1
|
Wu J, Ye S, Liu X, Xu Y, Fan D. The burden of upper motor neuron involvement is correlated with the bilateral limb involvement interval in patients with amyotrophic lateral sclerosis: a retrospective observational study. Neural Regen Res 2025; 20:1505-1512. [PMID: 39075916 DOI: 10.4103/nrr.nrr-d-23-01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/12/2024] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00032/figure1/v/2024-07-28T173839Z/r/image-tiff Amyotrophic lateral sclerosis is a rare neurodegenerative disease characterized by the involvement of both upper and lower motor neurons. Early bilateral limb involvement significantly affects patients' daily lives and may lead them to be confined to bed. However, the effect of upper and lower motor neuron impairment and other risk factors on bilateral limb involvement is unclear. To address this issue, we retrospectively collected data from 586 amyotrophic lateral sclerosis patients with limb onset diagnosed at Peking University Third Hospital between January 2020 and May 2022. A univariate analysis revealed no significant differences in the time intervals of spread in different directions between individuals with upper motor neuron-dominant amyotrophic lateral sclerosis and those with classic amyotrophic lateral sclerosis. We used causal directed acyclic graphs for risk factor determination and Cox proportional hazards models to investigate the association between the duration of bilateral limb involvement and clinical baseline characteristics in amyotrophic lateral sclerosis patients. Multiple factor analyses revealed that higher upper motor neuron scores (hazard ratio [HR] = 1.05, 95% confidence interval [CI] = 1.01-1.09, P = 0.018), onset in the left limb (HR = 0.72, 95% CI = 0.58-0.89, P = 0.002), and a horizontal pattern of progression (HR = 0.46, 95% CI = 0.37-0.58, P < 0.001) were risk factors for a shorter interval until bilateral limb involvement. The results demonstrated that a greater degree of upper motor neuron involvement might cause contralateral limb involvement to progress more quickly in limb-onset amyotrophic lateral sclerosis patients. These findings may improve the management of amyotrophic lateral sclerosis patients with limb onset and the prediction of patient prognosis.
Collapse
Affiliation(s)
- Jieying Wu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Shan Ye
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Xiangyi Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Yingsheng Xu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
2
|
Alshehri RS, Abuzinadah AR, Alrawaili MS, Alotaibi MK, Alsufyani HA, Alshanketi RM, AlShareef AA. A Review of Biomarkers of Amyotrophic Lateral Sclerosis: A Pathophysiologic Approach. Int J Mol Sci 2024; 25:10900. [PMID: 39456682 PMCID: PMC11507293 DOI: 10.3390/ijms252010900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. The heterogeneous nature of ALS at the clinical, genetic, and pathological levels makes it challenging to develop diagnostic and prognostic tools that fit all disease phenotypes. Limitations associated with the functional scales and the qualitative nature of mainstay electrophysiological testing prompt the investigation of more objective quantitative assessment. Biofluid biomarkers have the potential to fill that gap by providing evidence of a disease process potentially early in the disease, its progression, and its response to therapy. In contrast to other neurodegenerative diseases, no biomarker has yet been validated in clinical use for ALS. Several fluid biomarkers have been investigated in clinical studies in ALS. Biofluid biomarkers reflect the different pathophysiological processes, from protein aggregation to muscle denervation. This review takes a pathophysiologic approach to summarizing the findings of clinical studies utilizing quantitative biofluid biomarkers in ALS, discusses the utility and shortcomings of each biomarker, and highlights the superiority of neurofilaments as biomarkers of neurodegeneration over other candidate biomarkers.
Collapse
Affiliation(s)
- Rawiah S. Alshehri
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Ahmad R. Abuzinadah
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Moafaq S. Alrawaili
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Muteb K. Alotaibi
- Neurology Department, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia;
| | - Hadeel A. Alsufyani
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Rajaa M. Alshanketi
- Internal Medicine Department, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Aysha A. AlShareef
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
3
|
Fang SY, Tsai PC, Jih KY, Hsu FC, Liao YC, Yang CC, Lee YC. TBK1 p.Y153Qfs*9 variant may be associated with young-onset, rapidly progressive amyotrophic lateral sclerosis through a haploinsufficiency mechanism. J Chin Med Assoc 2024; 87:920-926. [PMID: 39118204 DOI: 10.1097/jcma.0000000000001147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND TBK1 variants have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia spectrum disorder. The current study elucidated the clinical and molecular genetic features of a novel TBK1 variant identified in a patient with young-onset, rapidly progressive ALS. METHODS The coding regions of TBK1 , SOD1 , TARDBP , and FUS were genetically analyzed using Sanger sequencing. Repeat-primed polymerase chain reaction (PCR) was used to survey the GGGGCC repeat in C9ORF72 . The study participant underwent a comprehensive clinical evaluation. The functional effects of the TBK1 variant were analyzed through in vitro transfection studies. RESULTS We identified a novel frameshift truncating TBK1 variant, c.456_457delGT (p.Y153Qfs*9), in a man with ALS. The disease initially manifested as right hand weakness at the age of 39 years but progressed rapidly, with the revised ALS Functional Rating Scale score declining at an average monthly rate of 1.92 points in the first year after diagnosis. The patient had no cognitive dysfunction. However, Technetium-99m single photon emission tomography indicated hypoperfusion in his bilateral superior and middle frontal cortices. In vitro studies revealed that the p.Y153Qfs*9 variant resulted in a truncated TBK1 protein product, reduced TBK1 protein expression, loss of kinase function, reduced interaction with optineurin, and impaired dimerization. CONCLUSION The heterozygous TBK1 p.Y153Qfs*9 variant may be associated with young-onset, rapidly progressive ALS through a haploinsufficiency mechanism.
Collapse
Affiliation(s)
- Shih-Yu Fang
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
| | - Pei-Chien Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
- The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Kang-Yang Jih
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Department of Physiology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Fang-Chi Hsu
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chih-Chao Yang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC
| |
Collapse
|
4
|
Min JH, Sarlus H, Harris RA. Copper toxicity and deficiency: the vicious cycle at the core of protein aggregation in ALS. Front Mol Neurosci 2024; 17:1408159. [PMID: 39050823 PMCID: PMC11267976 DOI: 10.3389/fnmol.2024.1408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The pathophysiology of ALS involves many signs of a disruption in copper homeostasis, with both excess free levels and functional deficiency likely occurring simultaneously. This is crucial, as many important physiological functions are performed by cuproenzymes. While it is unsurprising that many ALS symptoms are related to signs of copper deficiency, resulting in vascular, antioxidant system and mitochondrial oxidative respiration deficiencies, there are also signs of copper toxicity such as ROS generation and enhanced protein aggregation. We discuss how copper also plays a key role in proteostasis and interacts either directly or indirectly with many of the key aggregate-prone proteins implicated in ALS, such as TDP-43, C9ORF72, SOD1 and FUS as well as the effect of their aggregation on copper homeostasis. We suggest that loss of cuproprotein function is at the core of ALS pathology, a condition that is driven by a combination of unbound copper and ROS that can either initiate and/or accelerate protein aggregation. This could trigger a positive feedback cycle whereby protein aggregates trigger the aggregation of other proteins in a chain reaction that eventually captures elements of the proteostatic mechanisms in place to counteract them. The end result is an abundance of aggregated non-functional cuproproteins and chaperones alongside depleted intracellular copper stores, resulting in a general lack of cuproenzyme function. We then discuss the possible aetiology of ALS and illustrate how strong risk factors including environmental toxins such as BMAA and heavy metals can functionally behave to promote protein aggregation and disturb copper metabolism that likely drives this vicious cycle in sporadic ALS. From this synthesis, we propose restoration of copper balance using copper delivery agents in combination with chaperones/chaperone mimetics, perhaps in conjunction with the neuroprotective amino acid serine, as a promising strategy in the treatment of this incurable disease.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
5
|
Mousele C, Holden D, Gnanapavan S. Neurofilaments in neurologic disease. Adv Clin Chem 2024; 123:65-128. [PMID: 39181624 DOI: 10.1016/bs.acc.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Neurofilaments (NFs), major cytoskeletal constituents of neurons, have emerged as universal biomarkers of neuronal injury. Neuroaxonal damage underlies permanent disability in various neurological conditions. It is crucial to accurately quantify and longitudinally monitor this damage to evaluate disease progression, evaluate treatment effectiveness, contribute to novel treatment development, and offer prognostic insights. Neurofilaments show promise for this purpose, as their levels increase with neuroaxonal damage in both cerebrospinal fluid and blood, independent of specific causal pathways. New assays with high sensitivity allow reliable measurement of neurofilaments in body fluids and open avenues to investigate their role in neurological disorders. This book chapter will delve into the evolving landscape of neurofilaments, starting with their structure and cellular functions within neurons. It will then provide a comprehensive overview of their broad clinical value as biomarkers in diseases affecting the central or peripheral nervous system.
Collapse
|
6
|
Dogan M, Teralı K, Eroz R, Kılıç H, Gezdirici A, Gönüllü B. Discovery of a novel homozygous SOD1 truncating variant bolsters infantile SOD1 deficiency syndrome. Mol Biol Rep 2024; 51:580. [PMID: 38668754 DOI: 10.1007/s11033-024-09513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE Superoxide dismutase 1 (SOD1) is an important antioxidant enzyme whose main function is to neutralise superoxide free radicals in the cytoplasm. Heterozygous variants in SOD1 are responsible for a substantial percentage of familial amyotrophic lateral sclerosis (ALS) cases. Recently, several reports have shown that biallelic loss of SOD1 function results in a novel phenotype called infantile SOD1 deficiency syndrome, which is consistent with a recessive pattern of inheritance and can be distinguished from typical (adult-onset) ALS. METHODS We documented detailed family histories and clinical data, followed by whole-exome sequencing and family co-segregation analysis through Sanger sequencing. To facilitate comparisons, relevant data from fifteen previously reported patients with SOD1-related neurodevelopmental disorders were included. RESULTS This study presents a new Turkish family with two affected children exhibiting severe delayed motor development, infancy-onset loss of motor skills, axial hypotonia, tetraspasticity, and impaired cognitive functions. Genetic analysis revealed a novel homozygous frameshift variant in SOD1 (c.248dupG [p.Asp84Argfs*8]), with computational biochemical studies shedding light on the mechanistic aspects of SOD1 dysfunction. CONCLUSIONS Our findings contribute an affirmative report of a fourth biallelic variant resulting in a severe clinical phenotype, reminiscent of those induced by previously identified homozygous loss-of-function SOD1 variants. This research not only advances our understanding of the pathogenesis of this debilitating neurological syndrome but also aligns with ongoing intensive efforts to comprehend and address SOD1-linked ALS.
Collapse
Affiliation(s)
- Mustafa Dogan
- Department of Medical Genetics, University of Health Sciences Basaksehir Cam and Sakura State Hospital, Basaksehir Mahallesi G-434 Caddesi No: 2L Basaksehir, Istanbul, Turkey.
| | - Kerem Teralı
- Department of Medical Biochemistry, Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| | - Recep Eroz
- Department of Medical Genetics, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Hüseyin Kılıç
- Department of Pediatric Neurology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, University of Health Sciences Basaksehir Cam and Sakura State Hospital, Basaksehir Mahallesi G-434 Caddesi No: 2L Basaksehir, Istanbul, Turkey
| | - Burçin Gönüllü
- Department of Pediatric Neurology, Batman Research and Training Hospital, Batman, Turkey
| |
Collapse
|
7
|
de Souza PVS, Serrano PDL, Farias IB, Machado RIL, Badia BDML, de Oliveira HB, Barbosa AS, Pereira CA, Moreira VDF, Chieia MAT, Barbosa AR, Braga VL, Pinto WBVDR, Oliveira ASB. Clinical and Genetic Aspects of Juvenile Amyotrophic Lateral Sclerosis: A Promising Era Emerges. Genes (Basel) 2024; 15:311. [PMID: 38540369 PMCID: PMC10969870 DOI: 10.3390/genes15030311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 06/14/2024] Open
Abstract
Juvenile Amyotrophic Lateral Sclerosis is a genetically heterogeneous neurodegenerative disorder, which is frequently misdiagnosed due to low clinical suspicion and little knowledge about disease characteristics. More than 20 different genetic loci have been associated with both sporadic and familial juvenile Amyotrophic Lateral Sclerosis. Currently, almost 40% of cases have an identifiable monogenic basis; type 6, associated with FUS gene variants, is the most prevalent globally. Despite several upper motor neuron-dominant forms being generally associated with long-standing motor symptoms and slowly progressive course, certain subtypes with lower motor neuron-dominant features and early bulbar compromise lead to rapidly progressive motor handicap. For some monogenic forms, there is a well-established genotypic-phenotypic correlation. There are no specific biochemical and neuroimaging biomarkers for the diagnosis of juvenile Amyotrophic Lateral Sclerosis. There are several inherited neurodegenerative and neurometabolic disorders which can lead to the signs of motor neuron impairment. This review emphasizes the importance of high clinical suspicion, assessment, and proper diagnostic work-up for juvenile Amyotrophic Lateral Sclerosis.
