1
|
Nakamura H, Doi H, Miyaji Y, Wada T, Takahashi E, Tada M, Fukuda H, Fujita A, Higashiyama Y, Nagao Y, Kimura K, Hayashi M, Hoshino K, Matsumoto N, Tanaka F. Hereditary spastic paraplegia and extensive leukoencephalopathy: a case report of a unique phenotype associated with a GJB1/Cx32 p.Pro174Ser variant. BMC Neurol 2024; 24:310. [PMID: 39232641 PMCID: PMC11373513 DOI: 10.1186/s12883-024-03823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Pathogenic variants in Gap junction protein beta 1 (GJB1), which encodes Connexin 32, are known to cause X-linked Charcot-Marie-Tooth disease (CMTX), the second most common form of CMT. CMTX presents with the following five central nervous systems (CNS) phenotypes: subclinical electrophysiological abnormalities, mild fixed abnormalities on neurological examination and/or imaging, transient CNS dysfunction, cognitive impairment, and persistent CNS manifestations. CASE PRESENTATION A 40-year-old Japanese male showed CNS symptoms, including nystagmus, prominent spastic paraplegia, and mild cerebellar ataxia, accompanied by subclinical peripheral neuropathy. Brain magnetic resonance imaging revealed hyperintensities in diffusion-weighted images of the white matter, particularly along the pyramidal tract, which had persisted since childhood. Nerve conduction assessment showed a mild decrease in motor conduction velocity, and auditory brainstem responses beyond wave II were absent. Peripheral and central conduction times in somatosensory evoked potentials elicited by stimulation of the median nerve were prolonged. Genetic analysis identified a hemizygous GJB1 variant, NM_000166.6:c.520C > T p.Pro174Ser. CONCLUSIONS The patient in the case described here, with a GJB1 p.Pro174Ser variant, presented with a unique CNS-dominant phenotype, characterized by spastic paraplegia and persistent extensive leukoencephalopathy, rather than CMTX. Similar phenotypes have also been observed in patients with GJC2 and CLCN2 variants, likely because of the common function of these genes in regulating ion and water balance, which is essential for maintaining white matter function. CMTX should be considered within the spectrum of GJB1-related disorders, which can include patients with predominant CNS symptoms, some of which can potentially be classified as a new type of spastic paraplegia.
Collapse
Affiliation(s)
- Haruko Nakamura
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.
| | - Yosuke Miyaji
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Taishi Wada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Erisa Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Mikiko Tada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Hiromi Fukuda
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Yuichi Higashiyama
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Yuri Nagao
- Segawa Memorial Neurological Clinic for Children, 2-8 Kandasurugadai, Chiyoda-Ku, Tokyo, 101-0062, Japan
| | - Kazue Kimura
- Segawa Memorial Neurological Clinic for Children, 2-8 Kandasurugadai, Chiyoda-Ku, Tokyo, 101-0062, Japan
| | - Masaharu Hayashi
- Segawa Memorial Neurological Clinic for Children, 2-8 Kandasurugadai, Chiyoda-Ku, Tokyo, 101-0062, Japan
| | - Kyoko Hoshino
- Segawa Memorial Neurological Clinic for Children, 2-8 Kandasurugadai, Chiyoda-Ku, Tokyo, 101-0062, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
2
|
Montanaro D, Vavla M, Frijia F, Coi A, Baratto A, Pasquariello R, Stefan C, Martinuzzi A. Metabolite profile in hereditary spastic paraplegia analyzed using magnetic resonance spectroscopy: a cross-sectional analysis in a longitudinal study. Front Neurosci 2024; 18:1416093. [PMID: 39193522 PMCID: PMC11347332 DOI: 10.3389/fnins.2024.1416093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/11/2024] [Indexed: 08/29/2024] Open
Abstract
Background Hereditary Spastic Paraplegias (HSP) are genetic neurodegenerative disorders affecting the corticospinal tract. No established neuroimaging biomarker is associated with this condition. Methods A total of 46 patients affected by HSP, genetically and clinically evaluated and tested with SPRS scores, and 46 healthy controls (HC) matched by age and gender underwent a single-voxel Magnetic Resonance Spectroscopy sampling (MRS) of bilateral pre-central and pre-frontal regions. MRS data were analyzed cross-sectionally (at T0 and T1) and longitudinally (T0 vs. T1). Results Statistically significant data showed that T0 mI/Cr in the pre-central areas of HSP patients was higher than in HC. In the left (L) pre-central area, NAA/Cr was significantly lower in HSP than in HC. In the right (R) pre-frontal area, NAA/Cr was significantly lower in HSP patients than in HC. HSP SPG4 subjects had significantly lower Cho/Cr concentrations in the L pre-central area compared to HC. Among the HSP subjects, non-SPG4 patients had significantly higher mI/Cr in the L pre-central area compared to SPG4 patients. In the R pre-frontal area, NAA/Cr was reduced, and ml/Cr was higher in non-SPG4 patients compared to SPG4 patients. Comparing "pure" and "complex" forms, NAA/Cr was higher in pHSP than in cHSP in the R pre-central and R pre-frontal areas. The longitudinal analysis, which involved fewer patients (n = 30), showed an increase in mI/Cr concentration in the L pre-frontal area among HSP subjects with respect to baseline. The patients had significantly higher SPRS scores at follow-up, with a significant positive correlation between SPRS scores and mI/Cr in the L pre-central area, while in bilateral pre-frontal areas, lower SPRS scores corresponded to higher NAA/Cr concentrations. To explore the discriminating power of MRS in correctly identifying HSP and controls, an inference tree methodology classified HSP subjects and controls with an overall accuracy of 73.9%, a sensitivity of 87.0%, and a specificity of 60.9%. Conclusion This pilot study indicates that brain MRS is a valuable approach that could potentially serve as an objective biomarker in HSP.
Collapse
Affiliation(s)
- Domenico Montanaro
- U.O. Dipartimentale e Servizio Autonomo di Risonanza Magnetica, Dipartimento di Neuroscienze dell’Età Evolutiva, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Marinela Vavla
- Child and Adolescent Neuropsychiatric Unit, Department of Women’s and Children’s Health, University Hospital of Padua, Padova, Italy
- Department of Neurorehabilitation, IRCCS E. Medea Scientific Institute, Conegliano, Italy
| | - Francesca Frijia
- Bioengineering Unit, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Alessio Coi
- Unit of Epidemiology of Rare Diseases and Congenital Anomalies, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Alessandra Baratto
- Department of Radiology, S. Maria dei Battuti Hospital- Conegliano, Treviso, Italy
| | - Rosa Pasquariello
- U.O. Dipartimentale e Servizio Autonomo di Risonanza Magnetica, Dipartimento di Neuroscienze dell’Età Evolutiva, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Cristina Stefan
- Department of Neurorehabilitation, IRCCS E. Medea Scientific Institute, Conegliano, Italy
| | - Andrea Martinuzzi
- Department of Neurorehabilitation, IRCCS E. Medea Scientific Institute, Conegliano, Italy
| |
Collapse
|
3
|
Kilic MA, Yildiz EP, Deniz A, Coskun O, Kurekci F, Avci R, Genc HM, Yesil G, Akbas S, Yesilyurt A, Kara B. A Retrospective Review of 18 Patients With Childhood-Onset Hereditary Spastic Paraplegia, Nine With Novel Variants. Pediatr Neurol 2024; 152:189-195. [PMID: 38301322 DOI: 10.1016/j.pediatrneurol.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Hereditary spastic paraplegias (HSPs) are a group of genetically heterogeneous neurodegenerative disorders. Our objective was to determine the clinical and molecular characteristics of patients with genetically confirmed childhood-onset HSPs and to expand the genetic spectrum for some rare subtypes of HSP. METHODS We reviewed the charts of subjects with genetically confirmed childhood-onset HSP. The age at the disease onset was defined as the point at which the delayed motor milestones were observed. Delayed motor milestones were defined as being unable to hold the head up by four months, sitting unassisted by nine months, and walking independently by 17 months. If there were no delayed motor milestones, age at disease onset was determined by leg stiffness, frequent falls, or unsteady gait. Genetic testing was performed based on delayed motor milestones, progressive leg spasticity, and gait difficulty. The variant classification was determined based on the American College of Medical Genetics standard guidelines for variant interpretation. Variants of uncertain significance (VUS) were considered disease-associated when clinical findings were consistent with the previously described disease phenotypes for pathogenic variants. In addition, in the absence of another pathogenic, likely pathogenic, or VUS variant that could explain the phenotype of our cases, we concluded that the disease is associated with VUS in the HSP-causing gene. Segregation analysis was also performed on the parents of some patients to demonstrate the inheritance model. RESULTS There were a total of 18 patients from 17 families. The median age of symptom onset was 18 months (2 to 84 months). The mean delay between symptom onset and genetic diagnosis was 5.8 years (5 months to 17 years). All patients had gait difficulty caused by progressive leg spasticity and weakness. Independent walking was not achieved at 17 months for 67% of patients (n = 12). In our cohort, there were two subjects each with SPG11, SPG46, and SPG 50 followed by single subject each with SPG3A, SPG4, SPG7, SPG8, SPG30, SPG35, SPG43, SPG44, SPG57, SPG62, infantile-onset ascending spastic paralysis (IAHSP), and spastic paraplegia and psychomotor retardation with or without seizures (SPPRS). Eight novel variants in nine patients were described. Two affected siblings had a novel variant in the GBA2 gene (SPG46), and one subject each had a novel variant in WASHC5 (SPG8), SPG11 (SPG11), KIF1A (SPG30), GJC2 (SPG44), ERLIN1 (SPG62), ALS2 (IAHSP), and HACE1 (SPPRS). Among the novel variants, the variant in the SPG11 was pathogenic and the variants in the KIF1A, GJC2, and HACE1 were likely pathogenic. The variants in the GBA2, ALS2, ERLIN1, and WASHC5 were classified as VUS. CONCLUSIONS There was a significant delay between symptom onset and genetic diagnosis of HSP. An early diagnosis may be possible by examining patients with delayed motor milestones, progressive spasticity, gait difficulties, and neuromuscular weakness in the context of HSP. Eight novel variants in nine patients were described, clinically similar to the previously described disease phenotype associated with pathogenic variants. This study contributes to expanding the genetic spectrum of some rare subtypes of HSP.
