1
|
Gao Q, Bi D, Li B, Ni M, Pang D, Li X, Zhang X, Xu Y, Zhao Q, Zhu C. The Association Between Branched-Chain Amino Acid Concentrations and the Risk of Autism Spectrum Disorder in Preschool-Aged Children. Mol Neurobiol 2024; 61:6031-6044. [PMID: 38265552 PMCID: PMC11249470 DOI: 10.1007/s12035-024-03965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
Several studies have linked branched-chain amino acid (BCAA) metabolism disorders with autism spectrum disorder (ASD), but the results have been inconsistent. The purpose of this study was to explore the association between BCAA concentrations and the risk of ASD. A total of 313 participants were recruited from two tertiary referral hospitals from May 2018 to July 2021. Concentrations of BCAAs in dried blood spots were analyzed using liquid chromatography-tandem mass spectrometry-based analysis. Multivariate analyses and restricted cubic spline models were used to identify the association between BCAAs and the risk of ASD, and a nomogram was developed by using multivariate logistic regression and the risk was determined by receiver operating characteristic curve analysis and calibration curve analysis. Concentrations of total BCAA, valine, and leucine/isoleucine were higher in the ASD group, and all of them were positively and non-linearly associated with the risk of ASD even after adjusting for potential confounding factors such as age, gender, body mass index, and concentrations of BCAAs (P < 0.05). The nomogram integrating total BCAA and valine showed a good discriminant AUC value of 0.756 (95% CI 0.676-0.835). The model could yield net benefits across a reasonable range of risk thresholds. In the stratified analysis, the diagnostic ability of the model was more pronounced in children older than 3 years. We provide evidence that increased levels of BCAAs are associated with the risk of ASD, and the nomogram model of BCAAs presented here can serve as a marker for the early diagnosis of ASD.
Collapse
Affiliation(s)
- Qi Gao
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dan Bi
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107, Wen Hua Xi Road, Jinan, 250012, Shandong, China
| | - Bingbing Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Min Ni
- Department of Henan Newborn Screening Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450054, China
| | - Dizhou Pang
- Center for Child Behavioral Development, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xian Li
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Qiang Zhao
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China.
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530, Gothenburg, Sweden.
| |
Collapse
|
2
|
Saeyup P, Tubjaroen C, Kamolvisit W, Chongsrisawat V, Thaveepunsan W. Changes in branched-chain amino acids in an infant with maple syrup urine disease during perioperative pediatric liver transplant: A case report. Paediatr Anaesth 2024; 34:366-370. [PMID: 38314877 DOI: 10.1111/pan.14842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/07/2024]
Abstract
An 11-month-old female infant diagnosed with classic subtype IB maple syrup urine disease underwent living donor liver transplantation. Blood samples for plasma amino acid analysis were collected during the three phases of the operation. Despite the perioperative prophylactic administration of 12.5% hypertonic dextrose solution with insulin and a 20% intralipid emulsion, the blood levels of the branched-chain amino acids increased dramatically during surgery, consistent with an acute intraoperative metabolic decompensation. However, these blood levels normalized soon after liver transplantation with an excellent outcome. We suggest that the occurrence of an intraoperative metabolic crisis during liver transplantation is not necessarily a sign of graft failure.
Collapse
Affiliation(s)
- Pipat Saeyup
- Department of Anesthesiology, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chomchanat Tubjaroen
- Division of Gastroenterology and Hepatology, Department of Pediatrics, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Organ Transplantation, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Wuttichart Kamolvisit
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center of Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Voranush Chongsrisawat
- Division of Gastroenterology and Hepatology, Department of Pediatrics, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Organ Transplantation, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Winnie Thaveepunsan
- Department of Anesthesiology, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Lemos IDS, Torres CA, Alano CG, Matiola RT, de Figueiredo Seldenreich R, Padilha APZ, De Pieri E, Effting PS, Machado-De-Ávila RA, Réus GZ, Leipnitz G, Streck EL. Memantine Improves Memory and Neurochemical Damage in a Model of Maple Syrup Urine Disease. Neurochem Res 2024; 49:758-770. [PMID: 38104040 DOI: 10.1007/s11064-023-04072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Maple Syrup Urine Disease (MSUD) is a metabolic disease characterized by the accumulation of branched-chain amino acids (BCAA) in different tissues due to a deficit in the branched-chain alpha-ketoacid dehydrogenase complex. The most common symptoms are poor feeding, psychomotor delay, and neurological damage. However, dietary therapy is not effective. Studies have demonstrated that memantine improves neurological damage in neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Therefore, we hypothesize that memantine, an NMDA receptor antagonist can ameliorate the effects elicited by BCAA in an MSUD animal model. For this, we organized the rats into four groups: control group (1), MSUD group (2), memantine group (3), and MSUD + memantine group (4). Animals were exposed to the MSUD model by the administration of BCAA (15.8 µL/g) (groups 2 and 4) or saline solution (0.9%) (groups 1 and 3) and treated with water or memantine (5 mg/kg) (groups 3 and 4). Our results showed that BCAA administration induced memory alterations, and changes in the levels of acetylcholine in the cerebral cortex. Furthermore, induction of oxidative damage and alterations in antioxidant enzyme activities along with an increase in pro-inflammatory cytokines were verified in the cerebral cortex. Thus, memantine treatment prevented the alterations in memory, acetylcholinesterase activity, 2',7'-Dichlorofluorescein oxidation, thiobarbituric acid reactive substances levels, sulfhydryl content, and inflammation. These findings suggest that memantine can improve the pathomechanisms observed in the MSUD model, and may improve oxidative stress, inflammation, and behavior alterations.
Collapse
Affiliation(s)
- Isabela da Silva Lemos
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Carolina Antunes Torres
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Carolina Giassi Alano
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Rafaela Tezza Matiola
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Rejane de Figueiredo Seldenreich
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Alex Paulo Zeferino Padilha
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Psiquiatria Translacional, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Ellen De Pieri
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Pauline Souza Effting
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Ricardo Andrez Machado-De-Ávila
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Gislaine Zilli Réus
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Psiquiatria Translacional, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Emilio Luiz Streck
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
4
|
Khaled ML, Ren Y, Kundalia R, Alhaddad H, Chen Z, Wallace GC, Evernden B, Ospina OE, Hall M, Liu M, Darville LN, Izumi V, Chen YA, Pilon-Thomas S, Stewart PA, Koomen JM, Corallo SA, Jain MD, Robinson TJ, Locke FL, Forsyth PA, Smalley I. Branched-chain keto acids promote an immune-suppressive and neurodegenerative microenvironment in leptomeningeal disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572239. [PMID: 38187773 PMCID: PMC10769272 DOI: 10.1101/2023.12.18.572239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Leptomeningeal disease (LMD) occurs when tumors seed into the leptomeningeal space and cerebrospinal fluid (CSF), leading to severe neurological deterioration and poor survival outcomes. We utilized comprehensive multi-omics analyses of CSF from patients with lymphoma LMD to demonstrate an immunosuppressive cellular microenvironment and identified dysregulations in proteins and lipids indicating neurodegenerative processes. Strikingly, we found a significant accumulation of toxic branched-chain keto acids (BCKA) in the CSF of patients with LMD. The BCKA accumulation was found to be a pan-cancer occurrence, evident in lymphoma, breast cancer, and melanoma LMD patients. Functionally, BCKA disrupted the viability and function of endogenous T lymphocytes, chimeric antigen receptor (CAR) T cells, neurons, and meningeal cells. Treatment of LMD mice with BCKA-reducing sodium phenylbutyrate significantly improved neurological function, survival outcomes, and efficacy of anti-CD19 CAR T cell therapy. This is the first report of BCKA accumulation in LMD and provides preclinical evidence that targeting these toxic metabolites improves outcomes.
Collapse
Affiliation(s)
- Mariam Lotfy Khaled
- The Department of Metabolism and Physiology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Egypt
| | - Yuan Ren
- The Department of Metabolism and Physiology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Ronak Kundalia
- The Department of Metabolism and Physiology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Hasan Alhaddad
- The Department of Metabolism and Physiology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Zhihua Chen
- Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Gerald C. Wallace
- Department of Hematology/Oncology, Georgia Cancer Center at Medical College of Georgia, Augusta, GA, USA
| | - Brittany Evernden
- Department of Neuro Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Oscar E. Ospina
- Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - MacLean Hall
- Department of Immunology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Min Liu
- The Proteomics and Metabolomics Core, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Lancia N.F. Darville
- The Proteomics and Metabolomics Core, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Victoria Izumi
- The Proteomics and Metabolomics Core, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Y. Ann Chen
- Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Shari Pilon-Thomas
- Department of Immunology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Paul A. Stewart
- Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - John M. Koomen
- The Proteomics and Metabolomics Core, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
- Department of Molecular Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Salvatore A. Corallo
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Michael D. Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Timothy J. Robinson
- Therapeutic Radiology, Smilow Cancer Hospital at Yale New Haven, 35 Park Street, New Haven, CT, USA
| | - Fredrick L. Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Peter A. Forsyth
- Department of Neuro Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Inna Smalley
- The Department of Metabolism and Physiology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| |
Collapse
|
5
|
Xie H, Li J, Lian N, Xie M, Wu M, Tang K, Kang Y, Lu P, Li T. Defective branched-chain amino acid catabolism in dorsal root ganglia contributes to mechanical pain. EMBO Rep 2023; 24:e56958. [PMID: 37721527 PMCID: PMC10626448 DOI: 10.15252/embr.202356958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
Impaired branched-chain amino acid (BCAA) catabolism has recently been implicated in the development of mechanical pain, but the underlying molecular mechanisms are unclear. Here, we report that defective BCAA catabolism in dorsal root ganglion (DRG) neurons sensitizes mice to mechanical pain by increasing lactate production and expression of the mechanotransduction channel Piezo2. In high-fat diet-fed obese mice, we observed the downregulation of PP2Cm, a key regulator of the BCAA catabolic pathway, in DRG neurons. Mice with conditional knockout of PP2Cm in DRG neurons exhibit mechanical allodynia under normal or SNI-induced neuropathic injury conditions. Furthermore, the VAS scores in the plasma of patients with peripheral neuropathic pain are positively correlated with BCAA contents. Mechanistically, defective BCAA catabolism in DRG neurons promotes lactate production through glycolysis, which increases H3K18la modification and drives Piezo2 expression. Inhibition of lactate production or Piezo2 silencing attenuates the pain phenotype of knockout mice in response to mechanical stimuli. Therefore, our study demonstrates a causal role of defective BCAA catabolism in mechanical pain by enhancing metabolite-mediated epigenetic regulation.
Collapse
Affiliation(s)
- Huijing Xie
- Department of Anesthesiology, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduChina
- Laboratory of Mitochondria and Metabolism, National‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Ju Li
- Department of Anesthesiology, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduChina
- Laboratory of Mitochondria and Metabolism, National‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Nan Lian
- Department of Anesthesiology, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduChina
- Laboratory of Mitochondria and Metabolism, National‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan University, Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceChengduChina
| | - Min Xie
- Department of Anesthesiology, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduChina
- Laboratory of Mitochondria and Metabolism, National‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Minming Wu
- Department of Anesthesiology, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduChina
- Laboratory of Mitochondria and Metabolism, National‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Kuo Tang
- Department of Anesthesiology, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduChina
- Laboratory of Mitochondria and Metabolism, National‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Yi Kang
- Department of Anesthesiology, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduChina
- Laboratory of Mitochondria and Metabolism, National‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Peilin Lu
- Department of Anesthesiology, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduChina
- Laboratory of Mitochondria and Metabolism, National‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Tao Li
- Department of Anesthesiology, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduChina
- Laboratory of Mitochondria and Metabolism, National‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|
6
|
Skvorak K, Liu J, Kruse N, Mehmood R, Das S, Jenne S, Chng C, Lao UL, Duan D, Asfaha J, Du F, Teadt L, Sero A, Ching C, Riggins J, Pope L, Yan P, Mashiana H, Ismaili MHA, McCluskie K, Huisman G, Silverman AP. Oral enzyme therapy for maple syrup urine disease (MSUD) suppresses plasma leucine levels in intermediate MSUD mice and healthy nonhuman primates. J Inherit Metab Dis 2023; 46:1089-1103. [PMID: 37494004 DOI: 10.1002/jimd.12662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
Maple syrup urine disease (MSUD) is an inborn error of branched-chain amino acid metabolism affecting several thousand individuals worldwide. MSUD patients have elevated levels of plasma leucine and its metabolic product α-ketoisocaproate (KIC), which can lead to severe neurotoxicity, coma, and death. Patients must maintain a strict diet of protein restriction and medical formula, and periods of noncompliance or illness can lead to acute metabolic decompensation or cumulative neurological impairment. Given the lack of therapeutic options for MSUD patients, we sought to develop an oral enzyme therapy that can degrade leucine within the gastrointestinal tract prior to its systemic absorption and thus enable patients to maintain acceptable plasma leucine levels while broadening their access to natural protein. We identified a highly active leucine decarboxylase enzyme from Planctomycetaceae bacterium and used directed evolution to engineer the enzyme for stability to gastric and intestinal conditions. Following high-throughput screening of over 12 000 enzyme variants over 9 iterative rounds of evolution, we identified a lead variant, LDCv10, which retains activity following simulated gastric or intestinal conditions in vitro. In intermediate MSUD mice or healthy nonhuman primates given a whey protein meal, oral treatment with LDCv10 suppressed the spike in plasma leucine and KIC and reduced the leucine area under the curve in a dose-dependent manner. Reduction in plasma leucine correlated with decreased brain leucine levels following oral LDCv10 treatment. Collectively, these data support further development of LDCv10 as a potential new therapy for MSUD patients.