Collapse
Affiliation(s)
- Paulo Victor Sgobbi de Souza
- Motor Neuron Disease Unit, Division of Neuromuscular Diseases, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04039-060, Brazil; (P.d.L.S.); (W.B.V.d.R.P.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Goyal NA, Bonar K, Savic N, Beau Lejdstrom R, Wright J, Mellor J, McDermott C. Misdiagnosis of amyotrophic lateral sclerosis in clinical practice in Europe and the USA: a patient chart review and physician survey. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:16-25. [PMID: 37794794 DOI: 10.1080/21678421.2023.2260808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVE Delays in amyotrophic lateral sclerosis (ALS) diagnosis can result in compromised disease management and unnecessary costs. We examined the extent of ALS misdiagnosis in the US and Europe. METHODS Data were collected via the Adelphi ALS Disease Specific Programme™, a cross-sectional survey of physicians and a medical chart review of their consulting patients with ALS in France, Germany, Italy, Spain, the UK (EU5), and the US. Between July 2020 and March 2021, eligible physicians (primary speciality neurology, active involvement in managing patients with ALS) abstracted data from patients (≥18 years old) with confirmed ALS. RESULTS Overall, 138 physicians completed the survey (EU5 107, US 31), with data reviewed from 795 patient medical charts (EU5 568, US 227); 278 (35.0%) patients (EU5 183 [32.2%], US 95 [41.9%]) had received ≥1 initial misdiagnosis based on symptoms later attributed to ALS. Mean (SD) time from symptom onset to first healthcare professional consultation was 3.8 (5.2) months (EU5 4.3 [4.8] months, US 2.6 [5.8] months). Mean (SD) time from symptom onset to ALS diagnosis was 8.2 (12.5) months (EU5 9.6 [14.0] months, US 5.0 [6.8] months) and increased to 10.4 (17.9) for patients with a misdiagnosis (compared with 6.9 [7.2] for patients with no misdiagnosis). Physician-identified barriers to timely ALS diagnosis included the similarity of symptoms to other conditions and delayed referral to neurologists. CONCLUSIONS Misdiagnosis of ALS is frequent, with a protracted diagnostic pathway. Targeted education of patients and physicians about signs and symptoms and benefits of prompt referral to multidisciplinary care are needed.
Collapse
Affiliation(s)
- Namita A Goyal
- Department of Neurology, UC Irvine MDA-ALS and Neuromuscular Center, University of California, Irvine, USA
| | | | | | | | | | | | - Christopher McDermott
- Department of Neurology, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
9
|
Ai Y, Li F, Hou Y, Li X, Li W, Qin K, Suo X, Lei D, Shang H, Gong Q. Differential cortical gray matter changes in early- and late-onset patients with amyotrophic lateral sclerosis. Cereb Cortex 2024; 34:bhad426. [PMID: 38061694 DOI: 10.1093/cercor/bhad426] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 01/19/2024] Open
Abstract
Age at onset may be an important feature associated with distinct subtypes of amyotrophic lateral sclerosis (ALS). Little is known about the neuropathological mechanism of early-onset ALS (EO-ALS) and late-onset ALS (LO-ALS). Ninety ALS patients were divided into EO-ALS and LO-ALS group, and 128 healthy controls were matched into young controls(YCs) and old controls (OCs). A voxel-based morphometry approach was employed to investigate differences in gray matter volume (GMV). Significant age at onset-by-diagnosis interactions were found in the left parietal operculum, left precentral gyrus, bilateral postcentral gyrus, right occipital gyrus, and right orbitofrontal cortex. Post hoc analysis revealed a significant decrease in GMV in all affected regions of EO-ALS patients compared with YCs, with increased GMV in 5 of the 6 brain regions, except for the right orbitofrontal cortex, in LO-ALS patients compared with OCs. LO-ALS patients had a significantly increased GMV than EO-ALS patients after removing the aging effect. Correspondingly, GMV of the left postcentral gyrus correlated with disease severity in the 2 ALS groups. Our findings suggested that the pathological mechanisms in ALS patients with different ages at onset might differ. These findings provide unique insight into the clinical and biological heterogeneity of the 2 ALS subtypes.
Collapse
Affiliation(s)
- Yuan Ai
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Fei Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Xiuli Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Wenbin Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Kun Qin
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Xueling Suo
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Du Lei
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, 699 Jinyuan Xi Road, Jimei District, Xiamen, Fujian 361021, China
| |
Collapse
|
10
|
Baumgartner D, Mušová Z, Zídková J, Hedvičáková P, Vlčková E, Joppeková L, Kramářová T, Fajkusová L, Stránecký V, Geryk J, Votýpka P, Mazanec R. Genetic Landscape of Amyotrophic Lateral Sclerosis in Czech Patients. J Neuromuscul Dis 2024; 11:1035-1048. [PMID: 39058450 PMCID: PMC11380243 DOI: 10.3233/jnd-230236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Background Genetic factors are involved in the pathogenesis of familial and sporadic amyotrophic lateral sclerosis (ALS) and constitute a link to its association with frontotemporal dementia (FTD). Gene-targeted therapies for some forms of ALS (C9orf72, SOD1) have recently gained momentum. Genetic architecture in Czech ALS patients has not been comprehensively assessed so far. Objective We aimed to deliver pilot data on the genetic landscape of ALS in our country. Methods A cohort of patients with ALS (n = 88), recruited from two Czech Neuromuscular Centers, was assessed for hexanucleotide repeat expansion (HRE) in C9orf72 and also for genetic variations in other 36 ALS-linked genes via next-generation sequencing (NGS). Nine patients (10.1%) had a familial ALS. Further, we analyzed two subgroups of sporadic patients - with concomitant FTD (n = 7) and with young-onset of the disease (n = 22). Results We detected the pathogenic HRE in C9orf72 in 12 patients (13.5%) and three other pathogenic variants in FUS, TARDBP and TBK1, each in one patient. Additional 7 novel and 9 rare known variants with uncertain causal significance have been detected in 15 patients. Three sporadic patients with FTD (42.9%) were harbouring a pathogenic variant (all HRE in C9orf72). Surprisingly, none of the young-onset sporadic patients harboured a pathogenic variant and we detected no pathogenic SOD1 variant in our cohort. Conclusion Our findings resemble those from other European populations, with the highest prevalence of HRE in the C9orf72 gene. Further, our findings suggest a possibility of a missing genetic variability among young-onset patients.
Collapse
Affiliation(s)
- Daniel Baumgartner
- Department of Neurology, Neuromuscular Center, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Zuzana Mušová
- Department of Biology and Medical Genetics, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Jana Zídková
- Center for Molecular Biology and Genetics, Internal Haematology and Oncology Clinic, University Hospital Brno and Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Petra Hedvičáková
- Department of Biology and Medical Genetics, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Eva Vlčková
- Department of Neurology, Neuromuscular Center, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lubica Joppeková
- Department of Neurology, Neuromuscular Center, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tereza Kramářová
- Center for Molecular Biology and Genetics, Internal Haematology and Oncology Clinic, University Hospital Brno and Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Lenka Fajkusová
- Center for Molecular Biology and Genetics, Internal Haematology and Oncology Clinic, University Hospital Brno and Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Viktor Stránecký
- Department of Pediatrics and Inherited Metabolic Disorders, Research Unit for Rare Diseases, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - Jan Geryk
- Department of Biology and Medical Genetics, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Pavel Votýpka
- Department of Biology and Medical Genetics, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Radim Mazanec
- Department of Neurology, Neuromuscular Center, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
11
|
Villavicencio-Tejo F, Olesen MA, Navarro L, Calisto N, Iribarren C, García K, Corsini G, Quintanilla RA. Gut-Brain Axis Deregulation and Its Possible Contribution to Neurodegenerative Disorders. Neurotox Res 2023; 42:4. [PMID: 38103074 DOI: 10.1007/s12640-023-00681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
The gut-brain axis is an essential communication pathway between the central nervous system (CNS) and the gastrointestinal tract. The human microbiota is composed of a diverse and abundant microbial community that compasses more than 100 trillion microorganisms that participate in relevant physiological functions such as host nutrient metabolism, structural integrity, maintenance of the gut mucosal barrier, and immunomodulation. Recent evidence in animal models has been instrumental in demonstrating the possible role of the microbiota in neurodevelopment, neuroinflammation, and behavior. Furthermore, clinical studies suggested that adverse changes in the microbiota can be considered a susceptibility factor for neurological disorders (NDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). In this review, we will discuss evidence describing the role of gut microbes in health and disease as a relevant risk factor in the pathogenesis of neurodegenerative disorders, including AD, PD, HD, and ALS.
Collapse
Affiliation(s)
- Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel 8910060, Santiago, Chile
| | - Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel 8910060, Santiago, Chile
| | - Laura Navarro
- Laboratorio de Microbiología Molecular y Compuestos Bioactivos, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Nancy Calisto
- Laboratorio de Microbiología Molecular y Compuestos Bioactivos, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Cristian Iribarren
- Laboratorio de Patógenos Gastrointestinales, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Katherine García
- Laboratorio de Patógenos Gastrointestinales, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Gino Corsini
- Laboratorio de Microbiología Molecular y Compuestos Bioactivos, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel 8910060, Santiago, Chile.
| |
Collapse
|
12
|
Tsui A, Kouznetsova VL, Kesari S, Fiala M, Tsigelny IF. Role of Senataxin in Amyotrophic Lateral Sclerosis. J Mol Neurosci 2023; 73:996-1009. [PMID: 37982993 DOI: 10.1007/s12031-023-02169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, uncurable neurodegenerative disorder characterized by the degradation of motor neurons leading to muscle impairment, failure, and death. Senataxin, encoded by the SETX gene, is a human helicase protein whose mutations have been linked with ALS onset, particularly in its juvenile ALS4 form. Using senataxin's yeast homolog Sen1 as a model for study, it is suggested that senataxin's N-terminus interacts with RNA polymerase II, whilst its C-terminus engages in helicase activity. Senataxin is heavily involved in transcription regulation, termination, and R-loop resolution, enabled by recruitment and interactions with enzymes such as ubiquitin protein ligase SAN1 and ribonuclease H (RNase H). Senataxin also engages in DNA damage response (DDR), primarily interacting with the exosome subunit Rrp45. The Sen1 mutation E1597K, alongside the L389S and R2136H gain-of-function mutations to senataxin, is shown to cause negative structural and thus functional effects to the protein, thus contributing to a disruption in WT functions, motor neuron (MN) degeneration, and the manifestation of ALS clinical symptoms. This review corroborates and summarizes published papers concerning the structure and function of senataxin as well as the effects of their mutations in ALS pathology in order to compile current knowledge and provide a reference for future research. The findings compiled in this review are indicative of the experimental and therapeutic potential of senataxin and its mutations as a target in future ALS treatment/cure discovery, with some potential therapeutic routes also being discussed in the review.
Collapse
Affiliation(s)
- Andrew Tsui
- REHS Program, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA
| | - Valentina L Kouznetsova
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA
- CureScience Institute, San Diego, CA, USA
- BiAna, San Diego, La Jolla, CA, USA
| | | | - Milan Fiala
- Department of Integrative Biology and Physiology, School of Medicine, UCLA, Los Angeles, CA, USA
| | - Igor F Tsigelny
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA.
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
- CureScience Institute, San Diego, CA, USA.
