regions. In the human brain, music engages a widespread bilateral network of regions that govern auditory perception, syntactic and semantic processing, attention and memory, emotion and reward, and motor skills. The ability to perceive or produce music can be severely impaired either due to abnormal brain development or brain damage, leading to a condition called amusia. Modern neuroimaging studies of amusia have provided valuable knowledge about the structure and function of specific brain regions and white matter pathways that are crucial for music perception, highlighting the role of the right frontotemporal network in this process. In this chapter, we provide an overview on the neural basis of music processing in a healthy brain and review evidence obtained from the studies of congenital and acquired amusia.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- School of Health and Rehabilitation Sciences, Queensland Aphasia Research Centre, The University of Queensland, Herston, QLD, Australia; Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Teppo Särkämö
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
18
|
Yaghmour M, Sarada P, Roach S, Kadar I, Pesheva Z, Chaari A, Bendriss G. EEG Correlates of Middle Eastern Music Improvisations on the Ney Instrument. Front Psychol 2021; 12:701761. [PMID: 34671287 PMCID: PMC8520950 DOI: 10.3389/fpsyg.2021.701761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/14/2021] [Indexed: 11/27/2022] Open
Abstract
The cognitive sciences have witnessed a growing interest in cognitive and neural basis of human creativity. Music improvisations constitute an ideal paradigm to study creativity, but the underlying cognitive processes remain poorly understood. In addition, studies on music improvisations using scales other than the major and minor chords are scarce. Middle Eastern Music is characterized by the additional use of microtones, resulting in a tonal–spatial system called Maqam. No EEG correlates have been proposed yet for the eight most commonly used maqams. The Ney, an end-blown flute that is popular and widely used in the Middle East was used by a professional musician to perform 24 improvisations at low, medium, and high tempos. Using the EMOTIV EPOC+, a 14-channel wireless EEG headset, brainwaves were recorded and quantified before and during improvisations. Pairwise comparisons were calculated using IBM-SPSS and a principal component analysis was used to evaluate the variability between the maqams. A significant increase of low frequency bands theta power and alpha power were observed at the frontal left and temporal left area as well as a significant increase in higher frequency bands beta-high bands and gamma at the right temporal and left parietal area. This study reveals the first EEG observations of the eight most commonly used maqam and is proposing EEG signatures for various maqams.
Collapse
Affiliation(s)
| | | | - Sarah Roach
- Premedical Division, Weill Cornell Medicine Qatar, Doha, Qatar
| | | | | | - Ali Chaari
- Premedical Division, Weill Cornell Medicine Qatar, Doha, Qatar
| | | |
Collapse
|
19
|
Sihvonen AJ, Sammler D, Ripollés P, Leo V, Rodríguez-Fornells A, Soinila S, Särkämö T. Right ventral stream damage underlies both poststroke aprosodia and amusia. Eur J Neurol 2021; 29:873-882. [PMID: 34661326 DOI: 10.1111/ene.15148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE This study was undertaken to determine and compare lesion patterns and structural dysconnectivity underlying poststroke aprosodia and amusia, using a data-driven multimodal neuroimaging approach. METHODS Thirty-nine patients with right or left hemisphere stroke were enrolled in a cohort study and tested for linguistic and affective prosody perception and musical pitch and rhythm perception at subacute and 3-month poststroke stages. Participants listened to words spoken with different prosodic stress that changed their meaning, and to words spoken with six different emotions, and chose which meaning or emotion was expressed. In the music tasks, participants judged pairs of short melodies as the same or different in terms of pitch or rhythm. Structural magnetic resonance imaging data were acquired at both stages, and machine learning-based lesion-symptom mapping and deterministic tractography were used to identify lesion patterns and damaged white matter pathways giving rise to aprosodia and amusia. RESULTS Both aprosodia and amusia were behaviorally strongly correlated and associated with similar lesion patterns in right frontoinsular and striatal areas. In multiple regression models, reduced fractional anisotropy and lower tract volume of the right inferior fronto-occipital fasciculus were the strongest predictors for both disorders, over time. CONCLUSIONS These results highlight a common origin of aprosodia and amusia, both arising from damage and disconnection of the right ventral auditory stream integrating rhythmic-melodic acoustic information in prosody and music. Comorbidity of these disabilities may worsen the prognosis and affect rehabilitation success.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
| | - Daniela Sammler
- Research Group "Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Pablo Ripollés
- Department of Psychology, New York University, New York, New York, USA
| | - Vera Leo
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Spain.,Department of Cognition, Development, and Education Psychology, University of Barcelona, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Seppo Soinila
- Neurocenter, Turku University Hospital and Division of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Matsushita R, Puschmann S, Baillet S, Zatorre RJ. Inhibitory effect of tDCS on auditory evoked response: Simultaneous MEG-tDCS reveals causal role of right auditory cortex in pitch learning. Neuroimage 2021; 233:117915. [PMID: 33652144 DOI: 10.1016/j.neuroimage.2021.117915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 12/29/2022] Open
Abstract
A body of literature has demonstrated that the right auditory cortex (AC) plays a dominant role in fine pitch processing. However, our understanding is relatively limited about whether this asymmetry extends to perceptual learning of pitch. There is also a lack of causal evidence regarding the role of the right AC in pitch learning. We addressed these points with anodal transcranial direct current stimulation (tDCS), adapting a previous behavioral study in which anodal tDCS over the right AC was shown to block improvement of a microtonal pitch pattern learning task over 3 days. To address the physiological changes associated with tDCS, we recorded MEG data simultaneously with tDCS on the first day, and measured behavioral thresholds on the following two consecutive days. We tested three groups of participants who received anodal tDCS over their right or left AC, or sham tDCS, and measured the N1m auditory evoked response before, during, and after tDCS. Our data show that anodal tDCS of the right AC disrupted pitch discrimination learning up to two days after its application, whereas learning was unaffected by left-AC or sham tDCS. Although tDCS reduced the amplitude of the N1m ipsilaterally to the stimulated hemisphere on both left and right, only right AC N1m amplitude reductions were associated with the degree to which pitch learning was disrupted. This brain-behavior relationship confirms a causal link between right AC physiological responses and fine pitch processing, and provides neurophysiological insight concerning the mechanisms of action of tDCS on the auditory system.