Collapse
Affiliation(s)
- Mehmet Akif Kilic
- Department of Pediatric Neurology, Istanbul University Faculty of Medicine, Istanbul, Turkiye.
| | - Edibe Pembegul Yildiz
- Department of Pediatric Neurology, Istanbul University Faculty of Medicine, Istanbul, Turkiye
| | - Adnan Deniz
- Department of Pediatric Neurology, Kocaeli University Faculty of Medicine, Kocaeli, Turkiye
| | - Orhan Coskun
- Department of Pediatric Neurology, Gaziosmanpasa Training and Research Hospital, Istanbul, Turkiye
| | - Fulya Kurekci
- Department of Pediatric Neurology, Istanbul University Faculty of Medicine, Istanbul, Turkiye
| | - Ridvan Avci
- Department of Pediatric Neurology, Istanbul University Faculty of Medicine, Istanbul, Turkiye
| | - Hulya Maras Genc
- Department of Pediatric Neurology, Istanbul University Faculty of Medicine, Istanbul, Turkiye
| | - Gozde Yesil
- Department of Medical Genetics, Istanbul University Faculty of Medicine, Istanbul, Turkiye
| | - Sinan Akbas
- Department of Medical Genetics, Istanbul University Faculty of Medicine, Istanbul, Turkiye
| | - Ahmet Yesilyurt
- Acibadem Labgen Genetic Diagnosis Centre, Acibadem Health Group, Istanbul, Turkiye
| | - Bulent Kara
- Department of Pediatric Neurology, Kocaeli University Faculty of Medicine, Kocaeli, Turkiye
| |
Collapse
|
4
|
Perrier S, Gauquelin L, Bernard G. Inherited white matter disorders: Hypomyelination (myelin disorders). HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:197-223. [PMID: 39322379 DOI: 10.1016/b978-0-323-99209-1.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hypomyelinating leukodystrophies are a subset of genetic white matter diseases characterized by insufficient myelin deposition during development. MRI patterns are used to identify hypomyelinating disorders, and genetic testing is used to determine the causal genes implicated in individual disease forms. Clinical course can range from severe, with patients manifesting neurologic symptoms in infancy or early childhood, to mild, with onset in adolescence or adulthood. This chapter discusses the most common hypomyelinating leukodystrophies, including X-linked Pelizaeus-Merzbacher disease and other PLP1-related disorders, autosomal recessive Pelizaeus-Merzbacher-like disease, and POLR3-related leukodystrophy. PLP1-related disorders are caused by hemizygous pathogenic variants in the proteolipid protein 1 (PLP1) gene, and encompass classic Pelizaeus-Merzbacher disease, the severe connatal form, PLP1-null syndrome, spastic paraplegia type 2, and hypomyelination of early myelinating structures. Pelizaeus-Merzbacher-like disease presents a similar clinical picture to Pelizaeus-Merzbacher disease, however, it is caused by biallelic pathogenic variants in the GJC2 gene, which encodes for the gap junction protein Connexin-47. POLR3-related leukodystrophy, or 4H leukodystrophy (hypomyelination, hypodontia, and hypogonadotropic hypogonadism), is caused by biallelic pathogenic variants in genes encoding specific subunits of the transcription enzyme RNA polymerase III. In this chapter, the clinical features, disease pathophysiology and genetics, imaging patterns, as well as supportive and future therapies are discussed for each disorder.
Collapse
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Laurence Gauquelin
- Division of Pediatric Neurology, Department of Pediatrics, CHUL et Centre Mère-Enfant Soleil du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Departments of Pediatrics and Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
5
|
Ghasemi A, Tavasoli AR, Khojasteh M, Rohani M, Alavi A. Description of Phenotypic Heterogeneity in a GJC2-Related Family and Literature Review. Mol Syndromol 2023; 14:405-415. [PMID: 37915394 PMCID: PMC10617252 DOI: 10.1159/000529678] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/12/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Homozygous and compound heterozygous variants in GJC2, the gene encoding connexin-47 protein, cause Pelizaeus-Merzbacher-like disease type 1 or hypomyelinating leukodystrophy 2 (HLD2), a severe infantile-onset hypomyelinating leukodystrophy, and rarely some milder phenotypes like hereditary spastic paraplegia (HSP) type 44 (SPG44) and subclinical leukodystrophy. Herein, we report an Iranian GJC2-related family with intrafamilial phenotypic heterogeneity and review the literatures. Methods Whole-exome sequencing was performed for an Iranian proband, who was initially diagnosed as HSP case. Data were analyzed and the candidate variant was confirmed by PCR and Sanger sequencing subsequently checked in family members to co-segregation analysis. A careful clinical and paraclinical evaluation of all affected individuals of the family was done and compared with previous reported GJC2-related families. Results A novel homozygous variant, c.G14T:p.Ser5Ile, in the GJC2 gene was identified. The variant was co-segregated with the disease status in the family members. Clinical evaluation of all patients showed two distinct GJC2-related phenotypes in this family; the proband presented a complicated form of HSP, whereas both his affected sisters presented a HLD2 phenotype. Discussion Up to now, correlation between HSP and GJC2 variants has been reported once. Here, the second case of SPG44 was identified that emphasizes on GJC2 as a HSP-causing gene. So, the screening of GJC2 in patients with HSP or HSP-like phenotypes especially with hypomyelination in their brain MRI is recommended. Also, for the first time, intrafamilial phenotypic heterogeneity for "two distinct GJC2-related phenotypes: HLD2 and HSP" was reported. Such intrafamilial phenotypic heterogeneity for GJC2 can emphasize on the shared pathophysiology of these disorders.
Collapse
Affiliation(s)
- Aida Ghasemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ali Reza Tavasoli
- Department of Neurology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mana Khojasteh
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, Iran University of Medical Sciences, Hazrat Rasool Hospital, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Torii T, Yamauchi J. Molecular Pathogenic Mechanisms of Hypomyelinating Leukodystrophies (HLDs). Neurol Int 2023; 15:1155-1173. [PMID: 37755363 PMCID: PMC10538087 DOI: 10.3390/neurolint15030072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Hypomyelinating leukodystrophies (HLDs) represent a group of congenital rare diseases for which the responsible genes have been identified in recent studies. In this review, we briefly describe the genetic/molecular mechanisms underlying the pathogenesis of HLD and the normal cellular functions of the related genes and proteins. An increasing number of studies have reported genetic mutations that cause protein misfolding, protein dysfunction, and/or mislocalization associated with HLD. Insight into the mechanisms of these pathways can provide new findings for the clinical treatments of HLD.
Collapse
Affiliation(s)
- Tomohiro Torii
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe-shi 610-0394, Japan
- Center for Research in Neurodegenerative Disease, Doshisha University, Kyotanabe-shi 610-0394, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku 157-8535, Japan
| |
Collapse
|
7
|
Martinello C, Panza E, Orlacchio A. Hereditary spastic paraplegias proteome: common pathways and pathogenetic mechanisms. Expert Rev Proteomics 2023; 20:171-188. [PMID: 37788157 DOI: 10.1080/14789450.2023.2260952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION Hereditary spastic paraplegias (HSPs) are a group of inherited neurodegenerative disorders characterized by progressive spasticity and weakness of the lower limbs. These conditions are caused by lesions in the neuronal pyramidal tract and exhibit clinical and genetic variability. Ongoing research focuses on understanding the underlying mechanisms of HSP onset, which ultimately lead to neuronal degeneration. Key molecular mechanisms involved include axonal transport, cytoskeleton dynamics, myelination abnormalities, membrane trafficking, organelle morphogenesis, ER homeostasis, mitochondrial dysfunction, and autophagy deregulation. AREAS COVERED This review aims to provide an overview of the shared pathogenetic mechanisms in various forms of HSPs. By examining disease-causing gene products and their associated functional pathways, this understanding could lead to the discovery of new therapeutic targets and the development of treatments to modify the progression of the disease. EXPERT OPINION Investigating gene functionality is crucial for identifying shared pathogenetic pathways underlying different HSP subtypes. Categorizing protein function and identifying pathways aids in finding biomarkers, predicting early onset, and guiding treatment for a better quality of life. Targeting shared mechanisms enables efficient and cost-effective therapies. Prospects involve identifying new disease-causing genes, refining molecular processes, and implementing findings in diagnosis, key for advancing HSP understanding and developing effective treatments.
Collapse
Affiliation(s)
- Chiara Martinello
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Emanuele Panza
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
- Unità di Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
8
|
Abrams CK. Mechanisms of Diseases Associated with Mutation in GJC2/Connexin 47. Biomolecules 2023; 13:biom13040712. [PMID: 37189458 DOI: 10.3390/biom13040712] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Connexins are members of a family of integral membrane proteins that provide a pathway for both electrical and metabolic coupling between cells. Astroglia express connexin 30 (Cx30)-GJB6 and Cx43-GJA1, while oligodendroglia express Cx29/Cx31.3-GJC3, Cx32-GJB1, and Cx47-GJC2. Connexins organize into hexameric hemichannels (homomeric if all subunits are identical or heteromeric if one or more differs). Hemichannels from one cell then form cell-cell channels with a hemichannel from an apposed cell. (These are termed homotypic if the hemichannels are identical and heterotypic if the hemichannels differ). Oligodendrocytes couple to each other through Cx32/Cx32 or Cx47/Cx47 homotypic channels and they couple to astrocytes via Cx32/Cx30 or Cx47/Cx43 heterotypic channels. Astrocytes couple via Cx30/Cx30 and Cx43/Cx43 homotypic channels. Though Cx32 and Cx47 may be expressed in the same cells, all available data suggest that Cx32 and Cx47 cannot interact heteromerically. Animal models wherein one or in some cases two different CNS glial connexins have been deleted have helped to clarify the role of these molecules in CNS function. Mutations in a number of different CNS glial connexin genes cause human disease. Mutations in GJC2 lead to three distinct phenotypes, Pelizaeus Merzbacher like disease, hereditary spastic paraparesis (SPG44) and subclinical leukodystrophy.