- BiAna, San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Colombo E, Gentile F, Maranzano A, Doretti A, Verde F, Olivero M, Gagliardi D, Faré M, Meneri M, Poletti B, Maderna L, Corti S, Corbo M, Morelli C, Silani V, Ticozzi N. The impact of upper motor neuron involvement on clinical features, disease progression and prognosis in amyotrophic lateral sclerosis. Front Neurol 2023; 14:1249429. [PMID: 37822527 PMCID: PMC10562695 DOI: 10.3389/fneur.2023.1249429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
ObjectivesIn amyotrophic lateral sclerosis (ALS) both upper (UMNs) and lower motor neurons (LMNs) are involved in the process of neurodegeneration, accounting for the great disease heterogeneity. We evaluated the associations of the burden of UMN impairment, assessed through the Penn Upper Motor Neuron Score (PUMNS), with demographic and clinical features of ALS patients to define the independent role of UMN involvement in generating disease heterogeneity, predicting disease progression and prognosis.MethodsWe collected the following clinical parameters on a cohort of 875 ALS patients: age and site of onset, survival, MRC scale, lower motor neuron score (LMNS), PUMNS, ALSFRS-R, change in ALSFRS-R over time (DFS), MITOS and King’s staging systems (KSS). Transcranial magnetic stimulation was performed on a subgroup of patients and central motor conduction time (CMCT) and cortical silent period (CSP) were calculated.ResultsWe observed that patients with an earlier age at onset and bulbar onset had higher PUMNS values. Higher values were also associated to lower ALSFRS-R and to higher DFS scores, as well as to higher MITOS and KSS, indicating that a greater UMN burden correlates with disease severity. Conversely, we did not appreciate any association between UMN involvement and survival or markers of LMN impairment. Moreover, PUMNS values showed a positive association with CMCT and a negative one with CSP values.InterpretationOur results suggest that the burden of UMN pathology, assessed through PUMNS, has an important independent role in defining clinical characteristics, functional disability, disease progression and prognosis in ALS patients. We also support the role of TMS in defining severity of UMN involvement.
Collapse
Affiliation(s)
- Eleonora Colombo
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Francesco Gentile
- Neurology Residency Program, Università degli Studi di Milano, Milan, Italy
| | - Alessio Maranzano
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Alberto Doretti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Marco Olivero
- Neurology Residency Program, Università degli Studi di Milano, Milan, Italy
| | - Delia Gagliardi
- “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Matteo Faré
- Department of Neurology, San Gerardo Hospital ASST, Monza, Italy
- School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Megi Meneri
- “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luca Maderna
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Stefania Corti
- “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura Igea (CCI), Milan, Italy
| | - Claudia Morelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
14
|
Nunez Y, Balalian A, Parks RM, He MZ, Hansen J, Raaschou-Nielsen O, Ketzel M, Khan J, Brandt J, Vermeulen R, Peters S, Weisskopf MG, Re DB, Goldsmith J, Kioumourtzoglou MA. Exploring Relevant Time Windows in the Association Between PM2.5 Exposure and Amyotrophic Lateral Sclerosis: A Case-Control Study in Denmark. Am J Epidemiol 2023; 192:1499-1508. [PMID: 37092253 PMCID: PMC10666968 DOI: 10.1093/aje/kwad099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/08/2022] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
Studies suggest a link between particulate matter less than or equal to 2.5 μm in diameter (PM2.5) and amyotrophic lateral sclerosis (ALS), but to our knowledge critical exposure windows have not been examined. We performed a case-control study in the Danish population spanning the years 1989-2013. Cases were selected from the Danish National Patient Registry based on International Classification of Diseases codes. Five controls were randomly selected from the Danish Civil Registry and matched to a case on vital status, age, and sex. PM2.5 concentration at residential addresses was assigned using monthly predictions from a dispersion model. We used conditional logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs), adjusting for confounding. We evaluated exposure to averaged PM2.5 concentrations 12-24 months, 2-6 years, and 2-11 years pre-ALS diagnosis; annual lagged exposures up to 11 years prediagnosis; and cumulative associations for exposure in lags 1-5 years and 1-10 years prediagnosis, allowing for varying association estimates by year. We identified 3,983 cases and 19,915 controls. Cumulative exposure to PM2.5 in the period 2-6 years prediagnosis was associated with ALS (OR = 1.06, 95% CI: 0.99, 1.13). Exposures in the second, third, and fourth years prediagnosis were individually associated with higher odds of ALS (e.g., for lag 1, OR = 1.04, 95% CI: 1.00, 1.08). Exposure to PM2.5 within 6 years before diagnosis may represent a critical exposure window for ALS.
Collapse
Affiliation(s)
- Yanelli Nunez
- Correspondence to Dr. Yanelli Nunez, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168th Street, New York, NY 10032 (e-mail: )
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Günther R. [Gene Therapies in Motor Neuron Diseases ALS and SMA]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2023; 91:153-163. [PMID: 36822211 DOI: 10.1055/a-2002-5215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
In the past, the diagnosis of motor neuron diseases such as amyotrophic lateral sclerosis (ALS) and 5q-associated spinal muscular atrophy (SMA) meant powerlessness in the face of seemingly untreatable diseases with severe motor-functional limitations and sometimes fatal courses. Recent advances in an understanding of the genetic causalities of these diseases, combined with success in the development of targeted gene therapy strategies, spell hope for effective, innovative therapeutic approaches, pioneering the ability to treat neurodegenerative diseases. While gene therapies have been approved for SMA since a few years, gene therapy research in ALS is still in clinical trials with encouraging results. This article provides an overview of the genetic background of ALS and SMA known to date and gene therapy approaches to them with a focus on therapy candidates that are in clinical trials or have already gained market approval.
Collapse
Affiliation(s)
- René Günther
- Klinik und Poliklinik für Neurologie, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
16
|
Spencer PS, Palmer VS, Kisby GE, Lagrange E, Horowitz BZ, Valdes Angues R, Reis J, Vernoux JP, Raoul C, Camu W. Early-onset, conjugal, twin-discordant, and clusters of sporadic ALS: Pathway to discovery of etiology via lifetime exposome research. Front Neurosci 2023; 17:1005096. [PMID: 36860617 PMCID: PMC9969898 DOI: 10.3389/fnins.2023.1005096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/09/2023] [Indexed: 02/17/2023] Open
Abstract
The identity and role of environmental factors in the etiology of sporadic amyotrophic lateral sclerosis (sALS) is poorly understood outside of three former high-incidence foci of Western Pacific ALS and a hotspot of sALS in the French Alps. In both instances, there is a strong association with exposure to DNA-damaging (genotoxic) chemicals years or decades prior to clinical onset of motor neuron disease. In light of this recent understanding, we discuss published geographic clusters of ALS, conjugal cases, single-affected twins, and young-onset cases in relation to their demographic, geographic and environmental associations but also whether, in theory, there was the possibility of exposure to genotoxic chemicals of natural or synthetic origin. Special opportunities to test for such exposures in sALS exist in southeast France, northwest Italy, Finland, the U.S. East North Central States, and in the U.S. Air Force and Space Force. Given the degree and timing of exposure to an environmental trigger of ALS may be related to the age at which the disease is expressed, research should focus on the lifetime exposome (from conception to clinical onset) of young sALS cases. Multidisciplinary research of this type may lead to the identification of ALS causation, mechanism, and primary prevention, as well as to early detection of impending ALS and pre-clinical treatment to slow development of this fatal neurological disease.
Collapse
Affiliation(s)
- Peter S. Spencer
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Valerie S. Palmer
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Glen E. Kisby
- College of Osteopathic Medicine of the Pacific Northwest, Western University of Health Sciences, Lebanon, OR, United States
| | - Emmeline Lagrange
- Department of Neurology, Reference Center of Neuromuscular Disease and ALS Consultations, Grenoble University Hospital, Grenoble, France
| | - B. Zane Horowitz
- Department of Emergency Medicine, Oregon-Alaska Poison Center, Oregon Health and Science University, Portland, OR, United States
| | - Raquel Valdes Angues
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Jacques Reis
- University of Strasbourg, Faculté de Médecine, Strasbourg, France
| | - Jean-Paul Vernoux
- Normandie Université, UNICAEN, Unité de Recherche Aliments Bioprocédés Toxicologie Environnements, Caen, France
| | - Cédric Raoul
- INM, University of Montpellier, INSERM, Montpellier, France
| | - William Camu
- ALS Reference Center, Montpellier University Hospital and University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
17
|
Bao Y, Chen Y, Piao S, Hu B, Yang L, Li H, Geng D, Li Y. Iron quantitative analysis of motor combined with bulbar region in M1 cortex may improve diagnosis performance in ALS. Eur Radiol 2023; 33:1132-1142. [PMID: 35951045 DOI: 10.1007/s00330-022-09045-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/08/2022] [Accepted: 07/09/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To explore whether the combined analysis of motor and bulbar region of M1 on susceptibility-weighted imaging (SWI) can be a valid biomarker for amyotrophic lateral sclerosis (ALS). METHODS Thirty-two non-demented ALS patients and 35 age- and gender-matched healthy controls (HC) were retrospectively recruited. SWI and 3D-T1-MPRAGE images were obtained from all individuals using a 3.0-T MRI scan. The bilateral posterior band of M1 was manually delineated by three neuroradiologists on phase images and subdivided into the motor and bulbar regions. We compared the phase values in two groups and performed a stratification analysis (ALSFRS-R score, duration, disease progression rate, and onset). Receiver operating characteristic (ROC) curves were also constructed. RESULTS ALS group showed significantly increased phase values in M1 and the two subregions than the HC group, on the all and elderly level (p < 0.001, respectively). On all-age level comparison, negative correlations were found between phase values of M1 and clinical score and duration (p < 0.05, respectively). Similar associations were found in the motor region (p < 0.05, respectively). On both the total (p < 0.01) and elderly (p < 0.05) levels, there were positive relationships between disease progression rate and M1 phase values. In comparing ROC curves, the entire M1 showed the best diagnostic performance. CONCLUSIONS Combining motor and bulbar analyses as an integral M1 region on SWI can improve ALS diagnosis performance, especially in the elderly. The phase value could be a valuable biomarker for ALS evaluation. KEY POINTS • Integrated analysis of the motor and bulbar as an entire M1 region on SWI can improve the diagnosis performance in ALS. • Quantitative analysis of iron deposition by SWI measurement helps the clinical evaluation, especially for the elderly patients. • Phase value, when combined with the disease progression rate, could be a valuable biomarker for ALS.
Collapse
Affiliation(s)
- Yifang Bao
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, 200040, China
| | - Yan Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Sirong Piao
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, 200040, China
| | - Bin Hu
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, 200040, China
| | - Liqin Yang
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, 200040, China
| | - Haiqing Li
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, 200040, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China. .,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, 200040, China.
| | - Yuxin Li
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China. .,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
18
|
Nona RJ, Xu Z, Robinson GA, Henderson RD, McCombe PA. Age of Onset and Length of Survival of Queensland Patients with Amyotrophic Lateral Sclerosis: Details of Subjects with Early Onset and Subjects with Long Survival. NEURODEGENER DIS 2022; 22:104-121. [PMID: 36587610 PMCID: PMC10627495 DOI: 10.1159/000528875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION The aims of the study were to document the characteristics of amyotrophic lateral sclerosis (ALS) patients in Queensland, to examine factors influencing age of onset, and survival, and to study those with early-onset (<45 years) disease and those with long (>5 years) survival. METHODS We studied subjects seen at the ALS Clinic at the Royal Brisbane and Women's Hospital. We recorded sex, age of onset, region of onset, length of survival, presence of family history, type of disease, and evidence of cognitive involvement. We analysed the influence of these features on age of onset and survival. We analysed the features of patients with early onset of disease and patients with long survival. RESULTS There were 855 ALS patients (505 males) in the cohort. The age of onset was lower in males than females, in patients with a family history of ALS compared to those without, and in patients with spinal onset compared to bulbar onset. Early-onset disease was seen in 10% of patients, and had a greater proportion of males, spinal onset, and classical ALS phenotype compared to late-onset disease. Survival was shorter in females, in patients with bulbar onset, and in patients with classical ALS. Long survival was seen in 18% of patients. Patients with long survival had younger age of onset, greater proportion of males, spinal onset, and fewer patients with classical ALS. CONCLUSION Our study confirms that ALS is more prevalent in males and that spinal onset is more common than bulbar onset. Males have earlier onset but longer survival. We found that overall, patients with classical ALS have worse survival than ALS variants, but some patients who were considered to have classical ALS had long survival. This study confirms the similarity of ALS in our region to ALS in other geographical regions.