Collapse
Affiliation(s)
- Reiko Matsushita
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Centre for Research on Brain, Language and Music, Montreal, QC H3G 2A8, Canada; International Laboratory for Brain, Music and Sound Research, Montreal, QC H2V 2S9, Canada.
| | - Sebastian Puschmann
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Centre for Research on Brain, Language and Music, Montreal, QC H3G 2A8, Canada; Institute of Psychology, Carl von Ossietzky University, Oldenburg 26111, Germany
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Centre for Research on Brain, Language and Music, Montreal, QC H3G 2A8, Canada
| | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Centre for Research on Brain, Language and Music, Montreal, QC H3G 2A8, Canada; International Laboratory for Brain, Music and Sound Research, Montreal, QC H2V 2S9, Canada.
| |
Collapse
|
21
|
Štillová K, Kiska T, Koriťáková E, Strýček O, Mekyska J, Chrastina J, Rektor I. Mozart effect in epilepsy: Why is Mozart better than Haydn? Acoustic qualities-based analysis of stereoelectroencephalography. Eur J Neurol 2021; 28:1463-1469. [PMID: 33527581 DOI: 10.1111/ene.14758] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/12/2020] [Accepted: 01/26/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE We aimed to confirm the Mozart effect in epileptic patients using intracerebral electroencephalography recordings and the hypothesis that the reduction of epileptiform discharges (EDs) can be explained by the music's acoustic properties. METHODS Eighteen epilepsy surgery candidates were implanted with depth electrodes in the temporal medial and lateral cortex. Patients listened to the first movement of Mozart's Sonata for Two Pianos K. 448 and to the first movement of Haydn's Symphony No. 94. Musical features from each composition with respect to rhythm, melody, and harmony were analyzed. RESULTS Epileptiform discharges in intracerebral electroencephalography were reduced by Mozart's music. Listening to Haydn's music led to reduced EDs only in women; in men, the EDs increased. The acoustic analysis revealed that nondissonant music with a harmonic spectrum and decreasing tempo with significant high-frequency parts has a reducing effect on EDs in men. To reduce EDs in women, the music should additionally be gradually less dynamic in terms of loudness. Finally, we were able to demonstrate that these acoustic characteristics are more dominant in Mozart's music than in Haydn's music. CONCLUSIONS We confirmed the reduction of intracerebral EDs while listening to classical music. An analysis of the musical features revealed that the acoustic characteristics of music are responsible for suppressing brain epileptic activity. Based on our study, we suggest studying the use of musical pieces with well-defined acoustic properties as an alternative noninvasive method to reduce epileptic activity in patients with epilepsy.
Collapse
Affiliation(s)
- Klára Štillová
- Central European Institute of Technology-CEITEC, Masaryk University, Brno, Czech Republic.,Epilepsy Centre and Department of Neurology, Faculty of Medicine, St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| | - Tomáš Kiska
- Central European Institute of Technology-CEITEC, Masaryk University, Brno, Czech Republic.,Department of Telecommunications, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Eva Koriťáková
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondřej Strýček
- Central European Institute of Technology-CEITEC, Masaryk University, Brno, Czech Republic.,Epilepsy Centre and Department of Neurology, Faculty of Medicine, St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| | - Jiří Mekyska
- Department of Telecommunications, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Jan Chrastina
- Central European Institute of Technology-CEITEC, Masaryk University, Brno, Czech Republic.,Department of Neurosurgery, Faculty of Medicine, St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| | - Ivan Rektor
- Central European Institute of Technology-CEITEC, Masaryk University, Brno, Czech Republic.,Epilepsy Centre and Department of Neurology, Faculty of Medicine, St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| |
Collapse
|
22
|
Klarendić M, Gorišek VR, Granda G, Avsenik J, Zgonc V, Kojović M. Auditory agnosia with anosognosia. Cortex 2021; 137:255-270. [PMID: 33647851 DOI: 10.1016/j.cortex.2020.12.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/17/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
A 66-year-old right-handed female medical doctor suffered two consecutive cardioembolic strokes, initially affecting the right frontal lobe and the right insula, followed by a lesion in the left temporal lobe. The patient presented with distinctive phenomenology of general auditory agnosia with anosognosia for the deficit. She did not understand verbal requests and her answers to oral questions were fluent but unrelated to the topic. However, she was able to correctly answer written questions, name objects, and fluently describe their purpose, which is characteristic for verbal auditory agnosia. She was also unable to recognise environmental sounds or to recognise and repeat any melody. These inabilities represent environmental sound agnosia and amusia, respectively. Surprisingly, she was not aware of the problem, not asking any questions regarding her symptoms, and avoiding discussing her inability to understand spoken language, which is indicative of anosognosia. The deficits in our patient followed a distinct pattern of recovery. The verbal auditory agnosia was the first to resolve, followed by environmental sound agnosia. Amusia persisted the longest. The patient was clinically assessed from the first day of symptom onset and the evolution of symptoms was video documented. We give a detailed account of the patient's behaviour and provide results of audiological and neuropsychological evaluations. We discuss the anatomy of auditory agnosia and anosognosia relevant to the case. This case study may serve to better understand auditory agnosia in clinical settings. It is important to distinguish auditory agnosia from Wernicke's aphasia, because use of written language may enable normal communication.
Collapse
Affiliation(s)
- Maja Klarendić
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Veronika R Gorišek
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Gal Granda
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jernej Avsenik
- Department of Neuroradiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Vid Zgonc
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Maja Kojović
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
23
|
Holmes E, Utoomprurkporn N, Hoskote C, Warren JD, Bamiou DE, Griffiths TD. Simultaneous auditory agnosia: Systematic description of a new type of auditory segregation deficit following a right hemisphere lesion. Cortex 2021; 135:92-107. [PMID: 33360763 PMCID: PMC7856551 DOI: 10.1016/j.cortex.2020.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/17/2020] [Accepted: 10/22/2020] [Indexed: 11/27/2022]
Abstract
We investigated auditory processing in a young patient who experienced a single embolus causing an infarct in the right middle cerebral artery territory. This led to damage to auditory cortex including planum temporale that spared medial Heschl's gyrus, and included damage to the posterior insula and inferior parietal lobule. She reported chronic difficulties with segregating speech from noise and segregating elements of music. Clinical tests showed no evidence for abnormal cochlear function. Follow-up tests confirmed difficulties with auditory segregation in her left ear that spanned multiple domains, including words-in-noise and music streaming. Testing with a stochastic figure-ground task-a way of estimating generic acoustic foreground and background segregation-demonstrated that this was also abnormal. This is the first demonstration of an acquired deficit in the segregation of complex acoustic patterns due to cortical damage, which we argue is a causal explanation for the symptomatic deficits in the segregation of speech and music. These symptoms are analogous to the visual symptom of simultaneous agnosia. Consistent with functional imaging studies on normal listeners, the work implicates non-primary auditory cortex. Further, the work demonstrates a (partial) lateralisation of the necessary anatomical substrate for segregation that has not been previously highlighted.
Collapse
Affiliation(s)
- Emma Holmes
- Wellcome Centre for Human Neuroimaging, UCL, London, UK.
| | - Nattawan Utoomprurkporn
- UCL Ear Institute, UCL, London, UK; NIHR University College London Hospitals Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, UCL, London, UK; Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chandrashekar Hoskote
- Lysholm Department of Neuroradiology, University College London Hospitals NHS Foundation Trust, UCL, London, UK
| | | | - Doris-Eva Bamiou
- UCL Ear Institute, UCL, London, UK; NIHR University College London Hospitals Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, UCL, London, UK
| | - Timothy D Griffiths
- Wellcome Centre for Human Neuroimaging, UCL, London, UK; Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
24
|
Semyachkina-Glushkovskaya O, Esmat A, Bragin D, Bragina O, Shirokov AA, Navolokin N, Yang Y, Abdurashitov A, Khorovodov A, Terskov A, Klimova M, Mamedova A, Fedosov I, Tuchin V, Kurths J. Phenomenon of music-induced opening of the blood-brain barrier in healthy mice. Proc Biol Sci 2020; 287:20202337. [PMID: 33323086 PMCID: PMC7779516 DOI: 10.1098/rspb.2020.2337] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Music plays a more important role in our life than just being an entertainment. For example, it can be used as an anti-anxiety therapy of human and animals. However, the unsafe listening of loud music triggers hearing loss in millions of young people and professional musicians (rock, jazz and symphony orchestra) owing to exposure to damaging sound levels using personal audio devices or at noisy entertainment venues including nightclubs, discotheques, bars and concerts. Therefore, it is important to understand how loud music affects us. In this pioneering study on healthy mice, we discover that loud rock music below the safety threshold causes opening of the blood-brain barrier (OBBB), which plays a vital role in protecting the brain from viruses, bacteria and toxins. We clearly demonstrate that listening to loud music during 2 h in an intermittent adaptive regime is accompanied by delayed (1 h after music exposure) and short-lasting to (during 1-4 h) OBBB to low and high molecular weight compounds without cochlear and brain impairments. We present the systemic and molecular mechanisms responsible for music-induced OBBB. Finally, a revision of our traditional knowledge about the BBB nature and the novel strategies in optimizing of sound-mediated methods for brain drug delivery are discussed.
