1
|
Cassinotti LR, Ji L, Yuk MC, Desai AS, Cass ND, Amir ZA, Corfas G. Hidden hearing loss in a Charcot-Marie-Tooth type 1A mouse model. JCI Insight 2024; 9:e180315. [PMID: 39178128 PMCID: PMC11466197 DOI: 10.1172/jci.insight.180315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/15/2024] [Indexed: 08/25/2024] Open
Abstract
Hidden hearing loss (HHL), a recently described auditory neuropathy characterized by normal audiometric thresholds but reduced sound-evoked cochlear compound action potentials, has been proposed to contribute to hearing difficulty in noisy environments in people with normal hearing thresholds and has become a widespread complaint. While most studies on HHL pathogenesis have focused on inner hair cell (IHC) synaptopathy, we recently showed that transient auditory nerve (AN) demyelination also causes HHL in mice. To test the effect of myelinopathy on hearing in a clinically relevant model, we studied a mouse model of Charcot-Marie-Tooth type 1A (CMT1A), the most prevalent hereditary peripheral neuropathy in humans. CMT1A mice exhibited the functional hallmarks of HHL together with disorganization of AN heminodes near the IHCs with minor loss of AN fibers. These results support the hypothesis that mild disruptions of AN myelination can cause HHL and that heminodal defects contribute to the alterations in the sound-evoked cochlear compound action potentials seen in this mouse model. Furthermore, these findings suggest that patients with CMT1A or other mild peripheral neuropathies are likely to suffer from HHL. Furthermore, these results suggest that studies of hearing in patients with CMT1A might help develop robust clinical tests for HHL, which are currently lacking.
Collapse
|
2
|
Zanin J, Rance G. Objective Determination of Site-of-Lesion in Auditory Neuropathy. Ear Hear 2024:00003446-990000000-00348. [PMID: 39294863 DOI: 10.1097/aud.0000000000001589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
OBJECTIVE Auditory neuropathy (AN), a complex hearing disorder, presents challenges in diagnosis and management due to limitations of current diagnostic assessment. This study aims to determine whether diffusion-weighted magnetic resonance imaging (MRI) can be used to identify the site and severity of lesions in individuals with AN. METHODS This case-control study included 10 individuals with AN of different etiologies, 7 individuals with neurofibromatosis type 1 (NF1), 5 individuals with cochlear hearing loss, and 37 control participants. Participants were recruited through the University of Melbourne's Neuroaudiology Clinic and the Murdoch Children's Research Institute specialist outpatient clinics. Diffusion-weighted MRI data were collected for all participants and the auditory pathways were evaluated using the fixel-based analysis metric of apparent fiber density. Data on each participant's auditory function were also collected including hearing thresholds, otoacoustic emissions, auditory evoked potentials, and speech-in-noise perceptual ability. RESULTS Analysis of diffusion-weighted MRI showed abnormal white matter fiber density in distinct locations within the auditory system depending on etiology. Compared with controls, individuals with AN due to perinatal oxygen deprivation showed no white matter abnormalities ( p > 0.05), those with a neurodegenerative conditions known/predicted to cause VIII cranial nerve axonopathy showed significantly lower white matter fiber density in the vestibulocochlear nerve ( p < 0.001), while participants with NF1 showed lower white matter fiber density in the auditory brainstem tracts ( p = 0.003). In addition, auditory behavioral measures of speech perception in noise and gap detection were correlated with fiber density results of the VIII nerve. CONCLUSIONS Diffusion-weighted MRI reveals different patterns of anatomical abnormality within the auditory system depending on etiology. This technique has the potential to guide management recommendations for individuals with peripheral and central auditory pathway abnormality.
Collapse
Affiliation(s)
- Julien Zanin
- Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, Melbourne, Australia
- The HEARing Cooperative Research Centre, Melbourne, Victoria, Australia
| | - Gary Rance
- Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, Melbourne, Australia
- The HEARing Cooperative Research Centre, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Tsuji RK, Hamerschmidt R, Lavinsky J, Felix F, Silva VAR. Brazilian Society of Otology task force - cochlear implant ‒ recommendations based on strength of evidence. Braz J Otorhinolaryngol 2024; 91:101512. [PMID: 39442262 PMCID: PMC11539123 DOI: 10.1016/j.bjorl.2024.101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE To make evidence-based recommendations for the indications and complications of Cochlear Implant (CI) surgery in adults and children. METHODS Task force members were educated on knowledge synthesis methods, including electronic database search, review and selection of relevant citations, and critical appraisal of selected studies. Articles written in English or Portuguese on cochlear implantation were eligible for inclusion. The American College of Physicians' guideline grading system and the American Thyroid Association's guideline criteria were used for critical appraisal of evidence and recommendations for therapeutic interventions. RESULTS The topics were divided into 2 parts: (1) Evaluation of candidate patients and indications for CI surgery; (2) CI surgery - techniques and complications. CONCLUSIONS CI is a safe device for auditory rehabilitation of patients with severe-to-profound hearing loss. In recent years, indications for unilateral hearing loss and vestibular schwannoma have been expanded, with encouraging results. However, for a successful surgery, commitment of family members and patients in the hearing rehabilitation process is essential.
Collapse
Affiliation(s)
- Robinson Koji Tsuji
- Universidade de São Paulo (USP), Faculdade de Medicina, Departamento de Otorrinolaringologia, São Paulo, SP, Brazil
| | - Rogério Hamerschmidt
- Universidade Federal do Paraná (UFPR), Departamento de Otorrinolaringologia, Curitiba, PR, Brazil
| | - Joel Lavinsky
- Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Ciências Morfológicas, Porto Alegre, RS, Brazil
| | - Felippe Felix
- Universidade Federal do Rio de Janeiro (UFRJ), Hospital Universitário Clementino Fraga Filho (HUCFF), Rio de Janeiro, RJ, Brazil
| | - Vagner Antonio Rodrigues Silva
- Universidade de Campinas (Unicamp), Faculdade de Ciências Médicas (FCM), Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil.
| |
Collapse
|
4
|
Kalaiyarasan R, Sinha SK. Masseter and cervical vestibular evoked myogenic potentials in individuals with auditory neuropathy. Int J Audiol 2024:1-9. [PMID: 39264092 DOI: 10.1080/14992027.2024.2399788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE This study aimed to explore the functional integrity of vestibulo-masseteric and sacculo-collic reflex pathways in individuals with Auditory Neuropathy (AN). The study also aimed at finding the correlation between mVEMP and cVEMP response parameters for AN and healthy individuals. DESIGN Standard group comparison research design. STUDY SAMPLE Individuals with AN (n = 20); age-gender matched healthy individuals (n = 20) were recruited. Each participant underwent routine audiological evaluation; mVEMP and cVEMP testing. mVEMP and cVEMP were recorded using 500 Hz tone burst stimulus for all the participants. RESULTS Most of the AN individuals had no mVEMP (ipsilateral & contralateral - 60%; bilateral - 50%) and cVEMP (60%) responses. There was no significant association (p > 0.05) between the duration of AN with mVEMP and cVEMP findings. However, a significant correlation (p < 0.05) was found for EMG rectified amplitude of mVEMP and cVEMP in AN. CONCLUSION The results of this study suggested an impaired function of the vestibulomassteric and sacculocollic reflex pathways in individuals with AN. Vestibular evaluation should be included as a part of the regular test battery for individuals with AN.
Collapse
Affiliation(s)
- R Kalaiyarasan
- Department of Audiology, All India Institute of Speech and Hearing, Mysore, India
| | - Sujeet Kumar Sinha
- Center of Excellence for person with Tinnitus and Vestibular Disorders, Department of Audiology, All India Institute of Speech and Hearing, Mysore, India
| |
Collapse
|
5
|
Cassinotti LR, Ji L, Yuk MC, Desai AS, Cass ND, Amir ZA, Corfas G. Hidden hearing loss in a Charcot-Marie-Tooth type 1A mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.14.571732. [PMID: 38168255 PMCID: PMC10760174 DOI: 10.1101/2023.12.14.571732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Hidden hearing loss (HHL), a recently described auditory neuropathy characterized by normal audiometric thresholds but reduced sound-evoked cochlear compound action potentials, has been proposed to contribute to hearing difficulty in noisy environments in people with normal hearing thresholds, a widespread complaint. While most studies on HHL pathogenesis have focused on inner hair cell (IHC) synaptopathy, we recently showed that transient auditory nerve (AN) demyelination also causes HHL in mice. To test the impact of myelinopathy on hearing in a clinically relevant model, we studied a mouse model of Charcot-Marie-Tooth type 1A (CMT1A), the most prevalent hereditary peripheral neuropathy in humans. CMT1A mice exhibited the functional hallmarks of HHL together with disorganization of AN heminodes near the IHCs with minor loss of AN fibers. These results support the hypothesis that mild disruptions of AN myelination can cause HHL, and that heminodal defects contribute to the alterations in the sound-evoked cochlear compound action potentials seen in this mouse model. Also, these findings suggest that patients with CMT1A or other mild peripheral neuropathies are likely to suffer from HHL. Furthermore, these results suggest that studies of hearing in CMT1A patients might help develop robust clinical tests for HHL, which are currently lacking.
Collapse
|
6
|
Farber NI, Chin OY, Mills DM, Diaz RC, Brodie HA, Sagiv D. Cochlear Implantation in Charcot-Marie-Tooth Patients: Speech Perception and Quality of Life. Ann Otol Rhinol Laryngol 2024; 133:469-475. [PMID: 38361273 DOI: 10.1177/00034894241232206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
OBJECTIVES There is a limited understanding of the impact of cochlear implantation (CI) in patients with Charcot-Marie-Tooth disease (CMT), given the scarcity of reported cases. We aim to evaluate the audiological outcomes and quality of life (QoL) after CI in CMT. METHODS Multi-institutional, university-affiliated, tertiary-referral centers, retrospective chart review.Our cohort includes 5 patients with CMT. Patients' charts were reviewed for demographic characteristics, operation notes, and pre- and post-implantation audiology evaluation. Patients completed the Cochlear Implant Quality of Life-10 (CIQOL-10) Global questionnaire. RESULTS Pre-implantation, the mean pure tone average was 84.1 ± 7.2 dB, and the mean word recognition score was 2.4% in the implanted ear. AzBio sentence test was performed in quiet, revealing a mean of 4 ± 1.4% in the implanted ear. Post-implantation, PTA results were all within the mild hearing loss range (mean 33.0 ± 5.9 dB). Post-CI, AZ-Bio test results were 5%, 65%, and 74% (for 3 patients), and HINT scores were 55% and 58% (for 2 patients). The mean score of the CIQOL-10 questionnaire was 42.7 ± 10.47 (range 1-100). Patients were most satisfied with their ability to listen to the television or radio, have conversations in a quiet environment, and feel comfortable being themselves. CONCLUSION To the best of our knowledge, this is the most extensive series of CI in CMT-associated sensorineural hearing loss and auditory neuropathy. Our cohort suggests that CI is a safe and reliable method for hearing rehabilitation that can achieve good speech performance and improve QoL in CMT patients.