Collapse
Affiliation(s)
- Robert J. Nona
- Centre for Clinical Research, University of Queensland, Herston, Queensland, Australia
| | - Zhouwei Xu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Gail A. Robinson
- Queensland Brain Institute and School of Psychology, University of Queensland, St Lucia, Queensland, Australia
| | - Robert D. Henderson
- Centre for Clinical Research, University of Queensland, Herston, Queensland, Australia
- Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Pamela A. McCombe
- Centre for Clinical Research, University of Queensland, Herston, Queensland, Australia
- Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| |
Collapse
|
19
|
Gelon PA, Dutchak PA, Sephton CF. Synaptic dysfunction in ALS and FTD: anatomical and molecular changes provide insights into mechanisms of disease. Front Mol Neurosci 2022; 15:1000183. [PMID: 36263379 PMCID: PMC9575515 DOI: 10.3389/fnmol.2022.1000183] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Synaptic loss is a pathological feature of all neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). ALS is a disease of the cortical and spinal motor neurons resulting in fatal paralysis due to denervation of muscles. FTD is a form of dementia that primarily affects brain regions controlling cognition, language and behavior. Once classified as two distinct diseases, ALS and FTD are now considered as part of a common disease spectrum based on overlapping clinical, pathological and genetic evidence. At the cellular level, aggregation of common proteins and overlapping gene susceptibilities are shared in both ALS and FTD. Despite the convergence of these two fields of research, the underlying disease mechanisms remain elusive. However, recent discovers from ALS and FTD patient studies and models of ALS/FTD strongly suggests that synaptic dysfunction is an early event in the disease process and a unifying hallmark of these diseases. This review provides a summary of the reported anatomical and cellular changes that occur in cortical and spinal motor neurons in ALS and FTD tissues and models of disease. We also highlight studies that identify changes in the proteome and transcriptome of ALS and FTD models and provide a conceptual overview of the processes that contribute to synaptic dysfunction in these diseases. Due to space limitations and the vast number of publications in the ALS and FTD fields, many articles have not been discussed in this review. As such, this review focuses on the three most common shared mutations in ALS and FTD, the hexanucleuotide repeat expansion within intron 1 of chromosome 9 open reading frame 72 (C9ORF72), transactive response DNA binding protein 43 (TARDBP or TDP-43) and fused in sarcoma (FUS), with the intention of highlighting common pathways that promote synaptic dysfunction in the ALS-FTD disease spectrum.
Collapse
|
20
|
Logan A, Belli A, Di Pietro V, Tavazzi B, Lazzarino G, Mangione R, Lazzarino G, Morano I, Qureshi O, Bruce L, Barnes NM, Nagy Z. The mechanism of action of a novel neuroprotective low molecular weight dextran sulphate: New platform therapy for neurodegenerative diseases like Amyotrophic Lateral Sclerosis. Front Pharmacol 2022; 13:983853. [PMID: 36110516 PMCID: PMC9468270 DOI: 10.3389/fphar.2022.983853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Acute and chronic neurodegenerative diseases represent an immense socioeconomic burden that drives the need for new disease modifying drugs. Common pathogenic mechanisms in these diseases are evident, suggesting that a platform neuroprotective therapy may offer effective treatments. Here we present evidence for the mode of pharmacological action of a novel neuroprotective low molecular weight dextran sulphate drug called ILB®. The working hypothesis was that ILB® acts via the activation of heparin-binding growth factors (HBGF). Methods: Pre-clinical and clinical (healthy people and patients with ALS) in vitro and in vivo studies evaluated the mode of action of ILB®. In vitro binding studies, functional assays and gene expression analyses were followed by the assessment of the drug effects in an animal model of severe traumatic brain injury (sTBI) using gene expression studies followed by functional analysis. Clinical data, to assess the hypothesized mode of action, are also presented from early phase clinical trials. Results: ILB® lengthened APTT time, acted as a competitive inhibitor for HGF-Glypican-3 binding, effected pulse release of heparin-binding growth factors (HBGF) into the circulation and modulated growth factor signaling pathways. Gene expression analysis demonstrated substantial similarities in the functional dysregulation induced by sTBI and various human neurodegenerative conditions and supported a cascading effect of ILB® on growth factor activation, followed by gene expression changes with profound beneficial effect on molecular and cellular functions affected by these diseases. The transcriptional signature of ILB® relevant to cell survival, inflammation, glutamate signaling, metabolism and synaptogenesis, are consistent with the activation of neuroprotective growth factors as was the ability of ILB® to elevate circulating levels of HGF in animal models and humans. Conclusion: ILB® releases, redistributes and modulates the bioactivity of HBGF that target disease compromised nervous tissues to initiate a cascade of transcriptional, metabolic and immunological effects that control glutamate toxicity, normalize tissue bioenergetics, and resolve inflammation to improve tissue function. This unique mechanism of action mobilizes and modulates naturally occurring tissue repair mechanisms to restore cellular homeostasis and function. The identified pharmacological impact of ILB® supports the potential to treat various acute and chronic neurodegenerative disease, including sTBI and ALS.
Collapse
Affiliation(s)
- Ann Logan
- Department of Biomedical Sciences, University of Warwick, Coventry, United Kingdom
- Axolotl Consulting Ltd., Droitwich, United Kingdom
- *Correspondence: Ann Logan,
| | - Antonio Belli
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Valentina Di Pietro
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Barbara Tavazzi
- UniCamillus-Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Giacomo Lazzarino
- UniCamillus-Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Renata Mangione
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of Rome, Rome, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| | | | | | | | - Nicholas M. Barnes
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Zsuzsanna Nagy
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
21
|
Merciai F, Musella S, Sommella E, Bertamino A, D'Ursi AM, Campiglia P. Development and application of a fast ultra-high performance liquid chromatography-trapped ion mobility mass spectrometry method for untargeted lipidomics. J Chromatogr A 2022; 1673:463124. [DOI: 10.1016/j.chroma.2022.463124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/24/2022] [Accepted: 05/05/2022] [Indexed: 12/18/2022]
|
22
|
Gomes C, Sequeira C, Likhite S, Dennys CN, Kolb SJ, Shaw PJ, Vaz AR, Kaspar BK, Meyer K, Brites D. Neurotoxic Astrocytes Directly Converted from Sporadic and Familial ALS Patient Fibroblasts Reveal Signature Diversities and miR-146a Theragnostic Potential in Specific Subtypes. Cells 2022; 11:cells11071186. [PMID: 35406750 PMCID: PMC8997588 DOI: 10.3390/cells11071186] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
A lack of stratification methods in patients with amyotrophic lateral sclerosis (ALS) is likely implicated in therapeutic failures. Regional diversities and pathophysiological abnormalities in astrocytes from mice with SOD1 mutations (mSOD1-ALS) can now be explored in human patients using somatic cell reprogramming. Here, fibroblasts from four sporadic (sALS) and three mSOD1-ALS patients were transdifferentiated into induced astrocytes (iAstrocytes). ALS iAstrocytes were neurotoxic toward HB9-GFP mouse motor neurons (MNs) and exhibited subtype stratification through GFAP, CX43, Ki-67, miR-155 and miR-146a expression levels. Up- (two cases) and down-regulated (three cases) miR-146a values in iAstrocytes were recapitulated in their secretome, either free or as cargo in small extracellular vesicles (sEVs). We previously showed that the neuroprotective phenotype of depleted miR-146 mSOD1 cortical astrocytes was reverted by its mimic. Thus, we tested such modulation in the most miR-146a-depleted patient-iAstrocytes (one sALS and one mSOD1-ALS). The miR-146a mimic in ALS iAstrocytes counteracted their reactive/inflammatory profile and restored miR-146a levels in sEVs. A reduction in lysosomal activity and enhanced synaptic/axonal transport-related genes in NSC-34 MNs occurred after co-culture with miR-146a-modulated iAstrocytes. In summary, the regulation of miR-146a in depleted ALS astrocytes may be key in reestablishing their normal function and in restoring MN lysosomal/synaptic dynamic plasticity in disease sub-groups.
Collapse
Affiliation(s)
- Cátia Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.G.); (C.S.); (A.R.V.)
- The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.L.); (C.N.D.); (B.K.K.); (K.M.)
| | - Catarina Sequeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.G.); (C.S.); (A.R.V.)
| | - Shibi Likhite
- The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.L.); (C.N.D.); (B.K.K.); (K.M.)
| | - Cassandra N. Dennys
- The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.L.); (C.N.D.); (B.K.K.); (K.M.)
| | - Stephen J. Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43214, USA;
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK;
| | - Ana R. Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.G.); (C.S.); (A.R.V.)
- Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Brian K. Kaspar
- The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.L.); (C.N.D.); (B.K.K.); (K.M.)
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kathrin Meyer
- The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.L.); (C.N.D.); (B.K.K.); (K.M.)
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.G.); (C.S.); (A.R.V.)
- Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Correspondence: ; Tel.: +351-217946450
| |
Collapse
|
23
|
Tavazzi E, Daberdaku S, Zandonà A, Vasta R, Nefussy B, Lunetta C, Mora G, Mandrioli J, Grisan E, Tarlarini C, Calvo A, Moglia C, Drory V, Gotkine M, Chiò A, Di Camillo B. Predicting functional impairment trajectories in amyotrophic lateral sclerosis: a probabilistic, multifactorial model of disease progression. J Neurol 2022; 269:3858-3878. [PMID: 35266043 PMCID: PMC9217910 DOI: 10.1007/s00415-022-11022-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 12/02/2022]
Abstract
Objective To employ Artificial Intelligence to model, predict and simulate the amyotrophic lateral sclerosis (ALS) progression over time in terms of variable interactions, functional impairments, and survival. Methods We employed demographic and clinical variables, including functional scores and the utilisation of support interventions, of 3940 ALS patients from four Italian and two Israeli registers to develop a new approach based on Dynamic Bayesian Networks (DBNs) that models the ALS evolution over time, in two distinct scenarios of variable availability. The method allows to simulate patients’ disease trajectories and predict the probability of functional impairment and survival at different time points. Results DBNs explicitly represent the relationships between the variables and the pathways along which they influence the disease progression. Several notable inter-dependencies were identified and validated by comparison with literature. Moreover, the implemented tool allows the assessment of the effect of different markers on the disease course, reproducing the probabilistically expected clinical progressions. The tool shows high concordance in terms of predicted and real prognosis, assessed as time to functional impairments and survival (integral of the AU-ROC in the first 36 months between 0.80–0.93 and 0.84–0.89 for the two scenarios, respectively). Conclusions Provided only with measurements commonly collected during the first visit, our models can predict time to the loss of independence in walking, breathing, swallowing, communicating, and survival and it can be used to generate in silico patient cohorts with specific characteristics. Our tool provides a comprehensive framework to support physicians in treatment planning and clinical decision-making. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-022-11022-0.
Collapse
Affiliation(s)
- Erica Tavazzi
- Department of Information Engineering, University of Padova, Padua, Italy
| | | | - Alessandro Zandonà
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Rosario Vasta
- Department of Neuroscience, University of Torino, "Rita Levi Montalcini", Turin, Italy
| | | | | | - Gabriele Mora
- Istituti Clinici Scientifici Maugeri IRCCS, Milan, Italy
| | | | - Enrico Grisan
- Department of Information Engineering, University of Padova, Padua, Italy
- School of Engineering, London South Bank University, London, UK
| | | | - Andrea Calvo
- Department of Neuroscience, University of Torino, "Rita Levi Montalcini", Turin, Italy
| | - Cristina Moglia
- Department of Neuroscience, University of Torino, "Rita Levi Montalcini", Turin, Italy
| | - Vivian Drory
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Marc Gotkine
- Hadassah University Hospital Medical Center, Jerusalem, Israel
| | - Adriano Chiò
- Department of Neuroscience, University of Torino, "Rita Levi Montalcini", Turin, Italy
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padua, Italy.
- Department of Comparative Biomedicine and Food Science, University of Padova, Via Gradenigo 6/B, 35131, Padua, Italy.
| |
Collapse
|
24
|
Huang S, Zheng M, Lin J, Huang P, Chen W, He R, Yao X. Natural history and remarkable psychiatric state of late-onset amyotrophic lateral sclerosis in China. Acta Neurol Scand 2022; 146:24-33. [PMID: 35187661 DOI: 10.1111/ane.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/09/2021] [Accepted: 12/27/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons. The proportion of late-onset ALS in China were low and may have distinct clinical and genetic manifestations. We aimed to investigate the natural history and remarkable psychiatric state of ALS with age at onset over 60 years in China. MATERIALS AND METHODS We collected all ALS cases from 2017 to 2020 in our center and focused on late-onset ALS patients particularly, by analyzing the clinical data, including the ALS onset and disease progression. Anxiety, depression, cognitive function, and sleep quality were assessed to reflect the psychiatric state. RESULTS A total of 193 late-onset ALS patients were included in this study. The median age at onset of late-onset ALS was 65 years with the quartile from 62 to 68 years. When compared with 446 non-late-onset ALS, late-onset ALS showed distinct clinical presentation, with lower ALS Functional Rating Scale-Revised at diagnosis and faster rate of progression. Remarkably, late-onset ALS were suffering from worse psychiatric state, including serious anxiety and depression, as well as worse cognitive function with sleep quality. The abnormal psychiatric state was more pronounced in female patients of late-onset. CONCLUSIONS In the current study, ALS patients with late-onset showed unique clinical features. Severe psychiatric conditions and faster progression in the early stage of the disease of late-onset ALS indicated the need for more social and psychiatric support in this population.