Collapse
Affiliation(s)
- O. Semyachkina-Glushkovskaya
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya Strasse 83, Saratov 410012, Russia
| | - A. Esmat
- Department of Biology, Saratov State University, Astrakhanskaya Strasse 83, Saratov 410012, Russia
| | - D. Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - O. Bragina
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA
| | - A. A. Shirokov
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov 410049, Russian Federation
| | - N. Navolokin
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Anatomy, Saratov State Medical University, Bolshaya Kazachaya Strasse 112, Saratov 410012, Russia
| | - Y. Yang
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - A. Abdurashitov
- Department of Biology, Saratov State University, Astrakhanskaya Strasse 83, Saratov 410012, Russia
| | - A. Khorovodov
- Department of Biology, Saratov State University, Astrakhanskaya Strasse 83, Saratov 410012, Russia
| | - A. Terskov
- Department of Biology, Saratov State University, Astrakhanskaya Strasse 83, Saratov 410012, Russia
| | - M. Klimova
- Department of Biology, Saratov State University, Astrakhanskaya Strasse 83, Saratov 410012, Russia
| | - A. Mamedova
- Department of Biology, Saratov State University, Astrakhanskaya Strasse 83, Saratov 410012, Russia
| | - I. Fedosov
- Department of Biology, Saratov State University, Astrakhanskaya Strasse 83, Saratov 410012, Russia
| | - V. Tuchin
- Department of Biology, Saratov State University, Astrakhanskaya Strasse 83, Saratov 410012, Russia
- Laboratory of Biophotonics, Tomsk State University, 36 Lenin's Ave., Tomsk 634050, Russia
- Institute of Precision Mechanics and Control of RAS, Rabochaya Strasse 24, Saratov 410028, Russia
| | - J. Kurths
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya Strasse 83, Saratov 410012, Russia
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
25
|
Swall A, Hammar LM, Gransjön Craftman Å. Like a bridge over troubled water - a qualitative study of professional caregiver singing and music as a way to enable person-centred care for persons with dementia. Int J Qual Stud Health Well-being 2020; 15:1735092. [PMID: 32212959 PMCID: PMC7170273 DOI: 10.1080/17482631.2020.1735092] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2020] [Indexed: 01/31/2023] Open
Abstract
Purpose: To describe the perspectives of caregivers in terms of using singing and music in their everyday work, and of their effect on care and interaction with the person with dementia.Methods: A qualitative design was used, consisting of group discussions with professional caregivers from three nursing homes in a medium-sized city in a rural area of Sweden.Results: The results demonstrate that caregiver singing and music can be powerful and useful in the care of and in communication with persons with dementia. Music, for example, can be used to facilitate socialization as it opens up for discussion, while caregiver singing was preferable when it came to the facilitation of care situations and interaction.Conclusions: Singing and music can be powerful and useful tools in the care of and in communication with persons with dementia. Regardless of whether singing or music is used, the most important factor is that a person-centred approach is adopted so as to make the music a facilitative tool. Caregiver singing and music are ways to connect with the person with dementia and an understanding of their use can contribute to dementia research. This in turn can increase awareness of the possible ways to strengthen the partnership between caregivers and persons with dementia.
Collapse
Affiliation(s)
- Anna Swall
- School of Education, Health and Social Studies, Dalarna University, Falun, Sweden
| | - Lena Marmstål Hammar
- School of Health, Care and Social Welfare, Mälardalen University, Västerås, Sweden
- School of Education, Health and Social Studies, Dalarna University, Falun, Sweden
- Division of Nursing, Department of Neurobiology, Care Sciences, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
26
|
Zein M, Sher Y. Musical Memories-Musical Hallucinations in a Lung Transplant Recipient: Case Report and Literature Review. J Acad Consult Liaison Psychiatry 2020; 62:140-149. [PMID: 32977990 DOI: 10.1016/j.psym.2020.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Mira Zein
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA.
| | - Yelizaveta Sher
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
27
|
Carrière M, Larroque SK, Martial C, Bahri MA, Aubinet C, Perrin F, Laureys S, Heine L. An Echo of Consciousness: Brain Function During Preferred Music. Brain Connect 2020; 10:385-395. [DOI: 10.1089/brain.2020.0744] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Manon Carrière
- Coma Science Group, GIGA-Consciousness, University of Liège, University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Stephen Karl Larroque
- Coma Science Group, GIGA-Consciousness, University of Liège, University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness, University of Liège, University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège, Belgium
| | - Charlène Aubinet
- Coma Science Group, GIGA-Consciousness, University of Liège, University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Fabien Perrin
- Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, Inserm U1028—CNRS UMR522, University of Lyon1, Lyon, France
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Lizette Heine
- Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, Inserm U1028—CNRS UMR522, University of Lyon1, Lyon, France
| |
Collapse
|
28
|
Spatio-temporal dynamics of interictal activity in musicogenic epilepsy: Two case reports and a systematic review of the literature. Clin Neurophysiol 2020; 131:2393-2401. [PMID: 32828042 DOI: 10.1016/j.clinph.2020.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To explore neurophysiological features of musicogenic epilepsy (ME), discussing experimental findings in the framework of a systematic review on ME. METHODS Two patients with ME underwent high-density-electroencephalography (hd-EEG) while listening to ictogenic songs. In one case, musicogenic seizures were elicited. Independent component analysis (ICA) was applied to hd-EEG, and components hosting interictal and ictal elements were identified and localized. Finally, the temporal dynamics of spike-density was studied relative to seizures. All findings were compared against the results of a systematic review on ME, collecting 131 cases. RESULTS Interictal spikes appeared isolated in specific fronto-temporal independent components, whose cortical generators were located in the anterior temporal and inferior frontal lobe. In the patient undergoing seizure, ictal discharge relied in the same component, with the interictal spike-density decreasing before the seizure onset. CONCLUSION Our study shows how ICA can isolate neurophysiological features of ictal and interictal discharges in ME, highlighting a fronto-temporal localization and a suppression of spike-density preceding the seizure onset. SIGNIFICANCE While the localization of ME activity could indicate which aspect within the musical stimulus might trigger musicogenic seizures for each patient, the study of ME dynamics could contribute to the development of models for seizure-prediction and their validation.