Collapse
Affiliation(s)
- Nicole I Farber
- Department of Otolaryngology-Head and Neck Surgery, University of California-Davis, Sacramento, CA, USA
| | - Oliver Y Chin
- Department of Otolaryngology-Head and Neck Surgery, University of California-Davis, Sacramento, CA, USA
| | - Dawna M Mills
- Department of Otolaryngology-Head and Neck Surgery, University of California-Davis, Sacramento, CA, USA
| | - Rodney C Diaz
- Department of Otolaryngology-Head and Neck Surgery, University of California-Davis, Sacramento, CA, USA
| | - Hilary A Brodie
- Department of Otolaryngology-Head and Neck Surgery, University of California-Davis, Sacramento, CA, USA
| | - Doron Sagiv
- Department of Otolaryngology-Head and Neck Surgery, University of California-Davis, Sacramento, CA, USA
| |
Collapse
|
7
|
Rance G, Tomlin D, Yiu EM, Zanin J. Remediation of Perceptual Deficits in Progressive Auditory Neuropathy: A Case Study. J Clin Med 2024; 13:2127. [PMID: 38610891 PMCID: PMC11012630 DOI: 10.3390/jcm13072127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Auditory neuropathy (AN) is a hearing disorder that affects neural activity in the VIIIth cranial nerve and central auditory pathways. Progressive forms have been reported in a number of neurodegenerative diseases and may occur as a result of both the deafferentiation and desynchronisation of neuronal processes. The purpose of this study was to describe changes in auditory function over time in a patient with axonal neuropathy and to explore the effect of auditory intervention. METHODS We tracked auditory function in a child with progressive AN associated with Charcot-Marie-Tooth (Type 2C) disease, evaluating hearing levels, auditory-evoked potentials, and perceptual abilities over a 3-year period. Furthermore, we explored the effect of auditory intervention on everyday listening and neuroplastic development. RESULTS While sound detection thresholds remained constant throughout, both electrophysiologic and behavioural evidence suggested auditory neural degeneration over the course of the study. Auditory brainstem response amplitudes were reduced, and perception of auditory timing cues worsened over time. Functional hearing ability (speech perception in noise) also deteriorated through the first 1.5 years of study until the child was fitted with a "remote-microphone" listening device, which subsequently improved binaural processing and restored speech perception ability to normal levels. CONCLUSIONS Despite the deterioration of auditory neural function consistent with peripheral axonopathy, sustained experience with the remote-microphone listening system appeared to produce neuroplastic changes, which improved the patient's everyday listening ability-even when not wearing the device.
Collapse
Affiliation(s)
- Gary Rance
- Department of Audiology and Speech Pathology, The University of Melbourne, Carlton, VIC 3053, Australia; (D.T.); (J.Z.)
| | - Dani Tomlin
- Department of Audiology and Speech Pathology, The University of Melbourne, Carlton, VIC 3053, Australia; (D.T.); (J.Z.)
| | - Eppie M. Yiu
- Department of Neurology, Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Neurosciences Research, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Julien Zanin
- Department of Audiology and Speech Pathology, The University of Melbourne, Carlton, VIC 3053, Australia; (D.T.); (J.Z.)
| |
Collapse
|
8
|
Lee JH, Park S, Perez-Flores MC, Chen Y, Kang M, Choi J, Levine L, Gratton MA, Zhao J, Notterpek L, Yamoah EN. Demyelination and Na + Channel Redistribution Underlie Auditory and Vestibular Dysfunction in PMP22-Null Mice. eNeuro 2024; 11:ENEURO.0462-23.2023. [PMID: 38378628 PMCID: PMC11059428 DOI: 10.1523/eneuro.0462-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 02/22/2024] Open
Abstract
Altered expression of peripheral myelin protein 22 (PMP22) results in demyelinating peripheral neuropathy. PMP22 exhibits a highly restricted tissue distribution with marked expression in the myelinating Schwann cells of peripheral nerves. Auditory and vestibular Schwann cells and the afferent neurons also express PMP22, suggesting a unique role in hearing and balancing. Indeed, neuropathic patients diagnosed with PMP22-linked hereditary neuropathies often present with auditory and balance deficits, an understudied clinical complication. To investigate the mechanism by which abnormal expression of PMP22 may cause auditory and vestibular deficits, we studied gene-targeted PMP22-null mice. PMP22-null mice exhibit an unsteady gait, have difficulty maintaining balance, and live for only ∼3-5 weeks relative to unaffected littermates. Histological analysis of the inner ear revealed reduced auditory and vestibular afferent nerve myelination and profound Na+ channel redistribution without PMP22. Yet, Na+ current density was unaltered, in stark contrast to increased K+ current density. Atypical postsynaptic densities and a range of neuronal abnormalities in the organ of Corti were also identified. Analyses of auditory brainstem responses (ABRs) and vestibular sensory-evoked potential (VsEP) revealed that PMP22-null mice had auditory and vestibular hypofunction. These results demonstrate that PMP22 is required for hearing and balance, and the protein is indispensable for the formation and maintenance of myelin in the peripheral arm of the eighth nerve. Our findings indicate that myelin abnormalities and altered signal propagation in the peripheral arm of the auditory nerve are likely causes of auditory deficits in patients with PMP22-linked neuropathies.
Collapse
Affiliation(s)
- Jeong Han Lee
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
| | - Seojin Park
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
- Prestige BioPharma, Busan 67264, South Korea
| | - Maria C Perez-Flores
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
| | - Yingying Chen
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
| | - Mincheol Kang
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
- Prestige BioPharma, Busan 67264, South Korea
| | - Jinsil Choi
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
| | - Lauren Levine
- Program in Audiology and Communication Sciences, Washington University, St. Louis 63110, Missouri
| | | | - Jie Zhao
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
| | - Lucia Notterpek
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
| |
Collapse
|
9
|
Takegami N, Hamada M, Yamaguchi-Takegami N, Sakuishi K, Toda T. An Elderly Woman with Complaints of Pain and Hearing Loss, Diagnosed with CMT1A with PMP22 Duplication. Intern Med 2024; 63:315-318. [PMID: 37225480 PMCID: PMC10864091 DOI: 10.2169/internalmedicine.1883-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/09/2023] [Indexed: 05/26/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a heterogeneous hereditary motor and sensory neuropathy of the peripheral nervous system, with CMT1A in particular being the most common form. We encountered a 76-year-old woman with CMT1A who had a history of pain attacks and hearing loss from a young age, with motor symptoms manifesting late in life. Her pain and hearing loss may have been related to CMT. Our case also raises the possibility that neuropathic pain and hearing loss may precede the classic motor symptoms of CMT1A.
Collapse
Affiliation(s)
- Naoki Takegami
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Masashi Hamada
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | | | - Kaori Sakuishi
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Neurology, Teikyo University Chiba Medical Center, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
10
|
Hayes LH, Sadjadi R. Hereditary Neuropathies. Continuum (Minneap Minn) 2023; 29:1514-1537. [PMID: 37851041 DOI: 10.1212/con.0000000000001339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
OBJECTIVE This article provides an overview of hereditary neuropathies, describes the different hereditary neuropathy subtypes and the clinical approach to differentiating between them, and summarizes their clinical management. LATEST DEVELOPMENTS Increasingly available clinical genetic testing has broadened the clinical spectrum of hereditary neuropathy subtypes and demonstrated a significant overlap of phenotypes associated with a single gene. New subtypes such as SORD -related neuropathy and CANVAS (cerebellar ataxia, neuropathy, vestibular areflexia syndrome) have emerged. The optimization of clinical management has improved gait and motor function in the adult and pediatric populations. Novel therapeutic approaches are entering clinical trials. ESSENTIAL POINTS Hereditary neuropathies constitute a spectrum of peripheral nerve disorders with variable degrees of motor and sensory symptoms, patterns of involvement, and clinical courses.
Collapse
|
11
|
Roberts LJ, Szmulewicz DJ. A patient with neuropathy and ataxia: what do I have to consider? Curr Opin Neurol 2023; 36:382-387. [PMID: 37639448 DOI: 10.1097/wco.0000000000001200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW An increasing number of peripheral neuro(no)pathies are identified as involving other components of the neurological system, particularly those that further impair balance. Here we aim to outline an evidence-based approach to the diagnosis of patients who present with a somatosensory disorder which also involves at least one other area of neurological impairment such as the vestibular, auditory, or cerebellar systems. RECENT FINDINGS Detailed objective investigation of patients who present with sensory impairment, particularly where the degree of imbalance is greater than would be expected, aids the accurate diagnosis of genetic, autoimmune, metabolic, and toxic neurological disease. SUMMARY Diagnosis and management of complex somatosensory disorders benefit from investigation which extends beyond the presenting sensory impairment.
Collapse
Affiliation(s)
- Leslie J Roberts
- Neurophysiology Department, Department of Neurology & Neurological Research, St Vincent's Hospital, Department of Medicine, the University of Melbourne
| | - David J Szmulewicz
- Balance Disorders and Ataxia Service, Eye and Ear Hospital
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Mohamed T, Melfi V, Colciago A, Magnaghi V. Hearing loss and vestibular schwannoma: new insights into Schwann cells implication. Cell Death Dis 2023; 14:629. [PMID: 37741837 PMCID: PMC10517973 DOI: 10.1038/s41419-023-06141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
Hearing loss (HL) is the most common and heterogeneous disorder of the sensory system, with a large morbidity in the worldwide population. Among cells of the acoustic nerve (VIII cranial nerve), in the cochlea are present the hair cells, the spiral ganglion neurons, the glia-like supporting cells, and the Schwann cells (SCs), which alterations have been considered cause of HL. Notably, a benign SC-derived tumor of the acoustic nerve, named vestibular schwannoma (VS), has been indicated as cause of HL. Importantly, SCs are the main glial cells ensheathing axons and forming myelin in the peripheral nerves. Following an injury, the SCs reprogram, expressing some stemness features. Despite the mechanisms and factors controlling their biological processes (i.e., proliferation, migration, differentiation, and myelination) have been largely unveiled, their role in VS and HL was poorly investigated. In this review, we enlighten some of the mechanisms at the base of SCs transformation, VS development, and progression, likely leading to HL, and we pose great attention on the environmental factors that, in principle, could contribute to HL onset or progression. Combining the biomolecular bench-side approach to the clinical bedside practice may be helpful for the diagnosis, prediction, and therapeutic approach in otology.
Collapse
Affiliation(s)
- Tasnim Mohamed
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Valentina Melfi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
13
|
Ma X, Liu X, Duan X, Fan D. Screening for PRX mutations in a large Chinese Charcot-Marie-Tooth disease cohort and literature review. Front Neurol 2023; 14:1148044. [PMID: 37470010 PMCID: PMC10352492 DOI: 10.3389/fneur.2023.1148044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/06/2023] [Indexed: 07/21/2023] Open
Abstract
Background Periaxins (encoded by PRX) play an important role in the stabilization of peripheral nerve myelin. Mutations in PRX can lead to Charcot-Marie-Tooth disease type 4F (CMT4F). Methods In this study, we screened for PRX mutations using next-generation sequencing and whole-exome sequencing in a large Chinese CMT cohort consisting of 465 unrelated index patients and 650 healthy controls. Sanger sequencing was used for the validation of all identified variants. We also reviewed all previously reported PRX-related CMT cases and summarized the clinical manifestations and genetic features of PRX-related CMTs. Results The hit rate for biallelic PRX variants in our cohort of Chinese CMT patients was 0.43% (2/465). One patient carried a previously unreported splice-site mutation (c.25_27 + 9del) compound heterozygous with a known nonsense variant. Compiling data on CMT4F cases and PRX variants from the medical literature confirmed that early-onset (95.2%), distal amyotrophy or weakness (94.0%), feet deformity (75.0%), sensory impairment or sensory ataxia (65.5%), delayed motor milestones (60.7%), and spinal deformity (59.5%) are typical features for CMT4F. Less frequent features were auditory impairments, respiratory symptoms, late onset, dysarthria or hoarseness, ophthalmic problems, and central nervous system involvement. The two cases with biallelic missense mutations have later onset age than those with nonsense or frameshift mutations. We did not note clear correlations between the type and site of mutations and clinical severity or distinct constellations of symptoms. Conclusion Consistent with observations in other countries and ethnic groups, PRX-related CMT is rare in China. The clinical spectrum is wider than previously anticipated.