Collapse
Affiliation(s)
| | - Joyce Liu
- Codexis, Inc., Redwood City, California, USA
| | - Nikki Kruse
- Codexis, Inc., Redwood City, California, USA
| | | | | | | | | | - U Loi Lao
- Codexis, Inc., Redwood City, California, USA
| | - Da Duan
- Codexis, Inc., Redwood City, California, USA
| | | | - Faye Du
- Codexis, Inc., Redwood City, California, USA
| | - Leann Teadt
- Codexis, Inc., Redwood City, California, USA
| | | | | | | | - Lianne Pope
- Codexis, Inc., Redwood City, California, USA
| | - Ping Yan
- Codexis, Inc., Redwood City, California, USA
| | | | | | | | | | | |
Collapse
|
7
|
Jacques CED, Guerreiro G, Lopes FF, de Souza CFM, Giugliani R, Vargas CR. Alterations of Plasmatic Biomarkers of Neurodegeneration in Mucopolysaccharidosis Type II Patients Under Enzyme Replacement Therapy. Cell Biochem Biophys 2023; 81:533-542. [PMID: 37470932 DOI: 10.1007/s12013-023-01149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
Mucopolysaccharidosis type II (MPS II) is a disorder caused by a deficient activity of iduronate-2-sulfatase, a lysosomal enzyme responsible for degrading glycosaminoglycans (GAGs). The abnormal storage of GAGs within lysosomes disrupts cellular homeostasis and leads to a severe symptomatology. Patients present neuropsychiatric impairment characterized by mental retardation and impaired cognition. The aim of this study was to quantify four neurodegeneration biomarkers in plasma: brain-derived neurotrophic factor (BDNF), platelet-derived growth factor (PDGF-AA), neural cell adhesion molecule (NCAM) and cathepsin-D, as well as to identify possible correlations with urinary GAGs in seven patients undergoing treatment with ERT (Elaprase® 0.5 mg/kg of body weight). Patients with both severe and attenuated forms of MPS II showed signs of neurodegeneration in neuroimaging exams. Patients have a decrease in BDNF and PDGF-AA concentrations, and an increase in NCAM level compared to controls. No alterations in cathepsin-D concentration were seen. GAGs levels were higher in patients than in controls, but no significant correlations between GAGs and biomarkers were observed. These results evidence that patients have neurodegeneration and that monitoring these biomarkers might be useful for assessing this process. To this date, this is the first work to analyze these plasmatic markers of neurodegeneration in patients.
Collapse
Affiliation(s)
- Carlos Eduardo Diaz Jacques
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, R. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 90035-003, Brazil.
- Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90050-903, Brazil.
| | - Gilian Guerreiro
- Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90050-903, Brazil
- Faculdade de Farmácia, UFRGS, Av. Ipiranga, 2752, Porto Alegre, RS, CEP 90610-000, Brazil
| | - Franciele Fatima Lopes
- Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90050-903, Brazil
| | | | - Roberto Giugliani
- Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90050-903, Brazil
- Departamento de Genética, Instituto de Biociências, UFRGS, Av. Bento Gonçalves, 9500, Porto Alegre, RS, CEP 91501-970, Brazil
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, R. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 90035-003, Brazil.
- Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90050-903, Brazil.
- Faculdade de Farmácia, UFRGS, Av. Ipiranga, 2752, Porto Alegre, RS, CEP 90610-000, Brazil.
| |
Collapse
|
8
|
K K H, Ajmera P, Agarwal A, Dahiya A, Parripati VK. Maple Syrup Urine Disease: An Uncommon Cause of Neonatal Febrile Seizures. Cureus 2023; 15:e40826. [PMID: 37489218 PMCID: PMC10363028 DOI: 10.7759/cureus.40826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 07/26/2023] Open
Abstract
Maple syrup urine disease (MSUD) is a rare autosomal-recessive disorder. An enzyme complex called branched-chain alpha-keto acid dehydrogenase (BCKAD) metabolizes branched-chain amino acids (BCAAs), such as leucine, isoleucine, and valine, in the body. The deficiency of this enzyme causes the accumulation of BCAAs in cerebrospinal fluid, plasma, and urine. This metabolic illness is defined by abnormal levels of BCAAs. The pathognomonic illness marker alloisoleucine is produced in the absence of the BCKAD enzyme, which is part of a metabolic pathway involving three BCAAs and gets accumulated in the body. Classically, affected neonates present with feeding problems, vomiting, lethargy, and irritability, leading to seizures, coma, and death if left untreated. Blood and urine analysis reveals an accumulation of BCAAs in the plasma and urine. Here, we report the case of a neonate on day 10 of life with febrile seizures and non-acceptance of feeds, who was diagnosed with the classical form of MSUD. This is a classic case of MSUD which was evaluated exhaustively and revealed all classic features clinically and on investigations.
Collapse
Affiliation(s)
- Harshyenee K K
- Radiology, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Pune, IND
| | - Pranav Ajmera
- Radiology, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Pune, IND
| | - Aastha Agarwal
- Radiology, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Pune, IND
| | - Ajay Dahiya
- Radiology, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Pune, IND
| | | |
Collapse
|
9
|
Rabelo F, Lemos IDS, Dal Toé CP, Casagrande DD, Freitas MLS, Quadra MR, Lima IR, Generoso JS, Michels M, Silveira PCL, Pizzol FD, Streck EL. Acute effects of intracerebroventricular administration of α-ketoisocaproic acid in young rats on inflammatory parameters. Metab Brain Dis 2023; 38:1573-1579. [PMID: 36897514 DOI: 10.1007/s11011-023-01193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
Maple Syrup Urine Disease (MSUD) is an autosomal recessive inborn error of metabolism (IEM), responsible for the accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine, in addition to their α-keto acids α-ketoisocaproic acid (KIC), α-keto-β-methylvaleric acid (KMV), and α-ketoisovaleric acid (KIV) in the plasma and urine of patients. This process occurs due to a partial or total blockage of the dehydrogenase enzyme activity of branched-chain α-keto acids. Oxidative stress and inflammation are conditions commonly observed on IEM, and the inflammatory response may play an essential role in the pathophysiology of MSUD. We aimed to investigate the acute effect of intracerebroventricular (ICV) administration of KIC on inflammatory parameters in young Wistar rats. For this, sixteen 30-day-old male Wistar rats receive ICV microinjection with 8 µmol KIC. Sixty minutes later, the animals were euthanized, and the cerebral cortex, hippocampus, and striatum structures were collected to assess the levels of pro-inflammatory cytokines (INF-γ; TNF-α, IL-1β). The acute ICV administration of KIC increased INF-γ levels in the cerebral cortex and reduced the levels of INF-γ and TNF-α in the hippocampus. There was no difference in IL-1β levels. KIC was related to changes in the levels of pro-inflammatory cytokines in the brain of rats. However, the inflammatory mechanisms involved in MSUD are poorly understood. Thus, studies that aim to unravel the neuroinflammation in this pathology are essential to understand the pathophysiology of this IEM.
Collapse
Affiliation(s)
- Franciele Rabelo
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Isabela da S Lemos
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Camila P Dal Toé
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Débora D Casagrande
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Maria Luisa S Freitas
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Micaela R Quadra
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Igor R Lima
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Jaqueline S Generoso
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Paulo C L Silveira
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Felipe Dal Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Emilio Luiz Streck
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil.
| |
Collapse
|
10
|
Mele S, Martelli F, Lin J, Kanca O, Christodoulou J, Bellen HJ, Piper MDW, Johnson TK. Drosophila as a diet discovery tool for treating amino acid disorders. Trends Endocrinol Metab 2023; 34:85-105. [PMID: 36567227 DOI: 10.1016/j.tem.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Amino acid disorders (AADs) are a large group of rare inherited conditions that collectively impact one in 6500 live births, often resulting in rapid neurological decline and death during infancy. For several AADs, including phenylketonuria, dietary modification prevents physiological deterioration and ameliorates symptoms. Despite this remarkable potential for treatment success, dietary therapy for most AADs remains largely unexplored. Although animal models have provided novel insights into AAD mechanisms, few have been used for therapeutic diet discovery. Here, we find that of all the animal models, Drosophila is particularly well suited for nutrigenomic disease modelling, having amino acid pathways conserved with humans, exceptional genetic tractability, and the unique availability of a synthetic customisable diet.
Collapse
Affiliation(s)
- Sarah Mele
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Felipe Martelli
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Jiayi Lin
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Duncan Neurological Research Institute of Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - John Christodoulou
- Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Duncan Neurological Research Institute of Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
11
|
Chegodaev D, Gusev V, Lvova O, Pavlova P. Possible role of ketone bodies in the generation of burst suppression electroencephalographic pattern. Front Neurosci 2022; 16:1021035. [PMID: 36590288 PMCID: PMC9800049 DOI: 10.3389/fnins.2022.1021035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
|
12
|
Patrick M, Gu Z, Zhang G, Wynn RM, Kaphle P, Cao H, Vu H, Cai F, Gao X, Zhang Y, Chen M, Ni M, Chuang DT, DeBerardinis RJ, Xu J. Metabolon formation regulates branched-chain amino acid oxidation and homeostasis. Nat Metab 2022; 4:1775-1791. [PMID: 36443523 DOI: 10.1038/s42255-022-00689-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
The branched-chain aminotransferase isozymes BCAT1 and BCAT2, segregated into distinct subcellular compartments and tissues, initiate the catabolism of branched-chain amino acids (BCAAs). However, whether and how BCAT isozymes cooperate with downstream enzymes to control BCAA homeostasis in an intact organism remains largely unknown. Here, we analyse system-wide metabolomic changes in BCAT1- and BCAT2-deficient mouse models. Loss of BCAT2 but not BCAT1 leads to accumulation of BCAAs and branched-chain α-keto acids (BCKAs), causing morbidity and mortality that can be ameliorated by dietary BCAA restriction. Through proximity labelling, isotope tracing and enzymatic assays, we provide evidence for the formation of a mitochondrial BCAA metabolon involving BCAT2 and branched-chain α-keto acid dehydrogenase. Disabling the metabolon contributes to BCAT2 deficiency-induced phenotypes, which can be reversed by BCAT1-mediated BCKA reamination. These findings establish a role for metabolon formation in BCAA metabolism in vivo and suggest a new strategy to modulate this pathway in diseases involving dysfunctional BCAA metabolism.
Collapse
Affiliation(s)
- McKenzie Patrick
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhimin Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gen Zhang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - R Max Wynn
- Departments of Biochemistry and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pranita Kaphle
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hui Cao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hieu Vu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Feng Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaofei Gao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Min Ni
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David T Chuang
- Departments of Biochemistry and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian Xu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
13
|
Ziadlou M, MacDonald A. Alternative sources of valine and isoleucine for prompt reduction of plasma leucine in maple syrup urine disease patients: A case series. JIMD Rep 2022; 63:555-562. [PMID: 36341173 PMCID: PMC9626667 DOI: 10.1002/jmd2.12327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022] Open
Abstract
In maple syrup urine disease (MSUD), leucine (Leu) accumulation, and its metabolites cause brain toxicity, and at diagnosis rapid plasma Leu reduction is essential. Valine (Val) and isoleucine (Iso) supplements are necessary to promote anabolism and enable prompt reduction of plasma Leu. Val/Iso supplements are unavailable in Iran, so an alternative source was necessary. An emergency protocol was developed using an unconventional source of Val and Iso to prompt reduction of high plasma Leu levels during an acute metabolic crisis to prevent brain encephalopathy and neurological sequelae. Five children with classical MSUD were referred aged 1-25 months, with a prolonged high plasma Leu of more than 1500 μmol/L and acute symptoms (irritability, poor feeding, and hypotonia). Initially, breast milk/regular infant formula was stopped. Val and Iso were given in calculated amounts from a Leu-free formula containing Iso/Val (Xleu Maxamaid, Nutricia Ltd.) to promote anabolism. It was prescribed for a controlled and limited time with a branched chain amino acid (BCAA) free formula. Frequent amino acid monitoring was conducted. Natural protein was re-added after normalizing plasma Leu. Plasma Leu declined by a median (range) of 1677 (1501-1852) μmol/L within 3-4 days of intervention. The median follow-up time was 24 months (range: 14-32) and patients showed improvement in motor and cognitive skills after normalizing plasma Leu (75-200 μmol/L). Most had improvement in their head circumference (n = 4). Due to the unavailability of individual Val/Iso supplements, a Leu-free formula rapidly lowered plasma Leu concentrations during acute crisis, to prevent cerebral edema and brain damage in MSUD.
Collapse
Affiliation(s)
- Maryam Ziadlou
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Anita MacDonald
- Dietetic Department, Birmingham Children's HospitalBirminghamUK
| |
Collapse
|
14
|
Sen K, Gropman A, Harrar D. In-Hospital Mortality From Cerebral Edema in MSUD During Newborn Screening Era: What Are We Missing and What More Can We Do? Pediatr Neurol 2022; 135:61-62. [PMID: 36027849 DOI: 10.1016/j.pediatrneurol.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 10/15/2022]
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Children's National Hospital, Washington, District of Columbia.
| | - Andrea Gropman
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Children's National Hospital, Washington, District of Columbia
| | - Dana Harrar
- Division of Stroke and Neurocritical Care, Children's National Hospital, Washington, District of Columbia
| |
Collapse
|
15
|
Pontoizeau C, Simon-Sola M, Gaborit C, Nguyen V, Rotaru I, Tual N, Colella P, Girard M, Biferi MG, Arnoux JB, Rötig A, Ottolenghi C, de Lonlay P, Mingozzi F, Cavazzana M, Schiff M. Neonatal gene therapy achieves sustained disease rescue of maple syrup urine disease in mice. Nat Commun 2022; 13:3278. [PMID: 35672312 PMCID: PMC9174284 DOI: 10.1038/s41467-022-30880-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
Maple syrup urine disease (MSUD) is a rare recessively inherited metabolic disorder causing accumulation of branched chain amino acids leading to neonatal death, if untreated. Treatment for MSUD represents an unmet need because the current treatment with life-long low-protein diet is challenging to maintain, and despite treatment the risk of acute decompensations and neuropsychiatric symptoms remains. Here, based on significant liver contribution to the catabolism of the branched chain amino acid leucine, we develop a liver-directed adeno-associated virus (AAV8) gene therapy for MSUD. We establish and characterize the Bckdha (branched chain keto acid dehydrogenase a)−/− mouse that exhibits a lethal neonatal phenotype mimicking human MSUD. Animals were treated at P0 with intravenous human BCKDHA AAV8 vectors under the control of either a ubiquitous or a liver-specific promoter. BCKDHA gene transfer rescued the lethal phenotype. While the use of a ubiquitous promoter fully and sustainably rescued the disease (long-term survival, normal phenotype and correction of biochemical abnormalities), liver-specific expression of BCKDHA led to partial, though sustained rescue. Here we show efficacy of gene therapy for MSUD demonstrating its potential for clinical translation. Maple syrup urine disease (MSUD) is a rare inborn error of metabolism, which is currently treated with life-long low-protein diet that can be challenging to maintain. Here the authors develop an AAV8-directed gene therapy providing sustainable disease rescue in a mouse model of MSUD.