Collapse
|
29
|
Pralus A, Belfi A, Hirel C, Lévêque Y, Fornoni L, Bigand E, Jung J, Tranel D, Nighoghossian N, Tillmann B, Caclin A. Recognition of musical emotions and their perceived intensity after unilateral brain damage. Cortex 2020; 130:78-93. [PMID: 32645502 DOI: 10.1016/j.cortex.2020.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
For the hemispheric laterality of emotion processing in the brain, two competing hypotheses are currently still debated. The first hypothesis suggests a greater involvement of the right hemisphere in emotion perception whereas the second hypothesis suggests different involvements of each hemisphere as a function of the valence of the emotion. These hypotheses are based on findings for facial and prosodic emotion perception. Investigating emotion perception for other stimuli, such as music, should provide further insight and potentially help to disentangle between these two hypotheses. The present study investigated musical emotion perception in patients with unilateral right brain damage (RBD, n = 16) or left brain damage (LBD, n = 16), as well as in matched healthy comparison participants (n = 28). The experimental task required explicit recognition of musical emotions as well as ratings on the perceived intensity of the emotion. Compared to matched comparison participants, musical emotion recognition was impaired only in LBD participants, suggesting a potential specificity of the left hemisphere for explicit emotion recognition in musical material. In contrast, intensity ratings of musical emotions revealed that RBD patients underestimated the intensity of negative emotions compared to positive emotions, while LBD patients and comparisons did not show this pattern. To control for a potential generalized emotion deficit for other types of stimuli, we also tested facial emotion recognition in the same patients and their matched healthy comparisons. This revealed that emotion recognition after brain damage might depend on the stimulus category or modality used. These results are in line with the hypothesis of a deficit of emotion perception depending on lesion laterality and valence in brain-damaged participants. The present findings provide critical information to disentangle the currently debated competing hypotheses and thus allow for a better characterization of the involvement of each hemisphere for explicit emotion recognition and their perceived intensity.
Collapse
Affiliation(s)
- Agathe Pralus
- Lyon Neuroscience Research Center; CNRS, UMR5292; INSERM, U1028; Lyon, France; University Lyon 1, Lyon, France.
| | - Amy Belfi
- Department of Psychological Science, Missouri University of Science and Technology, Rolla, MO, USA
| | - Catherine Hirel
- Lyon Neuroscience Research Center; CNRS, UMR5292; INSERM, U1028; Lyon, France; University Lyon 1, Lyon, France; Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
| | - Yohana Lévêque
- Lyon Neuroscience Research Center; CNRS, UMR5292; INSERM, U1028; Lyon, France; University Lyon 1, Lyon, France
| | - Lesly Fornoni
- Lyon Neuroscience Research Center; CNRS, UMR5292; INSERM, U1028; Lyon, France; University Lyon 1, Lyon, France
| | - Emmanuel Bigand
- LEAD, CNRS, UMR 5022, University of Bourgogne, Dijon, France
| | - Julien Jung
- Lyon Neuroscience Research Center; CNRS, UMR5292; INSERM, U1028; Lyon, France; University Lyon 1, Lyon, France; Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
| | - Daniel Tranel
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Norbert Nighoghossian
- University Lyon 1, Lyon, France; Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; CREATIS, CNRS, UMR5220, INSERM, U1044, University Lyon 1, France
| | - Barbara Tillmann
- Lyon Neuroscience Research Center; CNRS, UMR5292; INSERM, U1028; Lyon, France; University Lyon 1, Lyon, France
| | - Anne Caclin
- Lyon Neuroscience Research Center; CNRS, UMR5292; INSERM, U1028; Lyon, France; University Lyon 1, Lyon, France
| |
Collapse
|
30
|
Music processing deficits in Landau-Kleffner syndrome: Four case studies in adulthood. Cortex 2020; 129:99-111. [PMID: 32442777 DOI: 10.1016/j.cortex.2020.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/23/2019] [Accepted: 03/05/2020] [Indexed: 11/20/2022]
Abstract
Verbal-auditory agnosia and aphasia are the most prominent symptoms in Landau-Kleffner syndrome (LKS), a childhood epilepsy that can have sustained long-term effects on language processing. The present study provides the first objective investigation of music perception skills in four adult patients with a diagnosis of LKS during childhood, covering the spectrum of severity of the syndrome from mild to severe. Pitch discrimination, short-term memory for melodic, rhythmic and verbal information, as well as emotion recognition in music and speech prosody were assessed with listening tests, and subjective attitude to music with a questionnaire. We observed amusia in 3 out of 4 patients, with elevated pitch discrimination thresholds and poor short-term memory for melody and rhythm. The two patients with the most severe LKS had impairments in music and prosody emotion recognition, but normal perception of emotional intensity of music. Overall, performance in music processing tasks was proportional to the severity of the syndrome. Nonetheless, the four patients reported that they enjoyed music, felt musical emotions, and used music in their daily life. These new data support the hypothesis that, beyond verbal impairments, cerebral networks involved in sound processing and encoding are deeply altered by the epileptic activity in LKS, well after electrophysiological normalization.
Collapse
|
31
|
Bouhali F, Mongelli V, Thiebaut de Schotten M, Cohen L. Reading music and words: The anatomical connectivity of musicians' visual cortex. Neuroimage 2020; 212:116666. [PMID: 32087374 DOI: 10.1016/j.neuroimage.2020.116666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 10/25/2022] Open
Abstract
Musical score reading and word reading have much in common, from their historical origins to their cognitive foundations and neural correlates. In the ventral occipitotemporal cortex (VOT), the specialization of the so-called Visual Word Form Area for word reading has been linked to its privileged structural connectivity to distant language regions. Here we investigated how anatomical connectivity relates to the segregation of regions specialized for musical notation or words in the VOT. In a cohort of professional musicians and non-musicians, we used probabilistic tractography combined with task-related functional MRI to identify the connections of individually defined word- and music-selective left VOT regions. Despite their close proximity, these regions differed significantly in their structural connectivity, irrespective of musical expertise. The music-selective region was significantly more connected to posterior lateral temporal regions than the word-selective region, which, conversely, was significantly more connected to anterior ventral temporal cortex. Furthermore, musical expertise had a double impact on the connectivity of the music region. First, music tracts were significantly larger in musicians than in non-musicians, associated with marginally higher connectivity to perisylvian music-related areas. Second, the spatial similarity between music and word tracts was significantly increased in musicians, consistently with the increased overlap of language and music functional activations in musicians, as compared to non-musicians. These results support the view that, for music as for words, very specific anatomical connections influence the specialization of distinct VOT areas, and that reciprocally those connections are selectively enhanced by the expertise for word or music reading.
Collapse
Affiliation(s)
- Florence Bouhali
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France; Department of Psychiatry & Weill Institute for Neurosciences, University of California, San Francisco, CA, 94143, USA.
| | - Valeria Mongelli
- Neurobiology of Language Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, Netherlands
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Laurent Cohen
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France; Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Fédération de Neurologie, F-75013, Paris, France
| |
Collapse
|
32
|
Van Criekinge T, D'Août K, O'Brien J, Coutinho E. Effect of music listening on hypertonia in neurologically impaired patients-systematic review. PeerJ 2019; 7:e8228. [PMID: 31875154 PMCID: PMC6925946 DOI: 10.7717/peerj.8228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/18/2019] [Indexed: 11/20/2022] Open
Abstract
Background As music listening is able to induce self-perceived and physiological signs of relaxation, it might be an interesting tool to induce muscle relaxation in patients with hypertonia. To this date effective non-pharmacological rehabilitation strategies to treat hypertonia in neurologically impaired patients are lacking. Therefore the aim is to investigate the effectiveness of music listening on muscle activity and relaxation. Methodology The search strategy was performed by the PRISMA guidelines and registered in the PROSPERO database (no. 42019128511). Seven databases were systematically searched until March 2019. Six of the 1,684 studies met the eligibility criteria and were included in this review. Risk of bias was assessed by the PEDro scale. In total 171 patients with a variety of neurological conditions were included assessing hypertonia with both clinicall and biomechanical measures. Results The analysis showed that there was a large treatment effect of music listening on muscle performance (SMD 0.96, 95% CI [0.29–1.63], I2 = 10%, Z = 2.82, p = 0.005). Music can be used as either background music during rehabilitation (dual-task) or during rest (single-task) and musical preferences seem to play a major role in the observed treatment effect. Conclusions Although music listening is able to induce muscle relaxation, several gaps in the available literature were acknowledged. Future research is in need of an accurate and objective assessment of hypertonia.