Collapse
Affiliation(s)
- Xinran Ma
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Xiaoxuan Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Xiaohui Duan
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| |
Collapse
|
14
|
Saidia AR, Ruel J, Bahloul A, Chaix B, Venail F, Wang J. Current Advances in Gene Therapies of Genetic Auditory Neuropathy Spectrum Disorder. J Clin Med 2023; 12:jcm12030738. [PMID: 36769387 PMCID: PMC9918155 DOI: 10.3390/jcm12030738] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Auditory neuropathy spectrum disorder (ANSD) refers to a range of hearing impairments characterized by an impaired transmission of sound from the cochlea to the brain. This defect can be due to a lesion or defect in the inner hair cell (IHC), IHC ribbon synapse (e.g., pre-synaptic release of glutamate), postsynaptic terminals of the spiral ganglion neurons, or demyelination and axonal loss within the auditory nerve. To date, the only clinical treatment options for ANSD are hearing aids and cochlear implantation. However, despite the advances in hearing-aid and cochlear-implant technologies, the quality of perceived sound still cannot match that of the normal ear. Recent advanced genetic diagnostics and clinical audiology made it possible to identify the precise site of a lesion and to characterize the specific disease mechanisms of ANSD, thus bringing renewed hope to the treatment or prevention of auditory neurodegeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes to repair damaged cells for the future restoration of hearing in deaf people are showing promise. In this review, we provide an update on recent discoveries in the molecular pathophysiology of genetic lesions, auditory synaptopathy and neuropathy, and gene-therapy research towards hearing restoration in rodent models and in clinical trials.
Collapse
Affiliation(s)
- Anissa Rym Saidia
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
| | - Jérôme Ruel
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
- Cognitive Neuroscience Laboratory, Aix-Marseille University, CNRS, UMR 7291, 13331 Marseille, France
| | - Amel Bahloul
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
| | - Benjamin Chaix
- Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, 34295 Montpellier, France
| | - Frédéric Venail
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
- Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, 34295 Montpellier, France
| | - Jing Wang
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
- Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, 34295 Montpellier, France
- Correspondence: ; Tel.: +33-499-63-60-48
| |
Collapse
|
15
|
Lokwani P, Prabhu P, Nisha KV. Profiles and predictors of onset based differences in vocal characteristics of adults with auditory neuropathy spectrum disorder (ANSD). J Otol 2022; 17:218-225. [PMID: 36249919 PMCID: PMC9547112 DOI: 10.1016/j.joto.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 10/25/2022] Open
|
16
|
Saveri P, Magri S, Maderna E, Balistreri F, Lombardi R, Ciano C, Moda F, Garavaglia B, Reale C, Lauria Pinter G, Taroni F, Pareyson D, Pisciotta C. DNAJB2-related CMT2: Pathomechanism insights and phenotypic spectrum widening. Eur J Neurol 2022; 29:2056-2065. [PMID: 35286755 PMCID: PMC9314055 DOI: 10.1111/ene.15326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/14/2022] [Accepted: 03/09/2022] [Indexed: 11/29/2022]
Abstract
Background and purpose Mutations in DNAJB2 are associated with autosomal recessive hereditary motor neuropathies/ Charcot‐Marie‐Tooth disease type 2 (CMT2). We describe an Italian family with CMT2 due to a homozygous DNAJB2 mutation and provide insight into the pathomechanisms. Methods Patients with DNAJB2 mutations were characterized clinically, electrophysiologically and by means of skin biopsy. mRNA and protein levels were studied in lymphoblastoid cells (LCLs) from patients and controls. Results Three affected siblings were found to carry a homozygous DNAJB2 null mutation segregating with the disease. The disease manifested in the second to third decade of life. Clinical examination showed severe weakness of the thigh muscles and complete loss of movement in the foot and leg muscles. Sensation was reduced in the lower limbs. All patients had severe hearing loss and the proband also had Parkinson’s disease (PD). Nerve conduction studies showed an axonal motor and sensory length‐dependent polyneuropathy. DNAJB2 expression studies revealed reduced mRNA levels and the absence of the protein in the homozygous subject in both LCLs and skin biopsy. Interestingly, we detected phospho‐alpha‐synuclein deposits in the proband, as already seen in PD patients, and demonstrated TDP‐43 accumulation in patients’ skin. Conclusions Our results broaden the clinical spectrum of DNAJB2‐related neuropathies and provide evidence that DNAJB2 mutations should be taken into account as another causative gene of CMT2 with hearing loss and parkinsonism. The mutation likely acts through a loss‐of‐function mechanism, leading to toxic protein aggregation such as TDP‐43. The associated parkinsonism resembles the classic PD form with the addition of abnormal accumulation of phospho‐alpha‐synuclein.
Collapse
Affiliation(s)
- Paola Saveri
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Magri
- Department of Diagnostics and Applied Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emanuela Maderna
- Department of Diagnostics and Applied Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Balistreri
- Department of Diagnostics and Applied Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Raffaella Lombardi
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia Ciano
- Department of Diagnostics and Applied Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fabio Moda
- Department of Diagnostics and Applied Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Barbara Garavaglia
- Department of Diagnostics and Applied Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Reale
- Department of Diagnostics and Applied Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Lauria Pinter
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Franco Taroni
- Department of Diagnostics and Applied Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Davide Pareyson
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pisciotta
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
17
|
Poovaiah P, Rajasekaran AK, Yuvraj P, Belur YK, Atchayaram N. Audiovestibular Dysfunction in Siblings with Charcot-Marie-Tooth Disease 4F: A Case Series. J Am Acad Audiol 2022; 32:616-624. [PMID: 35176805 DOI: 10.1055/s-0042-1744105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Charcot-Marie-Tooth disease type 4F (CMT4F) is an autosomal recessive disorder with symptoms presenting in early adulthood. This clinical case series demonstrates atypical findings in cervical and ocular vestibular evoked myogenic potentials (VEMP) in siblings with CMT4F. PURPOSE The aim of this study was to highlight the audiovestibular test findings in CMT4F. RESEARCH DESIGN Case series study sample: 4 siblings, 3 of whom diagnosed with CMT4F. DATA COLLECTION AND ANALYSIS Audiological test battery and electrophysiological tests comprising auditory brainstem response (ABR) and VEMP (both cervical and ocular) were performed in our patient population. RESULTS Older siblings, in whom the hearing loss was present, manifested prolonged peak V latencies in ABR. Three out of four siblings with CMT4F showed prolongation of latencies on cervical and ocular VEMP. CONCLUSIONS In many neurodegenerative conditions, prolongation of ABR peak latencies has often been reported in the literature. There have also been a few reports of prolonged VEMP peak latencies. This article reports prolongation of only VEMP peak latencies (in both cervical and ocular recordings). The youngest sibling had prolongation of VEMP latencies, with ABR peak latencies being normal. The assumption we put forth that CMT4F may affect the vestibular pathway first requires to be tested on a larger sample and by longitudinally studying the individuals with disease condition.
Collapse
Affiliation(s)
- Prashasti Poovaiah
- Department of Speech Pathology & Audiology, National Institute of Mental Health & Neurosciences, Bangalore, Karnataka, India
| | - Aravind Kumar Rajasekaran
- Department of Speech Pathology & Audiology, National Institute of Mental Health & Neurosciences, Bangalore, Karnataka, India
| | - Pradeep Yuvraj
- Department of Speech Pathology & Audiology, National Institute of Mental Health & Neurosciences, Bangalore, Karnataka, India
| | - Yamini K Belur
- Department of Speech Pathology & Audiology, National Institute of Mental Health & Neurosciences, Bangalore, Karnataka, India
| | - Nalini Atchayaram
- Department of Neurology, National Institute of Mental Health & Neurosciences, Bangalore, Karnataka, India
| |
Collapse
|
18
|
Rance G, Zanin J, Maier A, Chisari D, Haebich KM, North KN, Dabscheck G, Seal ML, Delatycki MB, Payne JM. Auditory Dysfunction Among Individuals With Neurofibromatosis Type 1. JAMA Netw Open 2021; 4:e2136842. [PMID: 34870681 PMCID: PMC8649832 DOI: 10.1001/jamanetworkopen.2021.36842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPORTANCE Neurofibromatosis type 1 (NF1) affects hearing through disruption of central auditory processing. The mechanisms, functional severity, and management implications are unclear. OBJECTIVE To investigate auditory neural dysfunction and its perceptual consequences in individuals with NF1. DESIGN, SETTING, AND PARTICIPANTS This case-control study included children and adults with NF1 and control participants matched on age, sex, and hearing level. Patients were recruited through specialist neurofibromatosis and neurogenetic outpatient clinics between April and September 2019. An evaluation of auditory neural activity, monaural/binaural processing, and functional hearing was conducted. Diffusion-weighted magnetic resonance imaging (MRI) data were collected from a subset of participants (10 children with NF1 and 10 matched control participants) and evaluated using a fixel-based analysis of apparent fiber density. MAIN OUTCOMES AND MEASURES Type and severity of auditory dysfunction evaluated via laboratory testing and questionnaire data. RESULTS A total of 44 participants (18 [41%] female individuals) with NF1 with a mean (SD) age of 16.9 (10.7) years and 44 control participants (18 [41%] female individuals) with a mean (SD) age of 17.2 (10.2) years were included in the study. Overall, 11 participants (25%) with NF1 presented with evidence of auditory neural dysfunction, including absent, delayed, or low amplitude electrophysiological responses from the auditory nerve and/or brainstem, compared with 1 participant (2%) in the control group (odds ratio [OR], 13.03; 95% CI, 1.59-106.95). Furthermore, 14 participants (32%) with NF1 showed clinically abnormal speech perception in background noise compared with 1 participant (2%) in the control group (OR, 20.07; 95% CI, 2.50-160.89). Analysis of diffusion-weighted MRI data of participants with NF1 showed significantly lower apparent fiber density within the ascending auditory brainstem pathways. The regions identified corresponded to the neural dysfunction measured using electrophysiological assessment. CONCLUSIONS AND RELEVANCE The findings of this case-control study could represent new neurobiological and clinical features of NF1. Auditory dysfunction severe enough to impede developmental progress in children and restrict communication in older participants is a common neurobiological feature of the disorder.
Collapse
Affiliation(s)
- Gary Rance
- Department of Audiology and Speech Pathology, The University of Melbourne, Carlton, Victoria, Australia
| | - Julien Zanin
- Department of Audiology and Speech Pathology, The University of Melbourne, Carlton, Victoria, Australia
| | - Alice Maier
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Donella Chisari
- Department of Audiology and Speech Pathology, The University of Melbourne, Carlton, Victoria, Australia
| | - Kristina M. Haebich
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Kathryn N. North
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Gabriel Dabscheck
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- The Royal Children’s Hospital, Parkville, Victoria, Melbourne
| | - Marc L. Seal
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Martin B. Delatycki
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
- Victorian Clinical Genetics Services, The Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Jonathan M. Payne
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
- The Royal Children’s Hospital, Parkville, Victoria, Melbourne
| |
Collapse
|
19
|
The audiovestibular profile of Brown-Vialetto-Van Laere syndrome. The Journal of Laryngology & Otology 2021; 135:1000-1009. [PMID: 34496984 DOI: 10.1017/s0022215121002395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Brown-Vialetto-Van Laere syndrome, a rare disorder associated with motor, sensory and cranial nerve neuropathy, is caused by mutations in riboflavin transporter genes SLC52A2 and SLC52A3. Hearing loss is a characteristic feature of Brown-Vialetto-Van Laere syndrome and has been shown in recent studies to be characterised by auditory neuropathy spectrum disorder. METHOD This study reports the detailed audiovestibular profiles of four cases of Brown-Vialetto-Van Laere syndrome with SLC52A2 and SLC52A3 mutations. All of these patients had auditory neuropathy spectrum disorder. RESULTS There was significant heterogeneity in vestibular function and in the benefit gained from cochlear implantation. The audiological response to riboflavin therapy was also variable, in contrast to generalised improvement in motor function. CONCLUSION We suggest that comprehensive testing of vestibular function should be conducted in Brown-Vialetto-Van Laere syndrome, in addition to serial behavioural audiometry as part of the systematic examination of the effects of riboflavin.