Collapse
Affiliation(s)
- Clément Pontoizeau
- Necker Hospital, APHP, Biochemistry, Metabolomics Unit, Paris Cité University, Paris, France. .,Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, Paris Cité University, Filière G2M, Paris, France. .,Inserm UMR_S1163, Institut Imagine, Paris, France.
| | | | | | | | - Irina Rotaru
- Inserm UMR_S1163, Institut Imagine, Paris, France
| | - Nolan Tual
- Inserm UMR_S1163, Institut Imagine, Paris, France
| | | | - Muriel Girard
- Necker Hospital, APHP, Pediatric Hepatology Unit, Pediatrics Department, Paris Cité University, Paris, France.,Inserm U1151, Institut Necker Enfants Malades, Paris, France
| | - Maria-Grazia Biferi
- Sorbonne University, Inserm, Institute of Myology, Centre of Research in Myology, Paris, France
| | - Jean-Baptiste Arnoux
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, Paris Cité University, Filière G2M, Paris, France
| | - Agnès Rötig
- Inserm UMR_S1163, Institut Imagine, Paris, France
| | - Chris Ottolenghi
- Necker Hospital, APHP, Biochemistry, Metabolomics Unit, Paris Cité University, Paris, France.,Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, Paris Cité University, Filière G2M, Paris, France.,Inserm UMR_S1163, Institut Imagine, Paris, France
| | - Pascale de Lonlay
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, Paris Cité University, Filière G2M, Paris, France.,Inserm U1151, Institut Necker Enfants Malades, Paris, France
| | | | - Marina Cavazzana
- Inserm UMR_S1163, Institut Imagine, Paris, France.,Necker Hospital, APHP, Biotherapies Department, Paris Cité University, Paris, France
| | - Manuel Schiff
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, Paris Cité University, Filière G2M, Paris, France. .,Inserm UMR_S1163, Institut Imagine, Paris, France.
| |
Collapse
|
16
|
Amaral AU, Wajner M. Pathophysiology of maple syrup urine disease: Focus on the neurotoxic role of the accumulated branched-chain amino acids and branched-chain α-keto acids. Neurochem Int 2022; 157:105360. [DOI: 10.1016/j.neuint.2022.105360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/21/2022]
|
17
|
Yang J, Xiu J, Sun Y, Liu F, Shang X, Li G. Three novel mutations of the BCKDHA, BCKDHB and DBT genes in Chinese children with maple syrup urine disease. J Pediatr Endocrinol Metab 2022; 35:303-312. [PMID: 34883003 DOI: 10.1515/jpem-2021-0672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/17/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Maple syrup urine disease (MSUD) is a rare metabolic autosomal recessive disorder caused by deficiency of the branched-chain α-ketoacid dehydrogenase complex. Mutations in the BCKDHA, BCKDHB and DBT genes are responsible for MSUD. This study presents the clinical and molecular characterizations of four MSUD patients. METHODS Clinical data of patients were retrospectively analyzed, and genetic mutations were identified by whole-exome sequencing. CLUSTALX was employed to analyzed cross-species conservation of the mutant amino acid. The impact of the mutations was analyzed with PolyPhen-2 software. The I-TASSER website and PyMOL software were used to predict the protein three-position structure of the novel mutations carried by the patients. RESULTS Vomiting, irritability, feeding difficulties, seizures, dyspnoea, lethargy and coma were the main clinical presentations of MSUD. Cranial MRI showed abnormal symmetrical signals in accordance with the presentation of inherited metabolic encephalopathy. Seven mutations were detected in four patients, including three novel pathogenic mutations in the BCKDHA (c.656C>A), BCKDHB (deletion of a single-copy of BCKDHB) and DBT (c.1219dup) genes. Structural changes were compatible with the observed phenotypes. CONCLUSIONS Different types of MSUD can display heterogeneous clinical manifestations. Exhaustive molecular studies are necessary for a proper differential diagnosis. The newly identified mutation will play a key role in the prenatal diagnosis of MSUD in the future.
Collapse
Affiliation(s)
- Jianmei Yang
- Department of Pediatric Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianjun Xiu
- Radiology Department, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Sun
- Department of Pediatric Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fan Liu
- Department of Pediatric Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaohong Shang
- Department of Pediatric Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guimei Li
- Department of Pediatric Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
18
|
Deger I, Çelik M, Taş I, Samancı S. Continuous Veno-Venous Hemodiafiltration in Neonates with Maple Syrup Urine Disease. Ther Apher Dial 2022; 26:658-666. [PMID: 35166449 DOI: 10.1111/1744-9987.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/01/2022] [Accepted: 02/11/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Herein, we aimed to discuss our experience in 16 newborn patients with Maple syrup urine disease (MSUD) who were treated with urgent renal replacement therapy (RRT). METHODS The patients underwent continuous veno-venous hemodiafiltration (CVVHDF) or peritoneal dialysis (PD) as renal replacement therapy. RESULTS Eleven (68.75%) patients underwent CVVHDF and five (31.25%) underwent peritoneal dialysis. The median leucine reduction rate per hour was 2.56%(1.75-7.6) in the CVVHDF group, 0.78%(0.54-1.83) in the PD group, and was significantly higher in the CVVHDF group (p = 0.001). Post-treatment plasma leucine levels were found to be 198 (20-721) μmol/L in the CVVHDF group and 600 (250-967) μmol/L in the PD group, and CVVHDF was found to be significantly lower (p = 0.08). Complications such as hypotension, electrolyte imbalance, and filter obstruction occurred in the CVVHDF group. CONCLUSION This study showed that CVVHDF is more effective than PD for rapidly eliminating elevated leucine levels caused by MSUD in the newborn and it is not associated with increased complication rates. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ibrahim Deger
- Dicle University School of Medicine, Department of Pediatric, Division of Neonatology, Diyarbakir, Turkey
| | - Muhittin Çelik
- Gaziantep University School of Medicine, Department of Pediatric, Division of Neonatology, Gaziantep, Turkey
| | - Ibrahim Taş
- University of Health Sciences, Zeynep Kamil Women and Children Diseases Training and Research Hospital, Istanbul, Turkey
| | - Serhat Samancı
- Diyarbakır Children Hospital, Department of Pediatric, Diyarbakir, Turkey
| |
Collapse
|
19
|
Ma QX, Zhu WY, Lu XC, Jiang D, Xu F, Li JT, Zhang L, Wu YL, Chen ZJ, Yin M, Huang HY, Lei QY. BCAA-BCKA axis regulates WAT browning through acetylation of PRDM16. Nat Metab 2022; 4:106-122. [PMID: 35075301 DOI: 10.1038/s42255-021-00520-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
Abstract
The link between branched-chain amino acids (BCAAs) and obesity has been known for decades but the functional role of BCAA metabolism in white adipose tissue (WAT) of obese individuals remains vague. Here, we show that mice with adipose tissue knockout of Bcat2, which converts BCAAs to branched-chain keto acids (BCKAs), are resistant to high-fat diet-induced obesity due to increased inguinal WAT browning and thermogenesis. Mechanistically, acetyl-CoA derived from BCKA suppresses WAT browning by acetylation of PR domain-containing protein 16 (PRDM16) at K915, disrupting the interaction between PRDM16 and peroxisome proliferator-activated receptor-γ (PPARγ) to maintain WAT characteristics. Depletion of BCKA-derived acetyl-CoA robustly prompts WAT browning and energy expenditure. In contrast, BCKA supplementation re-establishes high-fat diet-induced obesity in Bcat2 knockout mice. Moreover, telmisartan, an anti-hypertension drug, significantly represses Bcat2 activity via direct binding, resulting in enhanced WAT browning and reduced adiposity. Strikingly, BCKA supplementation reverses the lean phenotype conferred by telmisartan. Thus, we uncover the critical role of the BCAA-BCKA axis in WAT browning.
Collapse
Affiliation(s)
- Qi-Xiang Ma
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics; Department of Oncology; State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Ying Zhu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics; Department of Oncology; State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Chen Lu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics; Department of Oncology; State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Duo Jiang
- Key Laboratory of Metabolism and Molecular Medicine of Chinese Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Feng Xu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jin-Tao Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics; Department of Oncology; State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying-Li Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Jun Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Miao Yin
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics; Department of Oncology; State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Hai-Yan Huang
- Key Laboratory of Metabolism and Molecular Medicine of Chinese Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics; Department of Oncology; State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Medina MF, Castro G, Falcon F, Cabello JF, Faundes V, Ruffato D, Salazar MF, Arias C, Peñaloza F, De La Parra A, Cornejo V. Maple syrup urine disease: Characteristics of diagnosis and treatment in 45 patients in Chile. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2021; 187:373-380. [PMID: 34288399 DOI: 10.1002/ajmg.c.31933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 06/01/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022]
Abstract
Maple urine syrup disease (MSUD) is an autosomal recessive disorder characterized by deficient activity of the branched-chain alpha ketoacid dehydrogenase (BCKAD) enzymatic complex due to biallelic variants in the alpha (BCKDHA) or beta (BCKDHB) subunits or the acyltransferase component (DBT). Treatment consists in leucine (LEU), isoleucine (ILE), and valine (VAL) (branched-chain amino acids) dietary restriction and strict metabolic control. to determine the characteristics of the Chilean cohort with MSUD currently in follow-up at Instituto de Nutrición y Tecnología de los Alimentos, during the 1990-2017 period Retrospective analytical study in 45 MSUD cases. Measured: biochemical parameters (LEU, ILE, and VAL), anthropometric evaluation, and neurocognitive development. In 18 cases undergoing genetic study were analyzed according to the gene and protein location, number of affected alleles, and type of posttranslational modification affected. Then, 45 patients with MSUD diagnosis were identified during the period: 37 were alive at the time of the study. Average diagnosis age was 71 ± 231 days. Average serum diagnosis LEU concentrations: 1.463 ± 854.1 μmol/L, VAL 550 ± 598 μmol/L and ILE 454 ± 458 μmol/L. BCKDHB variants explain 89% cases, while BCKDHA and DBT variants explain 5.5% of cases each. Variants p.Thr338Ile in BCKDHA, p.Pro240Thr and p.Ser342Asn in BCKDHB have not been previously reported in literature. Average serum follow-up LEU concentrations were 252.7 ± 16.9 μmol/L in the <5 years group and 299 ± 123.2 μmol/L in ≥5 years. Most cases presented some degree of developmental delay. Early diagnosis and treatment is essential to improve the long-term prognosis. Frequent blood LEU measurements are required to optimize metabolic control and to establish relationships between different aspects analyzed.
Collapse
Affiliation(s)
| | - Gabriela Castro
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de Alimentos Doctor Fernando Monckeberg Barros (INTA), Universidad de Chile, Santiago, Chile
| | | | - Juan Francisco Cabello
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de Alimentos Doctor Fernando Monckeberg Barros (INTA), Universidad de Chile, Santiago, Chile
| | - Víctor Faundes
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de Alimentos Doctor Fernando Monckeberg Barros (INTA), Universidad de Chile, Santiago, Chile
| | - Diana Ruffato
- Department of Paediatrics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - María Florencia Salazar
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de Alimentos Doctor Fernando Monckeberg Barros (INTA), Universidad de Chile, Santiago, Chile
| | - Carolina Arias
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de Alimentos Doctor Fernando Monckeberg Barros (INTA), Universidad de Chile, Santiago, Chile
| | - Felipe Peñaloza
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de Alimentos Doctor Fernando Monckeberg Barros (INTA), Universidad de Chile, Santiago, Chile
| | - Alicia De La Parra
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de Alimentos Doctor Fernando Monckeberg Barros (INTA), Universidad de Chile, Santiago, Chile
| | - Verónica Cornejo
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de Alimentos Doctor Fernando Monckeberg Barros (INTA), Universidad de Chile, Santiago, Chile
| |
Collapse
|
21
|
Sajeev M, Chin S, Ho G, Bennetts B, Sankaran BP, Gutierrez B, Devanapalli B, Tolun AA, Wiley V, Fletcher J, Fuller M, Balasubramaniam S. Challenges in Diagnosing Intermediate Maple Syrup Urine Disease by Newborn Screening and Functional Validation of Genomic Results Imperative for Reproductive Family Planning. Int J Neonatal Screen 2021; 7:ijns7020025. [PMID: 34069211 PMCID: PMC8162326 DOI: 10.3390/ijns7020025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
Maple syrup urine disease is caused by a deficiency of branched-chain alpha-ketoacid dehydrogenase, responsible for degradation of leucine, isoleucine, and valine. Biallelic pathogenic variants in BCKDHA, BCKDHB, or DBT genes result in enzyme deficiency. We report the case of a female infant who presented with mild gross motor delay at 4 months, and seizures with hypoglycaemia at 5 months. Newborn screening returned total leucine/isoleucine at the 99.5th centile of the population; however, as second-tier testing reported minimal alloisoleucine, the results were considered inconsistent with MSUD. Plasma amino acid and urine organic acid analyses at 5 months were, however, consistent with a diagnosis of MSUD. A brain MRI showed bilateral symmetrical T2 hyperintense signal abnormalities involving white matter, globus pallidus, thalamus, brainstem, and dentate nuclei with restricted diffusion. A repeat MRI 10 months post-dietary-intervention showed the resolution of these changes and progression in myelination. Her clinical phenotype, including protein tolerance, correlated with intermediate MSUD. Molecular analysis of all three genes identified two variants of uncertain significance, c.434-15_434-4del and c.365A>G (p. Tyr122Cys) in the DBT gene. The rate of leucine decarboxylation in fibroblasts was reduced, but not to the extent observed in classical MSUD patients, supporting an intermediate form of MSUD. Previously reported mRNA splicing studies supported a deleterious effect of the c.434-15_434-4del variant. This functional evidence and confirmation that the variants were in trans, permitted their reclassification as pathogenic and likely pathogenic, respectively, facilitating subsequent prenatal testing. This report highlights the challenges in identifying intermediate MSUD by newborn screening, reinforcing the importance of functional studies to confirm variant pathogenicity in this era of molecular diagnostics.