Collapse
Affiliation(s)
- Tamaya Van Criekinge
- Department of Rehabilitation Sciences and Physiotherapy, REVAKI/MOVANT, Universiteit Antwerpen, Antwerp, Belgium
| | - Kristiaan D'Août
- Department of Musculoskeletal Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jonathon O'Brien
- School of Health Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Eduardo Coutinho
- Applied Music Research Lab, Department of Music, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
33
|
Koshimori Y, Thaut MH. New Perspectives on Music in Rehabilitation of Executive and Attention Functions. Front Neurosci 2019; 13:1245. [PMID: 31803013 PMCID: PMC6877665 DOI: 10.3389/fnins.2019.01245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/05/2019] [Indexed: 01/28/2023] Open
Abstract
Modern music therapy, starting around the middle of the twentieth century was primarily conceived to promote emotional well-being and to facilitate social group association and integration. Therefore, it was rooted mostly in social science concepts. More recently, music as therapy began to move decidedly toward perspectives of neuroscience. This has been facilitated by the advent of neuroimaging techniques that help uncover the therapeutic mechanisms for non-musical goals in the brain processes underlying music perception, cognition, and production. In this paper, we focus on executive function (EF) and attentional processes (AP) that are central for cognitive rehabilitation efforts. To this end, we summarize existing behavioral as well as neuroimaging and neurophysiological studies in musicians, non-musicians, and clinical populations. Musical improvisation and instrumental playing may have some potential for EF/AP stimulation and neurorehabilitation. However, more neuroimaging studies are needed to investigate the neural mechanisms for the active musical performance. Furthermore, more randomized clinical trials combined with neuroimaging techniques are warranted to demonstrate the specific efficacy and neuroplasticity induced by music-based interventions.
Collapse
Affiliation(s)
- Yuko Koshimori
- Music and Health Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
34
|
Sihvonen AJ, Särkämö T, Rodríguez-Fornells A, Ripollés P, Münte TF, Soinila S. Neural architectures of music - Insights from acquired amusia. Neurosci Biobehav Rev 2019; 107:104-114. [PMID: 31479663 DOI: 10.1016/j.neubiorev.2019.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022]
Abstract
The ability to perceive and produce music is a quintessential element of human life, present in all known cultures. Modern functional neuroimaging has revealed that music listening activates a large-scale bilateral network of cortical and subcortical regions in the healthy brain. Even the most accurate structural studies do not reveal which brain areas are critical and causally linked to music processing. Such questions may be answered by analysing the effects of focal brain lesions in patients´ ability to perceive music. In this sense, acquired amusia after stroke provides a unique opportunity to investigate the neural architectures crucial for normal music processing. Based on the first large-scale longitudinal studies on stroke-induced amusia using modern multi-modal magnetic resonance imaging (MRI) techniques, such as advanced lesion-symptom mapping, grey and white matter morphometry, tractography and functional connectivity, we discuss neural structures critical for music processing, consider music processing in light of the dual-stream model in the right hemisphere, and propose a neural model for acquired amusia.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- Department of Neurosciences, University of Helsinki, Finland; Cognitive Brain Research Unit, Department of Psychology and Logopedics, University of Helsinki, Finland.
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, University of Helsinki, Finland
| | - Antoni Rodríguez-Fornells
- Department of Cognition, University of Barcelona, Cognition & Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), Institució Catalana de recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Pablo Ripollés
- Department of Psychology, New York University and Music and Audio Research Laboratory, New York University, USA
| | - Thomas F Münte
- Department of Neurology and Institute of Psychology II, University of Lübeck, Germany
| | - Seppo Soinila
- Division of Clinical Neurosciences, Turku University Hospital, Department of Neurology, University of Turku, Finland
| |
Collapse
|
35
|
Dai J, Dixon S. Intonation trajectories within tones in unaccompanied soprano, alto, tenor, bass quartet singing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:1005. [PMID: 31472532 DOI: 10.1121/1.5120483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Unlike fixed-pitch instruments, the voice requires careful regulation during each note in order to maintain a steady pitch. Previous studies have investigated aspects of singing performance such as intonation accuracy and pitch drift, treating pitch as fixed within notes, while the pitch trajectory within notes has hardly been investigated. The aim of this paper is to study pitch variation within vocal notes and ascertain what factors influence the various parts of a note. The authors recorded five soprano, alto, tenor, bass quartets singing two pieces of music in three different listening conditions, according to whether the singers can hear the other participants or not. After analysing all of the individual notes and extracting pitch over time, the authors observed the following regularities: (1) There are transient parts of approximately 120 ms duration at both the beginning and end of a note, where the pitch varies rapidly; (2) the shapes of transient parts differ significantly according to the adjacent pitch, although all singers tend to have a descending transient at the end of a note; (3) the trajectory shapes of female singers differ from those of male singers at the beginnings of notes; (4) between vocal parts, there is a tendency to expand harmonic intervals (by about 8 cents between adjacent voices); (5) the listening condition had no significant effect on within-note pitch trajectories.
Collapse
Affiliation(s)
- Jiajie Dai
- Centre for Digital Music, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Simon Dixon
- Centre for Digital Music, Queen Mary University of London, London E1 4NS, United Kingdom
| |
Collapse
|
36
|
Perception of musical pitch in developmental prosopagnosia. Neuropsychologia 2019; 124:87-97. [PMID: 30625291 DOI: 10.1016/j.neuropsychologia.2018.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/19/2018] [Accepted: 12/29/2018] [Indexed: 11/21/2022]
Abstract
Studies of developmental prosopagnosia have often shown that developmental prosopagnosia differentially affects human face processing over non-face object processing. However, little consideration has been given to whether this condition is associated with perceptual or sensorimotor impairments in other modalities. Comorbidities have played a role in theories of other developmental disorders such as dyslexia, but studies of developmental prosopagnosia have often focused on the nature of the visual recognition impairment despite evidence for widespread neural anomalies that might affect other sensorimotor systems. We studied 12 subjects with developmental prosopagnosia with a battery of auditory tests evaluating pitch and rhythm processing as well as voice perception and recognition. Overall, three subjects were impaired in fine pitch discrimination, a prevalence of 25% that is higher than the estimated 4% prevalence of congenital amusia in the general population. This was a selective deficit, as rhythm perception was unaffected in all 12 subjects. Furthermore, two of the three prosopagnosic subjects who were impaired in pitch discrimination had intact voice perception and recognition, while two of the remaining nine subjects had impaired voice recognition but intact pitch perception. These results indicate that, in some subjects with developmental prosopagnosia, the face recognition deficit is not an isolated impairment but is associated with deficits in other domains, such as auditory perception. These deficits may form part of a broader syndrome which could be due to distributed microstructural anomalies in various brain networks, possibly with a common theme of right hemispheric predominance.