Collapse
|
20
|
Zanin J, Dhollander T, Rance G, Yu L, Lan L, Wang H, Lou X, Connelly A, Nayagam B, Wang Q. Fiber-Specific Changes in White Matter Microstructure in Individuals With X-Linked Auditory Neuropathy. Ear Hear 2021; 41:1703-1714. [PMID: 33136644 DOI: 10.1097/aud.0000000000000890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Auditory neuropathy (AN) is the term used to describe a group of hearing disorders, in which the hearing impairment occurs as a result of abnormal auditory nerve function. While our understanding of this condition has advanced significantly over recent years, the ability to determine the site of lesion and the extent of dysfunction in affected individuals remains a challenge. To this end, we investigated potential axonal degeneration in the white matter tracts of the brainstem in individuals with X-linked AN. We hypothesized that individuals with X-linked AN would show focal degeneration within the VIII nerve and/or auditory brainstem tracts, and the degree of degeneration would correlate with the extent of auditory perceptual impairment. DESIGN This was achieved using a higher-order diffusion magnetic resonance imaging (dMRI)-based quantitative measure called apparent fiber density as obtained from a technique called single-shell 3-tissue constrained spherical deconvolution and analyzed with the fixel-based analysis framework. Eleven subjects with genetically confirmed X-linked AN and 11 controls with normal hearing were assessed using behavioral and objective auditory measures. dMRI data were also collected for each participant. RESULTS Fixel-based analysis of the brainstem region showed that subjects with X-linked AN had significantly lower apparent fiber density in the VIII nerve compared with controls, consistent with axonal degeneration in this region. Subsequent analysis of the auditory brainstem tracts specifically showed that degeneration was also significant in these structures overall. The apparent fiber density findings were supported by objective measures of auditory function, such as auditory brainstem responses, electrocochleography, and otoacoustic emissions, which showed VIII nerve activity was severely disrupted in X-linked AN subjects while cochlear sensory hair cell function was relatively unaffected. Moreover, apparent fiber density results were significantly correlated with temporal processing ability (gap detection task) in affected subjects, suggesting that the degree of VIII nerve degeneration may impact the ability to resolve temporal aspects of an acoustic signal. Auditory assessments of sound detection, speech perception, and the processing of binaural cues were also significantly poorer in the X-linked AN group compared with the controls with normal hearing. CONCLUSIONS The results of this study suggest that the dMRI-based measure of apparent fiber density may provide a useful adjunct to existing auditory assessments in the characterization of the site of lesion and extent of dysfunction in individuals with AN. Additionally, the ability to determine the degree of degeneration has the potential to guide rehabilitation strategies in the future.
Collapse
Affiliation(s)
- Julien Zanin
- The HEARing Cooperative Research Centre (HEARing CRC), Melbourne, Victoria, Australia
- Department of Audiology and Speech Pathology, University of Melbourne, Parkville, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Gary Rance
- The HEARing Cooperative Research Centre (HEARing CRC), Melbourne, Victoria, Australia
- Department of Audiology and Speech Pathology, University of Melbourne, Parkville, Australia
| | - Lan Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese People's Liberation Army General Hospital 301, Beijing, China
- China National Clinical Research Centre for Otolaryngologic Diseases, Chinese People's Liberation Army General Hospital 301, Beijing, China
| | - Lan Lan
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese People's Liberation Army General Hospital 301, Beijing, China
- China National Clinical Research Centre for Otolaryngologic Diseases, Chinese People's Liberation Army General Hospital 301, Beijing, China
| | - Hongyang Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese People's Liberation Army General Hospital 301, Beijing, China
- China National Clinical Research Centre for Otolaryngologic Diseases, Chinese People's Liberation Army General Hospital 301, Beijing, China
| | - Xin Lou
- Department of Radiology, Chinese People's Liberation Army General Hospital 301, Beijing, China
| | - Alan Connelly
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Bryony Nayagam
- Department of Audiology and Speech Pathology, University of Melbourne, Parkville, Australia
- These authors contributed equally to this work
| | - Qiuju Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese People's Liberation Army General Hospital 301, Beijing, China
- China National Clinical Research Centre for Otolaryngologic Diseases, Chinese People's Liberation Army General Hospital 301, Beijing, China
- Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China
- These authors contributed equally to this work
| |
Collapse
|
21
|
Kohrman D, Borges BC, Cassinotti L, Ji L, Corfas G. Axon-glia interactions in the ascending auditory system. Dev Neurobiol 2021; 81:546-567. [PMID: 33561889 PMCID: PMC9004231 DOI: 10.1002/dneu.22813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/25/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022]
Abstract
The auditory system detects and encodes sound information with high precision to provide a high-fidelity representation of the environment and communication. In mammals, detection occurs in the peripheral sensory organ (the cochlea) containing specialized mechanosensory cells (hair cells) that initiate the conversion of sound-generated vibrations into action potentials in the auditory nerve. Neural activity in the auditory nerve encodes information regarding the intensity and frequency of sound stimuli, which is transmitted to the auditory cortex through the ascending neural pathways. Glial cells are critical for precise control of neural conduction and synaptic transmission throughout the pathway, allowing for the precise detection of the timing, frequency, and intensity of sound signals, including the sub-millisecond temporal fidelity is necessary for tasks such as sound localization, and in humans, for processing complex sounds including speech and music. In this review, we focus on glia and glia-like cells that interact with hair cells and neurons in the ascending auditory pathway and contribute to the development, maintenance, and modulation of neural circuits and transmission in the auditory system. We also discuss the molecular mechanisms of these interactions, their impact on hearing and on auditory dysfunction associated with pathologies of each cell type.
Collapse
Affiliation(s)
- David Kohrman
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Beatriz C. Borges
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Luis Cassinotti
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Lingchao Ji
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Sheets L, Holmgren M, Kindt KS. How Zebrafish Can Drive the Future of Genetic-based Hearing and Balance Research. J Assoc Res Otolaryngol 2021; 22:215-235. [PMID: 33909162 PMCID: PMC8110678 DOI: 10.1007/s10162-021-00798-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last several decades, studies in humans and animal models have successfully identified numerous molecules required for hearing and balance. Many of these studies relied on unbiased forward genetic screens based on behavior or morphology to identify these molecules. Alongside forward genetic screens, reverse genetics has further driven the exploration of candidate molecules. This review provides an overview of the genetic studies that have established zebrafish as a genetic model for hearing and balance research. Further, we discuss how the unique advantages of zebrafish can be leveraged in future genetic studies. We explore strategies to design novel forward genetic screens based on morphological alterations using transgenic lines or behavioral changes following mechanical or acoustic damage. We also outline how recent advances in CRISPR-Cas9 can be applied to perform reverse genetic screens to validate large sequencing datasets. Overall, this review describes how future genetic studies in zebrafish can continue to advance our understanding of inherited and acquired hearing and balance disorders.
Collapse
Affiliation(s)
- Lavinia Sheets
- Department of Otolaryngology-Head & Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Melanie Holmgren
- Department of Otolaryngology-Head & Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Katie S Kindt
- Section On Sensory Cell Development and Function, National Institutes On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
23
|
Pontillo G, Tozza S, Perillo T, Cocozza S, Dubbioso R, Severi D, Iodice R, Tedeschi E, Elefante A, Brunetti A, Manganelli F, Quarantelli M. Diffuse brain connectivity changes in Charcot-Marie-Tooth type 1a patients: a resting-state functional magnetic resonance imaging study. Eur J Neurol 2020; 28:305-313. [PMID: 32955777 DOI: 10.1111/ene.14540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Changes of brain structure and function have been described in peripheral neuropathies. The aim of our study was to systematically investigate possible modifications of major large-scale brain networks using resting-state functional magnetic resonance imaging (RS-fMRI) in Charcot-Marie-Tooth disease type 1A (CMT1A) patients. METHODS In this cross-sectional study, 3-T MRI brain scans were acquired of right-handed genetically confirmed CMT1A patients and age- and sex-comparable healthy controls. Patients also underwent clinical and electrophysiological examinations assessing neurological impairment. RS-fMRI data were analysed using a seed-based approach, with 32 different seeds sampling the main hubs of default mode, sensorimotor, visual, salience (SN), dorsal attention, frontoparietal, language and cerebellar networks. Between-group differences in terms of functional connectivity (FC) with the explored seeds were tested voxelwise, correcting for local grey matter density to account for possible structural abnormalities, whilst the relationship between FC modifications and neurological impairment was investigated using robust correlation analyses. RESULTS Eighteen CMT1A patients (34.0 ± 11.4 years; M/F 11/7) were enrolled, along with 20 healthy controls (30.1 ± 10.2 years; M/F 11/9). In the CMT group compared to controls, clusters of increased FC with the visual cortex (P = 0.001), SN (P < 6 × 10-4 ), dorsal attention network (P < 8 × 10-5 ) and language network (P < 7 × 10-4 ) were found, along with a single cluster of reduced FC with the visual cortex in the left lentiform nucleus (P = 10-6 ). A significant correlation emerged between neurophysiological impairment and increased FC with right temporal language areas (r = 0.655, P = 0.006), along with an association between walking ability and increased FC with the left supramarginal gyrus (SN) (r = 0.620, P = 0.006). CONCLUSIONS Our data show evidence of diffuse functional reorganization involving multiple large-scale networks in the CMT1A brain, independent of structural modifications and partially correlating with peripheral nerve damage and functional impairment.
Collapse
Affiliation(s)
- G Pontillo
- Department of Advanced Biomedical Sciences, University 'Federico II', Naples, Italy
| | - S Tozza
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University 'Federico II', Naples, Italy
| | - T Perillo
- Department of Advanced Biomedical Sciences, University 'Federico II', Naples, Italy
| | - S Cocozza
- Department of Advanced Biomedical Sciences, University 'Federico II', Naples, Italy
| | - R Dubbioso
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University 'Federico II', Naples, Italy
| | - D Severi
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University 'Federico II', Naples, Italy
| | - R Iodice
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University 'Federico II', Naples, Italy
| | - E Tedeschi
- Department of Advanced Biomedical Sciences, University 'Federico II', Naples, Italy
| | - A Elefante
- Department of Advanced Biomedical Sciences, University 'Federico II', Naples, Italy
| | - A Brunetti
- Department of Advanced Biomedical Sciences, University 'Federico II', Naples, Italy
| | - F Manganelli
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University 'Federico II', Naples, Italy
| | - M Quarantelli
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| |
Collapse
|
24
|
Lopez-Juarez A, Gonzalez-Vega A, Kleinert-Altamirano A, Piazza V, Garduno-Robles A, Alata M, Villaseñor-Mora C, Eguibar JR, Cortes C, Padierna LC, Hernandez VH. Auditory impairment in H-ABC tubulinopathy. J Comp Neurol 2020; 529:957-968. [PMID: 32681585 DOI: 10.1002/cne.24990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/12/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) is a neurodegenerative disease due to mutations in TUBB4A. Patients suffer from extrapyramidal movements, spasticity, ataxia, and cognitive deficits. Magnetic resonance imaging features are hypomyelination and atrophy of the striatum and cerebellum. A correlation between the mutations and their cellular, tissue and organic effects is largely missing. The effects of these mutations on sensory functions have not been described so far. We have previously reported a rat carrying a TUBB4A (A302T) mutation and sharing most of the clinical and radiological signs with H-ABC patients. Here, for the first time, we did a comparative study of the hearing function in an H-ABC patient and in this mutant model. By analyzing hearing function, we found that there are no significant differences in the auditory brainstem response (ABR) thresholds between mutant rats and WT controls. Nevertheless, ABRs show longer latencies in central waves (II-IV) that in some cases disappear when compared to WT. The patient also shows abnormal AEPs presenting only Waves I and II. Distortion product of otoacoustic emissions and immunohistochemistry in the rat show that the peripheral hearing function and morphology of the organ of Corti are normal. We conclude that the tubulin mutation severely impairs the central hearing pathway most probably by progressive central white matter degeneration. Hearing function might be affected in a significant fraction of patients with H-ABC; therefore, screening for auditory function should be done on patients with tubulinopathies to evaluate hearing support therapies.