Collapse
Affiliation(s)
- Charles K Abrams
- Department of Neurology and Rehabilitation, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
9
|
Sadr Z, Ghasemi A, Rohani M, Alavi A. NMNAT1 and hereditary spastic paraplegia (HSP): expanding the phenotypic spectrum of NMNAT1 variants. Neuromuscul Disord 2023; 33:295-301. [PMID: 36871412 DOI: 10.1016/j.nmd.2023.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
In the NAD biosynthetic network, the nicotinamide mononucleotide adenylyltransferase (NMNAT) enzyme fuels NAD as a co-substrate for a group of enzymes. Mutations in the nuclear-specific isoform, NMNAT1, have been extensively reported as the cause of Leber congenital amaurosis-type 9 (LCA9). However, there are no reports of NMNAT1 mutations causing neurological disorders by disrupting the maintenance of physiological NAD homeostasis in other types of neurons. In this study, for the first time, the potential association between a NMNAT1 variant and hereditary spastic paraplegia (HSP) is described. Whole-exome sequencing was performed for two affected siblings diagnosed with HSP. Runs of homozygosity (ROH) were detected. The shared variants of the siblings located in the homozygosity blocks were selected. The candidate variant was amplified and Sanger sequenced in the proband and other family members. Homozygous variant c.769G>A:p.(Glu257Lys) in NMNAT1, the most common variant of NMNAT1 in LCA9 patients, located in the ROH of chromosome 1, was detected as a probable disease-causing variant. After detection of the variant in NMNAT1, as a LCA9-causative gene, ophthalmological and neurological re-evaluations were performed. No ophthalmological abnormality was detected and the clinical manifestations of these patients were completely consistent with pure HSP. No NMNAT1 variant had ever been previously reported in HSP patients. However, NMNAT1 variants have been reported in a syndromic form of LCA which is associated with ataxia. In conclusion, our patients expand the clinical spectrum of NMNAT1 variants and represent the first evidence of the probable correlation between NMNAT1 variants and HSP.
Collapse
Affiliation(s)
- Zahra Sadr
- Genetics research center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Aida Ghasemi
- Genetics research center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, Iran University of Medical Sciences, Hazrat Rasool Hospital, Tehran, Iran.
| | - Afagh Alavi
- Genetics research center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Sadr Z, Zare-Abdollahi D, Rohani M, Alavi A. A founder mutation in COQ7, p.(Leu111Pro), causes pure hereditary spastic paraplegia (HSP) in the Iranian population. Neurol Sci 2023:10.1007/s10072-023-06707-x. [PMID: 36854932 DOI: 10.1007/s10072-023-06707-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/19/2023] [Indexed: 03/02/2023]
Affiliation(s)
- Zahra Sadr
- Genetics research center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Davood Zare-Abdollahi
- Genetics research center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, Iran University of Medical Sciences, Hazrat Rasool Hospital, Tehran, Iran
| | - Afagh Alavi
- Genetics research center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran. .,Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Akbari M, Ebrahimi Tapeh Z, Zaersabet M, Rahimi H, Ganji M. Novel pyrroline-5-carboxylate reductase 2 (PYCR2) mutation in an Iranian patient with hypomyelinating leukodystrophy: findings of molecular and in silico investigations. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-023-00393-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Abstract
Background
Hypomyelinating leukodystrophy (HLD) is a specific group of leukodystrophies and is characterized by progressive postnatal growth delay that represents a type of clinically overlapping but genetically heterogeneous diseases with autosomal recessive inheritance. Loss-of-function mutations in PYCR2 are one of the main causes of HLD type 10 (HLD10), which is identified by cerebral hypomyelination, inadequate growth, brain atrophy, and movement abnormality. This study aimed to investigate the molecular etiology of HLD10 disorder in an Iranian patient from a consanguineous marriage family.
Results
The DNA samples were extracted from the patient, a 9-year-old girl, and her parents. Whole-exome sequencing was conducted for these samples and the results were eventually confirmed and segregated via Sanger sequencing. Our findings demonstrated a novel homozygous frameshift mutation in PYCR2 gene, c.135dup (NM_013328.4). The heterozygous state of this variant was confirmed in parents. Additionally, this mutation was predicted to exhibit damaging effects through protein sequence alteration.
Conclusions
Such findings are of importance for understanding the underlying pathogenicity mechanisms and for improving genetic counseling knowledge of HLD patients for families.
Collapse
|
12
|
Fink JK. The hereditary spastic paraplegias. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:59-88. [PMID: 37620092 DOI: 10.1016/b978-0-323-98817-9.00022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The hereditary spastic paraplegias (HSPs) are a group of more than 90 genetic disorders in which lower extremity spasticity and weakness are either the primary neurologic impairments ("uncomplicated HSP") or when accompanied by other neurologic deficits ("complicated HSP"), important features of the clinical syndrome. Various genetic types of HSP are inherited such as autosomal dominant, autosomal recessive, X-linked, and maternal (mitochondrial) traits. Symptoms that begin in early childhood may be nonprogressive and resemble spastic diplegic cerebral palsy. Symptoms that begin later, typically progress insidiously over a number of years. Genetic testing is able to confirm the diagnosis for many subjects. Insights from gene discovery indicate that abnormalities in diverse molecular processes underlie various forms of HSP, including disturbance in axon transport, endoplasmic reticulum morphogenesis, vesicle transport, lipid metabolism, and mitochondrial function. Pathologic studies in "uncomplicated" HSP have shown axon degeneration particularly involving the distal ends of corticospinal tracts and dorsal column fibers. Treatment is limited to symptom reduction including amelioration of spasticity, reducing urinary urgency, proactive physical therapy including strengthening, stretching, balance, and agility exercise.
Collapse
Affiliation(s)
- John K Fink
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
13
|
Younger DS. Neurogenetic motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:183-250. [PMID: 37562870 DOI: 10.1016/b978-0-323-98818-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Advances in the field of neurogenetics have practical applications in rapid diagnosis on blood and body fluids to extract DNA, obviating the need for invasive investigations. The ability to obtain a presymptomatic diagnosis through genetic screening and biomarkers can be a guide to life-saving disease-modifying therapy or enzyme replacement therapy to compensate for the deficient disease-causing enzyme. The benefits of a comprehensive neurogenetic evaluation extend to family members in whom identification of the causal gene defect ensures carrier detection and at-risk counseling for future generations. This chapter explores the many facets of the neurogenetic evaluation in adult and pediatric motor disorders as a primer for later chapters in this volume and a roadmap for the future applications of genetics in neurology.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
14
|
Panza E, Meyyazhagan A, Orlacchio A. Hereditary spastic paraplegia: Genetic heterogeneity and common pathways. Exp Neurol 2022; 357:114203. [PMID: 35970204 DOI: 10.1016/j.expneurol.2022.114203] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/11/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023]
Abstract
Hereditary Spastic Paraplegias (HSPs) are a heterogeneous group of disease, mainly characterized by progressive spasticity and weakness of the lower limbs resulting from distal degeneration of corticospinal tract axons. Although HSPs represent rare or ultra-rare conditions, with reported cases of mutated genes found in single families, overall, with 87 forms described, they are an important health and economic problem for society and patients. In fact, they are chronic and life-hindering conditions, still lacking a specific therapy. Notwithstanding the number of forms described, and 73 causative genes identified, overall, the molecular diagnostic rate varies among 29% to 61.8%, based on recent published analysis, suggesting that more genes are involved in HSP and/or that different molecular diagnostic approaches are necessary. The accumulating data in this field highlight several peculiar features of HSPs, such as genetic heterogeneity, the discovery that different mutations in a single gene can be transmitted in dominant and recessive trait in families and allelic heterogeneity, resulting in the involvement of HSP-genes in other conditions. Based on the observation of protein functions, the activity of many different proteins encoded by HSP-related genes converges into some distinct pathophysiological mechanisms. This suggests that common pathways could be a potential target for a therapy, possibly addressing several forms at once. Furthermore, the overlap of HSP genes with other neurological conditions can further expand this concept.
Collapse
Affiliation(s)
- Emanuele Panza
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Arun Meyyazhagan
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Antonio Orlacchio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy; Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
15
|
The Puzzle of Hereditary Spastic Paraplegia: From Epidemiology to Treatment. Int J Mol Sci 2022; 23:ijms23147665. [PMID: 35887006 PMCID: PMC9321931 DOI: 10.3390/ijms23147665] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 01/03/2023] Open
Abstract
Inherited neurodegenerative pathology characterized by lower muscle tone and increasing spasticity in the lower limbs is termed hereditary spastic paraplegia (HSP). HSP is associated with changes in about 80 genes and their products involved in various biochemical pathways, such as lipid droplet formation, endoplasmic reticulum shaping, axon transport, endosome trafficking, and mitochondrial function. With the inheritance patterns of autosomal dominant, autosomal recessive, X-linked recessive, and mitochondrial inheritance, HSP is prevalent around the globe at a rate of 1–5 cases in every 100,000 individuals. Recent technology and medical interventions somewhat aid in recognizing and managing the malaise. However, HSP still lacks an appropriate and adequate therapeutic approach. Current therapies are based on the clinical manifestations observed in the patients, for example, smoothing the relaxant spastic muscle and physiotherapies. The limited clinical trial studies contribute to the absence of specific pharmaceuticals for HSPs. Our current work briefly explains the causative genes, epidemiology, underlying mechanism, and the management approach undertaken to date. We have also mentioned the latest approved drugs to summarise the available knowledge on therapeutic strategies for HSP.
Collapse
|
16
|
Komachali SR, Sheikholeslami M, Salehi M. A novel mutation in GJC2 associated with hypomyelinating leukodystrophy type 2 disorder. Genomics Inform 2022; 20:e24. [PMID: 35794704 PMCID: PMC9299563 DOI: 10.5808/gi.22008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022] Open
Abstract
Hypomyelinating leukodystrophy type 2 (HLD2), is an inherited genetic disease of the central nervous system caused by recessive mutations in the gap junction protein gamma 2 (GJC2/GJA12). HLD2 is characterized by nystagmus, developmental delay, motor impairments, ataxia, severe speech problem, and hypomyelination in the brain. The GJC2 sequence encodes connexin 47 protein (Cx47). Connexins are a group of membrane proteins that oligomerize to construct gap junctions protein. In the present study, a novel missense mutation gene c.760G>A (p.Val254Met) was identified in a patient with HLD2 by performing whole exome sequencing. Following the discovery of the new mutation in the proband, we used Sanger sequencing to analyze his affected sibling and parents. Sanger sequencing verified homozygosity of the mutation in the proband and his affected sibling. The autosomal recessive inheritance pattern was confirmed since Sanger sequencing revealed both healthy parents were heterozygous for the mutation. PolyPhen2, SIFT, PROVEAN, and CADD were used to evaluate the function prediction scores of detected mutations. Cx47 is essential for oligodendrocyte function, including adequate myelination and myelin maintenance in humans. Novel mutation p.Val254Met is located in the second extracellular domain of Cx47, both extracellular loops are highly conserved and probably induce intramolecular disulfide interactions. This novel mutation in the Cx47 gene causes oligodendrocyte dysfunction and HLD2 disorder.