Collapse
|
37
|
Arias M. Neurology of ecstatic religious and similar experiences: ecstatic, orgasmic, and musicogenic seizures. Stendhal syndrome and autoscopic phenomena. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2016.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
38
|
Lima DDBD, Regaçone SF, Oliveira ACSD, Alcântara YB, Chagas EFB, Frizzo ACF. Analysis of the Effect of Musical Stimulation on Cortical Auditory Evoked Potentials. Int Arch Otorhinolaryngol 2019; 23:31-35. [PMID: 30647781 PMCID: PMC6331299 DOI: 10.1055/s-0038-1651507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/11/2018] [Indexed: 10/29/2022] Open
Abstract
Introduction Cortical auditory evoked potentials (CAEPs) are bioelectric responses that occur from acoustic stimulations, and they assess the functionality of the central auditory system. Objective The objective of the present study was to analyze the effect of musical stimulation on CAEPs. Methods The sample consisted of 42 healthy female subjects, aged between 18 and 24 years, divided into two groups - G1: without musical stimulation prior to the CAEP examination; and G2: with stimulation prior to the examination. In both groups, as a pre-collection procedure, the complete basic audiological evaluation was performed. For the musical stimulation performed in G2, we used an MP4 player programmed to play Pachelbel's "Canon in D Major" for five minutes prior to the CAEP examination. To analyze the effect on the groups, the ear side and the ide-group interaction , a mixed analysis of variance (ANOVA) of repeated measures was performed. Box M test and Mauchly sphericity test were also performed. Results Test differences were considered statistically significant when the p -value was < 0.05 (5%). Thus, it was possible to observe that there was a statistically significant difference of the P2 component characterized by the decrease in the amplitude of response in the left ear in G2 when comparing the responses of CAEP with and without prior musical stimulation. Conclusion The result of the present study enabled us to conclude that there was a change in the response of CAEPs with musical stimulation.
Collapse
Affiliation(s)
- Daiane Damaris Baptista de Lima
- Department of Speech Therapy and Audiology, Faculty of Philosophy and Science, Universidade Estadual Paulista, (FFC/UNESP), Marília (SP), Brazil
| | - Simone Fiuza Regaçone
- Department of Speech Therapy and Audiology, Dentistry School of Bauru, Universidade de São Paulo (FOB/USP), Bauru (SP), Brazil
| | - Anna Caroline Silva de Oliveira
- Department of Speech Therapy and Audiology, Faculty of Philosophy and Science, Universidade Estadual Paulista, (FFC/UNESP), Marília (SP), Brazil
| | - Yara Bagali Alcântara
- Department of Speech Therapy and Audiology, Faculty of Philosophy and Science, Universidade Estadual Paulista, (FFC/UNESP), Marília (SP), Brazil
| | - Eduardo Federighi Baisi Chagas
- Postgraduate Program in Human Development and Technology, Faculty of Philosophy, Sciences and Letters of Rio Claro, Universidade Estadual Paulista, Rio Claro, SP, Brazil; Department of Physical Education, Universidade de Marília, SP, Brazil
| | - Ana Claudia Figueiredo Frizzo
- Department of Speech Therapy and Audiology, Faculty of Philosophy and Science, Universidade Estadual Paulista, (FFC/UNESP), Marília (SP), Brazil
| |
Collapse
|
39
|
Liang C, Liu YC. Effect of musical stimuli on design thinking: Differences between expert and student designers. COGENT PSYCHOLOGY 2018. [DOI: 10.1080/23311908.2018.1510298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Chaoyun Liang
- Department of Bio-Industry Communication and Development, National Taiwan University, Taipei, Taiwan,No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan
| | - Yu-Cheng Liu
- Department of Bio-Industry Communication and Development, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
40
|
Albouy P, Peretz I, Bermudez P, Zatorre RJ, Tillmann B, Caclin A. Specialized neural dynamics for verbal and tonal memory: fMRI evidence in congenital amusia. Hum Brain Mapp 2018; 40:855-867. [PMID: 30381866 DOI: 10.1002/hbm.24416] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022] Open
Abstract
Behavioral and neuropsychological studies have suggested that tonal and verbal short-term memory are supported by specialized neural networks. To date however, neuroimaging investigations have failed to confirm this hypothesis. In this study, we investigated the hypothesis of distinct neural resources for tonal and verbal memory by comparing typical nonmusician listeners to individuals with congenital amusia, who exhibit pitch memory impairments with preserved verbal memory. During fMRI, amusics and matched controls performed delayed-match-to-sample tasks with tones and words and perceptual control tasks with the same stimuli. For tonal maintenance, amusics showed decreased activity in the right auditory cortex, inferior frontal gyrus (IFG) and dorso-lateral-prefrontal cortex (DLPFC). Moreover, they exhibited reduced right-lateralized functional connectivity between the auditory cortex and the IFG during tonal encoding and between the IFG and the DLPFC during tonal maintenance. In contrasts, amusics showed no difference compared with the controls for verbal memory, with activation in the left IFG and left fronto-temporal connectivity. Critically, we observed a group-by-material interaction in right fronto-temporal regions: while amusics recruited these regions less strongly for tonal memory than verbal memory, control participants showed the reversed pattern (tonal > verbal). By benefitting from the rare condition of amusia, our findings suggest specialized cortical systems for tonal and verbal short-term memory in the human brain.
Collapse
Affiliation(s)
- Philippe Albouy
- Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, CNRS, UMR5292, INSERM, U1028, Lyon, France.,Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, CNRS, UMR5292, INSERM, U1028, Lyon, France.,University Lyon 1, Lyon, France.,Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Quebec, Canada
| | - Isabelle Peretz
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Quebec, Canada
| | - Patrick Bermudez
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Quebec, Canada
| | - Robert J Zatorre
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Quebec, Canada
| | - Barbara Tillmann
- Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, CNRS, UMR5292, INSERM, U1028, Lyon, France.,University Lyon 1, Lyon, France
| | - Anne Caclin
- Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, CNRS, UMR5292, INSERM, U1028, Lyon, France.,University Lyon 1, Lyon, France
| |
Collapse
|
41
|
Särkämö T, Sihvonen AJ. Golden oldies and silver brains: Deficits, preservation, learning, and rehabilitation effects of music in ageing-related neurological disorders. Cortex 2018; 109:104-123. [PMID: 30312779 DOI: 10.1016/j.cortex.2018.08.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/18/2018] [Accepted: 08/31/2018] [Indexed: 01/15/2023]
Abstract
During the last decades, there have been major advances in mapping the brain regions that underlie our ability to perceive, experience, and produce music and how musical training can shape the structure and function of the brain. This progress has fueled and renewed clinical interest towards uncovering the neural basis for the impaired or preserved processing of music in different neurological disorders and how music-based interventions can be used in their rehabilitation and care. This article reviews our contribution to and the state-of-the-art of this field. We will provide a short overview outlining the key brain networks that participate in the processing of music and singing in the healthy brain and then present recent findings on the following key music-related research topics in neurological disorders: (i) the neural architecture underlying deficient processing of music (amusia), (ii) the preservation of singing in aphasia and music-evoked emotions and memories in Alzheimer's disease, (iii) the mnemonic impact of songs as a verbal learning tool, and (iv) the cognitive, emotional, and neural efficacy of music-based interventions and activities in the rehabilitation and care of major ageing-related neurological illnesses (stroke, Alzheimer's disease, and Parkinson's disease).