Collapse
Affiliation(s)
| | - Arturo Gonzalez-Vega
- Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| | | | | | - Angeles Garduno-Robles
- Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico.,Center of Research in Optics, Leon, Mexico
| | | | | | - Jose R Eguibar
- Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.,Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Carmen Cortes
- Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Luis Carlos Padierna
- Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| | - Victor H Hernandez
- Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| |
Collapse
|
25
|
Dorn GW. Mitofusin 2 Dysfunction and Disease in Mice and Men. Front Physiol 2020; 11:782. [PMID: 32733278 PMCID: PMC7363930 DOI: 10.3389/fphys.2020.00782] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/15/2020] [Indexed: 01/30/2023] Open
Abstract
A causal relationship between Mitofusin (MFN) 2 gene mutations and the hereditary axonal neuropathy Charcot-Marie-Tooth disease type 2A (CMT2A) was described over 15 years ago. During the intervening period much has been learned about MFN2 functioning in mitochondrial fusion, calcium signaling, and quality control, and the consequences of these MFN2 activities on cell metabolism, fitness, and development. Nevertheless, the challenge of defining the central underlying mechanism(s) linking mitochondrial abnormalities to progressive dying-back of peripheral arm and leg nerves in CMT2A is largely unmet. Here, a different perspective of why, in humans, MFN2 dysfunction preferentially impacts peripheral nerves is provided based on recent insights into its role in determining whether individual mitochondria will be fusion-competent and retained within the cell, or are fusion-impaired, sequestered, and eliminated by mitophagy. Evidence for and against a regulatory role of mitofusins in mitochondrial transport is reviewed, nagging questions defined, and implications on mitochondrial fusion, quality control, and neuronal degeneration discussed. Finally, in the context of recently described mitofusin activating peptides and small molecules, an overview is provided of potential therapeutic applications for pharmacological enhancement of mitochondrial fusion and motility in CMT2A and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
26
|
Choi JE, Seol HY, Seok JM, Hong SH, Choi BO, Moon IJ. Psychoacoustics and neurophysiological auditory processing in patients with Charcot-Marie-Tooth disease types 1A and 2A. Eur J Neurol 2020; 27:2079-2088. [PMID: 32478888 DOI: 10.1111/ene.14370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND PURPOSE Hidden hearing loss has been reported in patients with Charcot-Marie-Tooth (CMT) disease; however, the auditory-processing deficits have not been widely explored. We investigated the psychoacoustic and neurophysiological aspects of auditory processing in patients with CMT disease type 1A (CMT1A) and type 2A (CMT2A). METHODS A total of 43 patients with CMT1A and 15 patients with CMT2A were prospectively enrolled. All patients with CMT disease had normal sound-detection ability by using pure-tone audiometry. Spectral-ripple discrimination, temporal modulation detection and auditory frequency-following response were compared between CMT1A, CMT2A and control groups. RESULTS Although all participants had normal audiograms, patients with CMT disease had difficulty understanding speech in noise. The psychoacoustic auditory processing was somewhat different depending on the underlying pathophysiology of CMT disease. Patients with CMT1A had degraded auditory temporal and spectral processing. Patients with CMT2A had no reduced spectral resolution, but they showed further reduced temporal resolution than the patients with CMT1A. The amplitudes of the frequency-following response were reduced in patients with CMT1A and CMT2A, but the neural timing remained relatively intact. CONCLUSIONS When we first assessed the neural representation to speech at the brainstem level, the grand average brainstem responses were reduced in both patients with CMT1A and CMT2A compared with healthy controls. As the psychoacoustic aspects of auditory dysfunctions in CMT1A and CMT2A were somewhat different, it is necessary to consider future auditory rehabilitation methods based on their pathophysiology.
Collapse
Affiliation(s)
- J E Choi
- Department of Otorhinolaryngology, Head and Neck Surgery, Dankook University Hospital, Cheonan, Korea
| | - H Y Seol
- Hearing Research Laboratory, Samsung Medical Center, Seoul, Korea
| | - J M Seok
- Department of Neurology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - S H Hong
- Department of Otorhinolaryngology, Head and Neck Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - B-O Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - I J Moon
- Department of Otorhinolaryngology, Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Abstract
OBJECTIVES This study tested the hypothesis that undetected peripheral hearing impairment occurs in children with idiopathic listening difficulties (LiDs), as reported by caregivers using the Evaluation of Children"s Listening and Processing Skills (ECLiPS) validated questionnaire, compared with children with typically developed (TD) listening abilities. DESIGN Children with LiD aged 6-14 years old (n = 60, mean age = 9.9 yr) and 54 typical age matched children were recruited from audiology clinical records and from IRB-approved advertisements at hospital locations and in the local and regional areas. Both groups completed standard and extended high-frequency (EHF) pure-tone audiometry, wideband absorbance tympanometry and middle ear muscle reflexes, distortion product and chirp transient evoked otoacoustic emissions. Univariate and multivariate mixed models and multiple regression analysis were used to examine group differences and continuous performance, as well as the influence of demographic factors and pressure equalization (PE) tube history. RESULTS There were no significant group differences between the LiD and TD groups for any of the auditory measures tested. However, analyses across all children showed that EHF hearing thresholds, wideband tympanometry, contralateral middle ear muscle reflexes, distortion product, and transient-evoked otoacoustic emissions were related to a history of PE tube surgery. The physiologic measures were also associated with EHF hearing loss, secondary to PE tube history. CONCLUSIONS Overall, the results of this study in a sample of children with validated LiD compared with a TD group matched for age and sex showed no significant differences in peripheral function using highly sensitive auditory measures. Histories of PE tube surgery were significantly related to EHF hearing and to a range of physiologic measures in the combined sample.
Collapse
|
28
|
Congenital hearing impairment associated with peripheral cochlear nerve dysmyelination in glycosylation-deficient muscular dystrophy. PLoS Genet 2020; 16:e1008826. [PMID: 32453729 PMCID: PMC7274486 DOI: 10.1371/journal.pgen.1008826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/05/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
Hearing loss (HL) is one of the most common sensory impairments and etiologically and genetically heterogeneous disorders in humans. Muscular dystrophies (MDs) are neuromuscular disorders characterized by progressive degeneration of skeletal muscle accompanied by non-muscular symptoms. Aberrant glycosylation of α-dystroglycan causes at least eighteen subtypes of MD, now categorized as MD-dystroglycanopathy (MD-DG), with a wide spectrum of non-muscular symptoms. Despite a growing number of MD-DG subtypes and increasing evidence regarding their molecular pathogeneses, no comprehensive study has investigated sensorineural HL (SNHL) in MD-DG. Here, we found that two mouse models of MD-DG, Largemyd/myd and POMGnT1-KO mice, exhibited congenital, non-progressive, and mild-to-moderate SNHL in auditory brainstem response (ABR) accompanied by extended latency of wave I. Profoundly abnormal myelination was found at the peripheral segment of the cochlear nerve, which is rich in the glycosylated α-dystroglycan–laminin complex and demarcated by “the glial dome.” In addition, patients with Fukuyama congenital MD, a type of MD-DG, also had latent SNHL with extended latency of wave I in ABR. Collectively, these findings indicate that hearing impairment associated with impaired Schwann cell-mediated myelination at the peripheral segment of the cochlear nerve is a notable symptom of MD-DG. Hearing loss (HL) is one of the most common sensory impairments and heterogeneous disorders in humans. Up to 60% of HL cases are caused by genetic factors, and approximately 30% of genetic HL cases are syndromic. Although 400–700 genetic syndromes are associated with sensorineural HL (SNHL), caused due to problems in the nerve pathways from the cochlea to the brain, only about 45 genes are known to be associated with syndromic HL. Muscular dystrophies (MDs) are neuromuscular disorders characterized by progressive degeneration of skeletal muscle accompanied by non-muscular symptoms. MD-dystroglycanopathy (MD-DG), caused by aberrant glycosylation of α-dystroglycan, is an MD subtype with a wide spectrum of non-muscular symptoms. Despite a growing number of MD-DG subtypes (at least 18), no comprehensive study has investigated SNHL in MD-DG. Here, we found that hearing impairment was associated with abnormal myelination of the peripheral segment of the cochlear nerve caused by impaired dystrophin–dystroglycan complex in two mouse models (type 3 and 6) of MD-DG and in patients (type 4) with MD-DG. This is the first comprehensive study investigating SNHL in MD-DG. Our findings may provide new insights into understanding the pathogenic characteristics and mechanisms underlying inherited syndromic hearing impairment.
Collapse
|
29
|
Bitetto G, Malaguti MC, Ceravolo R, Monfrini E, Straniero L, Morini A, Di Giacopo R, Frosini D, Palermo G, Biella F, Ronchi D, Duga S, Taroni F, Corti S, Comi GP, Bresolin N, Giometto B, Di Fonzo A. SLC25A46 mutations in patients with Parkinson's Disease and optic atrophy. Parkinsonism Relat Disord 2020; 74:1-5. [PMID: 32259769 DOI: 10.1016/j.parkreldis.2020.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/14/2020] [Accepted: 03/22/2020] [Indexed: 12/14/2022]
Abstract
Mutations in the gene encoding the mitochondrial carrier protein SLC25A46 are known to cause optic atrophy associated with peripheral neuropathy and congenital pontocerebellar hypoplasia. We found novel biallelic SLC25A46 mutations (p.H137R, p.A401Sfs*17) in a patient with Parkinson's disease and optic atrophy. Screening of six unrelated patients with parkinsonism and optic atrophy allowed us to identify two additional mutations (p.A176V, p.K256R) in a second patient. All identified variants are predicted likely pathogenic and affect very conserved protein residues. These findings suggest for the first time a possible link between Parkinson's Disease and SLC25A46 mutations. Replication in additional studies is needed to conclusively prove this link.
Collapse
Affiliation(s)
- Giacomo Bitetto
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | | | | - Edoardo Monfrini
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Letizia Straniero
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Alberto Morini
- Department of Neurology, Ospedale Santa Chiara, Trento, Italy
| | | | - Daniela Frosini
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Giovanni Palermo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Fabio Biella
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Dario Ronchi
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Corti
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giacomo P Comi
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nereo Bresolin
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Bruno Giometto
- Department of Neurology, Ospedale Santa Chiara, Trento, Italy
| | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
30
|
C Kohrman D, Wan G, Cassinotti L, Corfas G. Hidden Hearing Loss: A Disorder with Multiple Etiologies and Mechanisms. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a035493. [PMID: 30617057 DOI: 10.1101/cshperspect.a035493] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hidden hearing loss (HHL), a recently described auditory disorder, has been proposed to affect auditory neural processing and hearing acuity in subjects with normal audiometric thresholds, particularly in noisy environments. In contrast to central auditory processing disorders, HHL is caused by defects in the cochlea, the peripheral auditory organ. Noise exposure, aging, ototoxic drugs, and peripheral neuropathies are some of the known risk factors for HHL. Our knowledge of the causes and mechanisms of HHL are based primarily on animal models. However, recent clinical studies have also shed light on the etiology and prevalence of this cochlear disorder and how it may affect auditory perception in humans. Here, we review the current knowledge regarding the causes and cellular mechanisms of HHL, summarize information on available noninvasive tests for differential diagnosis, and discuss potential therapeutic approaches for treatment of HHL.