Collapse
Affiliation(s)
- Sajad Rafiee Komachali
- Department of Biology, University of Sistan and Baluchestan, Zahedan 98167-45845, Iran.,Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan 81759-54319, Iran
| | | | - Mansoor Salehi
- Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan 81759-54319, Iran
| |
Collapse
|
17
|
Activation of the unfolded protein response by Connexin47 mutations associated with Pelizaeus-Merzbacher-like disease. Mol Cell Neurosci 2022; 120:103716. [PMID: 35276347 DOI: 10.1016/j.mcn.2022.103716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Pelizaeus-Merzbacher-like disease type 1 (PMLD1) is a hypomyelinating disorder arising in patients with mutations in GJC2, encoding Connexin47 (Cx47). PMLD1 causes nystagmus, cerebellar ataxia, spasticity and changes in CNS white matter detected by MRI. At least one mutation (p.I33M) yields a much milder phenotype, spastic paraplegia type 44 (SPG44). Cx47 contributes to gap junction communication channels between oligodendrocytes (OLs), the myelinating cells in the central nervous system (CNS), and between OLs and astrocytes. Prior studies in cell lines have shown that PMLD1 mutants such as p.P87S display defective protein trafficking, intracellular retention in the ER and loss-of-function. Here we show that when expressed in primary OLs, three PMLD1 associated mutants (p.P87S, p.Y269D and p.M283T) show ER retention of Cx47 and evidence of activation of the cellular stress (unfolded protein response, UPR) and apoptotic pathways. On the other hand, the milder SPG44 associated mutation p.I33M shows a wild-type-like subcellular distribution and no activation of the UPR or apoptotic pathways. These studies provide new insight into a potential element of toxic gain of function underlying the mechanism of PMLD1 that should help guide future therapeutic approaches.
Collapse
|
18
|
Johns AE, Maragakis NJ. Exploring Motor Neuron Diseases Using iPSC Platforms. Stem Cells 2022; 40:2-13. [PMID: 35511862 PMCID: PMC9199844 DOI: 10.1093/stmcls/sxab006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023]
Abstract
The degeneration of motor neurons is a pathological hallmark of motor neuron diseases (MNDs), but emerging evidence suggests that neuronal vulnerability extends well beyond this cell subtype. The ability to assess motor function in the clinic is limited to physical examination, electrophysiological measures, and tissue-based or neuroimaging techniques which lack the resolution to accurately assess neuronal dysfunction as the disease progresses. Spinal muscular atrophy (SMA), spinal and bulbar muscular atrophy (SBMA), hereditary spastic paraplegia (HSP), and amyotrophic lateral sclerosis (ALS) are all MNDs with devastating clinical outcomes that contribute significantly to disease burden as patients are no longer able to carry out normal activities of daily living. The critical need to accurately assess the cause and progression of motor neuron dysfunction, especially in the early stages of those diseases, has motivated the use of human iPSC-derived motor neurons (hiPSC-MN) to study the neurobiological mechanisms underlying disease pathogenesis and to generate platforms for therapeutic discovery and testing. As our understanding of MNDs has grown, so too has our need to develop more complex in vitro models which include hiPSC-MN co-cultured with relevant non-neuronal cells in 2D as well as in 3D organoid and spheroid systems. These more complex hiPSC-derived culture systems have led to the implementation of new technologies, including microfluidics, multielectrode array, and machine learning which offer novel insights into the functional correlates of these emerging model systems.
Collapse
Affiliation(s)
- Alexandra E Johns
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
19
|
Hereditary Spastic Paraplegia: An Update. Int J Mol Sci 2022; 23:ijms23031697. [PMID: 35163618 PMCID: PMC8835766 DOI: 10.3390/ijms23031697] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a rare neurodegenerative disorder with the predominant clinical manifestation of spasticity in the lower extremities. HSP is categorised based on inheritance, the phenotypic characters, and the mode of molecular pathophysiology, with frequent degeneration in the axon of cervical and thoracic spinal cord’s lateral region, comprising the corticospinal routes. The prevalence ranges from 0.1 to 9.6 subjects per 100,000 reported around the globe. Though modern medical interventions help recognize and manage the disorder, the symptomatic measures remain below satisfaction. The present review assimilates the available data on HSP and lists down the chromosomes involved in its pathophysiology and the mutations observed in the respective genes on the chromosomes. It also sheds light on the treatment available along with the oral/intrathecal medications, physical therapies, and surgical interventions. Finally, we have discussed the related diagnostic techniques as well as the linked pharmacogenomics studies under future perspectives.
Collapse
|
20
|
Panganiban CH, Barth JL, Tan J, Noble KV, McClaskey CM, Howard BA, Jafri SH, Dias JW, Harris KC, Lang H. Two distinct types of nodes of Ranvier support auditory nerve function in the mouse cochlea. Glia 2021; 70:768-791. [DOI: 10.1002/glia.24138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/12/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Clarisse H. Panganiban
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
- Wolfson Centre for Age‐Related Diseases King's College London London UK
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology Medical University of South Carolina Charleston South Carolina USA
| | - Junying Tan
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Kenyaria V. Noble
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Carolyn M. McClaskey
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Blake A. Howard
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Shabih H. Jafri
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - James W. Dias
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Kelly C. Harris
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| |
Collapse
|
21
|
Elsayed LEO, Eltazi IZ, Ahmed AE, Stevanin G. Insights into Clinical, Genetic, and Pathological Aspects of Hereditary Spastic Paraplegias: A Comprehensive Overview. Front Mol Biosci 2021; 8:690899. [PMID: 34901147 PMCID: PMC8662366 DOI: 10.3389/fmolb.2021.690899] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are a heterogeneous group of motor neurodegenerative disorders that have the core clinical presentation of pyramidal syndrome which starts typically in the lower limbs. They can present as pure or complex forms with all classical modes of monogenic inheritance reported. To date, there are more than 100 loci/88 spastic paraplegia genes (SPG) involved in the pathogenesis of HSP. New patterns of inheritance are being increasingly identified in this era of huge advances in genetic and functional studies. A wide range of clinical symptoms and signs are now reported to complicate HSP with increasing overall complexity of the clinical presentations considered as HSP. This is especially true with the emergence of multiple HSP phenotypes that are situated in the borderline zone with other neurogenetic disorders. The genetic diagnostic approaches and the utilized techniques leave a diagnostic gap of 25% in the best studies. In this review, we summarize the known types of HSP with special focus on those in which spasticity is the principal clinical phenotype ("SPGn" designation). We discuss their modes of inheritance, clinical phenotypes, underlying genetics, and molecular pathways, providing some observations about therapeutic opportunities gained from animal models and functional studies. This review may pave the way for more analytic approaches that take into consideration the overall picture of HSP. It will shed light on subtle associations that can explain the occurrence of the disease and allow a better understanding of its observed variations. This should help in the identification of future biomarkers, predictors of disease onset and progression, and treatments for both better functional outcomes and quality of life.
Collapse
Affiliation(s)
- Liena E. O. Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University [PNU], Riyadh, Saudi Arabia
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Ammar E. Ahmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Giovanni Stevanin
- Institut du Cerveau – Paris Brain Institute - ICM, Sorbonne Université, INSERM, CNRS, APHP, Paris, France
- CNRS, INCIA, Université de Bordeaux, Bordeaux, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
22
|
Nouri N, Bahreini A, Nasiri J, Salehi M. Clinical and genetic profile of children with unexplained intellectual disability/developmental delay and epilepsy. Epilepsy Res 2021; 177:106782. [PMID: 34695666 DOI: 10.1016/j.eplepsyres.2021.106782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE This study was conducted to evaluate the validity of performing whole exome sequencing in children with unexplained intellectual disability (ID), developmental delay (DD), and epilepsy. METHODS We enrolled 61 Iranian children with unexplained DD/ID, and epilepsy with no etiologic diagnosis. 64 % of cases were male and 36 % were female, with a mean age of 6.2 years (range, 38 days to 15 years). Approximately 79 % of patients were born to consanguineous parents or had non-related parents from a highly inbred local region. Whole-exome sequencing analysis followed by Sanger sequencing was performed in all patients. RESULTS Pathogenic/likely pathogenic variants were identified in 59% (36/61) of patients, consisting of 26 novel and 14 known alterations. Variants of unknown significance were observed in 6.5 % (4/61) of patients. Variants in 28 genes have not been previously reported in Iranian patients with ID. Several additional phenotypes, mostly microcephaly, were common in 57.4 % of cases. Additionally, epilepsy was refractory in 40 % of patients. Three groups of brain anomalies consisting of brain dysgenesis, brain atrophy, and leukodystrophy were identified in our cohort. Mutations in genes implicated in cellular metabolic pathways were the most common, followed by ion channel/ion transporter and transcription pathways. DISCUSSION High-throughput DNA sequencing of the Iranian population with a high rate of parental consanguinity is a valuable strategy for identifying genetic etiology in children with unexplained ID/DD and epilepsy. Determining the genetic basis and most commonly involved pathways may help to identify novel genes and targeted antiepileptic treatments.
Collapse
Affiliation(s)
- Nayereh Nouri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Bahreini
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, PA, USA; KaryoGen, Isfahan, Iran
| | - Jafar Nasiri
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoor Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
23
|
Gap Junction Channelopathies and Calmodulinopathies. Do Disease-Causing Calmodulin Mutants Affect Direct Cell-Cell Communication? Int J Mol Sci 2021; 22:ijms22179169. [PMID: 34502077 PMCID: PMC8431743 DOI: 10.3390/ijms22179169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 11/24/2022] Open
Abstract
The cloning of connexins cDNA opened the way to the field of gap junction channelopathies. Thus far, at least 35 genetic diseases, resulting from mutations of 11 different connexin genes, are known to cause numerous structural and functional defects in the central and peripheral nervous system as well as in the heart, skin, eyes, teeth, ears, bone, hair, nails and lymphatic system. While all of these diseases are due to connexin mutations, minimal attention has been paid to the potential diseases of cell–cell communication caused by mutations of Cx-associated molecules. An important Cx accessory protein is calmodulin (CaM), which is the major regulator of gap junction channel gating and a molecule relevant to gap junction formation. Recently, diseases caused by CaM mutations (calmodulinopathies) have been identified, but thus far calmodulinopathy studies have not considered the potential effect of CaM mutations on gap junction function. The major goal of this review is to raise awareness on the likely role of CaM mutations in defects of gap junction mediated cell communication. Our studies have demonstrated that certain CaM mutants affect gap junction channel gating or expression, so it would not be surprising to learn that CaM mutations known to cause diseases also affect cell communication mediated by gap junction channels.