Collapse
Affiliation(s)
- Mona Sajeev
- Genetic Metabolic Disorders Service, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia; (M.S.); (B.P.S.)
| | - Sharon Chin
- Genetics and Molecular Pathology, SA Pathology at Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (S.C.); (J.F.); (M.F.)
| | - Gladys Ho
- Department of Molecular Genetics, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia; (G.H.); (B.B.)
- Discipline of Genetic Medicine, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; (A.A.T.); (V.W.)
| | - Bruce Bennetts
- Department of Molecular Genetics, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia; (G.H.); (B.B.)
- Discipline of Genetic Medicine, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; (A.A.T.); (V.W.)
| | - Bindu Parayil Sankaran
- Genetic Metabolic Disorders Service, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia; (M.S.); (B.P.S.)
- The Children’s Hospital at Westmead Clinical School, Faculty of Medicine & Health, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Bea Gutierrez
- NSW Biochemical Genetics Service, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia; (B.G.); (B.D.)
| | - Beena Devanapalli
- NSW Biochemical Genetics Service, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia; (B.G.); (B.D.)
| | - Adviye Ayper Tolun
- Discipline of Genetic Medicine, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; (A.A.T.); (V.W.)
- NSW Biochemical Genetics Service, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia; (B.G.); (B.D.)
| | - Veronica Wiley
- Discipline of Genetic Medicine, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; (A.A.T.); (V.W.)
- NSW Newborn Screening Programme, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Janice Fletcher
- Genetics and Molecular Pathology, SA Pathology at Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (S.C.); (J.F.); (M.F.)
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (S.C.); (J.F.); (M.F.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Shanti Balasubramaniam
- Genetic Metabolic Disorders Service, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia; (M.S.); (B.P.S.)
- Discipline of Genetic Medicine, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; (A.A.T.); (V.W.)
- Correspondence: ; Tel.: +61-2-9845-0201; Fax: +61-2-9845-3121
| |
Collapse
|
22
|
Chavan R, Kadam S, Bhalke A, Choudhary SL, Patil P. Evaluation of Neonatal Acute Metabolic Crisis in Maple Syrup Urine Disease with MR Diffusion and MR Spectroscopy: Case Series and Review of the Literature. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1726312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractMagnetic resonance imaging (MRI) findings of acute metabolic crisis in maple syrup urine disease (MSUD) in neonates were reviewed. This case cohort study included six MSUD neonates imaged during acute metabolic decompensation. Specific diffusion imaging and proton spectroscopic findings were reviewed. All patients revealed extensive intramyelinic cytotoxic edema typically involving myelinated white matter structures. Brainstem, cerebellar white matter and peduncles, midbrain, posterior limbs of internal capsules, central portions of periventricular, and perirolandic white matter regions showed typical MSUD edema. Gray matter structures such as dentate nucleus and thalamus were involved in all patients. Involvement of other deep nuclei was also noted in a few patients. None of the patients showed involvement of the superficial cortex. Reduction in N-acetyl aspartate, a prominent lactate peak, and a peak representing methyl groups of amino acids were characteristic findings seen on intermediate short echo time MR spectroscopy. Our case series outlines the importance of diffusion and spectroscopy MR techniques in the diagnosis of acute neonatal MSUD metabolic crisis.
Collapse
Affiliation(s)
- Rajendra Chavan
- Anushka MRI & CT Scan Centre, King Edward Memorial Hospital, Pune, Maharashtra, India
| | - Sandeep Kadam
- Department of Pediatrics, King Edward Memorial Hospital, Pune, Maharashtra, India
| | - Amit Bhalke
- Department of Radiodiagnosis, King Edward Memorial Hospital, Pune, Maharashtra, India
| | - Sohan Lal Choudhary
- Department of Radiodiagnosis, King Edward Memorial Hospital, Pune, Maharashtra, India
| | - Pushpak Patil
- Department of Radiodiagnosis, King Edward Memorial Hospital, Pune, Maharashtra, India
| |
Collapse
|
23
|
Li Y, Liu X, Duan CF, Song XF, Zhuang XH. Brain magnetic resonance imaging findings and radiologic review of maple syrup urine disease: Report of three cases. World J Clin Cases 2021; 9:1844-1852. [PMID: 33748233 PMCID: PMC7953394 DOI: 10.12998/wjcc.v9.i8.1844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/12/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Maple syrup urine disease (MSUD) is a rare autosomal-recessive disorder that affects branched-chain amino acid (BCAA) metabolism and is named after the distinctive sweet odor of affected infants’ urine. This disease is characterized by the accumulation of BCAAs and corresponding branched-chain ketoacids of leucine, isoleucine, and valine in the plasma, urine, and cerebrospinal fluid. However, the mechanisms of MSUD-induced brain damage remain poorly defined. The accumulation of BCAAs in the brain inhibits the activity of pyruvate dehydrogenase and α-ketoglutarate, disrupting the citric acid cycle and consequently impacting the synthesis of amino acids, causing cerebral edema and abnormal myelination.
CASE SUMMARY We report three neonates admitted to our hospital with the classic subtype of MSUD. All three patients, with a transient normal period, presented with poor feeding, vomiting, poor weight gain, and increasing lethargy after birth. Laboratory testing revealed metabolic acidosis. The serum tandem mass spectrometry amino acid profile showed elevated plasma levels of BCAAs (leucine, isoleucine, and valine). Brain magnetic resonance imaging (MRI) presented abnormal signals mainly involving the globus pallidus, thalamus, internal capsule, brainstem, and cerebellar white matter, which represent the typical myelinated areas in normal full-term neonates.
CONCLUSION In our patients, MRI showed typical features, in concordance with the available literature. Early detection and timely treatment are very helpful for the prognosis of MSUD patients. Therefore, we discuss the neuroimaging features of MSUD to enhance the knowledge of pediatricians about this disease.
Collapse
Affiliation(s)
- Yang Li
- Department of Radiology, Qingdao Women and Children’s Hospital, Qingdao 266011, Shandong Province, China
| | - Xia Liu
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Chong-Feng Duan
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Xiu-Feng Song
- Department of Radiology, Qingdao Women and Children’s Hospital, Qingdao 266011, Shandong Province, China
| | - Xun-Hui Zhuang
- Department of Radiology, Qingdao Women and Children’s Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
24
|
Terburgh K, Coetzer J, Lindeque JZ, van der Westhuizen FH, Louw R. Aberrant BCAA and glutamate metabolism linked to regional neurodegeneration in a mouse model of Leigh syndrome. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166082. [PMID: 33486097 DOI: 10.1016/j.bbadis.2021.166082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/23/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
The dysfunction of respiratory chain complex I (CI) is the most common form of mitochondrial disease that most often presents as Leigh syndrome (LS) in children - a severe neurometabolic disorder defined by progressive focal lesions in specific brain regions. The mechanisms underlying this region-specific vulnerability to CI deficiency, however, remain elusive. Here, we examined brain regional respiratory chain enzyme activities and metabolic profiles in a mouse model of LS with global CI deficiency to gain insight into regional vulnerability to neurodegeneration. One lesion-resistant and three lesion-prone brain regions were investigated in Ndufs4 knockout (KO) mice at the late stage of LS. Enzyme assays confirmed significantly decreased (60-80%) CI activity in all investigated KO brain regions, with the lesion-resistant region displaying the highest residual CI activity (38% of wild type). A higher residual CI activity, and a less perturbed NADH/NAD+ ratio, correlate with less severe metabolic perturbations in KO brain regions. Moreover, less perturbed BCAA oxidation and increased glutamate oxidation seem to distinguish lesion-resistant from -prone KO brain regions, thereby identifying key areas of metabolism to target in future therapeutic intervention studies.
Collapse
Affiliation(s)
- Karin Terburgh
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Janeé Coetzer
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Jeremy Z Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Francois H van der Westhuizen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa.
| |
Collapse
|
25
|
Dimitrov B, Molema F, Williams M, Schmiesing J, Mühlhausen C, Baumgartner MR, Schumann A, Kölker S. Organic acidurias: Major gaps, new challenges, and a yet unfulfilled promise. J Inherit Metab Dis 2021; 44:9-21. [PMID: 32412122 DOI: 10.1002/jimd.12254] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
Organic acidurias (OADs) comprise a biochemically defined group of inherited metabolic diseases. Increasing awareness, reliable diagnostic work-up, newborn screening programs for some OADs, optimized neonatal and intensive care, and the development of evidence-based recommendations have improved neonatal survival and short-term outcome of affected individuals. However, chronic progression of organ dysfunction in an aging patient population cannot be reliably prevented with traditional therapeutic measures. Evidence is increasing that disease progression might be best explained by mitochondrial dysfunction. Previous studies have demonstrated that some toxic metabolites target mitochondrial proteins inducing synergistic bioenergetic impairment. Although these potentially reversible mechanisms help to understand the development of acute metabolic decompensations during catabolic state, they currently cannot completely explain disease progression with age. Recent studies identified unbalanced autophagy as a novel mechanism in the renal pathology of methylmalonic aciduria, resulting in impaired quality control of organelles, mitochondrial aging and, subsequently, progressive organ dysfunction. In addition, the discovery of post-translational short-chain lysine acylation of histones and mitochondrial enzymes helps to understand how intracellular key metabolites modulate gene expression and enzyme function. While acylation is considered an important mechanism for metabolic adaptation, the chronic accumulation of potential substrates of short-chain lysine acylation in inherited metabolic diseases might exert the opposite effect, in the long run. Recently, changed glutarylation patterns of mitochondrial proteins have been demonstrated in glutaric aciduria type 1. These new insights might bridge the gap between natural history and pathophysiology in OADs, and their exploitation for the development of targeted therapies seems promising.
Collapse
Affiliation(s)
- Bianca Dimitrov
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Femke Molema
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Monique Williams
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jessica Schmiesing
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chris Mühlhausen
- Department of Pediatrics and Adolescent Medicine, University Medical Centre Göttingen, Göttingen, Germany
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Anke Schumann
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, University Hospital of Freiburg, Freiburg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
26
|
Tsai HY, Wu SC, Li JC, Chen YM, Chan CC, Chen CH. Loss of the Drosophila branched-chain α-ketoacid dehydrogenase complex results in neuronal dysfunction. Dis Model Mech 2020; 13:dmm044750. [PMID: 32680850 PMCID: PMC7473638 DOI: 10.1242/dmm.044750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/06/2020] [Indexed: 12/28/2022] Open
Abstract
Maple syrup urine disease (MSUD) is an inherited error in the metabolism of branched-chain amino acids (BCAAs) caused by a severe deficiency of the branched-chain α-ketoacid dehydrogenase (BCKDH) complex, which ultimately leads to neurological disorders. The limited therapies, including protein-restricted diets and liver transplants, are not as effective as they could be for the treatment of MSUD due to the current lack of molecular insights into the disease pathogenesis. To address this issue, we developed a Drosophila model of MSUD by knocking out the dDBT gene, an ortholog of the human gene encoding the dihydrolipoamide branched chain transacylase (DBT) subunit of BCKDH. The homozygous dDBT mutant larvae recapitulate an array of MSUD phenotypes, including aberrant BCAA accumulation, developmental defects, poor mobile behavior and disrupted L-glutamate homeostasis. Moreover, the dDBT mutation causes neuronal apoptosis during the developmental progression of larval brains. The genetic and functional evidence generated by in vivo depletion of dDBT expression in the eye indicates severe impairment of retinal rhabdomeres. Further, the dDBT mutant shows elevated oxidative stress and higher lipid peroxidation accumulation in the larval brain. Therefore, we conclude from in vivo evidence that the loss of dDBT results in oxidative brain damage that may lead to neuronal cell death and contribute to aspects of MSUD pathology. Importantly, when the dDBT mutants were administrated with Metformin, the aberrances in BCAA levels and motor behavior were ameliorated. This intriguing outcome strongly merits the use of the dDBT mutant as a platform for developing MSUD therapies.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Hui-Ying Tsai
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10090, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Shih-Cheng Wu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Jian-Chiuan Li
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Yu-Min Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10090, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of physiology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Chun-Hong Chen
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10090, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| |
Collapse
|
27
|
de Franceschi ID, da Silva JD, Nitzke Minuzzi B, de Barros KC, Fernandes EK, Bortoluzzi VT, Rieger E, Preissler T, Feksa LR, Hahn RZ, Linden R, Rech VC, Casali EA, Wannmacher CMD. Ibuprofen during gestation prevents some changes in physical and reflex development in offspring in a model of hyperleucinemia and maternal inflammation. Int J Dev Neurosci 2020; 80:369-379. [PMID: 32379904 DOI: 10.1002/jdn.10035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/29/2020] [Accepted: 05/01/2020] [Indexed: 12/28/2022] Open
Abstract
Maple Syrup Urine Disease (MSUD) is caused by a severe deficiency in the branched-chain ketoacid dehydrogenase complex activity. Patients MSUD accumulate the branched-chain amino acids leucine (Leu), isoleucine, valine in blood, and other tissues. Leu and/or their branched-chain α-keto acids are linked to neurological damage in MSUD. When immediately diagnosed and treated, patients develop normally. Inflammation in MSUD can elicit a metabolic decompensation crisis. There are few cases of pregnancy in MSUD women, and little is known about the effect of maternal hyperleucinemia on the neurodevelopment of their babies. During pregnancy, some intercurrences like maternal infection or inflammation may affect fetal development and are linked to neurologic diseases. Lipopolysaccharide is widely accepted as a model of maternal inflammation. We analyzed the effects of maternal hyperleucinemia and inflammation and the possible positive impact the use of ibuprofen in Wistar rats on a battery of physics (ear unfolding, hair growing, incisors eruption, eye-opening, and auditive channel opening) and neurological reflexes (palmar grasp, surface righting, negative geotaxis, air-righting, and auditory-startle response) maturation parameters in the offspring. Maternal hyperleucinemia and inflammation delayed some physical parameters and neurological reflexes, indicating that both situations may be harmful to fetuses, and ibuprofen reversed some settings.