Collapse
Affiliation(s)
- David C Kohrman
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, Jiangsu Province, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210061, Jiangsu Province, China
| | - Luis Cassinotti
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Gabriel Corfas
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
31
|
Giuliani N, Holte L, Shy M, Grider T. The audiologic profile of patients with Charcot-Marie Tooth neuropathy can be characterised by both cochlear and neural deficits. Int J Audiol 2019; 58:902-912. [PMID: 31318300 DOI: 10.1080/14992027.2019.1633022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: The primary goal of this study was to characterise the cochlear and neural components of hearing loss in a large cohort of people with Charcot-Marie Tooth neuropathy who reported hearing difficulties.Design: A full complement of audiologic measures including behavioral, physiologic and subjective assessments were administered.Study sample: Seventy-nine participants completed the study. Forty-four people had CMT1, 27 had CMT2 and four had CMT-INT.Results: Pure tone average was related to age and the absence of high-frequency DPOAE energy, suggesting a strong cochlear component. Acoustic reflexes were often elevated or absent and many participants exhibited abnormal ABR waveforms, suggesting additional neural hearing loss components. Participants with an abnormal or absent ABR wave V exhibited poorer speech perception abilities. There was an association between a prolonged ABR wave I latency and an abnormal or absent ABR wave V with a higher Charcot-Marie Tooth Neuropathy Score (indicating greater disability).Conclusions: The hearing abilities of people with CMT are highly variable. While there were strong neural hearing loss components, speech perception abilities were not disproportionately affected in most participants. Therefore, a hearing aid trial is recommended. ABR responses may be a useful tool for monitoring the progression of CMT over time.
Collapse
Affiliation(s)
- Nicholas Giuliani
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Lenore Holte
- Department of Communications Sciences and Disorders, University of Iowa, Iowa City, IA, USA.,Center for Disabilities and Development, University Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Michael Shy
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Tiffany Grider
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
32
|
Review: Using diffusion-weighted magnetic resonance imaging techniques to explore the microstructure and connectivity of subcortical white matter tracts in the human auditory system. Hear Res 2019; 377:1-11. [DOI: 10.1016/j.heares.2019.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/16/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
|
33
|
Tao F, Beecham GW, Rebelo AP, Blanton SH, Moran JJ, Lopez-Anido C, Svaren J, Abreu L, Rizzo D, Kirk CA, Wu X, Feely S, Verhamme C, Saporta MA, Herrmann DN, Day JW, Sumner CJ, Lloyd TE, Li J, Yum SW, Taroni F, Baas F, Choi BO, Pareyson D, Scherer SS, Reilly MM, Shy ME, Züchner S. Modifier Gene Candidates in Charcot-Marie-Tooth Disease Type 1A: A Case-Only Genome-Wide Association Study. J Neuromuscul Dis 2019; 6:201-211. [PMID: 30958311 PMCID: PMC6597974 DOI: 10.3233/jnd-190377] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Charcot-Marie-Tooth disease type 1A (CMT1A) is caused by a uniform 1.5-Mb duplication on chromosome 17p, which includes the PMP22 gene. Patients often present the classic neuropathy phenotype, but also with high clinical variability. OBJECTIVE We aimed to identify genetic variants that are potentially associated with specific clinical outcomes in CMT1A. METHODS We genotyped over 600,000 genomic markers using DNA samples from 971 CMT1A patients and performed a case-only genome-wide association study (GWAS) to identify potential genetic association in a subset of 644 individuals of European ancestry. A total of 14 clinical outcomes were analyzed in this study. RESULTS The analyses yielded suggestive association signals in four clinical outcomes: difficulty with eating utensils (lead SNP rs4713376, chr6 : 30773314, P = 9.91×10-7, odds ratio = 3.288), hearing loss (lead SNP rs7720606, chr5 : 126551732, P = 2.08×10-7, odds ratio = 3.439), decreased ability to feel (lead SNP rs17629990, chr4 : 171224046, P = 1.63×10-7, odds ratio = 0.336), and CMT neuropathy score (lead SNP rs12137595, chr1 : 4094068, P = 1.14×10-7, beta = 3.014). CONCLUSIONS While the results require validation in future genetic and functional studies, the detected association signals may point to novel genetic modifiers in CMT1A.
Collapse
Affiliation(s)
- Feifei Tao
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Gary W. Beecham
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Adriana P. Rebelo
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Susan H. Blanton
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - John J. Moran
- Department of Comparative Biosciences and Waisman Center, University of Wisconsin, Madison, WI, USA
| | - Camila Lopez-Anido
- Department of Comparative Biosciences and Waisman Center, University of Wisconsin, Madison, WI, USA
| | - John Svaren
- Department of Comparative Biosciences and Waisman Center, University of Wisconsin, Madison, WI, USA
| | - Lisa Abreu
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Devon Rizzo
- Data Management and Coordinating Center, Rare Diseases Clinical Research Network, Pediatrics Epidemiology Center, University of South Florida, Tampa, FL, USA
| | - Callyn A. Kirk
- Data Management and Coordinating Center, Rare Diseases Clinical Research Network, Pediatrics Epidemiology Center, University of South Florida, Tampa, FL, USA
| | - Xingyao Wu
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Shawna Feely
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Camiel Verhamme
- Department of Neurology, Academic Medical Centre, Amsterdam, The Netherlands
| | | | - David N. Herrmann
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - John W. Day
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - Charlotte J. Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas E. Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Li
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sabrina W. Yum
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Franco Taroni
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Davide Pareyson
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Steven S. Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary M. Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, UK
| | - Michael E. Shy
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Stephan Züchner
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - the Inherited Neuropathy Consortium
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
- Department of Comparative Biosciences and Waisman Center, University of Wisconsin, Madison, WI, USA
- Data Management and Coordinating Center, Rare Diseases Clinical Research Network, Pediatrics Epidemiology Center, University of South Florida, Tampa, FL, USA
- Department of Neurology, University of Iowa, Iowa City, IA, USA
- Department of Neurology, Academic Medical Centre, Amsterdam, The Netherlands
- Department of Neurology, University of Miami, Miami, FL, USA
- Department of Neurology, University of Rochester, Rochester, NY, USA
- Department of Neurology, Stanford University, Palo Alto, CA, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
34
|
Ritter KE, Martin DM. Neural crest contributions to the ear: Implications for congenital hearing disorders. Hear Res 2018; 376:22-32. [PMID: 30455064 DOI: 10.1016/j.heares.2018.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/30/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
Congenital hearing disorders affect millions of children worldwide and can significantly impact acquisition of speech and language. Efforts to identify the developmental genetic etiologies of conductive and sensorineural hearing losses have revealed critical roles for cranial neural crest cells (NCCs) in ear development. Cranial NCCs contribute to all portions of the ear, and defects in neural crest development can lead to neurocristopathies associated with profound hearing loss. The molecular mechanisms governing the development of neural crest derivatives within the ear are partially understood, but many questions remain. In this review, we describe recent advancements in determining neural crest contributions to the ear, how they inform our understanding of neurocristopathies, and highlight new avenues for further research using bioinformatic approaches.
Collapse
Affiliation(s)
- K Elaine Ritter
- Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Donna M Martin
- Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
Choi JE, Seok JM, Ahn J, Ji YS, Lee KM, Hong SH, Choi BO, Moon IJ. Hidden hearing loss in patients with Charcot-Marie-Tooth disease type 1A. Sci Rep 2018; 8:10335. [PMID: 29985472 PMCID: PMC6037750 DOI: 10.1038/s41598-018-28501-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/20/2018] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to investigate hidden hearing loss in patients with Charcot-Marie-Tooth disease type 1 A (CMT1A), a common inherited demyelinating neuropathy. By using pure-tone audiometry, 43 patients with CMT1A and 60 healthy controls with normal sound detection abilities were enrolled. Speech perception in quiet and noisy backgrounds, spectral ripple discrimination (SRD), and temporal modulation detection (TMD) were measured. Although CMT1A patients and healthy controls had similar pure-tone thresholds and speech perception scores in a quiet background, CMT1A patients had significantly (p < 0.05) decreased speech perception ability in a noisy background compared to controls. CMT1A patients showed significantly decreased temporal and spectral resolution (both p < 0.05). Also, auditory temporal processing of CMT1A patients was correlated with speech perception in a noisy background (r = 0.447, p < 0.01) and median motor conduction velocity (r = 0.335, p < 0.05). Therefore, we assumed that demyelination of auditory nerve in CMT1A causes defective cochlear neurotransmission, which reduces temporal resolution and speech perception in a noisy background. Because the temporal resolution test was well correlated with the degree of demyelination in auditory and peripheral motor nerves, temporal resolution testing could be performed as an additional marker for CMT1A.
Collapse
Affiliation(s)
- Ji Eun Choi
- Department of Otorhinolaryngology - Head and Neck Surgery, Dankook University Hospital, Cheonan, Republic of Korea
| | - Jin Myoung Seok
- Department of Neurology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jungmin Ahn
- Department of Otorhinolaryngology - Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yoon Sang Ji
- Hearing Research Laboratory, Samsung Medical Center, Changwon, Republic of Korea
| | - Kyung Myun Lee
- School of Humanities and Social Sciences, KAIST, Changwon, Republic of Korea
| | - Sung Hwa Hong
- Department of Otorhinolaryngology - Head and Neck Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Il Joon Moon
- Department of Otorhinolaryngology - Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Temporal Response Properties of the Auditory Nerve in Implanted Children with Auditory Neuropathy Spectrum Disorder and Implanted Children with Sensorineural Hearing Loss. Ear Hear 2018; 37:397-411. [PMID: 26655913 DOI: 10.1097/aud.0000000000000254] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study aimed to (1) characterize temporal response properties of the auditory nerve in implanted children with auditory neuropathy spectrum disorder (ANSD), and (2) compare results recorded in implanted children with ANSD with those measured in implanted children with sensorineural hearing loss (SNHL). DESIGN Participants included 28 children with ANSD and 29 children with SNHL. All subjects used cochlear nucleus devices in their test ears. Both ears were tested in 6 children with ANSD and 3 children with SNHL. For all other subjects, only one ear was tested. The electrically evoked compound action potential (ECAP) was measured in response to each of the 33 pulses in a pulse train (excluding the second pulse) for one apical, one middle-array, and one basal electrode. The pulse train was presented in a monopolar-coupled stimulation mode at 4 pulse rates: 500, 900, 1800, and 2400 pulses per second. Response metrics included the averaged amplitude, latencies of response components and response width, the alternating depth and the amount of neural adaptation. These dependent variables were quantified based on the last six ECAPs or the six ECAPs occurring within a time window centered around 11 to 12 msec. A generalized linear mixed model was used to compare these dependent variables between the 2 subject groups. The slope of the linear fit of the normalized ECAP amplitudes (re. amplitude of the first ECAP response) over the duration of the pulse train was used to quantify the amount of ECAP increment over time for a subgroup of 9 subjects. RESULTS Pulse train-evoked ECAPs were measured in all but 8 subjects (5 with ANSD and 3 with SNHL). ECAPs measured in children with ANSD had smaller amplitude, longer averaged P2 latency and greater response width than children with SNHL. However, differences in these two groups were only observed for some electrodes. No differences in averaged N1 latency or in the alternating depth were observed between children with ANSD and children with SNHL. Neural adaptation measured in these 2 subject groups was comparable for relatively short durations of stimulation (i.e., 11 to 12 msec). Children with ANSD showed greater neural adaptation than children with SNHL for a longer duration of stimulation. Amplitudes of ECAP responses rapidly declined within the first few milliseconds of stimulation, followed by a gradual decline up to 64 msec after stimulus onset in the majority of subjects. This decline exhibited an alternating pattern at some pulse rates. Further increases in pulse rate diminished this alternating pattern. In contrast, ECAPs recorded from at least one stimulating electrode in six ears with ANSD and three ears with SNHL showed a clear increase in amplitude over the time course of stimulation. The slope of linear regression functions measured in these subjects was significantly greater than zero. CONCLUSIONS Some but not all aspects of temporal response properties of the auditory nerve measured in this study differ between implanted children with ANSD and implanted children with SNHL. These differences are observed for some but not all electrodes. A new neural response pattern is identified. Further studies investigating its underlying mechanism and clinical relevance are warranted.