Collapse
|
24
|
Abrams CK, Flores-Obando RE, Dungan GD, Cherepanova E, Freidin MM. Investigating oligodendrocyte connexins: Heteromeric interactions between Cx32 and mutant or wild-type forms of Cx47 do not contribute to or modulate gap junction function. Glia 2021; 69:1882-1896. [PMID: 33835612 DOI: 10.1002/glia.23999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/11/2022]
Abstract
Oligodendrocytes express two gap junction forming connexins, connexin 32 (Cx32) and Cx47; therefore, formation of heteromeric channels containing both Cx47 and Cx32 monomers might occur. Mutations in Cx47 cause both Pelizaeus-Merzbacher-like disease Type 1 (PMLD1) and hereditary spastic paraparesis Type 44 (SPG44) and heteromer formation between these mutants and Cx32 may contribute to the pathogenesis of these disorders. Here, we utilized electrophysiological and antibody-based techniques to examine this possibility. When cells expressing both Cx32 and Cx47 were paired with cells expressing either Cx32 or Cx47, properties were indistinguishable from those produced by cells expressing homotypic Cx32 or Cx47 channels. Similarly, pairing cells expressing both Cx32 and Cx47 with cells expressing Cx30 or Cx43 produced channels indistinguishable from heterotypic Cx32/Cx30 or Cx47/Cx43 channels, respectively. The same assessments were performed on cells expressing Cx32 and four mutant forms of Cx47 (p.I33M associated with SPG44 or p.P87S, p.Y269D or p.M283T associated with PMLD1). None of these mutants showed a functional effect on Cx32. Immunostained cells co-expressing Cx32WT (wild type) and Cx47WT showed a Pearson correlation coefficient close to zero, suggesting that any overlap was due to chance. p.Y269D showed a statistically significant negative correlation with Cx32, suggesting that Cx32 and this mutant overlap less than expected by chance. Co-immunoprecipitation of Cx32 with Cx47WT and mutants show only very low levels of co-immunoprecipitated protein. Overall, our data suggest that interactions between PMLD1 or SPG44 mutants and Cx32 gap junctions do not contribute to the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Charles K Abrams
- Department of Neurology and Rehabilitation, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | | | - Gabriel D Dungan
- Department of Neurology and Rehabilitation, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Elina Cherepanova
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Mona M Freidin
- Department of Neurology and Rehabilitation, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| |
Collapse
|
25
|
Yahia A, Stevanin G. The History of Gene Hunting in Hereditary Spinocerebellar Degeneration: Lessons From the Past and Future Perspectives. Front Genet 2021; 12:638730. [PMID: 33833777 PMCID: PMC8021710 DOI: 10.3389/fgene.2021.638730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Hereditary spinocerebellar degeneration (SCD) encompasses an expanding list of rare diseases with a broad clinical and genetic heterogeneity, complicating their diagnosis and management in daily clinical practice. Correct diagnosis is a pillar for precision medicine, a branch of medicine that promises to flourish with the progressive improvements in studying the human genome. Discovering the genes causing novel Mendelian phenotypes contributes to precision medicine by diagnosing subsets of patients with previously undiagnosed conditions, guiding the management of these patients and their families, and enabling the discovery of more causes of Mendelian diseases. This new knowledge provides insight into the biological processes involved in health and disease, including the more common complex disorders. This review discusses the evolution of the clinical and genetic approaches used to diagnose hereditary SCD and the potential of new tools for future discoveries.
Collapse
Affiliation(s)
- Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Faculty of Medicine, National University, Khartoum, Sudan
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
26
|
Abstract
Hypomyelinating leukodystrophies constitute a subset of genetic white matter disorders characterized by a primary lack of myelin deposition. Most patients with severe hypomyelination present in infancy or early childhood and develop severe neurological deficits, but the clinical presentation can also be mild with onset of symptoms in adolescence or adulthood. MRI can be used to visualize the process of myelination in detail, and MRI pattern recognition can provide a clinical diagnosis in many patients. Next-generation sequencing provides a definitive diagnosis in 80-90% of patients. Genes associated with hypomyelination include those that encode structural myelin proteins but also many that encode proteins involved in RNA translation and some lysosomal proteins. The precise pathomechanisms remain to be elucidated. Improved understanding of the process of myelination, the metabolic axonal support functions of myelin and the proposed contribution of myelin to CNS plasticity provide possible explanations as to why almost all patients with hypomyelination experience slow clinical decline after a long phase of stability. In this Review, we provide an overview of the hypomyelinating leukodystrophies, the advances in our understanding of myelin biology and of the genes involved in these disorders, and the insights these advances have provided into their clinical presentations and evolution.
Collapse
|
27
|
Gunay A, Shin HH, Gozutok O, Gautam M, Ozdinler PH. Importance of lipids for upper motor neuron health and disease. Semin Cell Dev Biol 2020; 112:92-104. [PMID: 33323321 DOI: 10.1016/j.semcdb.2020.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/12/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022]
Abstract
Building evidence reveals the importance of maintaining lipid homeostasis for the health and function of neurons, and upper motor neurons (UMNs) are no exception. UMNs are critically important for the initiation and modulation of voluntary movement as they are responsible for conveying cerebral cortex' input to spinal cord targets. To maintain their unique cytoarchitecture with a prominent apical dendrite and a very long axon, UMNs require a stable cell membrane, a lipid bilayer. Lipids can act as building blocks for many biomolecules, and they also contribute to the production of energy. Therefore, UMNs require sustained control over the production, utilization and homeostasis of lipids. Perturbations of lipid homeostasis lead to UMN vulnerability and progressive degeneration in diseases such as hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS). Here, we discuss the importance of lipids, especially for UMNs.
Collapse
Affiliation(s)
- Aksu Gunay
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - Heather H Shin
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - Oge Gozutok
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - Mukesh Gautam
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - P Hande Ozdinler
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611.
| |
Collapse
|
28
|
Di Bella D, Magri S, Benzoni C, Farina L, Maccagnano C, Sarto E, Moscatelli M, Baratta S, Ciano C, Piacentini SHMJ, Draghi L, Mauro E, Pareyson D, Gellera C, Taroni F, Salsano E. Hypomyelinating leukodystrophies in adults: Clinical and genetic features. Eur J Neurol 2020; 28:934-944. [PMID: 33190326 DOI: 10.1111/ene.14646] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Little is known about hypomyelinating leukodystrophies (HLDs) in adults. The aim of this study was to investigate HLD occurrence, clinical features, and etiology among undefined leukoencephalopathies in adulthood. METHODS We recruited the patients with cerebral hypomyelinating magnetic resonance imaging pattern (mild T2 hyperintensity with normal or near-normal T1 signal) from our cohort of 62 adult index cases with undefined leukoencephalopathies, reviewed their clinical features, and used a leukoencephalopathy-targeted next generation sequencing panel. RESULTS We identified 25/62 patients (~40%) with hypomyelination. Cardinal manifestations were spastic gait and varying degree of cognitive impairment. Etiology was determined in 44% (definite, 10/25; likely, 1/25). Specifically, we found pathogenic variants in the POLR3A (n = 2), POLR1C (n = 1), RARS1 (n = 1), and TUBB4A (n = 1) genes, which are typically associated with severe early-onset HLDs, and in the GJA1 gene (n = 1), which is associated with oculodentodigital dysplasia. Duplication of a large chromosome X region encompassing PLP1 and a pathogenic GJC2 variant were found in two patients, both females, with early-onset HLDs persisting into adulthood. Finally, we found likely pathogenic variants in PEX3 (n = 1) and PEX13 (n = 1) and potentially relevant variants of unknown significance in TBCD (n = 1), which are genes associated with severe, early-onset diseases with central hypomyelination/dysmyelination. CONCLUSIONS A hypomyelinating pattern characterizes a relevant number of undefined leukoencephalopathies in adulthood. A comprehensive genetic screening allows definite diagnosis in about half of patients, and demonstrates the involvement of many disease-causing genes, including genes associated with severe early-onset HLDs, and genes causing peroxisome biogenesis disorders.
Collapse
Affiliation(s)
- Daniela Di Bella
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Benzoni
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Farina
- Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Carmelo Maccagnano
- Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elisa Sarto
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Moscatelli
- Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Baratta
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia Ciano
- Unit of Neurophysiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Lara Draghi
- Unit of Neuropsychology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Mauro
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ettore Salsano
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Neuroscience PhD Program, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
29
|
Hardt R, Jordans S, Winter D, Gieselmann V, Wang-Eckhardt L, Eckhardt M. Decreased turnover of the CNS myelin protein Opalin in a mouse model of hereditary spastic paraplegia 35. Hum Mol Genet 2020; 29:3616-3630. [PMID: 33215680 DOI: 10.1093/hmg/ddaa246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Spastic paraplegia 35 (SPG35) (OMIM: 612319) or fatty acid hydroxylase-associated neurodegeneration (FAHN) is caused by deficiency of fatty acid 2-hydroxylase (FA2H). This enzyme synthesizes sphingolipids containing 2-hydroxylated fatty acids, which are particularly abundant in myelin. Fa2h-deficient (Fa2h-/-) mice develop symptoms reminiscent of the human disease and therefore serve as animal model of SPG35. In order to understand further the pathogenesis of SPG35, we compared the proteome of purified CNS myelin isolated from wild type and Fa2h-/- mice at different time points of disease progression using tandem mass tag labeling. Data analysis with a focus on myelin membrane proteins revealed a significant increase of the oligodendrocytic myelin paranodal and inner loop protein (Opalin) in Fa2h-/- mice, whereas the concentration of other major myelin proteins was not significantly changed. Western blot analysis revealed an almost 6-fold increase of Opalin in myelin of Fa2h-/- mice aged 21-23 months. A concurrent unaltered Opalin gene expression suggested a decreased turnover of the Opalin protein in Fa2h-/- mice. Supporting this hypothesis, Opalin protein half-life was reduced significantly when expressed in CHO cells synthesizing 2-hydroxylated sulfatide, compared to cells synthesizing only non-hydroxylated sulfatide. Degradation of Opalin was inhibited by inhibitors of lysosomal degradation but unaffected by proteasome inhibitors. Taken together, these results reveal a new function of 2-hydroxylated sphingolipids namely affecting the turnover of a myelin membrane protein. This may play a role in the pathogenesis of SPG35.
Collapse
Affiliation(s)
- Robert Hardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Silvia Jordans
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Dominic Winter
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Lihua Wang-Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| |
Collapse
|
30
|
Garcia LM, Hacker JL, Sase S, Adang L, Almad A. Glial cells in the driver seat of leukodystrophy pathogenesis. Neurobiol Dis 2020; 146:105087. [PMID: 32977022 DOI: 10.1016/j.nbd.2020.105087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/16/2020] [Accepted: 09/18/2020] [Indexed: 01/24/2023] Open
Abstract
Glia cells are often viewed as support cells in the central nervous system, but recent discoveries highlight their importance in physiological functions and in neurological diseases. Central to this are leukodystrophies, a group of progressive, neurogenetic disease affecting white matter pathology. In this review, we take a closer look at multiple leukodystrophies, classified based on the primary glial cell type that is affected. While white matter diseases involve oligodendrocyte and myelin loss, we discuss how astrocytes and microglia are affected and impinge on oligodendrocyte, myelin and axonal pathology. We provide an overview of the leukodystrophies covering their hallmark features, clinical phenotypes, diverse molecular pathways, and potential therapeutics for clinical trials. Glial cells are gaining momentum as cellular therapeutic targets for treatment of demyelinating diseases such as leukodystrophies, currently with no treatment options. Here, we bring the much needed attention to role of glia in leukodystrophies, an integral step towards furthering disease comprehension, understanding mechanisms and developing future therapeutics.