Collapse
Affiliation(s)
- Itiane Diehl de Franceschi
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliano Dellazen da Silva
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Nitzke Minuzzi
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Katlyn Cardoso de Barros
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Elissa Kerli Fernandes
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vanessa Trindade Bortoluzzi
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Elenara Rieger
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thales Preissler
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciane Rosa Feksa
- Laboratório de Análises Toxicológicas, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Brazil
| | - Roberta Zilles Hahn
- Laboratório de Análises Toxicológicas, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Brazil
| | - Rafael Linden
- Laboratório de Análises Toxicológicas, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Brazil
| | - Virginia Cielo Rech
- Laboratório de Nanotecnologia, Programa de Pós-Graduação em Nanociências, Centro Universitário Franciscano, Santa Maria, Brazil
| | - Emerson André Casali
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Clovis Milton Duval Wannmacher
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
28
|
Suissa L, Flachon V, Guigonis JM, Olivieri CV, Burel-Vandenbos F, Guglielmi J, Ambrosetti D, Gérard M, Franken P, Darcourt J, Pellerin L, Pourcher T, Lindenthal S. Urinary ketone body loss leads to degeneration of brain white matter in elderly SLC5A8-deficient mice. J Cereb Blood Flow Metab 2020; 40:1709-1723. [PMID: 31506013 PMCID: PMC7370371 DOI: 10.1177/0271678x19873662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SLC5A8 is a sodium-coupled monocarboxylate and ketone transporter expressed in various epithelial cells. A putative role of SLC5A8 in neuroenergetics has been also hypothesized. To clarify this issue, we studied the cerebral phenotype of SLC5A8-deficient mice during aging. Elderly SLC5A8-deficient mice presented diffuse leukoencephalopathy characterized by intramyelinic oedema without demyelination suggesting chronic energetic crisis. Hypo-metabolism in the white matter of elderly SLC5A8-deficient mice was found using 99mTc-hexamethylpropyleneamine oxime (HMPAO) single-photon emission CT (SPECT). Since the SLC5A8 protein could not be detected in the mouse brain, it was hypothesized that the leukoencephalopathy of aging SLC5A8-deficient mice was caused by the absence of slc5a8 expression in a peripheral organ, i.e. the kidney, where SLC5A8 is strongly expressed. A hyper-excretion of the ketone β-hydroxybutyrate (BHB) in the urine of SLC5A8-deficient mice was observed and showed that SLC5A8-deficient mice suffered a cerebral BHB insufficiency. Elderly SLC5A8-deficient mice also presented altered glucose metabolism. We propose that the continuous renal loss of BHB leads to a chronic energetic deficiency in the brain of elderly SLC5A8-deficient mice who are unable to counterbalance their glucose deficit. This study highlights the importance of alternative energetic substrates in neuroenergetics especially under conditions of restricted glucose availability.
Collapse
Affiliation(s)
- Laurent Suissa
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Institut de biosciences et biotechnologies d'Aix-Marseille (BIAM), Commissariat a l'Energie Atomique, University Côte d'Azur, Nice, France.,Intensive Care Stroke Unit, University Hospital, Nice, France
| | - Virginie Flachon
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Institut de biosciences et biotechnologies d'Aix-Marseille (BIAM), Commissariat a l'Energie Atomique, University Côte d'Azur, Nice, France
| | - Jean-Marie Guigonis
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Institut de biosciences et biotechnologies d'Aix-Marseille (BIAM), Commissariat a l'Energie Atomique, University Côte d'Azur, Nice, France
| | - Charles-Vivien Olivieri
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Institut de biosciences et biotechnologies d'Aix-Marseille (BIAM), Commissariat a l'Energie Atomique, University Côte d'Azur, Nice, France
| | | | - Julien Guglielmi
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Institut de biosciences et biotechnologies d'Aix-Marseille (BIAM), Commissariat a l'Energie Atomique, University Côte d'Azur, Nice, France
| | | | - Matthieu Gérard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University of Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Franken
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Institut de biosciences et biotechnologies d'Aix-Marseille (BIAM), Commissariat a l'Energie Atomique, University Côte d'Azur, Nice, France.,Nuclear Medicine Department, Center Antoine Lacassagne, Nice, France
| | - Jacques Darcourt
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Institut de biosciences et biotechnologies d'Aix-Marseille (BIAM), Commissariat a l'Energie Atomique, University Côte d'Azur, Nice, France.,Nuclear Medicine Department, Center Antoine Lacassagne, Nice, France
| | - Luc Pellerin
- Département de Physiologie, Université de Lausanne, Lausanne, Switzerland.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Université de Bordeaux, Bordeaux, France
| | - Thierry Pourcher
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Institut de biosciences et biotechnologies d'Aix-Marseille (BIAM), Commissariat a l'Energie Atomique, University Côte d'Azur, Nice, France
| | - Sabine Lindenthal
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Institut de biosciences et biotechnologies d'Aix-Marseille (BIAM), Commissariat a l'Energie Atomique, University Côte d'Azur, Nice, France
| |
Collapse
|
29
|
Strauss KA, Carson VJ, Soltys K, Young ME, Bowser LE, Puffenberger EG, Brigatti KW, Williams KB, Robinson DL, Hendrickson C, Beiler K, Taylor CM, Haas-Givler B, Chopko S, Hailey J, Muelly ER, Shellmer DA, Radcliff Z, Rodrigues A, Loeven K, Heaps AD, Mazariegos GV, Morton DH. Branched-chain α-ketoacid dehydrogenase deficiency (maple syrup urine disease): Treatment, biomarkers, and outcomes. Mol Genet Metab 2020; 129:193-206. [PMID: 31980395 DOI: 10.1016/j.ymgme.2020.01.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/26/2022]
Abstract
Over the past three decades, we studied 184 individuals with 174 different molecular variants of branched-chain α-ketoacid dehydrogenase activity, and here delineate essential clinical and biochemical aspects of the maple syrup urine disease (MSUD) phenotype. We collected data about treatment, survival, hospitalization, metabolic control, and liver transplantation from patients with classic (i.e., severe; n = 176), intermediate (n = 6) and intermittent (n = 2) forms of MSUD. A total of 13,589 amino acid profiles were used to analyze leucine tolerance, amino acid homeostasis, estimated cerebral amino acid uptake, quantitative responses to anabolic therapy, and metabolic control after liver transplantation. Standard instruments were used to measure neuropsychiatric outcomes. Despite advances in clinical care, classic MSUD remains a morbid and potentially fatal disorder. Stringent dietary therapy maintains metabolic variables within acceptable limits but is challenging to implement, fails to restore appropriate concentration relationships among circulating amino acids, and does not fully prevent cognitive and psychiatric disabilities. Liver transplantation eliminates the need for a prescription diet and safeguards patients from life-threatening metabolic crises, but is associated with predictable morbidities and does not reverse pre-existing neurological sequelae. There is a critical unmet need for safe and effective disease-modifying therapies for MSUD which can be implemented early in life. The biochemistry and physiology of MSUD and its response to liver transplantation afford key insights into the design of new therapies based on gene replacement or editing.
Collapse
Affiliation(s)
- Kevin A Strauss
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA; Departments of Pediatrics and Molecular, Cell & Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA, USA.
| | - Vincent J Carson
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA
| | - Kyle Soltys
- Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | - Cora M Taylor
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA, USA
| | | | - Stephanie Chopko
- Department of Pediatrics, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Emilie R Muelly
- Department of Internal Medicine, The Permanente Medical Group, Santa Clara, CA, USA
| | - Diana A Shellmer
- Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary Radcliff
- Department of Pediatrics, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | | | | | | | - George V Mazariegos
- Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - D Holmes Morton
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA; Central Pennsylvania Clinic, Belleville, PA, USA
| |
Collapse
|
30
|
Wessler LB, Farias HR, Ronsani JF, Candiotto G, Santos PC, Oliveira J, Rico EP, Streck EL. Acute exposure to leucine modifies behavioral parameters and cholinergic activity in zebrafish. Int J Dev Neurosci 2019; 78:222-226. [DOI: 10.1016/j.ijdevneu.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/13/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Leticia B. Wessler
- Laboratório de Neurologia Experimental, Programa de Pós‐graduação em Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciúmaSC88806‐000Brazil
| | - Hemelin R. Farias
- Laboratório de Neurologia Experimental, Programa de Pós‐graduação em Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciúmaSC88806‐000Brazil
| | - Julia F. Ronsani
- Laboratório de Neurologia Experimental, Programa de Pós‐graduação em Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciúmaSC88806‐000Brazil
| | - Gabriela Candiotto
- Laboratório de Neurologia Experimental, Programa de Pós‐graduação em Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciúmaSC88806‐000Brazil
| | - Paulo C.L. Santos
- Laboratório de Neurologia Experimental, Programa de Pós‐graduação em Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciúmaSC88806‐000Brazil
| | - Jade Oliveira
- Laboratório de Neurologia Experimental, Programa de Pós‐graduação em Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciúmaSC88806‐000Brazil
- Programa de Pós‐Graduação em Ciências Biológicas: BioquímicaDepartamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreRS90035‐000Brazil
| | - Eduardo P. Rico
- Laboratório de Neurologia Experimental, Programa de Pós‐graduação em Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciúmaSC88806‐000Brazil
| | - Emilio L. Streck
- Laboratório de Neurologia Experimental, Programa de Pós‐graduação em Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciúmaSC88806‐000Brazil
| |
Collapse
|
31
|
Zhou M, Shao J, Wu CY, Shu L, Dong W, Liu Y, Chen M, Wynn RM, Wang J, Wang J, Gui WJ, Qi X, Lusis AJ, Li Z, Wang W, Ning G, Yang X, Chuang DT, Wang Y, Sun H. Targeting BCAA Catabolism to Treat Obesity-Associated Insulin Resistance. Diabetes 2019; 68:1730-1746. [PMID: 31167878 PMCID: PMC6702639 DOI: 10.2337/db18-0927] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
Recent studies implicate a strong association between elevated plasma branched-chain amino acids (BCAAs) and insulin resistance (IR). However, a causal relationship and whether interrupted BCAA homeostasis can serve as a therapeutic target for diabetes remain to be established experimentally. In this study, unbiased integrative pathway analyses identified a unique genetic link between obesity-associated IR and BCAA catabolic gene expression at the pathway level in human and mouse populations. In genetically obese (ob/ob) mice, rate-limiting branched-chain α-keto acid (BCKA) dehydrogenase deficiency (i.e., BCAA and BCKA accumulation), a metabolic feature, accompanied the systemic suppression of BCAA catabolic genes. Restoring BCAA catabolic flux with a pharmacological inhibitor of BCKA dehydrogenase kinase (BCKDK) ( a suppressor of BCKA dehydrogenase) reduced the abundance of BCAA and BCKA and markedly attenuated IR in ob/ob mice. Similar outcomes were achieved by reducing protein (and thus BCAA) intake, whereas increasing BCAA intake did the opposite; this corroborates the pathogenic roles of BCAAs and BCKAs in IR in ob/ob mice. Like BCAAs, BCKAs also suppressed insulin signaling via activation of mammalian target of rapamycin complex 1. Finally, the small-molecule BCKDK inhibitor significantly attenuated IR in high-fat diet-induced obese mice. Collectively, these data demonstrate a pivotal causal role of a BCAA catabolic defect and elevated abundance of BCAAs and BCKAs in obesity-associated IR and provide proof-of-concept evidence for the therapeutic validity of manipulating BCAA metabolism for treating diabetes.