Collapse
|
37
|
Abitbol JM, Kelly JJ, Barr KJ, Allman BL, Laird DW. Mice harbouring an oculodentodigital dysplasia-linked Cx43 G60S mutation have severe hearing loss. J Cell Sci 2018; 131:jcs.214635. [DOI: 10.1242/jcs.214635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/27/2018] [Indexed: 01/22/2023] Open
Abstract
Given the importance of connexin43 (Cx43) function in the central nervous system and sensory organ processing we proposed that it would also be crucial in auditory function. To that end, hearing was examined in two mouse models of oculodentodigital dysplasia that globally express GJA1 (Cx43) mutations resulting in mild or severe loss of Cx43 function. Although Cx43I130T/+ mutant mice with ∼50% Cx43 channel function did not have any hearing loss, Cx43G60S/+ mutant mice with ∼20% Cx43 channel function had severe hearing loss. There was no evidence of inner ear sensory hair cell loss, suggesting that the Cx43-linked hearing loss lies downstream in the auditory pathway. Since evidence suggests that Cx26 function is essential for hearing and may be protective against noise-induced hearing loss, we challenged Cx43I130T/+ mice with a loud noise and found that they had similar susceptibility to noise-induced hearing loss as controls suggesting that decreased Cx43 function does not sensitize the mice for environmentally-induced hearing loss. Taken together, this study suggests that Cx43 plays an important role in baseline hearing and is essential for auditory processing.
Collapse
Affiliation(s)
| | - John J. Kelly
- University of Western Ontario, London, Ontario, Canada
| | - Kevin J. Barr
- University of Western Ontario, London, Ontario, Canada
| | | | - Dale W. Laird
- University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
38
|
Milley GM, Varga ET, Grosz Z, Nemes C, Arányi Z, Boczán J, Diószeghy P, Molnár MJ, Gál A. Genotypic and phenotypic spectrum of the most common causative genes of Charcot-Marie-Tooth disease in Hungarian patients. Neuromuscul Disord 2017; 28:38-43. [PMID: 29174527 DOI: 10.1016/j.nmd.2017.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/22/2017] [Accepted: 08/30/2017] [Indexed: 01/27/2023]
Abstract
Charcot-Marie-Tooth neuropathy (CMT) is a genetically and clinically heterogeneous group of neuromuscular disorders with an overall prevalence of 1 per 2500. Here we report the first comprehensive genetic epidemiology study of Hungarian CMT patients. 409 CMT1 and 122 CMT2 patients were enrolled and genetic testing of PMP22, GJB1, MPZ, EGR2 and MFN2 genes were performed routinely. NDRG1 and CTDP1 genes were screened only for founder mutations in Roma patients. Causative genetic mutations were identified in 67.2% of the CMT1 and in 33.6% of the CMT2 cases, which indicates an overall success rate of 59.9% in the study population. Considering all affected individuals, alterations were most frequently found in PMP22 (40.5%), followed by GJB1 (9.2%), MPZ (4.5%), MFN2 (2.5%), NDRG1 (1.5%), EGR2 (0.8%) and CTDP1 (0.8%). The phenotypic spectrum and the disease severity of the studied patients also varied broadly. Deafness and autoimmune disorders were more often associated with PMP22 duplication, while MFN2 and GJB1 mutations were frequently present with central nervous system abnormalities. Our study may be helpful in determining the strategy of genetic diagnostics in Hungarian CMT patients.
Collapse
Affiliation(s)
- György Máté Milley
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Edina Timea Varga
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary; Department of Neurology, University of Szeged, Szeged, Hungary
| | - Zoltán Grosz
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Csilla Nemes
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Arányi
- MTA-SE NAP B Peripheral Nervous System Research Group, Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Judit Boczán
- Department of Neurology, Medical Center, University of Debrecen, Debrecen, Hungary
| | - Péter Diószeghy
- Department of Neurology, Andras Josa Teaching Hospital, Nyiregyhaza, Hungary
| | - Mária Judit Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary.
| | - Anikó Gál
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| |
Collapse
|
39
|
Silva BCS, Mantello EB, Freitas MCF, Foss MC, Isaac MDL, Anastasio ART. Speech perception performance of subjects with type I diabetes mellitus in noise. Braz J Otorhinolaryngol 2017; 83:574-579. [PMID: 27546348 PMCID: PMC9444744 DOI: 10.1016/j.bjorl.2016.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/21/2016] [Accepted: 07/17/2016] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Diabetes mellitus (DM) is a chronic metabolic disorder of various origins that occurs when the pancreas fails to produce insulin in sufficient quantities or when the organism fails to respond to this hormone in an efficient manner. OBJECTIVE To evaluate the speech recognition in subjects with type I diabetes mellitus (DMI) in quiet and in competitive noise. METHODS It was a descriptive, observational and cross-section study. We included 40 participants of both genders aged 18-30 years, divided into a control group (CG) of 20 healthy subjects with no complaints or auditory changes, paired for age and gender with the study group, consisting of 20 subjects with a diagnosis of DMI. First, we applied basic audiological evaluations (pure tone audiometry, speech audiometry and immittance audiometry) for all subjects; after these evaluations, we applied Sentence Recognition Threshold in Quiet (SRTQ) and Sentence Recognition Threshold in Noise (SRTN) in free field, using the List of Sentences in Portuguese test. RESULTS All subjects showed normal bilateral pure tone threshold, compatible speech audiometry and "A" tympanometry curve. Group comparison revealed a statistically significant difference for SRTQ (p=0.0001), SRTN (p<0.0001) and the signal-to-noise ratio (p<0.0001). CONCLUSION The performance of DMI subjects in SRTQ and SRTN was worse compared to the subjects without diabetes.
Collapse
Affiliation(s)
- Bárbara Cristiane Sordi Silva
- Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto (FMRP), Departamento de Oftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Ribeirão Preto, SP, Brazil
| | - Erika Barioni Mantello
- Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto (FMRP), Departamento de Oftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Ribeirão Preto, SP, Brazil.
| | - Maria Cristina Foss Freitas
- Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto (FMRP), Divisões de Endocrinologia e Metabologia e Nutrição, Ribeirão Preto, SP, Brazil
| | - Milton César Foss
- Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto (FMRP), Divisões de Endocrinologia e Metabologia e Nutrição, Ribeirão Preto, SP, Brazil
| | - Myriam de Lima Isaac
- Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto (FMRP), Departamento de Oftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Ribeirão Preto, SP, Brazil
| | - Adriana Ribeiro Tavares Anastasio
- Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto (FMRP), Departamento de Oftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Ribeirão Preto, SP, Brazil
| |
Collapse
|
40
|
Kondo D, Shinoda K, Yamashita KI, Yamasaki R, Hashiguchi A, Takashima H, Kira JI. A novel mutation in FGD4 causes Charcot-Marie-Tooth disease type 4H with cranial nerve involvement. Neuromuscul Disord 2017; 27:959-961. [PMID: 28847448 DOI: 10.1016/j.nmd.2017.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/29/2017] [Accepted: 07/23/2017] [Indexed: 11/15/2022]
Abstract
Charcot-Marie-Tooth disease type 4H (CMT4H) is a rare variant of autosomal recessive hereditary neuropathy. It is caused by FGD4 mutations and characterized by early infantile onset, slowly progressive distal muscle weakness, scoliosis, and myelin outfoldings visible in nerve biopsy samples. Here, we report a 65-year-old male born to consanguineous parents, who carries a novel homozygous FGD4 c.724C>T nonsense mutation. He developed lower limb weakness in his teens, which progressed slowly and was accompanied by diplopia, bilateral hearing loss, and erectile dysfunction from his twenties. At the age of 65, he was wheelchair-bound and had mild scoliosis, bilateral ophthalmoplegia, facial muscle weakness, inner ear hearing loss, distal-dominant weakness, and sensory disturbance, but no cognitive deterioration. Magnetic resonance imaging revealed enlarged bilateral trigeminal and facial nerves. Accordingly, we believe that this mutation causes slowly progressive sensorimotor neuropathy with apparent cranial nerve involvement, thereby further expanding the clinical spectrum of CMT4H.
Collapse
Affiliation(s)
- Daisuke Kondo
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Koji Shinoda
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Ken-Ichiro Yamashita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Japan.
| |
Collapse
|
41
|
Das N, Kandalaft S, Wu X, Malhotra A. Cranial nerve involvement in Charcot–Marie–Tooth Disease. J Clin Neurosci 2017; 37:59-62. [DOI: 10.1016/j.jocn.2016.10.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/29/2016] [Indexed: 11/16/2022]
|
42
|
Rance G, Chisari D. Auditory neuropathy in a patient with hemochromatosis. J Otol 2016; 11:185-191. [PMID: 29937828 PMCID: PMC6002616 DOI: 10.1016/j.joto.2016.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/28/2016] [Accepted: 10/11/2016] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE To evaluate the auditory function of an individual with genetically confirmed hemochromatosis. METHODS A 57 year old male with mildly impaired sound detection thresholds underwent a range of behavioural, electroacoustic and electrophysiologic assessments. These included the recording of otoacoustic emissions and auditory brainstem responses, measurement of monaural temporal resolution and evaluation of binaural speech processing. Findings for this patient were subsequently compared with those of 80 healthy controls with similar audiometric thresholds. RESULTS The patient showed the three cardinal features of auditory neuropathy, presenting with evidence of normal cochlear outer hair cell function, disrupted neural activity in the auditory nerve/brainstem and impaired temporal processing. His functional hearing ability (speech perception) was significantly affected and suggested a reduced capacity to use localization cues to segregate signals in the presence of background noise. CONCLUSION We present the first case of an individual with hemochromatosis and auditory neuropathy. The findings for this patient highlight the need for careful evaluation of auditory function in individuals with the disorder.
Collapse
|
43
|
Abadi S, Khanbabaee G, Sheibani K. Auditory Brainstem Response Wave Amplitude Characteristics as a Diagnostic Tool in Children with Speech Delay with Unknown Causes. IRANIAN JOURNAL OF MEDICAL SCIENCES 2016; 41:415-21. [PMID: 27582591 PMCID: PMC4967486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Speech delay with an unknown cause is a problem among children. This diagnosis is the last differential diagnosis after observing normal findings in routine hearing tests. The present study was undertaken to determine whether auditory brainstem responses to click stimuli are different between normally developing children and children suffering from delayed speech with unknown causes. In this cross-sectional study, we compared click auditory brainstem responses between 261 children who were clinically diagnosed with delayed speech with unknown causes based on normal routine auditory test findings and neurological examinations and had >12 months of speech delay (case group) and 261 age- and sex-matched normally developing children (control group). Our results indicated that the case group exhibited significantly higher wave amplitude responses to click stimuli (waves I, III, and V) than did the control group (P=0.001). These amplitudes were significantly reduced after 1 year (P=0.001); however, they were still significantly higher than those of the control group (P=0.001). The significant differences were seen regardless of the age and the sex of the participants. There were no statistically significant differences between the 2 groups considering the latency of waves I, III, and V. In conclusion, the higher amplitudes of waves I, III, and V, which were observed in the auditory brainstem responses to click stimuli among the patients with speech delay with unknown causes, might be used as a diagnostic tool to track patients' improvement after treatment.