Collapse
Affiliation(s)
- Luis M Garcia
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Julia L Hacker
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Sunetra Sase
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Laura Adang
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Akshata Almad
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA.
| |
Collapse
|
31
|
Papaneophytou C, Georgiou E, Kleopa KA. The role of oligodendrocyte gap junctions in neuroinflammation. Channels (Austin) 2020; 13:247-263. [PMID: 31232168 PMCID: PMC6602578 DOI: 10.1080/19336950.2019.1631107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Gap junctions (GJs) provide channels for direct cell-to-cell connectivity serving the homeostasis in several organs of vertebrates including the central (CNS) and peripheral (PNS) nervous systems. GJs are composed of connexins (Cx), which show a highly distinct cellular and subcellular expression pattern. Oligodendrocytes, the myelinating cells of the CNS, are characterized by extensive GJ connectivity with each other as well as with astrocytes. The main oligodendrocyte connexins forming these GJ channels are Cx47 and Cx32. The importance of these channels has been highlighted by the discovery of human diseases caused by mutations in oligodendrocyte connexins, manifesting with leukodystrophy or transient encephalopathy. Experimental models have provided further evidence that oligodendrocyte GJs are essential for CNS myelination and homeostasis, while a strong inflammatory component has been recognized in the absence of oligodendrocyte connexins. Further studies revealed that connexins are also disrupted in multiple sclerosis (MS) brain, and in experimental models of induced inflammatory demyelination. Moreover, induced demyelination was more severe and associated with higher degree of CNS inflammation in models with oligodendrocyte GJ deficiency, suggesting that disrupted connexin expression in oligodendrocytes is not only a consequence but can also drive a pro-inflammatory environment in acquired demyelinating disorders such as MS. In this review, we summarize the current insights from human disorders as well as from genetic and acquired models of demyelination related to oligodendrocyte connexins, with the remaining challenges and perspectives.
Collapse
Affiliation(s)
- Christos Papaneophytou
- a Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine , Nicosia , Cyprus.,b Department of Life and Health Sciences, School of Sciences and Engineering , University of Nicosia , Nicosia , Cyprus
| | - Elena Georgiou
- a Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine , Nicosia , Cyprus
| | - Kleopas A Kleopa
- a Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine , Nicosia , Cyprus.,c Neurology Clinics , the Cyprus Institute of Neurology and Genetics, and the Cyprus School of Molecular Medicine , Nicosia , Cyprus
| |
Collapse
|
32
|
Darios F, Mochel F, Stevanin G. Lipids in the Physiopathology of Hereditary Spastic Paraplegias. Front Neurosci 2020; 14:74. [PMID: 32180696 PMCID: PMC7059351 DOI: 10.3389/fnins.2020.00074] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are a group of neurodegenerative diseases sharing spasticity in lower limbs as common symptom. There is a large clinical variability in the presentation of patients, partly underlined by the large genetic heterogeneity, with more than 60 genes responsible for HSP. Despite this large heterogeneity, the proteins with known function are supposed to be involved in a limited number of cellular compartments such as shaping of the endoplasmic reticulum or endolysosomal function. Yet, it is difficult to understand why alteration of such different cellular compartments can lead to degeneration of the axons of cortical motor neurons. A common feature that has emerged over the last decade is the alteration of lipid metabolism in this group of pathologies. This was first revealed by the identification of mutations in genes encoding proteins that have or are supposed to have enzymatic activities on lipid substrates. However, it also appears that mutations in genes affecting endoplasmic reticulum, mitochondria, or endolysosome function can lead to changes in lipid distribution or metabolism. The aim of this review is to discuss the role of lipid metabolism alterations in the physiopathology of HSP, to evaluate how such alterations contribute to neurodegenerative phenotypes, and to understand how this knowledge can help develop therapeutic strategy for HSP.
Collapse
Affiliation(s)
- Frédéric Darios
- Sorbonne Université, Paris, France.,Inserm, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Fanny Mochel
- Sorbonne Université, Paris, France.,Inserm, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France.,National Reference Center for Neurometabolic Diseases, Pitié-Salpêtrière University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Paris, France.,Inserm, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France.,Equipe de Neurogénétique, Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| |
Collapse
|
33
|
Sarret C. Leukodystrophies and genetic leukoencephalopathies in children. Rev Neurol (Paris) 2020; 176:10-19. [DOI: 10.1016/j.neurol.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022]
|
34
|
Kuipers DJ, Tufekcioglu Z, Bilgiç B, Olgiati S, Dremmen MH, van IJcken WF, Breedveld GJ, Mancini GM, Hanagasi HA, Emre M, Bonifati V. Late-onset phenotype associated with a homozygous GJC2 missense mutation in a Turkish family. Parkinsonism Relat Disord 2019; 66:228-231. [DOI: 10.1016/j.parkreldis.2019.07.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
|
35
|
Abstract
PURPOSE OF REVIEW Hereditary myelopathies are very diverse genetic disorders, and many of them represent a widespread neurodegenerative process rather than isolated spinal cord dysfunction. This article reviews various types of inherited myelopathies, with emphasis on hereditary spastic paraplegias and spastic ataxias. RECENT FINDINGS The ever-growing number of myelopathy-causing genes and broadening of phenotype-genotype correlations makes the molecular diagnosis of inherited myelopathies a daunting task. This article emphasizes the main phenotypic clusters among inherited myelopathies that can facilitate the diagnostic process. This article focuses on newly identified genetic causes and the most important identifying clinical features that can aid the diagnosis, including the presence of a characteristic age of onset and additional neurologic signs such as leukodystrophy, thin corpus callosum, or amyotrophy. SUMMARY The exclusion of potentially treatable causes of myelopathy remains the most important diagnostic step. Syndromic diagnosis can be supported by molecular diagnosis, but the genetic diagnosis at present does not change the management. Moreover, a negative genetic test does not exclude the diagnosis of a hereditary myelopathy because comprehensive molecular testing is not yet available, and many disease-causing genes remain unknown.
Collapse
|
36
|
Complexity of Generating Mouse Models to Study the Upper Motor Neurons: Let Us Shift Focus from Mice to Neurons. Int J Mol Sci 2019; 20:ijms20163848. [PMID: 31394733 PMCID: PMC6720674 DOI: 10.3390/ijms20163848] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Motor neuron circuitry is one of the most elaborate circuitries in our body, which ensures voluntary and skilled movement that requires cognitive input. Therefore, both the cortex and the spinal cord are involved. The cortex has special importance for motor neuron diseases, in which initiation and modulation of voluntary movement is affected. Amyotrophic lateral sclerosis (ALS) is defined by the progressive degeneration of both the upper and lower motor neurons, whereas hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS) are characterized mainly by the loss of upper motor neurons. In an effort to reveal the cellular and molecular basis of neuronal degeneration, numerous model systems are generated, and mouse models are no exception. However, there are many different levels of complexities that need to be considered when developing mouse models. Here, we focus our attention to the upper motor neurons, which are one of the most challenging neuron populations to study. Since mice and human differ greatly at a species level, but the cells/neurons in mice and human share many common aspects of cell biology, we offer a solution by focusing our attention to the affected neurons to reveal the complexities of diseases at a cellular level and to improve translational efforts.
Collapse
|
37
|
Owczarek-Lipska M, Mulahasanovic L, Obermaier CD, Hörtnagel K, Neubauer BA, Korenke GC, Biskup S, Neidhardt J. Novel mutations in the GJC2 gene associated with Pelizaeus–Merzbacher-like disease. Mol Biol Rep 2019; 46:4507-4516. [DOI: 10.1007/s11033-019-04906-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/01/2019] [Indexed: 12/15/2022]
|
38
|
Saint-Val L, Courtin T, Charles P, Verny C, Catala M, Schiffmann R, Boespflug-Tanguy O, Mochel F. GJA1 Variants Cause Spastic Paraplegia Associated with Cerebral Hypomyelination. AJNR Am J Neuroradiol 2019; 40:788-791. [PMID: 31023660 DOI: 10.3174/ajnr.a6036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/27/2019] [Indexed: 12/27/2022]
Abstract
Oculodentodigital dysplasia is an autosomal dominant disorder due to GJA1 variants characterized by dysmorphic features. Neurologic symptoms have been described in some patients but without a clear neuroimaging pattern. To understand the pathophysiology underlying neurologic deficits in oculodentodigital dysplasia, we studied 8 consecutive patients presenting with hereditary spastic paraplegia due to GJA1 variants. Clinical disease severity was highly variable. Cerebral MR imaging revealed variable white matter abnormalities, consistent with a hypomyelination pattern, and bilateral hypointense signal of the basal ganglia on T2-weighted images and/or magnetic susceptibility sequences, as seen in neurodegeneration with brain iron accumulation diseases. Patients with the more prominent basal ganglia abnormalities were the most disabled ones. This study suggests that GJA1-related hereditary spastic paraplegia is a complex neurodegenerative disease affecting both the myelin and the basal ganglia. GJA1 variants should be considered in patients with hereditary spastic paraplegia presenting with brain hypomyelination, especially if associated with neurodegeneration and a brain iron accumulation pattern.
Collapse
Affiliation(s)
- L Saint-Val
- From the Department of Genetics (L.S.-V., T.C., P.C., F.M.)
| | - T Courtin
- From the Department of Genetics (L.S.-V., T.C., P.C., F.M.)
| | - P Charles
- From the Department of Genetics (L.S.-V., T.C., P.C., F.M.)
| | - C Verny
- Department of Neurology and Reference Center for Neurogenetic Diseases (C.V.), Angers University Hospital, Angers, France
| | - M Catala
- Department of Neurology (M.C.), Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière University Hospital, Paris, France
- Sorbonne Université (M.C.), Centre National de la Recherche Scientifique UMR 7622, Institut National de la Santé et de la Recherche Médicale ERL 1156, Institut de Biologie Paris-Seine, Paris, France
| | - R Schiffmann
- Baylor Scott & White Research Institute (R.S.), Dallas, Texas
| | - O Boespflug-Tanguy
- Department of Neuropediatrics and Reference Center for Leukodystrophy and Leukoencephalopathy (O.B.-T.), Assistance Publique-Hôpitaux de Paris, Robert-Debré University Hospital, Paris, France
| | - F Mochel
- From the Department of Genetics (L.S.-V., T.C., P.C., F.M.)