Collapse
Affiliation(s)
- Meiyi Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Shao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-Yang Wu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Le Shu
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, CA
| | - Weibing Dong
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunxia Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengping Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - R Max Wynn
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Jun Gui
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Xiangbing Qi
- Chemistry Center, National Institute of Biological Science, Beijing, China
| | - Aldons J Lusis
- Departments of Medicine, Microbiology, and Human Genetics, University of California at Los Angeles, Los Angeles, CA
| | - Zhaoping Li
- Department of Clinical Nutrition, University of California at Los Angeles, Los Angeles, CA
| | - Weiqing Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, CA
| | - David T Chuang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yibin Wang
- Departments of Anesthesiology, Medicine, and Physiology, University of California at Los Angeles, Los Angeles, CA
| | - Haipeng Sun
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Departments of Anesthesiology, Medicine, and Physiology, University of California at Los Angeles, Los Angeles, CA
| |
Collapse
|
32
|
Effects of Branched-Chain Amino Acid Supplementation on Spontaneous Seizures and Neuronal Viability in a Model of Mesial Temporal Lobe Epilepsy. J Neurosurg Anesthesiol 2019; 31:247-256. [PMID: 29620688 DOI: 10.1097/ana.0000000000000499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The essential branched-chain amino acids (BCAAs) leucine, isoleucine, and valine have recently emerged as a potential novel treatment for medically refractory epilepsy. Blood-derived BCAAs can readily enter the brain, where they contribute to glutamate biosynthesis and may either suppress or trigger acute seizures. However, the effects of BCAAs on chronic (ie, spontaneous recurrent) seizures and epilepsy-associated neuron loss are incompletely understood. MATERIALS AND METHODS Sixteen rats with mesial temporal lobe epilepsy were randomized into 2 groups that could drink, ad libitum, either a 4% solution of BCAAs in water (n=8) or pure water (n=8). The frequency and relative percent of convulsive and nonconvulsive spontaneous seizures were monitored for a period of 21 days, and the brains were then harvested for immunohistochemical analysis. RESULTS Although the frequency of convulsive and nonconvulsive spontaneous recurrent seizures over a 3-week drinking/monitoring period were not different between the groups, there were differences in the relative percent of convulsive seizures in the first and third week of treatment. Moreover, the BCAA-treated rats had over 25% fewer neurons in the dentate hilus of the hippocampus compared with water-treated controls. CONCLUSIONS Acute BCAA supplementation reduces seizure propagation, whereas chronic oral supplementation with BCAAs worsens seizure propagation and causes neuron loss in rodents with mesial temporal lobe epilepsy. These findings raise the question of whether such supplementation has a similar effect in humans.
Collapse
|
33
|
Liu YD, Chu X, Liu RH, Sun Y, Kong QX, Li QB. Paroxysmal spasticity of lower extremities as the initial symptom in two siblings with maple syrup urine disease. Mol Med Rep 2019; 19:4872-4880. [PMID: 30957186 PMCID: PMC6522870 DOI: 10.3892/mmr.2019.10133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
Maple syrup urine disease (MSUD) is a rare autosomal recessive metabolic disorder caused by mutations in genes that encode subunits of the branched‑chain α‑ketoacid dehydrogenase (BCKD) complex. Impairment of the BCKD complex results in an abnormal accumulation of branched‑chain amino acids and their corresponding branched‑chain keto acids in the blood and cerebrospinal fluid, which are neurovirulent and may become life‑threatening. An 11‑day‑old boy was admitted to the hospital with paroxysmal spasticity of lower extremities. Of note, his 10‑year‑old sister presented similar symptoms during the neonatal period, and her condition was diagnosed as MSUD when she was 1.5 years old. Genetic screening was performed, and the boy and his sister exhibited two novel compound heterozygous mutations in the branched chain keto acid dehydrogenase E1 subunit β (BCKDHB) gene: A substitution from guanine to adenine in the coding region at position 1,076 (c.1,076G>A) in exon 10 and a deletion of a thymine at position 705 (c.705delT) in exon 6. The missense mutation c.1076G>A results in an amino acid substitution from arginine to lysine at position 359 (p.Arg359Lys), whereas the mutation c.705delT results in the replacement of a cysteine at position 235 with a stop codon (p.Cys235Ter). Neither of the BCKDHB alleles in the compound heterozygote patients is able to generate normal E1β subunits, resulting in a possible impairment of the activity of the BCKD complex. In the present study, it was hypothesized that the two novel heterozygous mutations in the BCKDHB gene found in the Chinese family may be responsible for the phenotype of the two siblings with MSUD.
Collapse
Affiliation(s)
- Yi-Dan Liu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xu Chu
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Rui-Hua Liu
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Ying Sun
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qing-Xia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Qiu-Bo Li
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| |
Collapse
|
34
|
Aygun F, Varol F, Aktuglu-Zeybek C, Kiykim E, Cam H. Continuous Renal Replacement Therapy with High Flow Rate Can Effectively, Safely, and Quickly Reduce Plasma Ammonia and Leucine Levels in Children. CHILDREN 2019; 6:children6040053. [PMID: 30987345 PMCID: PMC6518014 DOI: 10.3390/children6040053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 12/30/2022]
Abstract
Introduction: Peritoneal dialysis and continuous renal replacement therapy (CRRT) are the most frequently used treatment modalities for acute kidney injury. CRRT is currently being used for the treatment of several non-renal indications, such as congenital metabolic diseases. CRRT can efficiently remove toxic metabolites and reverse the neurological symptoms quickly. However, there is not enough data for CRRT in children with metabolic diseases. Therefore, we aimed a retrospective study to describe the use of CRRT in metabolic diseases and its associated efficacy, complications, and outcomes. Materials and Methods: We performed a retrospective analysis of the records of all patients admitted in the pediatric intensive care unit (PICU) for CRRT treatment. Results: Between December 2014 and November 2018, 97 patients were eligible for the present study. The age distribution was between 2 days and 17 years, with a mean of 3.77 ± 4.71 years. There were 13 (36.1%) newborn with metabolic diseases. The patients were divided into two groups: CRRT for metabolic diseases and others. There was a significant relationship between the groups, including age (p ≤ 0.001), weight (p = 0.028), blood flow rate (p ≤ 0.001); dialysate rate (p ≤ 0.001), and replacement rate (p ≤ 0.001). The leucine reduction rate was 3.88 ± 3.65 (% per hour). The ammonia reduction rate was 4.94 ± 5.05 in the urea cycle disorder group and 5.02 ± 4.54 in the organic acidemia group. The overall survival rate was 88.9% in metabolic diseases with CRRT. Conclusion: In particularly hemodynamically unstable patients, CRRT can effectively and quickly reduce plasma ammonia and leucine.
Collapse
Affiliation(s)
- Fatih Aygun
- Department of Pediatric Intensive Care Unit, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Fatih, Istanbul 34098, Turkey.
| | - Fatih Varol
- Department of Pediatric Intensive Care Unit, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Fatih, Istanbul 34098, Turkey.
| | - Cigdem Aktuglu-Zeybek
- Division of Nutrition and Metabolism, Department of Pediatrics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey.
| | - Ertugrul Kiykim
- Division of Nutrition and Metabolism, Department of Pediatrics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey.
| | - Halit Cam
- Department of Pediatric Intensive Care Unit, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Fatih, Istanbul 34098, Turkey.
| |
Collapse
|
35
|
Nutraceutical profile and evidence of alleviation of oxidative stress by Spirogyra porticalis (Muell.) Cleve inhabiting the high altitude Trans-Himalayan Region. Sci Rep 2019; 9:4091. [PMID: 30858387 PMCID: PMC6411730 DOI: 10.1038/s41598-018-35595-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/06/2018] [Indexed: 11/08/2022] Open
Abstract
The high altitude trans-Himalayan region indeed is hostile domain for survival. Algae inhabiting this hostile terrain have evolutionarily developed mechanisms to produce unique adaptogenic molecules against climatic stressors. The present study has focused on the high altitude alga Spirogyra porticalis (Muell.) Cleve- a filamentous Charophyte, and reports the estimation of amino acids (AAs), fatty acids (FAs), vitamins and their efficacy against oxidative stress. Reverse phase-HPLC, GC-FID and rapid resolution-LC/tandem mass spectrometry were used for analysis of AAs, FAs and vitamins. Analysis of the alga revealed the presence of 19 AAs (239.51 ± 8.57 to 13102.40 ± 11.08 µg/g), dominated by alanine, proline and lysine. Enriched phenylalanine, cysteine-HCl and high lysine:arginine ratio could also have beneficial impact against hypoxia -induced cognitive impairment. A total of 9 FAs were detected (0.43 ± 0.00% to 34.76 ± 0.52%). Polyunsaturated and monounsaturated FAs were found to be dominant. The alga showed the presence of 8 vitamins within the range of 39.654 ± 3.198 to 5468.184 ± 106.859 µg/Kg, wherein Vitamin B5, B3 and B2 were dominant. 600 µg/ml of methanolic extract showed recovery of GSH and trolox equivalent antioxidants in rat blood/hemolysate, while 400 µg/ml of extract showed revival in superoxide dismutase (SOD) activity. The present study concludes that the alga S. porticalis has immense potential to counter oxidative stress as a nutraceutical supplement.
Collapse
|
36
|
Onishi Y, Hiraiwa M, Kamada H, Iezaki T, Yamada T, Kaneda K, Hinoi E. Hypoxia affects Slc7a5 expression through HIF-2α in differentiated neuronal cells. FEBS Open Bio 2019; 9:241-247. [PMID: 30761250 PMCID: PMC6356171 DOI: 10.1002/2211-5463.12559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/25/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
An imbalance of branched‐chain amino acids (BCAAs) in the brain may result in neuropathological conditions, such as autism spectrum disorders. The L‐type amino acid transporter 1 (LAT1), encoded by the solute carrier transporter 7a5 (Slc7a5) gene, is critical for maintaining normal levels of BCAAs in the brain. However, our understanding of the mechanisms that regulate the expression of LAT1/Slc7a5 in neurons is currently limited. Here, we demonstrate that hypoxic conditions result in upregulated expression of Slc7a5 in differentiated neuronal cells (Neuro2A cells induced to differentiate using all‐trans retinoic acid). Mechanistically, hypoxia‐induced expression of Slc7a5 is markedly reduced by short hairpin RNA (shRNA)‐mediated knockdown of hypoxia‐inducible factor 2α (HIF‐2α), but not by shRNA targeting HIF‐1α, in differentiated neuronal cells. Moreover, hypoxia increased the binding of HIF‐2α to the proximal promoter of Slc7a5 in differentiated neuronal cells. These results indicate that hypoxia directly enhances the recruitment of HIF‐2α to the proximal promoter of Slc7a5, resulting in its upregulated expression in differentiated neuronal cells. These findings indicate that Slc7a5 may be a novel gene responsive to hypoxia in a HIF‐2α‐dependent manner in differentiated neuronal cells.
Collapse
Affiliation(s)
- Yuki Onishi
- Laboratory of Molecular Pharmacology Division of Pharmaceutical Sciences Kanazawa University Graduate School Japan
| | - Manami Hiraiwa
- Laboratory of Molecular Pharmacology Division of Pharmaceutical Sciences Kanazawa University Graduate School Japan
| | - Hikari Kamada
- Laboratory of Molecular Pharmacology Division of Pharmaceutical Sciences Kanazawa University Graduate School Japan
| | - Takashi Iezaki
- Laboratory of Molecular Pharmacology Division of Pharmaceutical Sciences Kanazawa University Graduate School Japan.,Venture Business Laboratory Organization of Frontier Science and Innovation Kanazawa University Japan
| | - Takanori Yamada
- Laboratory of Molecular Pharmacology Division of Pharmaceutical Sciences Kanazawa University Graduate School Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology Division of Pharmaceutical Sciences Kanazawa University Graduate School Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology Division of Pharmaceutical Sciences Kanazawa University Graduate School Japan
| |
Collapse
|
37
|
Abstract
Inborn errors of metabolism, also known as inherited metabolic diseases, constitute an important group of conditions presenting with neurologic signs in newborns. They are individually rare but collectively common. Many are treatable through restoration of homeostasis of a disrupted metabolic pathway. Given their frequency and potential for treatment, the clinician should be aware of this group of conditions and learn to identify the typical manifestations of the different inborn errors of metabolism. In this review, we summarize the clinical, laboratory, electrophysiologic, and neuroimaging findings of the different inborn errors of metabolism that can present with florid neurologic signs and symptoms in the neonatal period.
Collapse
MESH Headings
- Adult
- Female
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/diagnosis
- Infant, Newborn, Diseases/diagnostic imaging
- Infant, Newborn, Diseases/physiopathology
- Infant, Newborn, Diseases/therapy
- Metabolism, Inborn Errors/diagnosis
- Metabolism, Inborn Errors/diagnostic imaging
- Metabolism, Inborn Errors/physiopathology
- Metabolism, Inborn Errors/therapy
- Neuroimaging
- Pregnancy
Collapse
Affiliation(s)
- Carlos R Ferreira
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; Rare Disease Institute, Children's National Health System, Washington, DC, United States
| | - Clara D M van Karnebeek
- Departments of Pediatrics and Clinical Genetics, Amsterdam University Medical Centers, Amsterdam, The Netherlands; Department of Pediatrics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
38
|
Kölker S. Metabolism of amino acid neurotransmitters: the synaptic disorder underlying inherited metabolic diseases. J Inherit Metab Dis 2018; 41:1055-1063. [PMID: 29869166 DOI: 10.1007/s10545-018-0201-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 10/14/2022]
Abstract
Amino acids are involved in various metabolic pathways and some of them also act as neurotransmitters. Since biosynthesis of L-glutamate and γ-aminobutyric acid (GABA) requires 2-oxoglutarate while 3-phosphoglycerate is the precursor of L-glycine and D-serine, evolutionary selection of these amino acid neurotransmitters might have been driven by their capacity to provide important information about the glycolytic pathway and Krebs cycle. Synthesis and recycling of amino acid neurotransmitters as well as composition and function of their receptors are often compromised in inherited metabolic diseases. For instance, increased plasma L-phenylalanine concentrations impair cerebral biosynthesis of protein and bioamines in phenylketonuria, while elevated cerebral L-phenylalanine directly acts via ionotropic glutamate receptors. In succinic semialdehyde dehydrogenase deficiency, the neurotransmitter GABA and neuromodulatory γ-hydroxybutyric acid are elevated. Chronic hyperGABAergic state results in progressive downregulation of GABAA and GABAB receptors and impaired mitophagy. In glycine encephalopathy, the neurological phenotype is precipitated by L-glycine acting both via cortical NMDA receptors and glycine receptors in spinal cord and brain stem neurons. Serine deficiency syndromes are biochemically characterized by decreased biosynthesis of L-serine, an important neurotrophic factor, and the neurotransmitters D-serine and L-glycine. Supplementation with L-serine and L-glycine has a positive effect on seizure frequency and spasticity, while neurocognitive development can only be improved if treatment starts in utero or immediately postnatally. With novel techniques, the study of synaptic dysfunction in inherited metabolic diseases has become an emerging research field. More and better therapies are needed for these difficult-to-treat diseases.