Collapse
Affiliation(s)
- Sen Huang
- Department of Neurology The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases National Key Clinical Department and Key Discipline of Neurology Guangzhou China
| | - Minying Zheng
- Department of Neurology The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases National Key Clinical Department and Key Discipline of Neurology Guangzhou China
| | - Jianing Lin
- Department of Neurology The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases National Key Clinical Department and Key Discipline of Neurology Guangzhou China
| | - Pian Huang
- Department of Neurology The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases National Key Clinical Department and Key Discipline of Neurology Guangzhou China
| | - Weineng Chen
- Department of Neurology The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases National Key Clinical Department and Key Discipline of Neurology Guangzhou China
| | - Ruojie He
- Department of Neurology The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases National Key Clinical Department and Key Discipline of Neurology Guangzhou China
| | - Xiaoli Yao
- Department of Neurology The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases National Key Clinical Department and Key Discipline of Neurology Guangzhou China
| |
Collapse
|
25
|
Kliest T, Van Eijk RPA, Al-Chalabi A, Albanese A, Andersen PM, Amador MDM, BrÅthen G, Brunaud-Danel V, Brylev L, Camu W, De Carvalho M, Cereda C, Cetin H, Chaverri D, Chiò A, Corcia P, Couratier P, De Marchi F, Desnuelle C, Van Es MA, Esteban J, Filosto M, GarcÍa Redondo A, Grosskreutz J, Hanemann CO, HolmØy T, HØyer H, Ingre C, Koritnik B, Kuzma-Kozakiewicz M, Lambert T, Leigh PN, Lunetta C, Mandrioli J, Mcdermott CJ, Meyer T, Mora JS, Petri S, Povedano MÓ, Reviers E, Riva N, Roes KCB, Rubio MÁ, Salachas F, Sarafov S, SorarÙ G, Stevic Z, Svenstrup K, MØller AT, Turner MR, Van Damme P, Van Leeuwen LAG, Varona L, VÁzquez Costa JF, Weber M, Hardiman O, Van Den Berg LH. Clinical trials in pediatric ALS: a TRICALS feasibility study. Amyotroph Lateral Scler Frontotemporal Degener 2022; 23:481-488. [PMID: 35172656 PMCID: PMC9662181 DOI: 10.1080/21678421.2021.2024856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: Pediatric investigation plans (PIPs) describe how adult drugs can be studied in children. In 2015, PIPs for Amyotrophic Lateral Sclerosis (ALS) became mandatory for European marketing-authorization of adult treatments, unless a waiver is granted by the European Medicines Agency (EMA). Objective: To assess the feasibility of clinical studies on the effect of therapy in children (<18 years) with ALS in Europe. Methods: The EMA database was searched for submitted PIPs in ALS. A questionnaire was sent to 58 European ALS centers to collect the prevalence of pediatric ALS during the past ten years, the recruitment potential for future pediatric trials, and opinions of ALS experts concerning a waiver for ALS. Results: Four PIPs were identified; two were waived and two are planned for the future. In total, 49 (84.5%) centers responded to the questionnaire. The diagnosis of 44,858 patients with ALS was reported by 46 sites; 39 of the patients had an onset < 18 years (prevalence of 0.008 cases per 100,000 or 0.087% of all diagnosed patients). The estimated recruitment potential (47 sites) was 26 pediatric patients within five years. A majority of ALS experts (75.5%) recommend a waiver should apply for ALS due to the low prevalence of pediatric ALS. Conclusions: ALS with an onset before 18 years is extremely rare and may be a distinct entity from adult ALS. Conducting studies on the effect of disease-modifying therapy in pediatric ALS may involve lengthy recruitment periods, high costs, ethical/legal implications, challenges in trial design and limited information.
Collapse
Affiliation(s)
- Tessa Kliest
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Ruben P A Van Eijk
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, the Netherlands.,Biostatistics & Research Support, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.,Department of Neurology, King's College Hospital, London, UK
| | | | - Peter M Andersen
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Maria Del Mar Amador
- Département de Neurologie, Centre de référence SLA Ile de France.,Hôpital de la Pitié Salpêtrière, AP-HP, Paris, France
| | - Geir BrÅthen
- Department of Neurology, University Hospital of Trondheim, Trondheim, Norway.,Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Lev Brylev
- Bujanov Moscow City Clinical Hospital, Moscow, Russian Federation.,Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department, Moscow, Russian Federation
| | - William Camu
- ALS Centre CHU Gui de Chauliac, University of Montpellier, Montpellier, France
| | - Mamede De Carvalho
- Institute of Physiology-Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.,Department of Neurosciences and Mental Health, H Santa Maria-CHLN, Lisbon, Portugal
| | - Cristina Cereda
- Regional Newborn Screening Laboratory, Vittore Buzzi Children's Hospital-University of Milan, Italy
| | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Delia Chaverri
- Neurology Service, Hospital Universitario La Paz, Madrid, Spain
| | - Adriano Chiò
- 'Rita Levi Montalcini' Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy.,Azienda Ospedaliera Città della Salute e della Scienza, Turin, Italy
| | - Philippe Corcia
- Centre Constitutif SLA, CHRU de Tours - Fédération des centres SLA Tours-Limoges, LitORALS, Tours, France
| | - Philippe Couratier
- Centre Constitutif de reference SLA-Fédération Tours-Limoges, CHU de Limoges, Limoges, France
| | | | | | - Michael A Van Es
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - JesÚs Esteban
- ALS Research Lab - ALS Unit, Instituto de Investigación Sanitaria Hospital 12 de Octubre "i + 12", CIBERER, Madrid, Spain
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia; NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| | - Alberto GarcÍa Redondo
- ALS Research Lab - ALS Unit, Instituto de Investigación Sanitaria Hospital 12 de Octubre "i + 12", CIBERER, Madrid, Spain
| | - Julian Grosskreutz
- Precision Neurology, Dept. of Neurology, Lübeck University Hospital, Lübeck, Germany
| | - Clemens O Hanemann
- University of Plymouth, Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - Trygve HolmØy
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Helle HØyer
- Department of Medical Genetics, Telemark Hospital, Skien, Norway
| | - Caroline Ingre
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Blaz Koritnik
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | | | - Thomas Lambert
- Department of Neurology, Royal Stoke University Hospital, Stoke, United Kingdom
| | - Peter N Leigh
- Department of Neuroscience, Brighton and Sussex Medical School, Trafford Centre for Biomedical Research, University of Sussex, Brighton, UK
| | - Christian Lunetta
- NEMO Clinical Center, Serena Onlus Foundation, Milan, Italy.,NEMO LAB, Milan, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.,Department of Neuroscience, St. Agostino Estense Hospital, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Christopher J Mcdermott
- Department of Neuroscience, University of Sheffield, Sheffield Institute for Translational Neuroscience, Sheffield, United Kingdom
| | - Thomas Meyer
- ALS Outpatient Department, Charité - Universitatsmedizin Berlin, Berlin, Germany
| | - Jesus S Mora
- ALS Unit/Neurology, Hospital San Rafael, Madrid, Spain
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - MÓnica Povedano
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain
| | - Evy Reviers
- European Organization for Professionals and Patients with ALS (EUpALS) & ALS Liga Belgium, Leuven, Belgium
| | - Nilo Riva
- Department of Neurology, Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Kit C B Roes
- Department of Health Evidence, Section Biostatistics, Radboud University Medical Centre Nijmegen, Nijmegen, the Netherlands
| | - Miguel Á Rubio
- Neuromuscular Unit, Department of Neurology, Hospital del Mar, Barcelona, Spain.,Instituto Hospital del Mar de Investivaciones Médicas (IMIM), Barcelona, Spain
| | - FranÇois Salachas
- Département de Neurologie, Centre de référence SLA Ile de France.,Hôpital de la Pitié Salpêtrière, AP-HP, Paris, France
| | - Stayko Sarafov
- Clinic of General Neurology, Medical University Sofia, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Gianni SorarÙ
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Zorica Stevic
- Clinic of Neurology, Clinical Center of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Kirsten Svenstrup
- Department of Neurology, Bispebjerg-Frederiksberg Hospital and Rigshospitalet, University Hospital of Copenhagen, Denmark
| | | | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Philip Van Damme
- Department of Neurosciences, Laboratory for Neurobiology, KU Leuven and Centre for Brain & Disease Research, VIB, Leuven Brain Institute, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Lucie A G Van Leeuwen
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Luis Varona
- Department of Neurology, Basurto University Hospital, Vizcaya, Spain
| | - Juan F VÁzquez Costa
- ALS Unit and Neuromuscular Disease Unit, Department of Neurology, Hospital La Fe, Valencia, Spain
| | - Markus Weber
- Neuromoscular Disease Unit/ALS Clinic, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Orla Hardiman
- Academic Unit of Neurology Trinity College Dublin Ireland, Dublin, Ireland
| | - Leonard H Van Den Berg
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| |
Collapse
|
26
|
de Lima NS, da Costa CCP, Assunção LDP, Santos KDF, Bento DDCP, da Silva Reis AA, Santos RDS. One-carbon metabolism pathway genes and their non-association with the development of amyotrophic lateral sclerosis. J Cell Biochem 2022; 123:620-627. [PMID: 34994003 DOI: 10.1002/jcb.30208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/29/2021] [Accepted: 12/23/2021] [Indexed: 11/08/2022]
Abstract
Although of unknown etiology, some mechanisms associated with the metabolic cycle of folate are speculated to be related to the genesis of amyotrophic lateral sclerosis (ALS). Thus, the aim of the study was to analyze the role of genetic polymorphisms rs1051266 in SLC19A1 gene and rs1805087 in MTR gene and their associations with ALS development. A case-control study was conducted with 101 individuals with ALS and 119 individuals without diagnosis of neurodegenerative diseases, from the Brazilian central population. The polymorphisms were determined using the polymerase chain reaction-restriction fragment length polymorphism technique. The results showed no statistically significant differences, even when genotypes were analyzed by the dominant, recessive, codominant, and overdominant inheritance models. It was observed a statistical significance relating alcohol consumption with individuals in the case group (p = 0.01). Therefore, the need for more studies to evaluate the influence of genetic variants is highlighted, seeking to provide information on the etiopathogenesis of ALS.
Collapse
Affiliation(s)
- Nayane S de Lima
- Molecular Pathology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil
| | - Caroline C P da Costa
- Molecular Pathology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil
| | - Leandro do P Assunção
- Molecular Pathology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil
| | - Kamilla de F Santos
- Molecular Pathology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil
| | - Dhiogo da C P Bento
- Molecular Pathology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil.,Neuromuscular Disease Clinic, Rehabilitation and Readaptation Medical Center Dr. Henrique Santillo (CRER), Goiânia-GO, Brazil
| | - Angela A da Silva Reis
- Molecular Pathology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil.,Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil
| | - Rodrigo da S Santos
- Molecular Pathology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil.,Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil
| |
Collapse
|
27
|
Marques Couto C, de Melo Queiroz E, Nogueira R, Pires Duarte Küsel AP, J M Nascimento O. A Brazilian multicentre study on the clinical and epidemiological profiles of 1116 patients with amyotrophic lateral sclerosis and its phenotypic variants. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:353-362. [PMID: 34823435 DOI: 10.1080/21678421.2021.2007953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Objective: We conducted a multicentre, cross-sectional analysis of Brazilian patients with amyotrophic lateral sclerosis (ALS) and its phenotypic variants. We describe and compare their clinical and epidemiological data. Methods: We collected data from 1,116 patients who visited seven rehabilitation hospitals in the SARAH network from 1 January 2009 to 20 March 2020. This representative sample of patients was from 308 cities in 25 states from the country's five regions. Results: The median age at onset was 55 years, and we found a significant linear correlation between the age at onset and the Municipal Human Development Index (MHDI) but not survival time. We found a four-year difference using a cutoff value of 0.750 (p < 0.001). There was a male predominance, with a 1.2:1 sex ratio. The median time from onset to diagnosis was 17.6 months, and the most common phenotypic presentations were spinal-onset and bulbar-onset ALS (62.7% and 14.7%, respectively). In total, 12.9% of the patients had familial ALS, likely due to the overrepresentation of ALS type 8 patients in our population. Conclusions: In general, our numbers are consistent with most international series and with those of other Brazilian cohorts. When patients were analyzed according to their MHDI a considerable delay in symptom onset was found, suggesting the possibility of an environmental effect on these patients. Brazil has a longer diagnostic delay which is similar to other less-developed countries. This is a substantial concern and should be a priority for health authorities and neurology societies.