Collapse
Affiliation(s)
- Susan Abadi
- Arash Hospital, Tehran University of Medical Sciences, Tehran, Iran,Correspondence: Susan Abadi, PhD; 3rd Floor, No. 37, Bahareshiraz Street, Shariati Avenue, Postal Code: 15657-74419, Tehran, Iran Tel: +98 912 1499920
| | - Ghamartaj Khanbabaee
- Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kourosh Sheibani
- Imam Hossein Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Rance G, Chisari D, Edvall N, Cameron F. Functional hearing deficits in children with Type 1 diabetes. Diabet Med 2016; 33:1268-74. [PMID: 26823194 DOI: 10.1111/dme.13086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/27/2015] [Accepted: 01/25/2016] [Indexed: 12/17/2022]
Abstract
AIM Hearing loss (as reflected by abnormal sound detection) is a frequently reported consequence of Type 1 diabetes mellitus. We sought to evaluate sound detection, auditory neural function and binaural processing ability in a group of school-aged participants with Type 1 diabetes and to assess their functional hearing and general communication ability. METHODS A range of electroacoustic, electrophysiological and behavioural test techniques were used to evaluate both cochlear and auditory neural function in 19 affected children. A cohort of matched controls was also assessed. RESULTS Although all of the participants with Type 1 diabetes enjoyed normal sound detection, 9 of the 19 (47%) showed evidence of auditory pathway abnormality with evoked potential latencies and/or amplitudes beyond age-related norms. Auditory brainstem response interpeak latencies (wave I-V) were longer than in matched controls [ 95% confidence interval (95% CI); 0.10, 0.28 ms: P < 0.001] and wave V amplitudes were reduced (95% CI; -0.21, 0.00 μV: P = 0.02). Binaural speech perception in noise was also impaired (95% CI; 0.82, 3.17 dB: P = 0.002) and perceptual ability was correlated with degree of neural disruption in the auditory brainstem (r = 0.662, P = 0.003). CONCLUSIONS Hearing deficits severe enough to restrict communication and threaten academic progress were common on our group of school-aged children with Type 1 diabetes. Evaluation of both cochlear and auditory neural function may form an important part of the standard management regime for children with diabetes.
Collapse
Affiliation(s)
- G Rance
- Department of Audiology & Speech Pathology, The University of Melbourne, Melbourne, Australia
| | - D Chisari
- Department of Audiology & Speech Pathology, The University of Melbourne, Melbourne, Australia
| | - N Edvall
- Department of Audiology, Lund University, Lund, Sweden
| | - F Cameron
- Department of Endocrinology & Diabetes, Royal Children's Hospital, Parkville, Australia
| |
Collapse
|
45
|
Menezes MP, O'Brien K, Hill M, Webster R, Antony J, Ouvrier R, Birman C, Gardner-Berry K. Auditory neuropathy in Brown-Vialetto-Van Laere syndrome due to riboflavin transporter RFVT2 deficiency. Dev Med Child Neurol 2016; 58:848-54. [PMID: 26918385 DOI: 10.1111/dmcn.13084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/24/2015] [Indexed: 12/17/2022]
Abstract
AIM Mutations in the genes encoding the riboflavin transporters RFVT2 and RFVT3 have been identified in Brown-Vialetto-Van Laere syndrome, a neurodegenerative disorder characterized by hearing loss and pontobulbar palsy. Treatment with riboflavin has been shown to benefit individuals with the phenotype of RFVT2 deficiency. Understanding the characteristics of hearing loss in riboflavin transporter deficiency would enable early diagnosis and therapy. METHOD We performed hearing assessments in seven children (from four families) with RFVT2 deficiency and reviewed results from previous assessments. Assessments were repeated after 12 months and 24 months of riboflavin therapy and after cochlear implantation in one individual. RESULTS Hearing loss in these individuals was due to auditory neuropathy spectrum disorder (ANSD). Hearing loss was identified between 3 years and 8 years of age and progressed rapidly. Hearing aids were not beneficial. Riboflavin therapy resulted in improvement of hearing thresholds during the first year of treatment in those with recent-onset hearing loss. Cochlear implantation resulted in a significant improvement in speech perception in one individual. INTERPRETATION Riboflavin transporter deficiency should be considered in all children presenting with an auditory neuropathy. Speech perception in children with ANSD due to RFVT2 deficiency may be significantly improved by cochlear implantation.
Collapse
Affiliation(s)
- Manoj P Menezes
- Institute for Neuroscience and Muscle Research and Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Katherine O'Brien
- Department of Audiology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Mandy Hill
- Sydney Cochlear Implant Centre, Sydney, NSW, Australia
| | - Richard Webster
- Institute for Neuroscience and Muscle Research and Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Jayne Antony
- Institute for Neuroscience and Muscle Research and Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Robert Ouvrier
- Institute for Neuroscience and Muscle Research and Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Catherine Birman
- Department of ENT and Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | | |
Collapse
|
46
|
Rance G, Starr A. Pathophysiological mechanisms and functional hearing consequences of auditory neuropathy. Brain 2015; 138:3141-58. [PMID: 26463676 DOI: 10.1093/brain/awv270] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/05/2015] [Indexed: 01/19/2023] Open
Abstract
The effects of inner ear abnormality on audibility have been explored since the early 20th century when sound detection measures were first used to define and quantify 'hearing loss'. The development in the 1970s of objective measures of cochlear hair cell function (cochlear microphonics, otoacoustic emissions, summating potentials) and auditory nerve/brainstem activity (auditory brainstem responses) have made it possible to distinguish both synaptic and auditory nerve disorders from sensory receptor loss. This distinction is critically important when considering aetiology and management. In this review we address the clinical and pathophysiological features of auditory neuropathy that distinguish site(s) of dysfunction. We describe the diagnostic criteria for: (i) presynaptic disorders affecting inner hair cells and ribbon synapses; (ii) postsynaptic disorders affecting unmyelinated auditory nerve dendrites; (iii) postsynaptic disorders affecting auditory ganglion cells and their myelinated axons and dendrites; and (iv) central neural pathway disorders affecting the auditory brainstem. We review data and principles to identify treatment options for affected patients and explore their benefits as a function of site of lesion.
Collapse
Affiliation(s)
- Gary Rance
- 1 Department of Audiology and Speech Pathology, The University of Melbourne, 550 Swanston Street, Parkville 3010 Australia
| | - Arnold Starr
- 2 Department of Neurology, The University of California (Irvine), 200 S. Manchester Ave., Suite 206, Orange, CA 92868-4280, USA
| |
Collapse
|
47
|
Watila MM, Balarabe SA. Molecular and clinical features of inherited neuropathies due to PMP22 duplication. J Neurol Sci 2015; 355:18-24. [PMID: 26076881 DOI: 10.1016/j.jns.2015.05.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/30/2015] [Accepted: 05/25/2015] [Indexed: 02/06/2023]
Abstract
PMP22 is a transmembrane glycoprotein component of myelin, important for myelin functioning. Mutation of PMP22 gene which encodes for the production of PMP22 glycoprotein is associated with a variety of inherited neuropathies. This literature review sought to review the molecular mechanism and clinical features of inherited neuropathies caused by PMP22 duplication. PMP22 duplication causes CMT1A which accounts for more than half of all CMT cases and about 70% of CMT1 cases. It manifests with muscle weakness, depressed reflexes, impaired distal sensation, hand and foot deformities, slowing of NCV and onion bulbs. With no specific treatment available, it is managed conservatively. Future treatment may be based on the molecular genetics of the disease.
Collapse
Affiliation(s)
- M M Watila
- Department of Medicine, University of Maiduguri Teaching Hospital, PMB 1414 Maiduguri, Borno State, Nigeria.
| | - S A Balarabe
- Department of Medicine, Usman DanFodio University Teaching Hospital, Sokoto, Sokoto State, Nigeria
| |
Collapse
|
48
|
Lepcha A, Chandran RK, Alexander M, Agustine AM, Thenmozhi K, Balraj A. Neurological associations in auditory neuropathy spectrum disorder: Results from a tertiary hospital in South India. Ann Indian Acad Neurol 2015; 18:171-80. [PMID: 26019414 PMCID: PMC4445192 DOI: 10.4103/0972-2327.150578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/09/2014] [Accepted: 05/08/2014] [Indexed: 01/28/2023] Open
Abstract
Aims: To find out the prevalence and types of neurological abnormalities associated in auditory neuropathy spectrum disorder in a large tertiary referral center. Settings and Design: A prospective clinical study was conducted on all patients diagnosed with auditory neuropathy spectrum disorder in the ear, nose, and throat (ENT) and neurology departments during a 17-month period. Patients with neurological abnormalities on history and examination were further assessed by a neurologist to determine the type of disorder present. Results: The frequency of auditory neuropathy spectrum disorder was 1.12%. Sixty percent were found to have neurological involvement. This included cerebral palsy in children, peripheral neuropathy (PN), spinocerebellar ataxia, hereditary motor-sensory neuropathy, spastic paresis, and ponto-bulbar palsy. Neurological lesions did not present simultaneously with hearing loss in most patients. Sixty-six percent of patients with auditory neuropathy spectrum disorder were born of consanguineous marriages. Conclusions: There is a high prevalence of neurological lesions in auditory neuropathy spectrum disorder which has to be kept in mind while evaluating such patients. Follow-up and counselling regarding the appearance of neuropathies is therefore important in such patients. A hereditary etiology is indicated in a majority of cases of auditory neuropathy spectrum disorder.
Collapse
Affiliation(s)
- Anjali Lepcha
- Department of Ear, Nose and Throat, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Reni K Chandran
- Department of Otolaryngology, Head and Neck Surgery, Hamad Medical Corporation, Al Wakra Hospital, Doha, Qatar
| | - Mathew Alexander
- Department of Neurology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Ann Mary Agustine
- Department of Ear, Nose and Throat, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - K Thenmozhi
- Department of Ear, Nose and Throat, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Achamma Balraj
- Department of Ear, Nose and Throat, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| |
Collapse
|
49
|
Abstract
Neural disorders of the auditory nerve are associated with particular disorders of auditory perceptions dependent on processing of acoustic temporal cues. These include: (1) speech perception; (2) localizing a sound's origin in space; and (3) identifying sounds in background noise. Auditory neuropathy (AN) is a consequence of: (1) presynaptic disorders affecting inner hair cell ribbon synapses; (2) postsynaptic disorders of auditory nerve dendrites; and (3) postsynaptic disorders of auditory nerve axons. The etiologies of these disorders are diverse, similar to other cranial or peripheral neuropathies. The pathologies cause attenuated and dyssynchronous auditory nerve discharges. Therapies and management of patients with AN are reviewed.
Collapse
Affiliation(s)
- Arnold Starr
- Departments of Neurology and Neurobiology, University of California, Irvine, CA, USA.
| | - Gary Rance
- School of Audiology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
50
|
Maeda Y, Kataoka Y, Sugaya A, Kariya S, Kobayashi K, Nishizaki K. Steroid-dependent sensorineural hearing loss in a patient with Charcot-Marie-Tooth disease showing auditory neuropathy. Auris Nasus Larynx 2014; 42:249-53. [PMID: 25440412 DOI: 10.1016/j.anl.2014.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/30/2014] [Accepted: 11/07/2014] [Indexed: 12/20/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) is the most common form of hereditary sensorimotor neuropathy and sometimes involves disorders of the peripheral auditory system. We present a case of steroid-dependent auditory neuropathy associated with CMT, in which the patient experienced 3 episodes of acute exacerbation of hearing loss and successful rescue of hearing by prednisolone. An 8-year-old boy was referred to the otolaryngology department at the University Hospital. He had been diagnosed with CMT type 1 (demyelinating type) at the Child Neurology Department and was suffering from mild hearing loss due to auditory neuropathy. An audiological diagnosis of auditory neuropathy was confirmed by auditory brainstem response and distortion-product otoacoustic emissions. At 9 years and 0 months old, 9 years and 2 months old, and 10 years and 0 months old, he had experienced acute exacerbations of hearing loss, each of which was successfully rescued by intravenous or oral prednisolone within 2 weeks. Steroid-responsive cases of CMT have been reported, but this is the first case report of steroid-responsive sensorineural hearing loss in CMT. The present case may have implications for the mechanisms of action of glucocorticoids in the treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Yukihide Maeda
- Department of Otolaryngology-, Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Yuko Kataoka
- Department of Otolaryngology-, Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akiko Sugaya
- Department of Otolaryngology-, Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Kariya
- Department of Otolaryngology-, Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuhiro Kobayashi
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazunori Nishizaki
- Department of Otolaryngology-, Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|