Collapse
Affiliation(s)
- Stefan Kölker
- Division of Pediatric Neurology and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| |
Collapse
|
39
|
Limphaibool N, Iwanowski P, Holstad MJV, Perkowska K. Parkinsonism in Inherited Metabolic Disorders: Key Considerations and Major Features. Front Neurol 2018; 9:857. [PMID: 30369906 PMCID: PMC6194353 DOI: 10.3389/fneur.2018.00857] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Parkinson's Disease (PD) is a common neurodegenerative disorder manifesting as reduced facilitation of voluntary movements. Extensive research over recent decades has expanded our insights into the pathogenesis of the disease, where PD is indicated to result from multifactorial etiological factors involving environmental contributions in genetically predisposed individuals. There has been considerable interest in the association between neurological manifestations in PD and in inherited metabolic disorders (IMDs), which are genetic disorders characterized by a deficient activity in the pathways of intermediary metabolism leading to multiple-system manifestations. In addition to the parallel in various clinical features, there is increasing evidence for the notion that genetic mutations underlying IMDs may increase the risk of PD development. This review highlights the recent advances in parkinsonism in patients with IMDs, with the primary objective to improve the understanding of the overlapping pathogenic pathways and clinical presentations in both disorders. We discuss the genetic convergence and disruptions in biochemical mechanisms which may point to clues surrounding pathogenesis-targeted treatment and other promising therapeutic strategies in the future.
Collapse
Affiliation(s)
| | - Piotr Iwanowski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Katarzyna Perkowska
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
40
|
Shah T, Purohit S, Raval M. Imaging in Maple Syrup Urine Disease. Indian J Pediatr 2018; 85:927-928. [PMID: 29744745 DOI: 10.1007/s12098-018-2696-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/26/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Tanay Shah
- Department of Radiology, Santokba Durlabhji Memorial Hospital, Bhawani Singh Marg, Jaipur, Rajasthan, 302015, India.
| | - Sunita Purohit
- Department of Radiology, Santokba Durlabhji Memorial Hospital, Bhawani Singh Marg, Jaipur, Rajasthan, 302015, India
| | - Mrudang Raval
- Department of Radiology, Santokba Durlabhji Memorial Hospital, Bhawani Singh Marg, Jaipur, Rajasthan, 302015, India
| |
Collapse
|
41
|
Scaini G, Tonon T, Moura de Souza CF, Schuck PF, Ferreira GC, Quevedo J, Neto JS, Amorim T, Camelo JS, Margutti AVB, Hencke Tresbach R, Sperb-Ludwig F, Boy R, de Medeiros PFV, Schwartz IVD, Streck EL. Evaluation of plasma biomarkers of inflammation in patients with maple syrup urine disease. J Inherit Metab Dis 2018; 41:10.1007/s10545-018-0188-x. [PMID: 29740775 DOI: 10.1007/s10545-018-0188-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 03/27/2018] [Accepted: 04/11/2018] [Indexed: 12/15/2022]
Abstract
Maple syrup urine disease (MSUD) is an autosomal recessive inherited disorder that affects branched-chain amino acid (BCAA) catabolism and is associated with acute and chronic brain dysfunction. Recent studies have shown that inflammation may be involved in the neuropathology of MSUD. However, these studies have mainly focused on single or small subsets of proteins or molecules. Here we performed a case-control study, including 12 treated-MSUD patients, in order to investigate the plasmatic biomarkers of inflammation, to help to establish a possible relationship between these biomarkers and the disease. Our results showed that MSUD patients in treatment with restricted protein diets have high levels of pro-inflammatory cytokines [IFN-γ, TNF-α, IL-1β and IL-6] and cell adhesion molecules [sICAM-1 and sVCAM-1] compared to the control group. However, no significant alterations were found in the levels of IL-2, IL-4, IL-5, IL-7, IL-8, and IL-10 between healthy controls and MSUD patients. Moreover, we found a positive correlation between number of metabolic crisis and IL-1β levels and sICAM-1 in MSUD patients. In conclusion, our findings in plasma of patients with MSUD suggest that inflammation may play an important role in the pathogenesis of MSUD, although this process is not directly associated with BCAA blood levels. Overall, data reported here are consistent with the working hypothesis that inflammation may be involved in the pathophysiological mechanism underlying the brain damage observed in MSUD patients.
Collapse
Affiliation(s)
- Giselli Scaini
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
| | - Tássia Tonon
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post Graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Patricia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | | | - Tatiana Amorim
- Associação de Pais e Amigos dos Excepcionais (APAE), Salvador, Brazil
| | - Jose S Camelo
- Pediatrics Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Rafael Hencke Tresbach
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fernanda Sperb-Ludwig
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Raquel Boy
- Pediatrics Department, Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula F V de Medeiros
- Unidade Acadêmica de Medicina, Hospital Universitário Alcides Carneiro, Universidade Federal de Campina Grande, Campina Grande, Brazil
| | - Ida Vanessa D Schwartz
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Emilio Luiz Streck
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
42
|
Altered Redox Homeostasis in Branched-Chain Amino Acid Disorders, Organic Acidurias, and Homocystinuria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1246069. [PMID: 29743968 PMCID: PMC5884027 DOI: 10.1155/2018/1246069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/26/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Inborn errors of metabolism (IEMs) are a group of monogenic disorders characterized by dysregulation of the metabolic networks that underlie development and homeostasis. Emerging evidence points to oxidative stress and mitochondrial dysfunction as major contributors to the multiorgan alterations observed in several IEMs. The accumulation of toxic metabolites in organic acidurias, respiratory chain, and fatty acid oxidation disorders inhibits mitochondrial enzymes and processes resulting in elevated levels of reactive oxygen species (ROS). In other IEMs, as in homocystinuria, different sources of ROS have been proposed. In patients' samples, as well as in cellular and animal models, several studies have identified significant increases in ROS levels along with decreases in antioxidant defences, correlating with oxidative damage to proteins, lipids, and DNA. Elevated ROS disturb redox-signaling pathways regulating biological processes such as cell growth, differentiation, or cell death; however, there are few studies investigating these processes in IEMs. In this review, we describe the published data on mitochondrial dysfunction, oxidative stress, and impaired redox signaling in branched-chain amino acid disorders, other organic acidurias, and homocystinuria, along with recent studies exploring the efficiency of antioxidants and mitochondria-targeted therapies as therapeutic compounds in these diseases.
Collapse
|
43
|
Cheng A, Han L, Feng Y, Li H, Yao R, Wang D, Jin B. MRI and clinical features of maple syrup urine disease: preliminary results in 10 cases. Diagn Interv Radiol 2018; 23:398-402. [PMID: 28830848 DOI: 10.5152/dir.2017.16466] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE We aimed to evaluate the magnetic resonance imaging (MRI) and clinical features of maple syrup urine disease (MSUD). METHODS This retrospective study consisted of 10 MSUD patients confirmed by genetic testing. All patients underwent brain MRI. Phenotype, genotype, and areas of brain injury on MRI were retrospectively reviewed. RESULTS Six patients (60%) had the classic form of MSUD with BCKDHB mutation, three patients (30%) had the intermittent form (two with BCKDHA mutations and one with DBT mutation), and one patient (10%) had the thiamine-responsive form with DBT mutation. On diffusion-weighted imaging, nine cases presented restricted diffusion in myelinated areas, and one intermittent case with DBT mutation was normal. The classic form of MSUD involved the basal ganglia in six cases; the cerebellum, mesencephalon, pons, and supratentorial area in five cases; and the thalamus in four cases, respectively. The intermittent form involved the cerebellum, pons, and supratentorial area in two cases. The thiamine-responsive form involved the basal ganglia and supratentorial area. CONCLUSION Our preliminary results indicate that patients with MSUD presented more commonly in classic form with BCKDHB mutation and displayed extensive brain injury on MRI.
Collapse
Affiliation(s)
- Ailan Cheng
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
44
|
Aygun F, Aygun D, Erbek Alp F, Zubarıoglu T, Zeybek C, Cam H. The impact of continuous renal replacement therapy for metabolic disorders in infants. Pediatr Neonatol 2018; 59:85-90. [PMID: 28778517 DOI: 10.1016/j.pedneo.2017.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 02/19/2017] [Accepted: 04/12/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND While Continuous Renal Replacement Therapy (CRRT) is a well established treatment modality for patients with acute kidney insufficiency (AKI), it is now also being used for the management of various illnesses such as acute metabolic disorders presenting with hyperammonemia and elevated leucine levels. Herein, we aimed to describe our experience with CRRT in treatment of acute decompensation of 14 patients with a diagnosis of metabolic disorder who has been admitted to our pediatric intensive care unit (PICU) in the last year. METHODS Patients who have had life threatening acute metabolic crisis due to various metabolic disorders and were treated with continuous renal replacement therapy (CRRT) were evaluated retrospectively. RESULTS Between November 2014 and December 2015, 14 patients were found to have received CRRT for various metabolic disorders in the PICU. Ten patients had hyperammonemia and four patients had elevated leucine levels. Nine patients were male and five were female. The age interval was between 2 days and 18 months, with a mean of 5.5 ± 7.4 months. The weight distribution was between 2.5 and 18 kg, with a mean of 7.3 ± 5.6 kg. Eleven patients received continuous veno-venous hemodiafiltration (CVVHDF), and 3 patients with MSUD received continuous veno-venous hemodialysis (CVVHD). All patients have received high throughput hemodialysis and hemofiltration. The dialyzate rate was set to be minimum 4042 ml/h/1.73 m2, and maximum 12,900 ml/h/1.73 m2. Hemofiltration was performed with a replacement rate of 40-76 ml/kg/h. The average CRRT duration was 16.6 ± 15.6 h. CONCLUSIONS We suggest that CRRT is an efficient method that can be used in hyperammonemia and elevated leucine levels which are metabolic emergencies.
Collapse
Affiliation(s)
- Fatih Aygun
- Istanbul University, Cerrahpasa Medical Faculty, Department of Pediatric Intensive Care Unit, Istanbul, Turkey.
| | - Deniz Aygun
- Istanbul University, Cerrahpasa Medical Faculty, Department of Pediatric Infectious Disease, Istanbul, Turkey.
| | - Firuze Erbek Alp
- Istanbul University, Cerrahpasa Medical Faculty, Department of Pediatrics, Istanbul, Turkey.
| | - Tanyel Zubarıoglu
- Istanbul University, Cerrahpasa Medical Faculty, Department of Pediatric Nutrition and Metabolism, Istanbul, Turkey.
| | - Cigdem Zeybek
- Istanbul University, Cerrahpasa Medical Faculty, Department of Pediatric Nutrition and Metabolism, Istanbul, Turkey.
| | - Halit Cam
- Istanbul University, Cerrahpasa Medical Faculty, Department of Pediatric Intensive Care Unit, Istanbul, Turkey.
| |
Collapse
|
45
|
Taschetto L, Scaini G, Zapelini HG, Ramos ÂC, Strapazzon G, Andrade VM, Réus GZ, Michels M, Dal-Pizzol F, Quevedo J, Schuck PF, Ferreira GC, Streck EL. Acute and long-term effects of intracerebroventricular administration of α-ketoisocaproic acid on oxidative stress parameters and cognitive and noncognitive behaviors. Metab Brain Dis 2017; 32:1507-1518. [PMID: 28550500 DOI: 10.1007/s11011-017-0035-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/16/2017] [Indexed: 01/07/2023]
Abstract
Maple Syrup Urine Disease (MSUD) is biochemically characterized by elevated levels of leucine, isoleucine and valine, as well as their corresponding transaminated branched-chain α-keto acids in tissue and biological fluids. Neurological symptoms and cerebral abnormalities, whose mechanisms are still unknown, are typical of this metabolic disorder. In the present study, we evaluated the early effects (1 h after injection) and long-term effects (15 days after injection) of a single intracerebroventricular administration of α-ketoisocaproic acid (KIC) on oxidative stress parameters and cognitive and noncognitive behaviors. Our results showed that KIC induced early and long-term effects; we found an increase in TBARS levels, protein carbonyl content and DNA damage in the hippocampus, striatum and cerebral cortex both one hour and 15 days after KIC administration. Moreover, SOD activity increased in the hippocampus and striatum one hour after injection, whereas after 15 days, SOD activity decreased only in the striatum. On the other hand, KIC significantly decreased CAT activity in the striatum one hour after injection, but 15 days after KIC administration, we found a decrease in CAT activity in the hippocampus and striatum. Finally, we showed that long-term cognitive deficits follow the oxidative damage; KIC induced impaired habituation memory and long-term memory impairment. From the biochemical and behavioral findings, it we presume that KIC provokes oxidative damage, and the persistence of brain oxidative stress is associated with long-term memory impairment and prepulse inhibition.