Collapse
Affiliation(s)
| | - Elisa de Melo Queiroz
- Department of Neurorehabilitation, SARAH Network of Rehabilitation Hospitals, Rio de Janeiro, Brazil, and
| | - Renata Nogueira
- Department of Neurology, SARAH Network of Rehabilitation Hospitals, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
28
|
Pinto WBVDR, Souza PVSD, Badia BML, Farias IB, Albuquerque Filho JMVD, Gonçalves EA, Machado RIL, Oliveira ASB. Adult-onset non-5q proximal spinal muscular atrophy: a comprehensive review. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:912-923. [PMID: 34706022 DOI: 10.1590/0004-282x-anp-2020-0429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/24/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Adult-onset spinal muscular atrophy (SMA) represents an expanding group of inherited neurodegenerative disorders in clinical practice. OBJECTIVE This review aims to synthesize the main clinical, genetic, radiological, biochemical, and neurophysiological aspects related to the classical and recently described forms of proximal SMA. METHODS The authors performed a non-systematic critical review summarizing adult-onset proximal SMA presentations. RESULTS Previously limited to cases of SMN1-related SMA type 4 (adult form), this group has now more than 15 different clinical conditions that have in common the symmetrical and progressive compromise of lower motor neurons starting in adulthood or elderly stage. New clinical and genetic subtypes of adult-onset proximal SMA have been recognized and are currently target of wide neuroradiological, pathological, and genetic studies. CONCLUSIONS This new complex group of rare disorders typically present with lower motor neuron disease in association with other neurological or systemic signs of impairment, which are relatively specific and typical for each genetic subtype.
Collapse
Affiliation(s)
| | - Paulo Victor Sgobbi de Souza
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| | - Bruno Mattos Lombardi Badia
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| | - Igor Braga Farias
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| | | | - Eduardo Augusto Gonçalves
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| | - Roberta Ismael Lacerda Machado
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| | - Acary Souza Bulle Oliveira
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| |
Collapse
|
29
|
Bartoletti-Stella A, Vacchiano V, De Pasqua S, Mengozzi G, De Biase D, Bartolomei I, Avoni P, Rizzo G, Parchi P, Donadio V, Chiò A, Pession A, Oppi F, Salvi F, Liguori R, Capellari S. Targeted sequencing panels in Italian ALS patients support different etiologies in the ALS/FTD continuum. J Neurol 2021; 268:3766-3776. [PMID: 33770234 PMCID: PMC8463338 DOI: 10.1007/s00415-021-10521-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/12/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND 5-10% of amyotrophic lateral sclerosis (ALS) patients presented a positive family history (fALS). More than 30 genes have been identified in association with ALS/frontotemporal dementia (FTD) spectrum, with four major genes accounting for 60-70% of fALS. In this paper, we aimed to assess the contribution to the pathogenesis of major and rare ALS/FTD genes in ALS patients. METHODS We analyzed ALS and ALS/FTD associated genes by direct sequencing or next-generation sequencing multigene panels in ALS patients. RESULTS Genetic abnormalities in ALS major genes included repeated expansions of hexanucleotide in C9orf72 gene (7.3%), mutations in SOD1 (4.9%), FUS (2.1%), and TARDBP (2.4%), whereas variants in rare ALS/FTD genes affected 15.5% of subjects overall, most frequently involving SQSTM1 (3.4%), and CHMP2B (1.9%). We found clustering of variants in ALS major genes in patients with a family history for "pure" ALS, while ALS/FTD related genes mainly occurred in patients with a family history for other neurodegenerative diseases (dementia and/or parkinsonism). CONCLUSIONS Our data support the presence of two different genetic components underlying ALS pathogenesis, related to the presence of a family history for ALS or other neurodegenerative diseases. Thus, family history may help in optimizing the genetic screening protocol to be applied.
Collapse
Affiliation(s)
- Anna Bartoletti-Stella
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Veria Vacchiano
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Silvia De Pasqua
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università Di Bologna, 40123, Bologna, Italy
| | - Giacomo Mengozzi
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Dario De Biase
- Department of Pharmacy and Biotechnology, Molecular Diagnostic Unit, University of Bologna, viale Ercolani 4/2, 40138, Bologna, Italy
| | - Ilaria Bartolomei
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Patrizia Avoni
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università Di Bologna, 40123, Bologna, Italy
| | - Giovanni Rizzo
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università Di Bologna, 40123, Bologna, Italy
| | - Piero Parchi
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
| | - Vincenzo Donadio
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero Universitaria Citta Della Salute E Della Scienza Di Torino, Turin, Italy
- Neuroscience Institute of Turin, Turin, Italy
| | - Annalisa Pession
- Department of Pharmacy and Biotechnology, Molecular Diagnostic Unit, University of Bologna, viale Ercolani 4/2, 40138, Bologna, Italy
| | - Federico Oppi
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Fabrizio Salvi
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università Di Bologna, 40123, Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy.
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università Di Bologna, 40123, Bologna, Italy.
| | | |
Collapse
|
30
|
Genetic analysis in Chinese patients with familial or young-onset amyotrophic lateral sclerosis. Neurol Sci 2021; 43:2579-2587. [PMID: 34564799 DOI: 10.1007/s10072-021-05634-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The aim of our study was to investigate the genetic characteristics in patients with familial or young-onset amyotrophic lateral sclerosis (ALS) in a Chinese center. METHODS Patients with familial or young-onset (age of onset < 45 years old) ALS were reviewed. The clinical data was collected. Whole-exome sequencing was performed to identify the disease-associated variants. Single-nucleotide variants and small insertions/deletions were further predicted with silico tools and compared to the Single Nucleotide Polymorphism Database, Exome Aggregation Consortium, and the 1000 Genomes Project. The evolutionary conservations were estimated, and the structures of proteins were constructed by Swiss-Model server. Immunohistochemistry was used to confirm the misfolded SOD1 protein. RESULTS Three familial ALS and 5 young-onset ALS were enrolled. Genetic analysis identified related variants of SOD1 (4/6, 66.7%), FUS (1/6, 16.7%), and NEK1 (1/6, 16.7%) in 6 patients. Three of them were familial probands (3/3, 100%), and the others were sporadic young-onset patients (3/5, 60%). NEK1 c.290G > A mutation (NM_012224.2 exon4) in a patient with familial ALS and SOD1 c.362A > G mutation (NM_000454 exon5) in a young-onset ALS patient were novel. The novel mutations were predicted to be deleterious, affected evolutionarily highly conserved amino acid residue and the formation of hydrogen bonds between the mutated site and its surrounding amino acid residues. Misfolded SOD1 protein was identified in patient with SOD1 c.362A > G mutation. CONCLUSIONS Two novel mutations were detected in our patients. Patients with familial or young-onset ALS often carried related gene mutations, and genetic sequencing should be thus routinely performed.
Collapse
|
31
|
Gamez J, Carmona F. Confirmation of early non-bulbar onset of amyotrophic lateral sclerosis in Spanish league soccer players. J Neurol Sci 2021; 428:117586. [PMID: 34343861 DOI: 10.1016/j.jns.2021.117586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Sports-related activity has been proposed as a risk factor for ALS, particularly among professionals playing American football and soccer, with a reported prevalence between two and forty times higher than the general population. Early onset (by two decades) was described among Italian soccer players as early as 2005. This study aims to characterise the phenotype of seven Spanish retired professional and semi-professional soccer players. METHODS The cases were identified using the following sources: (i) personal archives from a leading ALS Unit, (ii) PubMed and specialised websites, and (iii) self-reports of patients in the media. Age and site of onset, survival time, history of trauma, playing position and time between retirement and first symptoms were investigated for soccer players in the Spanish league diagnosed between 2000 and 2020. RESULTS Seven ALS cases were identified. The mean age at onset was 41.5 years (SD 9.2, median 45.5, range 31.5-51.2). Onset was bulbar in one individual, while six experienced spinal onset. Three patients had the flail arm syndrome variant. Two cases were goalkeepers, two defenders and three midfielders. Four had a history of trauma (two serious). Survival time for the two deceased patients was 71.8 months. Mean time between retirement and first symptoms was 9.4 years (SD 8.0, median 15.2, range 0.1-17.5). CONCLUSIONS Our study has the largest sample size of non-Italian league soccer professionals and semi-professionals, and our results corroborate early onset (by 23.7 years). Unlike the Italian cohorts, bulbar onset is rare, and upper limb onset is most common.
Collapse
Affiliation(s)
- Josep Gamez
- Department of Neurology, GMA Clinic, European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Francesc Carmona
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
32
|
Wei QQ, Hou Y, Chen Y, Ou R, Cao B, Zhang L, Yang T, Shang H. Health-related quality of life in amyotrophic lateral sclerosis using EQ-5D-5L. Health Qual Life Outcomes 2021; 19:181. [PMID: 34284776 PMCID: PMC8290546 DOI: 10.1186/s12955-021-01822-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The study aimed to appraise the health-related quality of life (HRQoL) measured by the five-level EuroQol-5 dimensions (EQ-5D-5L) in amyotrophic lateral sclerosis (ALS), and to explore the associations between non-motor symptoms (mood changes, cognitive disturbances and sleep disturbances). METHODS EQ-5D-5L descriptive scores were converted into a single aggregated "health utility" score. A calibrated visual analog scale (EQ-VAS) was used for self-rating of current health status. Multiple logistic regression analysis was used to explore the factors associated with HRQoL. RESULTS Among the 547 enrolled ALS patients who were assessed using EQ-5D-5L, the highest frequency of reported problems was with usual activities (76.7%), followed by self-care (68.8%) and anxiety/depression (62.0%). The median health utility score was 0.78 and the median EQ-VAS score was 70. Clinical factors corresponding to differences in the EQ-5D-5L health utility score included age of onset, onset region, the ALS Functional Rating Scale-Revised (ALSFRS-R) score, and King's College stages. Patients with depression, anxiety, and poor sleep had lower health utility scores. Patients with excessive daytime sleepiness and rapid eye movement sleep behavior disorder had lower EQ-VAS scores. Multivariate logistic analysis indicated that ALSFRS-R scores, depression, and anxiety were associated with health utility scores. After adjusting other parameters, ALSFRS-R score, stages, and depression were significantly associated with EQ-VAS scores (P < 0.05). CONCLUSION This study examined HRQoL in ALS patients using the Chinese version of the EQ-5D-5L scale across different stages of the disease. We found that HRQoL is related to disease severity and to mood disturbances. Management of non-motor symptoms may help improve HRQoL in ALS patients.
Collapse
Affiliation(s)
- Qian-Qian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Yongping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Bei Cao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Lingyu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
33
|
Kozlowska U, Klimczak A, Bednarowicz KA, Zalewski T, Rozwadowska N, Chojnacka K, Jurga S, Barnea ER, Kurpisz MK. Assessment of Immunological Potential of Glial Restricted Progenitor Graft In Vivo-Is Immunosuppression Mandatory? Cells 2021; 10:cells10071804. [PMID: 34359973 PMCID: PMC8308088 DOI: 10.3390/cells10071804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease, causing motor neuron and skeletal muscle loss and death. One of the promising therapeutic approaches is stem cell graft application into the brain; however, an immune reaction against it creates serious limitations. This study aimed to research the efficiency of glial restricted progenitors (GRPs) grafted into murine CNS (central nervous system) in healthy models and the SOD1G93A ALS disease model. The cellular grafts were administered in semiallogenic and allogeneic settings. To investigate the models of immune reaction against grafted GRPs, we applied three immunosuppressive/immunomodulatory regimens: preimplantation factor (PiF); Tacrolimus; and CTLA-4, MR1 co-stimulatory blockade. We tracked the cells with bioluminescence imaging (BLI) in vivo to study their survival. The immune response character was evaluated with brain tissue assays and multiplex ELISA in serum and cerebrospinal fluid (CSF). The application of immunosuppressive drugs is disputable when considering cellular transplants into the immune-privileged site/brain. However, our data revealed that semiallogenic GRP graft might survive inside murine CNS without the necessity to apply any immunomodulation or immunosuppression, whereas, in the situation of allogeneic mouse setting, the combination of CTLA-4, MR1 blockade can be considered as the best immunosuppressive option.