Collapse
Affiliation(s)
- Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, University of Helsinki, Finland.
| | - Aleksi J Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, University of Helsinki, Finland; Faculty of Medicine, University of Turku, Finland
| |
Collapse
|
42
|
Abstract
Hearing is often viewed as a passive process: Sound enters the ear, triggers a cascade of activity through the auditory system, and culminates in an auditory percept. In contrast to a passive process, motor-related signals strongly modulate the auditory system from the eardrum to the cortex. The motor modulation of auditory activity is most well documented during speech and other vocalizations but also can be detected during a wide variety of other sound-generating behaviors. An influential idea is that these motor-related signals suppress neural responses to predictable movement-generated sounds, thereby enhancing sensitivity to environmental sounds during movement while helping to detect errors in learned acoustic behaviors, including speech and musicianship. Findings in humans, monkeys, songbirds, and mice provide new insights into the circuits that convey motor-related signals to the auditory system, while lending support to the idea that these signals function predictively to facilitate hearing and vocal learning.
Collapse
Affiliation(s)
- David M Schneider
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA;
- Current affiliation: Center for Neural Science, New York University, New York, New York 10003, USA
| | - Richard Mooney
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA;
| |
Collapse
|
43
|
Tseng WEJ, Lim SN, Chen LA, Jou SB, Hsieh HY, Cheng MY, Chang CW, Li HT, Chiang HI, Wu T. Correlation of vocals and lyrics with left temporal musicogenic epilepsy. Ann N Y Acad Sci 2018; 1423:188-197. [PMID: 29542128 DOI: 10.1111/nyas.13594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/19/2017] [Accepted: 12/11/2017] [Indexed: 01/10/2023]
Abstract
Whether the cognitive processing of music and speech relies on shared or distinct neuronal mechanisms remains unclear. Music and language processing in the brain are right and left temporal functions, respectively. We studied patients with musicogenic epilepsy (ME) that was specifically triggered by popular songs to analyze brain hyperexcitability triggered by specific stimuli. The study included two men and one woman (all right-handed, aged 35-55 years). The patients had sound-triggered left temporal ME in response to popular songs with vocals, but not to instrumental, classical, or nonvocal piano solo versions of the same song. Sentimental lyrics, high-pitched singing, specificity/familiarity, and singing in the native language were the most significant triggering factors. We found that recognition of the human voice and analysis of lyrics are important causal factors in left temporal ME and provide observational evidence that sounds with speech structure are predominantly processed in the left temporal lobe. A literature review indicated that language-associated stimuli triggered ME in the left temporal epileptogenic zone at a nearly twofold higher rate compared with the right temporal region. Further research on ME may enhance understanding of the cognitive neuroscience of music.
Collapse
Affiliation(s)
- Wei-En J Tseng
- Department of Neurology, Section of Epilepsy, Chang Gung Memorial Hospital, Linkou Medical Center and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Program in Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Section of Epilepsy, Chang Gung Memorial Hospital, Linkou Medical Center and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Lu-An Chen
- Department of Neurology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shuo-Bin Jou
- Department of Neurology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsiang-Yao Hsieh
- Department of Neurology, Section of Epilepsy, Chang Gung Memorial Hospital, Linkou Medical Center and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Mei-Yun Cheng
- Department of Neurology, Section of Epilepsy, Chang Gung Memorial Hospital, Linkou Medical Center and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Wei Chang
- Department of Neurology, Section of Epilepsy, Chang Gung Memorial Hospital, Linkou Medical Center and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Han-Tao Li
- Department of Neurology, Section of Epilepsy, Chang Gung Memorial Hospital, Linkou Medical Center and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hsing-I Chiang
- Department of Neurology, Section of Epilepsy, Chang Gung Memorial Hospital, Linkou Medical Center and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tony Wu
- Department of Neurology, Section of Epilepsy, Chang Gung Memorial Hospital, Linkou Medical Center and Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
44
|
Leo V, Sihvonen AJ, Linnavalli T, Tervaniemi M, Laine M, Soinila S, Särkämö T. Sung melody enhances verbal learning and recall after stroke. Ann N Y Acad Sci 2018; 1423:296-307. [PMID: 29542823 DOI: 10.1111/nyas.13624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 01/20/2023]
Abstract
Coupling novel verbal material with a musical melody can potentially aid in its learning and recall in healthy subjects, but this has never been systematically studied in stroke patients with cognitive deficits. In a counterbalanced design, we presented novel verbal material (short narrative stories) in both spoken and sung formats to stroke patients at the acute poststroke stage and 6 months poststroke. The task comprised three learning trials and a delayed recall trial. Memory performance on the spoken and sung tasks did not differ at the acute stage, whereas sung stories were learned and recalled significantly better compared with spoken stories at the 6 months poststroke stage. Interestingly, this pattern of results was evident especially in patients with mild aphasia, in whom the learning of sung versus spoken stories improved more from the acute to the 6-month stages compared with nonaphasic patients. Overall, these findings suggest that singing could be used as a mnemonic aid in the learning of novel verbal material in later stages of recovery after stroke.
Collapse
Affiliation(s)
- Vera Leo
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aleksi J Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Medicine, University of Turku, Turku, Finland
| | - Tanja Linnavalli
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mari Tervaniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- CICERO Learning, University of Helsinki, Helsinki, Finland
| | - Matti Laine
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Seppo Soinila
- Division of Clinical Neurosciences, Department of Neurology, University of Turku, Turku University Hospital, Turku, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
45
|
Trimble M, Hesdorffer D. Music and the brain: the neuroscience of music and musical appreciation. BJPsych Int 2018; 14:28-31. [PMID: 29093933 PMCID: PMC5618809 DOI: 10.1192/s2056474000001720] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Through music we can learn much about our human origins and the human brain. Music is a potential method of therapy and a means of accessing and stimulating specific cerebral circuits. There is also an association between musical creativity and psychopathology. This paper provides a brief review.
Collapse
|
46
|
Tracting the neural basis of music: Deficient structural connectivity underlying acquired amusia. Cortex 2017; 97:255-273. [DOI: 10.1016/j.cortex.2017.09.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/08/2017] [Accepted: 09/29/2017] [Indexed: 11/17/2022]
|
47
|
Selezneva E, Oshurkova E, Scheich H, Brosch M. Category-specific neuronal activity in left and right auditory cortex and in medial geniculate body of monkeys. PLoS One 2017; 12:e0186556. [PMID: 29073162 PMCID: PMC5657994 DOI: 10.1371/journal.pone.0186556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/27/2017] [Indexed: 11/19/2022] Open
Abstract
We address the question of whether the auditory cortex of the left and right hemisphere and the auditory thalamus are differently involved in the performance of cognitive tasks. To understand these differences on the level of single neurons we compared neuronal firing in the primary and posterior auditory cortex of the two hemispheres and in the medial geniculate body in monkeys while subjects categorized pitch relationships in tone sequences. In contrast to earlier findings in imaging studies performed on humans, we found little difference between the three brain regions in terms of the category-specificity of their neuronal responses, of tonic firing related to task components, and of decision-related firing. The differences between the results in humans and monkeys may result from the type of neuronal activity considered and how it was analyzed, from the auditory cortical fields studied, or from fundamental differences between these species.