- Reference Center for Adult Neurometabolic Diseases (F.M.)
- Groupe de Recherche Clinique No. 13, Neurométabolisme (F.M.), Sorbonne Université, Paris, France
- Sorbonne Université (F.M.), Université Pierre-et-Marie-Curie-Paris 6, UMR S 1127 and Institut National de la Santé et de la Recherche Médicale U 1127, and Centre National de la Recherche Scientifique UMR 7225, and Brain and Spine Institute, F-75013, Paris, France
| |
Collapse
|
39
|
Lynch DS, Wade C, Paiva ARBD, John N, Kinsella JA, Merwick Á, Ahmed RM, Warren JD, Mummery CJ, Schott JM, Fox NC, Houlden H, Adams ME, Davagnanam I, Murphy E, Chataway J. Practical approach to the diagnosis of adult-onset leukodystrophies: an updated guide in the genomic era. J Neurol Neurosurg Psychiatry 2019; 90:543-554. [PMID: 30467211 PMCID: PMC6581077 DOI: 10.1136/jnnp-2018-319481] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/24/2018] [Accepted: 10/07/2018] [Indexed: 12/13/2022]
Abstract
Adult-onset leukodystrophies and genetic leukoencephalopathies comprise a diverse group of neurodegenerative disorders of white matter with a wide age of onset and phenotypic spectrum. Patients with white matter abnormalities detected on MRI often present a diagnostic challenge to both general and specialist neurologists. Patients typically present with a progressive syndrome including various combinations of cognitive impairment, movement disorders, ataxia and upper motor neuron signs. There are a number of important and treatable acquired causes for this imaging and clinical presentation. There are also a very large number of genetic causes which due to their relative rarity and sometimes variable and overlapping presentations can be difficult to diagnose. In this review, we provide a structured approach to the diagnosis of inherited disorders of white matter in adults. We describe clinical and radiological clues to aid diagnosis, and we present an overview of both common and rare genetic white matter disorders. We provide advice on testing for acquired causes, on excluding small vessel disease mimics, and detailed advice on metabolic and genetic testing available to the practising neurologist. Common genetic leukoencephalopathies discussed in detail include CSF1R, AARS2, cerebral arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and mitochondrial and metabolic disorders.
Collapse
Affiliation(s)
- David S Lynch
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK .,Department of Neurology, Royal Free Hospital, London, UK
| | - Charles Wade
- Department of Neurology, Royal Free Hospital, London, UK
| | | | - Nevin John
- Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Justin A Kinsella
- Department of Neurology, St Vincent's University Hospital University College Dublin, Dublin, Ireland
| | - Áine Merwick
- Department of Neurology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Rebekah M Ahmed
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital and the Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Jason D Warren
- Dementia Research Centre, UCL Institute of Neurology, London, UK
| | | | | | - Nick C Fox
- Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Matthew E Adams
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Indran Davagnanam
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK.,Brain Repair & Rehabilitation, UCL Institute of Neurology, London, UK
| | - Elaine Murphy
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery Queen Square, London, UK
| | - Jeremy Chataway
- Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| |
Collapse
|
40
|
Diseases of connexins expressed in myelinating glia. Neurosci Lett 2019; 695:91-99. [DOI: 10.1016/j.neulet.2017.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 11/23/2022]
|
41
|
Min R, van der Knaap MS. Genetic defects disrupting glial ion and water homeostasis in the brain. Brain Pathol 2019; 28:372-387. [PMID: 29740942 PMCID: PMC8028498 DOI: 10.1111/bpa.12602] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/02/2018] [Indexed: 12/23/2022] Open
Abstract
Electrical activity of neurons in the brain, caused by the movement of ions between intracellular and extracellular compartments, is the basis of all our thoughts and actions. Maintaining the correct ionic concentration gradients is therefore crucial for brain functioning. Ion fluxes are accompanied by the displacement of osmotically obliged water. Since even minor brain swelling leads to severe brain damage and even death, brain ion and water movement has to be tightly regulated. Glial cells, in particular astrocytes, play a key role in ion and water homeostasis. They are endowed with specific channels, pumps and carriers to regulate ion and water flow. Glial cells form a large panglial syncytium to aid the uptake and dispersal of ions and water, and make extensive contacts with brain fluid barriers for disposal of excess ions and water. Genetic defects in glial proteins involved in ion and water homeostasis disrupt brain functioning, thereby leading to neurological diseases. Since white matter edema is often a hallmark disease feature, many of these diseases are characterized as leukodystrophies. In this review we summarize our current understanding of inherited glial diseases characterized by disturbed brain ion and water homeostasis by integrating findings from MRI, genetics, neuropathology and animal models for disease. We discuss how mutations in different glial proteins lead to disease, and highlight the similarities and differences between these diseases. To come to effective therapies for this group of diseases, a better mechanistic understanding of how glial cells shape ion and water movement in the brain is crucial.
Collapse
Affiliation(s)
- Rogier Min
- Department of Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.,Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Abstract
The connexin family of channel-forming proteins is present in every tissue type in the human anatomy. Connexins are best known for forming clustered intercellular channels, structurally known as gap junctions, where they serve to exchange members of the metabolome between adjacent cells. In their single-membrane hemichannel form, connexins can act as conduits for the passage of small molecules in autocrine and paracrine signalling. Here, we review the roles of connexins in health and disease, focusing on the potential of connexins as therapeutic targets in acquired and inherited diseases as well as wound repair, while highlighting the associated clinical challenges.
Collapse
|
43
|
Castorena-Gonzalez JA, Zawieja SD, Li M, Srinivasan RS, Simon AM, de Wit C, de la Torre R, Martinez-Lemus LA, Hennig GW, Davis MJ. Mechanisms of Connexin-Related Lymphedema. Circ Res 2018; 123:964-985. [PMID: 30355030 PMCID: PMC6771293 DOI: 10.1161/circresaha.117.312576] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Mutations in GJC2 and GJA1, encoding Cxs (connexins) 47 and 43, respectively, are linked to lymphedema, but the underlying mechanisms are unknown. Because efficient lymph transport relies on the coordinated contractions of lymphatic muscle cells (LMCs) and their electrical coupling through Cxs, Cx-related lymphedema is proposed to result from dyssynchronous contractions of lymphatic vessels. OBJECTIVE To determine which Cx isoforms in LMCs and lymphatic endothelial cells are required for the entrainment of lymphatic contraction waves and efficient lymph transport. METHODS AND RESULTS We developed novel methods to quantify the spatiotemporal entrainment of lymphatic contraction waves and used optogenetic techniques to analyze calcium signaling within and between the LMC and the lymphatic endothelial cell layers. Genetic deletion of the major lymphatic endothelial cell Cxs (Cx43, Cx47, or Cx37) revealed that none were necessary for the synchronization of the global calcium events that triggered propagating contraction waves. We identified Cx45 in human and mouse LMCs as the critical Cx mediating the conduction of pacemaking signals and entrained contractions. Smooth muscle-specific Cx45 deficiency resulted in 10- to 18-fold reduction in conduction speed, partial-to-severe loss of contractile coordination, and impaired lymph pump function ex vivo and in vivo. Cx45 deficiency resulted in profound inhibition of lymph transport in vivo, but only under an imposed gravitational load. CONCLUSIONS Our results (1) identify Cx45 as the Cx isoform mediating the entrainment of the contraction waves in LMCs; (2) show that major endothelial Cxs are dispensable for the entrainment of contractions; (3) reveal a lack of coupling between lymphatic endothelial cells and LMCs, in contrast to arterioles; (4) point to lymphatic valve defects, rather than contraction dyssynchrony, as the mechanism underlying GJC2- or GJA1-related lymphedema; and (5) show that a gravitational load exacerbates lymphatic contractile defects in the intact mouse hindlimb, which is likely critical for the development of lymphedema in the adult mouse.
Collapse
Affiliation(s)
| | - Scott D. Zawieja
- Dept. of Medical Pharmacology and Physiology and University of Missouri School of Medicine
| | - Min Li
- Dept. of Medical Pharmacology and Physiology and University of Missouri School of Medicine
| | - R. Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City OK
| | | | - Cor de Wit
- Institute of Physiology, University of Luebeck, Luebeck Germany
| | | | - Luis A. Martinez-Lemus
- Dept. of Medical Pharmacology and Physiology and University of Missouri School of Medicine
| | | | - Michael J. Davis
- Dept. of Medical Pharmacology and Physiology and University of Missouri School of Medicine
| |
Collapse
|
44
|
Rossi M, Anheim M, Durr A, Klein C, Koenig M, Synofzik M, Marras C, van de Warrenburg BP. The genetic nomenclature of recessive cerebellar ataxias. Mov Disord 2018; 33:1056-1076. [PMID: 29756227 DOI: 10.1002/mds.27415] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/15/2018] [Accepted: 03/25/2018] [Indexed: 12/17/2022] Open
Abstract
The recessive cerebellar ataxias are a large group of degenerative and metabolic disorders, the diagnostic management of which is difficult because of the enormous clinical and genetic heterogeneity. Because of several limitations, the current classification systems provide insufficient guidance for clinicians and researchers. Here, we propose a new nomenclature for the genetically confirmed recessive cerebellar ataxias according to the principles and criteria laid down by the International Parkinson and Movement Disorder Society Task Force on Classification and Nomenclature of Genetic Movement Disorders. We apply stringent criteria for considering an association between gene and phenotype to be established. The newly proposed list of recessively inherited cerebellar ataxias includes 62 disorders that were assigned an ATX prefix, followed by the gene name, because these typically present with ataxia as a predominant and/or consistent feature. An additional 30 disorders that often combine ataxia with a predominant or consistent other movement disorder received a double prefix (e.g., ATX/HSP). We also identified a group of 89 entities that usually present with complex nonataxia phenotypes, but may occasionally present with cerebellar ataxia. These are listed separately without the ATX prefix. This new, transparent and adaptable nomenclature of the recessive cerebellar ataxias will facilitate the clinical recognition of recessive ataxias, guide diagnostic testing in ataxia patients, and help in interpreting genetic findings. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research, Buenos Aires, Argentina
| | - Mathieu Anheim
- Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Alexandra Durr
- Brain and Spine Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Pitié-Salpêtrière University Hospital, Paris, France.,Department of Genetics, AP-HP, Pitié-Salpêtrière University Hospital, 7501, Paris, France
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares, EA7402, Institut Universitaire de Recherche Clinique, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Connie Marras
- Toronto Western Hospital Morton, Gloria Shulman Movement Disorders Centre, and the Edmond J. Safra Program in Parkinson's Disease, University of Toronto, Toronto, Canada
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
45
|
Hadizadeh M, Mohaddes Ardebili SM, Salehi M, Young C, Mokarian F, McClellan J, Xu Q, Kazemi M, Moazam E, Mahaki B, Ashrafian Bonab M. GJA4/Connexin 37 Mutations Correlate with Secondary Lymphedema Following Surgery in Breast Cancer Patients. Biomedicines 2018; 6:biomedicines6010023. [PMID: 29470392 PMCID: PMC5874680 DOI: 10.3390/biomedicines6010023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/01/2018] [Accepted: 02/13/2018] [Indexed: 01/20/2023] Open
Abstract
Lymphedema is a condition resulting from mutations in various genes essential for lymphatic development and function, which leads to obstruction of the lymphatic system. Secondary lymphedema is a progressive and incurable condition, most often manifesting after surgery for breast cancer. Although its causation appears complex, various lines of evidence indicate that genetic predisposition may play a role. Previous studies show that mutations in connexin 47 are associated with secondary lymphedema. We have tested the hypothesis that connexin 37 gene mutations in humans are associated with secondary lymphedema following breast cancer surgery. A total of 2211 breast cancer patients were screened and tested for reference single nucleotide polymorphisms (SNPs) of the GJA4 gene (gap junction protein alpha 4 gene). The results presented in this paper indicate that two SNPs in the 3’ UTR (the three prime untranslated region) of the GJA4 gene are associated with an increased risk of secondary lymphedema in patients undergoing breast cancer treatment. Our results provide evidence of a novel genetic biomarker for assessing the predisposition to secondary lymphedema in human breast cancer patients. Testing for the condition-associated alleles described here could assist and inform treatment and post-operative care plans of breast cancer patients, with potentially positive outcomes for the management of disease progression.