Collapse
Affiliation(s)
- Urszula Kozlowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (U.K.); (A.K.)
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (K.A.B.); (N.R.)
| | - Aleksandra Klimczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (U.K.); (A.K.)
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (K.A.B.); (N.R.)
| | | | - Tomasz Zalewski
- NanoBioMedical Centre, Adam Mickiewicz University, 61-614 Poznan, Poland; (T.Z.); (S.J.)
| | - Natalia Rozwadowska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (K.A.B.); (N.R.)
| | - Katarzyna Chojnacka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland;
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University, 61-614 Poznan, Poland; (T.Z.); (S.J.)
| | - Eytan R. Barnea
- The Society for the Investigation of Early Pregnancy (SIEP), Cherry Hill, NJ 08003, USA;
- BioIncept LLC, Cherry Hill, NJ 08003, USA
| | - Maciej K. Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (K.A.B.); (N.R.)
- Correspondence: ; Tel.: +48-61-65-79-202
| |
Collapse
|
34
|
Padhi AK, Shukla R, Narain P, Gomes J. A distant angiogenin variant causes amyotrophic lateral sclerosis through loss-of-function mechanisms: Insights from long-timescale atomistic simulations and conformational dynamics. Comput Biol Med 2021; 135:104602. [PMID: 34214939 DOI: 10.1016/j.compbiomed.2021.104602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 01/01/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive and incurable neurodegenerative disorder characterized by the degeneration of motor neurons leading to severe muscle atrophy, respiratory failure and death within 3-5 years of disease onset. Missense mutations in Angiogenin (ANG) cause ALS through loss of either ribonucleolytic activity or nuclear translocation activity or both of these functions. Although loss-of-function mechanisms of several rare and ALS-causing ANG variants have been studied before, the structure-function relationship and subsequent functional loss mechanisms of certain novel and uncharacterized rare variants have not been deciphered hitherto. In this study, the structural and dynamic properties of the distantly-located I71V variant, on the functional sites of ANG have been investigated to understand its role in ALS etiology and progression. The I71V variant has a minor allele frequency of <0.06% and thus is classified as a rare variant. Our extensive in silico investigation comprising 1-μs molecular dynamics (MD) simulations, conformational dynamics and related integrated analyses reveal that the I71V variant induces a characteristic conformational switching of catalytic His114 residue resulting in loss of ribonucleolytic activity. Molecular docking and a residue-residue interaction network propagated by an allosteric pathway further support these findings. Moreover, while no conformational alteration of nuclear localization signal governing the nuclear translocation activity was observed, an escalation in mutant plasticity was detected in the structural and essential dynamics simulations. Overall, our study emphasizes that the structure-function relationship of frequently mutating novel ANG variants needs to be established and prioritized in order to advance the pathophysiology and therapeutics of ALS.
Collapse
Affiliation(s)
- Aditya K Padhi
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Rohit Shukla
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, H.P., 173234, India
| | - Priyam Narain
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - James Gomes
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
35
|
Cicardi ME, Marrone L, Azzouz M, Trotti D. Proteostatic imbalance and protein spreading in amyotrophic lateral sclerosis. EMBO J 2021; 40:e106389. [PMID: 33792056 PMCID: PMC8126909 DOI: 10.15252/embj.2020106389] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/18/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder whose exact causative mechanisms are still under intense investigation. Several lines of evidence suggest that the anatomical and temporal propagation of pathological protein species along the neural axis could be among the main driving mechanisms for the fast and irreversible progression of ALS pathology. Many ALS-associated proteins form intracellular aggregates as a result of their intrinsic prion-like properties and/or following impairment of the protein quality control systems. During the disease course, these mutated proteins and aberrant peptides are released in the extracellular milieu as soluble or aggregated forms through a variety of mechanisms. Internalization by recipient cells may seed further aggregation and amplify existing proteostatic imbalances, thus triggering a vicious cycle that propagates pathology in vulnerable cells, such as motor neurons and other susceptible neuronal subtypes. Here, we provide an in-depth review of ALS pathology with a particular focus on the disease mechanisms of seeding and transmission of the most common ALS-associated proteins, including SOD1, FUS, TDP-43, and C9orf72-linked dipeptide repeats. For each of these proteins, we report historical, biochemical, and pathological evidence of their behaviors in ALS. We further discuss the possibility to harness pathological proteins as biomarkers and reflect on the implications of these findings for future research.
Collapse
Affiliation(s)
- Maria Elena Cicardi
- Department of NeuroscienceWeinberg ALS CenterVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Lara Marrone
- Department of NeuroscienceSheffield Institute for Translational Neuroscience (SITraN)University of SheffieldSheffieldUK
| | - Mimoun Azzouz
- Department of NeuroscienceSheffield Institute for Translational Neuroscience (SITraN)University of SheffieldSheffieldUK
| | - Davide Trotti
- Department of NeuroscienceWeinberg ALS CenterVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| |
Collapse
|
36
|
Ferraro PM, Cabona C, Meo G, Rolla-Bigliani C, Castellan L, Pardini M, Inglese M, Caponnetto C, Roccatagliata L. Age at symptom onset influences cortical thinning distribution and survival in amyotrophic lateral sclerosis. Neuroradiology 2021; 63:1481-1487. [PMID: 33660067 DOI: 10.1007/s00234-021-02681-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/25/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE The lifetime risk of developing amyotrophic lateral sclerosis (ALS) increases in the elderly, and greater age at symptom onset has been identified as a negative prognostic factor in the disease. However, the underlying neurobiological mechanisms are still poorly investigated. We hypothesized that older age at symptom onset would have been associated with greater extra-motor cortical damage contributing to worse prognosis, so we explored the relationship between age at symptom onset, cortical thinning (CT) distribution, and clinical markers of disease progression. METHODS We included 26 ALS patients and 29 healthy controls with T1-weighted magnetic resonance imaging (MRI). FreeSurfer 6.0 was used to identify regions of cortical atrophy (CA) in ALS, and to relate age at symptom onset to CT distribution. Linear regression analyses were then used to investigate whether MRI metrics of age-related damage were predictive of clinical progression. MRI results were corrected using the Monte Carlo simulation method, and regression analyses were further corrected for disease duration. RESULTS ALS patients exhibited significant CA mainly encompassing motor regions, but also involving the cuneus bilaterally and the right superior parietal cortex (p < 0.05). Older age at symptom onset was selectively associated with greater extra-motor (frontotemporal) CT, including pars opercularis bilaterally, left middle temporal, and parahippocampal cortices (p < 0.05), and CT of these regions was predictive of shorter survival (p = 0.004, p = 0.03). CONCLUSION More severe frontotemporal CT contributes to shorter survival in older ALS patients. These findings have the potential to unravel the neurobiological mechanisms linking older age at symptom onset to worse prognosis in ALS.
Collapse
Affiliation(s)
- Pilar M Ferraro
- Department of Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Corrado Cabona
- Department of Neurophysiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giuseppe Meo
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Lucio Castellan
- Department of Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Pardini
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Matilde Inglese
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Claudia Caponnetto
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Roccatagliata
- Department of Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
37
|
Lin J, Chen W, Huang P, Xie Y, Zheng M, Yao X. The distinct manifestation of young-onset amyotrophic lateral sclerosis in China. Amyotroph Lateral Scler Frontotemporal Degener 2020; 22:30-37. [DOI: 10.1080/21678421.2020.1797091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jianing Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Weineng Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Pian Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Youna Xie
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Minying Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Xiaoli Yao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| |
Collapse
|
38
|
Abstract
Organs-on-chips are broadly defined as microfabricated surfaces or devices designed to engineer cells into microscale tissues with native-like features and then extract physiologically relevant readouts at scale. Because they are generally compatible with patient-derived cells, these technologies can address many of the human relevance limitations of animal models. As a result, organs-on-chips have emerged as a promising new paradigm for patient-specific disease modeling and drug development. Because neuromuscular diseases span a broad range of rare conditions with diverse etiology and complex pathophysiology, they have been especially challenging to model in animals and thus are well suited for organ-on-chip approaches. In this Review, we first briefly summarize the challenges in neuromuscular disease modeling with animal models. Next, we describe a variety of existing organ-on-chip approaches for neuromuscular tissues, including a survey of cell sources for both muscle and nerve, and two- and three-dimensional neuromuscular tissue-engineering techniques. Although researchers have made tremendous advances in modeling neuromuscular diseases on a chip, the remaining challenges in cell sourcing, cell maturity, tissue assembly and readout capabilities limit their integration into the drug development pipeline today. However, as the field advances, models of healthy and diseased neuromuscular tissues on a chip, coupled with animal models, have vast potential as complementary tools for modeling multiple aspects of neuromuscular diseases and identifying new therapeutic strategies. Summary: Modeling neuromuscular diseases is challenging due to their complex etiology and pathophysiology. Here, we review the cell sources and tissue-engineering procedures that are being integrated as emerging neuromuscular disease models.
Collapse
Affiliation(s)
- Jeffrey W Santoso
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA .,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
39
|
A Systematic Review of Genotype-Phenotype Correlation across Cohorts Having Causal Mutations of Different Genes in ALS. J Pers Med 2020; 10:jpm10030058. [PMID: 32610599 PMCID: PMC7564886 DOI: 10.3390/jpm10030058] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis is a rare and fatal neurodegenerative disease characterised by progressive deterioration of upper and lower motor neurons that eventually culminates in severe muscle atrophy, respiratory failure and death. There is a concerning lack of understanding regarding the mechanisms that lead to the onset of ALS and as a result there are no reliable biomarkers that aid in the early detection of the disease nor is there an effective treatment. This review first considers the clinical phenotypes associated with ALS, and discusses the broad categorisation of ALS and ALS-mimic diseases into upper and lower motor neuron diseases, before focusing on the genetic aetiology of ALS and considering the potential relationship of mutations of different genes to variations in phenotype. For this purpose, a systematic review is conducted collating data from 107 original published clinical studies on monogenic forms of the disease, surveying the age and site of onset, disease duration and motor neuron involvement. The collected data highlight the complexity of the disease's genotype-phenotype relationship, and thus the need for a nuanced approach to the development of clinical assays and therapeutics.
Collapse
|
40
|
Swash M, Eisen A. Hypothesis: amyotrophic lateral sclerosis and environmental pollutants. Muscle Nerve 2020; 62:187-191. [DOI: 10.1002/mus.26855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Michael Swash
- Barts and The London School of MedicineQueen Mary University of London and Royal London Hospital London UK
- Institute of Neuroscience, University of Lisbon Lisbon Portugal
| | - Andrew Eisen
- Division of NeurologyUniversity of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
41
|
Deng J, Wu W, Xie Z, Gang Q, Yu M, Liu J, Wang Q, Lv H, Zhang W, Huang Y, Wang T, Yuan Y, Hong D, Wang Z. Novel and Recurrent Mutations in a Cohort of Chinese Patients With Young-Onset Amyotrophic Lateral Sclerosis. Front Neurosci 2019; 13:1289. [PMID: 31866807 PMCID: PMC6908997 DOI: 10.3389/fnins.2019.01289] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/14/2019] [Indexed: 01/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects nerve cells in the brain and spinal cord. More than 25 ALS-related genes have been identified, accounting for approximately 10% of sporadic ALS (SALS) and two-thirds of familial ALS (FALS) cases. Several recent studies showed that genetic factors might have a larger contribution to young-onset ALS than to ALS cases overall. However, the genetic profile of young-onset ALS patients is not yet fully understood. Here, we investigated a cohort of 27 young-onset ALS patients (onset age < 45 years) through whole-exome sequencing (WES). Genetic analysis identified pathogenic variants of FUS (25.9%), SOD1 (22.2%), TARDBP (3.7%), and VCP (3.7%) in 27 young-onset ALS patients. Of 12 identified types of mutations, c.1528A > C in FUS and c.266G > A in VCP were novel. All of the cases in this study reflect a monogenic origin with an autosomal dominant mode of inheritance. Notably, a novel de novo missense mutation, c.1528A > C (p.K510Q), in FUS was identified in a 29-year-old ALS patient. Expression of the K510Q mutant FUS resulted in cytoplasmic mislocalization of FUS in cultured cells and induced neural toxicity in a fly model. This study provides further evidence of the genetic profile of young-onset ALS patients from China and expands the mutational spectrum of the FUS gene, with one new K510Q mutation identified.