Collapse
Affiliation(s)
- Luciane Taschetto
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Giselli Scaini
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Hugo G Zapelini
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Ândrea C Ramos
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Giulia Strapazzon
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Vanessa M Andrade
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Monique Michels
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Dal-Pizzol
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Patrícia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil.
| |
Collapse
|
46
|
Impaired Amino Acid Transport at the Blood Brain Barrier Is a Cause of Autism Spectrum Disorder. Cell 2017; 167:1481-1494.e18. [PMID: 27912058 DOI: 10.1016/j.cell.2016.11.013] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/18/2016] [Accepted: 11/03/2016] [Indexed: 12/29/2022]
Abstract
Autism spectrum disorders (ASD) are a group of genetic disorders often overlapping with other neurological conditions. We previously described abnormalities in the branched-chain amino acid (BCAA) catabolic pathway as a cause of ASD. Here, we show that the solute carrier transporter 7a5 (SLC7A5), a large neutral amino acid transporter localized at the blood brain barrier (BBB), has an essential role in maintaining normal levels of brain BCAAs. In mice, deletion of Slc7a5 from the endothelial cells of the BBB leads to atypical brain amino acid profile, abnormal mRNA translation, and severe neurological abnormalities. Furthermore, we identified several patients with autistic traits and motor delay carrying deleterious homozygous mutations in the SLC7A5 gene. Finally, we demonstrate that BCAA intracerebroventricular administration ameliorates abnormal behaviors in adult mutant mice. Our data elucidate a neurological syndrome defined by SLC7A5 mutations and support an essential role for the BCAA in human brain function.
Collapse
|
47
|
Bouchereau J, Leduc-Leballeur J, Pichard S, Imbard A, Benoist JF, Abi Warde MT, Arnoux JB, Barbier V, Brassier A, Broué P, Cano A, Chabrol B, Damon G, Gay C, Guillain I, Habarou F, Lamireau D, Ottolenghi C, Paermentier L, Sabourdy F, Touati G, Ogier de Baulny H, de Lonlay P, Schiff M. Neurocognitive profiles in MSUD school-age patients. J Inherit Metab Dis 2017; 40:377-383. [PMID: 28324240 DOI: 10.1007/s10545-017-0033-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 02/22/2017] [Accepted: 02/26/2017] [Indexed: 01/07/2023]
Abstract
Maple syrup urine disease (MSUD), an inborn error of amino acids catabolism is characterized by accumulation of branched chain amino acids (BCAAs) leucine, isoleucine, valine and their corresponding alpha-ketoacids. Impact on the cognitive development has been reported historically, with developmental delays of varying degree. Currently, earlier diagnosis and improved management allow a better neurodevelopment, without requirement of special education. However, specific impairments can be observed, and so far, results of detailed neurocognitive assessments are not available. The aim of this study was to analyse neurocognitive profiles of French MSUD patients. This was a multicentre retrospective study on MSUD patients who underwent neurocognitive evaluation at primary school age. Twenty-one patients with classical neonatal onset MSUD were included. The patients' mean age at the time of evaluation was 8.7 years. The mean intellectual quotient (IQ) score was in the normal range (95.1 ± 12.6). In a subset of eight patients, a consistent developmental pattern of higher verbal than performance IQ was observed (mean of the difference 25.7 ± 8.7, p < 0.0001). No correlation could be established between this pattern and long-term metabolic balance (BCAA blood levels), or severity of acute metabolic imbalances, or leucine blood levels at diagnosis and time to toxin removal procedure. These data show that some MSUD patients may exhibit an abnormal neurocognitive profile with higher verbal than performance abilities. This might suggest an executive dysfunction disorder that would need to be further investigated by specialized testing. This pattern is important to detect in MSUD, as appropriate neuropsychological treatment strategies should be proposed.
Collapse
Affiliation(s)
- Juliette Bouchereau
- Reference Centre for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, 48 boulevard Sérurier, 75019, Paris, France
| | - Julie Leduc-Leballeur
- Reference Centre for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, 48 boulevard Sérurier, 75019, Paris, France
| | - Samia Pichard
- Reference Centre for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, 48 boulevard Sérurier, 75019, Paris, France
| | - Apolline Imbard
- Biochemistry Department, Robert Debré University Hospital, APHP, Paris, France
- Robert Debré University Hospital, PROTECT, INSERM U1141, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Jean-François Benoist
- Biochemistry Department, Robert Debré University Hospital, APHP, Paris, France
- Robert Debré University Hospital, PROTECT, INSERM U1141, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Marie-Thérèse Abi Warde
- Reference Centre for Inborn Errors of Metabolism, Necker University Hospital, APHP, Paris, France
| | - Jean-Baptiste Arnoux
- Reference Centre for Inborn Errors of Metabolism, Necker University Hospital, APHP, Paris, France
| | - Valérie Barbier
- Reference Centre for Inborn Errors of Metabolism, Necker University Hospital, APHP, Paris, France
| | - Anaïs Brassier
- Reference Centre for Inborn Errors of Metabolism, Necker University Hospital, APHP, Paris, France
| | - Pierre Broué
- Metabolic Disease Department, Children University Hospital, Toulouse, France
| | - Aline Cano
- Reference Centre for Inborn Errors of Metabolism, La Timone University Hospital, APHM, Marseille, France
| | - Brigitte Chabrol
- Reference Centre for Inborn Errors of Metabolism, La Timone University Hospital, APHM, Marseille, France
| | - Gilles Damon
- Pediatrics Department, Hôpital Nord, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Claire Gay
- Pediatrics Department, Hôpital Nord, Saint-Etienne University Hospital, Saint-Etienne, France
| | | | - Florence Habarou
- Biochemistry Department, Necker University Hospital, APHP, Paris, France
- INSERM UMR-S 1124, University Paris Descartes, Paris, France
| | - Delphine Lamireau
- Pediatrics Department, Bordeaux University Pellegrin Hospital, Bordeaux, France
| | - Chris Ottolenghi
- Biochemistry Department, Necker University Hospital, APHP, Paris, France
- INSERM UMR-S 1124, University Paris Descartes, Paris, France
| | - Laetitia Paermentier
- Reference Centre for Inborn Errors of Metabolism, La Timone University Hospital, APHM, Marseille, France
| | - Frédérique Sabourdy
- Biochemistry Department, Institut Fédératif de Biologie, Purpan University Hospital, Toulouse, France
- INSERM UMR1037, Toulouse III University, Toulouse, France
| | - Guy Touati
- Metabolic Disease Department, Children University Hospital, Toulouse, France
| | - Hélène Ogier de Baulny
- Reference Centre for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, 48 boulevard Sérurier, 75019, Paris, France
| | - Pascale de Lonlay
- Reference Centre for Inborn Errors of Metabolism, Necker University Hospital, APHP, Paris, France
- INSERM UMR-S 1124, University Paris Descartes, Paris, France
| | - Manuel Schiff
- Reference Centre for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, 48 boulevard Sérurier, 75019, Paris, France.
- Robert Debré University Hospital, PROTECT, INSERM U1141, University Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
48
|
Abstract
The three essential branched-chain amino acids (BCAAs), leucine, isoleucine and valine, share the first enzymatic steps in their metabolic pathways, including a reversible transamination followed by an irreversible oxidative decarboxylation to coenzyme-A derivatives. The respective oxidative pathways subsequently diverge and at the final steps yield acetyl- and/or propionyl-CoA that enter the Krebs cycle. Many disorders in these pathways are diagnosed through expanded newborn screening by tandem mass spectrometry. Maple syrup urine disease (MSUD) is the only disorder of the group that is associated with elevated body fluid levels of the BCAAs. Due to the irreversible oxidative decarboxylation step distal enzymatic blocks in the pathways do not result in the accumulation of amino acids, but rather to CoA-activated small carboxylic acids identified by gas chromatography mass spectrometry analysis of urine and are therefore classified as organic acidurias. Disorders in these pathways can present with a neonatal onset severe-, or chronic intermittent- or progressive forms. Metabolic instability and increased morbidity and mortality are shared between inborn errors in the BCAA pathways, while treatment options remain limited, comprised mainly of dietary management and in some cases solid organ transplantation.
Collapse
Affiliation(s)
- I Manoli
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - C P Venditti
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
49
|
Chiong MAD, Tan MA, Cordero CP, Fodra EGD, Manliguis JS, Lopez CP, Dalmacio LMM. Plasma amino acid and urine organic acid profiles of Filipino patients with maple syrup urine disease (MSUD) and correlation with their neurologic features. Mol Genet Metab Rep 2016; 9:46-53. [PMID: 27761412 PMCID: PMC5065041 DOI: 10.1016/j.ymgmr.2016.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 01/31/2023] Open
Abstract
Background Maple syrup urine disease (MSUD) is the most common inborn error of metabolism in the country. The cause of the neuropathology is still not well established although accumulation of branched chain amino acids (BCAA) and alteration in large neutral amino acids (LNAA) as well as energy deprivation are suggested. It is therefore the aim of this study to determine the plasma amino acid and urine organic acid profiles of patients with MSUD and correlate the findings with their neurologic features. Methodology Twenty six Filipino patients with MSUD were studied in terms of their plasma amino acid and urine organic acid profiles. Their results were compared with 26 age and sex matched controls. The neurologic features were correlated with the results of the plasma amino acids and urine organic acids. Results Majority of the patients with MSUD had developmental delay/intellectual disability (88%), speech delay (69%), and seizures (65%). Their amino acid profiles revealed low glutamine and alanine with high levels of leucine, isoleucine, phenylalanine, threonine and alloisoleucine compared to controls (p < 0.05). The urine organic acids showed significantly elevated excretion of the branched chain ketoacids and succinate (p < 0.05). However there were no biochemical markers that correlated significantly with the neurologic features. Conclusion The findings suggest that there could still be altered LNAA metabolism among patients with MSUD when the BCAAs are elevated. Although the biochemical findings were not significantly correlated with the neurologic features, the study showed that prevention and avoidance of neurologic disturbances may still rely primarily on early diagnosis and prompt institution of treatment, along with strict compliance with the dietary regimen and maintenance of good metabolic control over time.
Collapse
Affiliation(s)
- Mary Anne D Chiong
- Institute of Human Genetics, National Institutes of Health, University of the Philippines Manila, Philippines
| | - Marilyn A Tan
- Department of Pediatrics, Section of Neurology, Philippine General Hospital, University of the Philippines Manila, Philippines
| | - Cynthia P Cordero
- Department of Clinical Epidemiology, University of the Philippines Manila, Philippines
| | - Esphie Grace D Fodra
- Institute of Human Genetics, National Institutes of Health, University of the Philippines Manila, Philippines
| | - Judy S Manliguis
- Institute of Human Genetics, National Institutes of Health, University of the Philippines Manila, Philippines
| | - Cristine P Lopez
- Institute of Human Genetics, National Institutes of Health, University of the Philippines Manila, Philippines
| | | |
Collapse
|
50
|
Kanakis MG, Michelakakis H, Petrou P, Koutsandrea C, Georgalas I. Case report: Aqueous and Vitreous amino-acid concentrations in a patient with maple syrup urine disease operated on rhegmatogenous retinal detachment. BMC Ophthalmol 2016; 16:170. [PMID: 27716111 PMCID: PMC5048685 DOI: 10.1186/s12886-016-0349-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/10/2016] [Indexed: 11/16/2022] Open
Abstract
Background Maple syrup urine disease (MSUD) is a rare metabolic disorder, affecting the metabolism of branched chain amino-acids (Valine, Leukine, Isoleukine). We present a rare case of rhegmatogenous retinal detachment (RRD) in a MSUD patient. Case presentation We performed amino acid analysis of aqueous humour, vitreous and serum samples obtained during surgery from a 24 year old female MSUD patient successfully operated on RRD. Serum values for a-amino-butyric acid, valine, isoleucine, leucine, tyrosine, phenylalanine, ornithine and histidine were low, while values for citrulline, methionine and lysine were borderline low, all attributed to the patient’s special diet. Serum glutamate was above normal, probably due to the breakdown of glutamine to glutamate. In the aqueous and vitreous the amino acids implicated in MSUD (Valine, Leukine Isoleukine), were within normal range. Glutamate was absent in the vitreous and presented low levels in the aqueous. Glutamate has been reported to play an important role in retinal damage. Elevated glutamate levels have been reported in vitreous specimens from patients subjected to vitrectomy or buckling surgery for RRD. In MSUD, glutamate has been implicated in the pathogenesis of brain damage. Low levels of glutamate have been observed in the cerebellum of experimental MSUD animals, as well as postmortem brain tissue from a child that died of leucine intoxication. The reduction was attributed to the elevation of a-ketoisocaproic which reverses the net direction of nitrogen flow. It could be argued that this could impact on amino acid concentration in aqueous and vitreous fluids. Conclusions Although no definite conclusions can be drawn by this extremely rare case, the low vitreous and aqueous levels of Glutamate is an interesting finding. Further studies are needed to provide a better insight in the role of amino acids as neurotransmitters in the human eye in health and disease. Electronic supplementary material The online version of this article (doi:10.1186/s12886-016-0349-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Menelaos G Kanakis
- 1st Department of Ophthalmology, "G. Gennimatas" Hospital of Athens, National and Kapodistrian University of Athens, Mesogeion 154, Athens, 11527, Greece.
| | - Helen Michelakakis
- Department Enzymology and Cellular Function, Institute of Child Health, 7 Fokidos street, Athens, 11526, Greece
| | - Petros Petrou
- 1st Department of Ophthalmology, "G. Gennimatas" Hospital of Athens, National and Kapodistrian University of Athens, Mesogeion 154, Athens, 11527, Greece
| | - Chrysanthi Koutsandrea
- 1st Department of Ophthalmology, "G. Gennimatas" Hospital of Athens, National and Kapodistrian University of Athens, Mesogeion 154, Athens, 11527, Greece
| | - Ilias Georgalas
- 1st Department of Ophthalmology, "G. Gennimatas" Hospital of Athens, National and Kapodistrian University of Athens, Mesogeion 154, Athens, 11527, Greece
| |
Collapse
|