Collapse
Affiliation(s)
- Mahrooyeh Hadizadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran.
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan 81746753461, Iran.
| | | | - Mansoor Salehi
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan 81746753461, Iran.
| | - Chris Young
- School of Allied Health Sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK.
| | - Fariborz Mokarian
- Cancer Prevention Research Centre, Isfahan University of Medical Sciences, Isfahan 8184917911, Iran.
| | - James McClellan
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK.
| | - Qin Xu
- School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK.
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan 81746753461, Iran.
| | - Elham Moazam
- Cancer Prevention Research Centre, Isfahan University of Medical Sciences, Isfahan 8184917911, Iran.
| | - Behzad Mahaki
- Department of Occupational Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran.
| | | |
Collapse
|
46
|
Abstract
The hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurologic disorders with the common feature of prominent lower-extremity spasticity, resulting from a length-dependent axonopathy of corticospinal upper motor neurons. The HSPs exist not only in "pure" forms but also in "complex" forms that are associated with additional neurologic and extraneurologic features. The HSPs are among the most genetically diverse neurologic disorders, with well over 70 distinct genetic loci, for which about 60 mutated genes have already been identified. Numerous studies elucidating the molecular pathogenesis underlying HSPs have highlighted the importance of basic cellular functions - especially membrane trafficking, mitochondrial function, organelle shaping and biogenesis, axon transport, and lipid/cholesterol metabolism - in axon development and maintenance. An encouragingly small number of converging cellular pathogenic themes have been identified for the most common HSPs, and some of these pathways present compelling targets for future therapies.
Collapse
Affiliation(s)
- Craig Blackstone
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
47
|
Abstract
Hereditary spastic paraplegia comprises a wide and heterogeneous group of inherited neurodegenerative and neurodevelopmental disorders resulting from primary retrograde dysfunction of the long descending fibers of the corticospinal tract. Although spastic paraparesis and urinary dysfunction represent the most common clinical presentation, a complex group of different neurological and systemic compromise has been recognized recently and a growing number of new genetic subtypes were described in the last decade. Clinical characterization of individual and familial history represents the main step during diagnostic workup; however, frequently, few and unspecific data allows a low rate of definite diagnosis based solely in clinical and neuroimaging basis. Likewise, a wide group of neurological acquired and inherited disorders should be included in the differential diagnosis and properly excluded after a complete laboratorial, neuroimaging, and genetic evaluation. The aim of this review article is to provide an extensive overview regarding the main clinical and genetic features of the classical and recently described subtypes of hereditary spastic paraplegia (HSP).
Collapse
|
48
|
Srinivas M, Verselis VK, White TW. Human diseases associated with connexin mutations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:192-201. [PMID: 28457858 DOI: 10.1016/j.bbamem.2017.04.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 01/11/2023]
Abstract
Gap junctions and hemichannels comprised of connexins impact many cellular processes. Significant advances in our understanding of the functional role of these channels have been made by the identification of a host of genetic diseases caused by connexin mutations. Prominent features of connexin disorders are the inability of other connexins expressed in the same cell type to compensate for the mutated one, and the ability of connexin mutants to dominantly influence the activity of other wild-type connexins. Functional studies have begun to identify some of the underlying mechanisms whereby connexin channel mutation contributes to the disease state. Detailed mechanistic understanding of these functional differences will help to facilitate new pathophysiology driven therapies for the diverse array of connexin genetic disorders. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Miduturu Srinivas
- Department of Biological and Vision Sciences, SUNY College of Optometry, New York, NY 10036, USA
| | - Vytas K Verselis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
49
|
Synofzik M, Schüle R. Overcoming the divide between ataxias and spastic paraplegias: Shared phenotypes, genes, and pathways. Mov Disord 2017; 32:332-345. [PMID: 28195350 PMCID: PMC6287914 DOI: 10.1002/mds.26944] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/07/2017] [Accepted: 01/15/2017] [Indexed: 12/11/2022] Open
Abstract
Autosomal-dominant spinocerebellar ataxias, autosomal-recessive spinocerebellar ataxias, and hereditary spastic paraplegias have traditionally been designated in separate clinicogenetic disease classifications. This classification system still largely frames clinical thinking and genetic workup in clinical practice. Yet, with the advent of next-generation sequencing, phenotypically unbiased studies have revealed the limitations of this classification system. Various genes (eg, SPG7, SYNE1, PNPLA6) traditionally rooted in either the ataxia or hereditary spastic paraplegia classification system have now been shown to cause ataxia on the one end of the disease continuum and hereditary spastic paraplegia on the other. Other genes such as GBA2 and KIF1C were almost simultaneously published as both a hereditary spastic paraplegia and an ataxia gene. The variability and fluidity of observed phenotypes along the ataxia-spasticity spectrum warrants a rethinking of the traditional classification system. We propose to replace this divisive diagnosis-driven ataxia and hereditary spastic paraplegia classification system by a descriptive, unbiased approach of modular phenotyping. This approach is also open to expansion of the phenotype beyond ataxia and spasticity, which often occur as part of broader multisystem neuronal dysfunction. The concept of a continuous ataxia-spasticity disease spectrum is further supported by ataxias and hereditary spastic paraplegias sharing not only overlapping phenotypes and underlying genes, but also common cellular pathways and disease mechanisms. This suggests a shared vulnerability of cerebellar and corticospinal neurons for common pathophysiological processes. It might be this mechanistic overlap that drives their clinical overlap. A mechanistically inspired classification system will help to pave the way for mechanism-based strategies for drug development. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Matthis Synofzik
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Rebecca Schüle
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
50
|
Georgiou E, Sidiropoulou K, Richter J, Papaneophytou C, Sargiannidou I, Kagiava A, von Jonquieres G, Christodoulou C, Klugmann M, Kleopa KA. Gene therapy targeting oligodendrocytes provides therapeutic benefit in a leukodystrophy model. Brain 2017; 140:599-616. [PMID: 28100454 PMCID: PMC5837386 DOI: 10.1093/brain/aww351] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022] Open
Abstract
Pelizaeus-Merzbacher-like disease or hypomyelinating leukodystrophy-2 is an autosomal recessively inherited leukodystrophy with childhood onset resulting from mutations in the gene encoding the gap junction protein connexin 47 (Cx47, encoded by GJC2). Cx47 is expressed specifically in oligodendrocytes and is crucial for gap junctional communication throughout the central nervous system. Previous studies confirmed that a cell autonomous loss-of-function mechanism underlies hypomyelinating leukodystrophy-2 and that transgenic oligodendrocyte-specific expression of another connexin, Cx32 (GJB1), can restore gap junctions in oligodendrocytes to achieve correction of the pathology in a disease model. To develop an oligodendrocyte-targeted gene therapy, we cloned the GJC2/Cx47 gene under the myelin basic protein promoter and used an adeno-associated viral vector (AAV.MBP.Cx47myc) to deliver the gene to postnatal Day 10 mice via a single intracerebral injection in the internal capsule area. Lasting Cx47 expression specifically in oligodendrocytes was detected in Cx47 single knockout and Cx32/Cx47 double knockout mice up to 12 weeks post-injection, including the corpus callosum and the internal capsule but also in more distant areas of the cerebrum and in the spinal cord. Application of this oligodendrocyte-targeted somatic gene therapy at postnatal Day 10 in groups of double knockout mice, a well characterized model of hypomyelinating leukodystrophy-2, resulted in significant improvement in motor performance and coordination at 1 month of age in treated compared to mock-treated mice, as well as prolonged survival. Furthermore, immunofluorescence and morphological analysis revealed improvement in demyelination, oligodendrocyte apoptosis, inflammation, and astrogliosis, all typical features of this leukodystrophy model in both brain and spinal cord. Functional dye transfer analysis confirmed the re-establishment of oligodendrocyte gap junctional connectivity in treated as opposed to untreated mice. These results provide a significant advance in the development of oligodendrocyte-cell specific gene therapy. Adeno-associated viral vectors can be used to target therapeutic expression of a myelin gene to oligodendrocytes. We show evidence for the first somatic gene therapy approach to treat hypomyelinating leukodystrophy-2 preclinically, providing a potential treatment for this and similar forms of leukodystrophies.
Collapse
Affiliation(s)
- Elena Georgiou
- 1 Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | | | - Jan Richter
- 3 Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Christos Papaneophytou
- 1 Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Irene Sargiannidou
- 1 Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Alexia Kagiava
- 1 Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Georg von Jonquieres
- 4 Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Christina Christodoulou
- 3 Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Matthias Klugmann
- 4 Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Kleopas A. Kleopa
- 1 Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
- 5 Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|