Collapse
Affiliation(s)
- Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Wu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Qiang Gang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jing Liu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Qingqing Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Tao Wang
- National Institute of Biological Sciences, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
42
|
Grad LI, Rouleau GA, Ravits J, Cashman NR. Clinical Spectrum of Amyotrophic Lateral Sclerosis (ALS). Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024117. [PMID: 28003278 DOI: 10.1101/cshperspect.a024117] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is primarily characterized by progressive loss of motor neurons, although there is marked phenotypic heterogeneity between cases. Typical, or "classical," ALS is associated with simultaneous upper motor neuron (UMN) and lower motor neuron (LMN) involvement at disease onset, whereas atypical forms, such as primary lateral sclerosis and progressive muscular atrophy, have early and predominant involvement in the UMN and LMN, respectively. The varying phenotypes can be so distinctive that they would seem to have differing biology. Because the same phenotypes can have multiple causes, including different gene mutations, there may be multiple molecular mechanisms causing ALS, implying that the disease is a syndrome. Conversely, multiple phenotypes can be caused by a single gene mutation; thus, a single molecular mechanism could be compatible with clinical heterogeneity. The pathogenic mechanism(s) in ALS remain unknown, but active propagation of the pathology neuroanatomically is likely a primary component.
Collapse
Affiliation(s)
- Leslie I Grad
- Djavad Mowafaghian Centre for Brain Health, Department of Medicine (Neurology), University of British Columbia, Vancouver V6T 2B5, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montréal H3A 2B4, Canada
| | - John Ravits
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, Department of Medicine (Neurology), University of British Columbia, Vancouver V6T 2B5, Canada
| |
Collapse
|
43
|
Visser AE, Seelen M, Hulsbergen A, de Graaf J, van der Kooi AJ, Raaphorst J, Veldink JH, van den Berg LH. Exploring the fitness hypothesis in ALS: a population-based case-control study of parental cause of death and lifespan. J Neurol Neurosurg Psychiatry 2017; 88:550-556. [PMID: 28292782 DOI: 10.1136/jnnp-2016-315071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/28/2016] [Accepted: 01/08/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the theory of premorbid fitness in amyotrophic lateral sclerosis (ALS), we studied whether a common genetic profile for physical or cardiovascular fitness was manifest in progenitors leading to less cardiovascular death and a longer lifespan in parents of patients with ALS compared with parents of controls. METHODS Patient and disease characteristics, levels of physical activity, parental cause and age of death were obtained using a structured questionnaire from a population-based, case-control study of ALS in the Netherlands. Logistic regression was used for the analyses of parental cause of death and levels of physical activity. Cox proportional hazard models were applied to study the association between parental survival and ALS, or specific patient subgroups. All models were adjusted for age at inclusion, level of education, body mass index, diabetes, hypercholesterolaemia and hypertension. RESULTS 487 patients and 1092 controls were included. Parents of patients died less frequently from a cardiovascular disease compared with parents of controls (OR=0.78, p=0.009). Their survival, however, was neither significantly longer nor shorter. Neither rates of cardiovascular causes of death, nor survival of parents was related to the extent to which patients were physically active in leisure time (all p>0.05). CONCLUSIONS Exploring the fitness hypothesis in the pathogenesis of ALS, our findings provide evidence for a shared mechanism underlying a favourable cardiovascular fitness profile and ALS susceptibility.
Collapse
Affiliation(s)
- Anne E Visser
- Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Meinie Seelen
- Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Alexander Hulsbergen
- Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Joris de Graaf
- Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Anneke J van der Kooi
- Department of Neurology, Amsterdam Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Joost Raaphorst
- Department for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jan H Veldink
- Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
44
|
Lavernhe S, Antoine JC, Court-Fortune I, Dimier N, Costes F, Lacour A, Camdessanché JP. Home care organization impacts patient management and survival in ALS. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18:562-568. [DOI: 10.1080/21678421.2017.1332076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sylvie Lavernhe
- Department of Neurology, University Hospital, Saint-Etienne, France,
| | - Jean-Christophe Antoine
- Department of Neurology, University Hospital, Saint-Etienne, France,
- Reference Center for Motor Neuron Diseases and Amyotrophic Lateral Sclerosis, Saint-Etienne, France,
| | - Isabelle Court-Fortune
- Reference Center for Motor Neuron Diseases and Amyotrophic Lateral Sclerosis, Saint-Etienne, France,
- Department of Pulmonology, University Hospital, Saint-Etienne, France, and
| | - Nathalie Dimier
- Department of Neurology, University Hospital, Saint-Etienne, France,
- Reference Center for Motor Neuron Diseases and Amyotrophic Lateral Sclerosis, Saint-Etienne, France,
| | - Frédéric Costes
- Department of Clinical Physiology, University Hospital, Saint-Etienne, France
| | - Arnaud Lacour
- Department of Neurology, University Hospital, Saint-Etienne, France,
| | - Jean-Philippe Camdessanché
- Department of Neurology, University Hospital, Saint-Etienne, France,
- Reference Center for Motor Neuron Diseases and Amyotrophic Lateral Sclerosis, Saint-Etienne, France,
| |
Collapse
|
45
|
Al-Chalabi A, Hardiman O, Kiernan MC, Chiò A, Rix-Brooks B, van den Berg LH. Amyotrophic lateral sclerosis: moving towards a new classification system. Lancet Neurol 2017; 15:1182-94. [PMID: 27647646 DOI: 10.1016/s1474-4422(16)30199-5] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/29/2016] [Accepted: 08/04/2016] [Indexed: 12/18/2022]
Abstract
Amyotrophic lateral sclerosis is a progressive adult-onset neurodegenerative disease that primarily affects upper and lower motor neurons, but also frontotemporal and other regions of the brain. The extent to which each neuronal population is affected varies between individuals. The subsequent patterns of disease progression form the basis of diagnostic criteria and phenotypic classification systems, with considerable overlap in the clinical terms used. This overlap can lead to confusion between diagnosis and phenotype. Formal classification systems such as the El Escorial criteria and the International Classification of Diseases are systematic approaches but they omit features that are important in clinical management, such as rate of progression, genetic basis, or functional effect. Therefore, many neurologists use informal classification approaches that might not be systematic, and could include, for example, anatomical descriptions such as flail-arm syndrome. A new strategy is needed to combine the benefits of a systematic approach to classification with the rich and varied phenotypic descriptions used in clinical practice.
Collapse
Affiliation(s)
- Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, London, UK.
| | - Orla Hardiman
- Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Adriano Chiò
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Benjamin Rix-Brooks
- Carolinas Neuromuscular/ALS-MDA Center, Department of Neurology, Carolinas Medical Center, Carolinas Healthcare System Neurosciences Institute, Charlotte, NC, USA; University of North Carolina School of Medicine-Charlotte Campus, Charlotte, NC, USA
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Netherlands
| |
Collapse
|
46
|
Geng D, Ou R, Miao X, Zhao L, Wei Q, Chen X, Liang Y, Shang H, Yang R. Patients’ self-perceived burden, caregivers’ burden and quality of life for amyotrophic lateral sclerosis patients: a cross-sectional study. J Clin Nurs 2017; 26:3188-3199. [PMID: 27874996 DOI: 10.1111/jocn.13667] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Dan Geng
- Department of Neurology; West China Hospital of Sichuan University; Chengdu Sichuan China
| | - RuWei Ou
- Department of Neurology; West China Hospital of Sichuan University; Chengdu Sichuan China
| | - XiaoHui Miao
- Department of Neurology; West China Hospital of Sichuan University; Chengdu Sichuan China
| | - LiHong Zhao
- Department of Neurology; West China Hospital of Sichuan University; Chengdu Sichuan China
| | - QianQian Wei
- Department of Neurology; West China Hospital of Sichuan University; Chengdu Sichuan China
| | - XuePing Chen
- Department of Neurology; West China Hospital of Sichuan University; Chengdu Sichuan China
| | - Yan Liang
- Department of Neurology; West China Hospital of Sichuan University; Chengdu Sichuan China
| | - HuiFang Shang
- Department of Neurology; West China Hospital of Sichuan University; Chengdu Sichuan China
| | - Rong Yang
- Department of Neurology; West China Hospital of Sichuan University; Chengdu Sichuan China
| |
Collapse
|
47
|
Abstract
Amyotrophic lateral sclerosis (ALS) constitutes the main type of motor neuron disease. Familial ALS is characterized by the presence of positive family history and accounts for 10% of ALS cases. Although familial ALS is the main culprit for early-onset disease, there are rare cases of early- or young-onset ALS with negative family history or sporadic ALS. We describe a 23-year-old man with clinical and electrophysiological evidence of probable sporadic ALS according to the revised EI Escorial criteria. Interestingly, brain neuroimaging revealed bilaterally increased T2 signals across corona radiata, posterior limb of the internal capsule, and descending motor tracts in the brainstem and hypointensity rim of the motor cortex on T2-weighted images. Young-onset sporadic ALS may be a distinct nosological entity. The topic is shortly discussed in the light of its genetic and clinical characteristics.
Collapse
|
48
|
Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nat Rev Neurol 2016; 13:96-104. [DOI: 10.1038/nrneurol.2016.182] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Abstract
Descriptions of motor neuron disease (MND) documented more than a century ago remain instantly recognisable to the physician. The muscle weakness, typically with signs of upper and lower motor neuron dysfunction, is uniquely relentless. Over the last 30 years, a wider cerebral pathology has emerged, despite the lack of overt cognitive impairment in the majority of patients. From the initial linkage of a small number of cases to mutations in SOD1, diverse cellular pathways have been implicated in pathogenesis. An increasingly complex clinical heterogeneity has emerged around a significant variability in survival. Defining a cellular signature of aggregated TDP-43 common to nearly all MND and a large proportion of frontotemporal dementia (FTD), has placed MND alongside more traditional cerebral neurodegeneration. With new genetic causes, most notably a hexanucleotide expansion in C9orf72 associated with both MND and FTD, the development of biomarkers against which to test therapeutic candidates is a priority.
Collapse
Affiliation(s)
- Martin R Turner
- Medical Research Council senior clinical fellow, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| |
Collapse
|
50
|
Stevic Z, Kostic-Dedic S, Peric S, Dedic V, Basta I, Rakocevic-Stojanovic V, Lavrnic D. Prognostic factors and survival of ALS patients from Belgrade, Serbia. Amyotroph Lateral Scler Frontotemporal Degener 2016; 17:508-514. [PMID: 27315438 DOI: 10.1080/21678421.2016.1195410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Our aim was to assess the incidence, survival and its prognostic factors in ALS patients from the area of the City of Belgrade, Serbia. A retrospective analysis included 325 probable or definite ALS cases from all five Belgrade neurology departments in the period 1992-2009. Each patient was regularly followed up during the disease until death or until 31 December 2009. Results showed that the average annual ALS incidence rate was 1.11 per 100,000 inhabitants. Male predominance was registered, except for patients with ALS onset after the age of 80 years. Mean survival from the first symptoms was 4.4 ± 0.2 years. Cumulative probability of survival was 71% for two years, 24% for five years, and 17% for seven years. Patients with diagnostic delay longer than 1.6 years had a 1.4-times better chance for survival (p <0.01). Spinal-onset patients on riluzole therapy had 1.8-times better survival (p < 0.01). Patients with early-onset ALS and higher ALSFRS-R score at initial evaluation also had somewhat better survival (p < 0.05). In conclusion, the average annual ALS incidence rate was 1.11 per 100,000 inhabitants. Longer survival was observed in patients with early onset, longer diagnostic delay, less functional impairment at the time of diagnosis, and riluzole treatment.
Collapse
Affiliation(s)
- Zorica Stevic
- a Neurology Clinic, Clinical Centre of Serbia, School of Medicine , University of Belgrade
| | | | - Stojan Peric
- a Neurology Clinic, Clinical Centre of Serbia, School of Medicine , University of Belgrade
| | - Velimir Dedic
- c European Centre for Peace and Development , Belgrade , Serbia
| | - Ivana Basta
- a Neurology Clinic, Clinical Centre of Serbia, School of Medicine , University of Belgrade
| | | | - Dragana Lavrnic
- a Neurology Clinic, Clinical Centre of Serbia, School of Medicine , University of Belgrade
| |
Collapse
|