Collapse
Affiliation(s)
- Elena Selezneva
- Specal Lab Primate Neurobiology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Elena Oshurkova
- Department Auditory Learning and Speech, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Henning Scheich
- Department Auditory Learning and Speech, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Michael Brosch
- Specal Lab Primate Neurobiology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
48
|
Frühholz S, Staib M. Neurocircuitry of impaired affective sound processing: A clinical disorders perspective. Neurosci Biobehav Rev 2017; 83:516-524. [PMID: 28919431 DOI: 10.1016/j.neubiorev.2017.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/08/2017] [Accepted: 09/05/2017] [Indexed: 12/22/2022]
Abstract
Decoding affective meaning from sensory information is central to accurate and adaptive behavior in many natural and social contexts. Human vocalizations (speech and non-speech), environmental sounds (e.g. thunder, noise, or animal sounds) and human-produced sounds (e.g. technical sounds or music) can carry a wealth of important aversive, threatening, appealing, or pleasurable affective information that sometimes implicitly influences and guides our behavior. A deficit in processing such affective information is detrimental to adaptive environmental behavior, psychological well-being, and social interactive abilities. These deficits can originate from a diversity of psychiatric and neurological disorders, and are associated with neural dysfunctions across largely distributed brain networks. Recent neuroimaging studies in psychiatric and neurological patients outline the cortical and subcortical neurocircuitry of the complimentary and differential functional roles for affective sound processing. This points to and confirms a recently proposed distributed network rather than a single brain region underlying affective sound processing, and highlights the notion of a multi-functional process that can be differentially impaired in clinical disorders.
Collapse
Affiliation(s)
- Sascha Frühholz
- Department of Psychology, University of Zürich, Zürich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland.
| | - Matthias Staib
- Department of Psychology, University of Zürich, Zürich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
49
|
Sihvonen AJ, Särkämö T, Ripollés P, Leo V, Saunavaara J, Parkkola R, Rodríguez-Fornells A, Soinila S. Functional neural changes associated with acquired amusia across different stages of recovery after stroke. Sci Rep 2017; 7:11390. [PMID: 28900231 PMCID: PMC5595783 DOI: 10.1038/s41598-017-11841-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/30/2017] [Indexed: 11/09/2022] Open
Abstract
Brain damage causing acquired amusia disrupts the functional music processing system, creating a unique opportunity to investigate the critical neural architectures of musical processing in the brain. In this longitudinal fMRI study of stroke patients (N = 41) with a 6-month follow-up, we used natural vocal music (sung with lyrics) and instrumental music stimuli to uncover brain activation and functional network connectivity changes associated with acquired amusia and its recovery. In the acute stage, amusic patients exhibited decreased activation in right superior temporal areas compared to non-amusic patients during instrumental music listening. During the follow-up, the activation deficits expanded to comprise a wide-spread bilateral frontal, temporal, and parietal network. The amusics showed less activation deficits to vocal music, suggesting preserved processing of singing in the amusic brain. Compared to non-recovered amusics, recovered amusics showed increased activation to instrumental music in bilateral frontoparietal areas at 3 months and in right middle and inferior frontal areas at 6 months. Amusia recovery was also associated with increased functional connectivity in right and left frontoparietal attention networks to instrumental music. Overall, our findings reveal the dynamic nature of deficient activation and connectivity patterns in acquired amusia and highlight the role of dorsal networks in amusia recovery.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- Faculty of Medicine, University of Turku, 20520, Turku, Finland. .,Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Pablo Ripollés
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907, Barcelona, Spain.,Department of Cognition, Development and Education Psychology, University of Barcelona, 08035, Barcelona, Spain.,Poeppel Lab, Department of Psychology, New York University, 10003, NY, USA
| | - Vera Leo
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, 20521, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, Turku University and Turku University Hospital, 20521, Turku, Finland
| | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907, Barcelona, Spain.,Department of Cognition, Development and Education Psychology, University of Barcelona, 08035, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain
| | - Seppo Soinila
- Division of Clinical Neurosciences, Turku University Hospital and Department of Neurology, University of Turku, 20521, Turku, Finland
| |
Collapse
|
50
|
Sihvonen AJ, Ripollés P, Rodríguez-Fornells A, Soinila S, Särkämö T. Revisiting the Neural Basis of Acquired Amusia: Lesion Patterns and Structural Changes Underlying Amusia Recovery. Front Neurosci 2017; 11:426. [PMID: 28790885 PMCID: PMC5524924 DOI: 10.3389/fnins.2017.00426] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 01/25/2023] Open
Abstract
Although, acquired amusia is a common deficit following stroke, relatively little is still known about its precise neural basis, let alone to its recovery. Recently, we performed a voxel-based lesion-symptom mapping (VLSM) and morphometry (VBM) study which revealed a right lateralized lesion pattern, and longitudinal gray matter volume (GMV) and white matter volume (WMV) changes that were specifically associated with acquired amusia after stroke. In the present study, using a larger sample of stroke patients (N = 90), we aimed to replicate and extend the previous structural findings as well as to determine the lesion patterns and volumetric changes associated with amusia recovery. Structural MRIs were acquired at acute and 6-month post-stroke stages. Music perception was behaviorally assessed at acute and 3-month post-stroke stages using the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA). Using these scores, the patients were classified as non-amusic, recovered amusic, and non-recovered amusic. The results of the acute stage VLSM analyses and the longitudinal VBM analyses converged to show that more severe and persistent (non-recovered) amusia was associated with an extensive pattern of lesions and GMV/WMV decrease in right temporal, frontal, parietal, striatal, and limbic areas. In contrast, less severe and transient (recovered) amusia was linked to lesions specifically in left inferior frontal gyrus as well as to a GMV decrease in right parietal areas. Separate continuous analyses of MBEA Scale and Rhythm scores showed extensively overlapping lesion pattern in right temporal, frontal, and subcortical structures as well as in the right insula. Interestingly, the recovered pitch amusia was related to smaller GMV decreases in the temporoparietal junction whereas the recovered rhythm amusia was associated to smaller GMV decreases in the inferior temporal pole. Overall, the results provide a more comprehensive picture of the lesions and longitudinal structural changes associated with different recovery trajectories of acquired amusia.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- Faculty of Medicine, University of TurkuTurku, Finland.,Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of HelsinkiHelsinki, Finland
| | - Pablo Ripollés
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de LlobregatBarcelona, Spain.,Department of Cognition, Development and Education Psychology, University of BarcelonaBarcelona, Spain.,Poeppel Lab, Department of Psychology, New York UniversityNew York, NY, United States
| | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de LlobregatBarcelona, Spain.,Department of Cognition, Development and Education Psychology, University of BarcelonaBarcelona, Spain.,Catalan Institution for Research and Advanced Studies, Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona, Spain
| | - Seppo Soinila
- Division of Clinical Neurosciences, Turku University Hospital and Department of Neurology, University of TurkuTurku, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of HelsinkiHelsinki, Finland
| |
Collapse
|