1
|
Gang Q, Bettencourt C, Brady S, Holton JL, Healy EG, McConville J, Morrison PJ, Ripolone M, Violano R, Sciacco M, Moggio M, Mora M, Mantegazza R, Zanotti S, Wang Z, Yuan Y, Liu WW, Beeson D, Hanna M, Houlden H. Genetic defects are common in myopathies with tubular aggregates. Ann Clin Transl Neurol 2021; 9:4-15. [PMID: 34908252 PMCID: PMC8791796 DOI: 10.1002/acn3.51477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/12/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Objective A group of genes have been reported to be associated with myopathies with tubular aggregates (TAs). Many cases with TAs still lack of genetic clarification. This study aims to explore the genetic background of cases with TAs in order to improve our knowledge of the pathogenesis of these rare pathological structures. Methods Thirty‐three patients including two family members with biopsy confirmed TAs were collected. Whole‐exome sequencing was performed on 31 unrelated index patients and a candidate gene search strategy was conducted. The identified variants were confirmed by Sanger sequencing. The wild‐type and the mutant p.Ala11Thr of ALG14 were transfected into human embryonic kidney 293 cells (HEK293), and western blot analysis was performed to quantify protein expression levels. Results Eleven index cases (33%) were found to have pathogenic variant or likely pathogenic variants in STIM1, ORAI1, PGAM2, SCN4A, CASQ1 and ALG14. Among them, the c.764A>T (p.Glu255Val) in STIM1 and the c.1333G>C (p.Val445Leu) in SCN4A were novel. Western blot analysis showed that the expression of ALG14 protein was severely reduced in the mutant ALG14 HEK293 cells (p.Ala11Thr) compared with wild type. The ALG14 variants might be associated with TAs in patients with complex multisystem disorders. Interpretation This study expands the phenotypic and genotypic spectrums of myopathies with TAs. Our findings further confirm previous hypothesis that genes related with calcium signalling pathway and N‐linked glycosylation pathway are the main genetic causes of myopathies with TAs.
Collapse
Affiliation(s)
- Qiang Gang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK.,MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Stefen Brady
- Oxford Muscle Service, John Radcliffe Hospital, Oxford, UK
| | - Janice L Holton
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK.,Queen Square Brain Bank for Neurological Disorders, London, UK
| | - Estelle G Healy
- Department of Neuropathology, Royal Victoria Hospital, Belfast, Northern Ireland
| | - John McConville
- Department of Neurology, Belfast City Hospital, Belfast, BT9 7AB, UK
| | - Patrick J Morrison
- Department of Genetic Medicine, Belfast City Hospital, Belfast, BT9 7AB, UK
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Raffaella Violano
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Monica Sciacco
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Isitituto Neurologico C. Besta, Milano, Italy
| | - Renato Mantegazza
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Isitituto Neurologico C. Besta, Milano, Italy
| | - Simona Zanotti
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Isitituto Neurologico C. Besta, Milano, Italy
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - Wei-Wei Liu
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David Beeson
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Michael Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK.,MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK.,MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK.,Neurogenetics Laboratory, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| |
Collapse
|
2
|
Sinclair JW, Hoying DR, Bresciani E, Nogare DD, Needle CD, Berger A, Wu W, Bishop K, Elkahloun AG, Chitnis A, Liu P, Burgess SM. The Warburg effect is necessary to promote glycosylation in the blastema during zebrafish tail regeneration. NPJ Regen Med 2021; 6:55. [PMID: 34518542 PMCID: PMC8437957 DOI: 10.1038/s41536-021-00163-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022] Open
Abstract
Throughout their lifetime, fish maintain a high capacity for regenerating complex tissues after injury. We utilized a larval tail regeneration assay in the zebrafish Danio rerio, which serves as an ideal model of appendage regeneration due to its easy manipulation, relatively simple mixture of cell types, and superior imaging properties. Regeneration of the embryonic zebrafish tail requires development of a blastema, a mass of dedifferentiated cells capable of replacing lost tissue, a crucial step in all known examples of appendage regeneration. Using this model, we show that tail amputation triggers an obligate metabolic shift to promote glucose metabolism during early regeneration similar to the Warburg effect observed in tumor forming cells. Inhibition of glucose metabolism did not affect the overall health of the embryo but completely blocked the tail from regenerating after amputation due to the failure to form a functional blastema. We performed a time series of single-cell RNA sequencing on regenerating tails with and without inhibition of glucose metabolism. We demonstrated that metabolic reprogramming is required for sustained TGF-β signaling and blocking glucose metabolism largely mimicked inhibition of TGF-β receptors, both resulting in an aberrant blastema. Finally, we showed using genetic ablation of three possible metabolic pathways for glucose, that metabolic reprogramming is required to provide glucose specifically to the hexosamine biosynthetic pathway while neither glycolysis nor the pentose phosphate pathway were necessary for regeneration.
Collapse
Affiliation(s)
- Jason W Sinclair
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - David R Hoying
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Erica Bresciani
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Damian Dalle Nogare
- Aquatic Models of Human Development Affinity Group, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Carli D Needle
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Alexandra Berger
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Weiwei Wu
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Kevin Bishop
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Abdel G Elkahloun
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Ajay Chitnis
- Aquatic Models of Human Development Affinity Group, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Paul Liu
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| |
Collapse
|
3
|
Bobadilla-Quesada EJ, Natera-de Benito D, Carrera-García L, Ortez C, Exposito-Escudero J, Jimenez-Mallebrera C, Jou C, Codina A, Corbera J, Moya O, Saez V, Gonzalez-Quereda L, Gallano P, Colomer J, Cuadras D, Medina J, Yoldi ME, Nascimento A. Early and long-term effect of the treatment with pyridostigmine in patients with GMPPB-related congenital myasthenic syndrome. Neuromuscul Disord 2020; 30:719-726. [PMID: 32819792 DOI: 10.1016/j.nmd.2020.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 11/28/2022]
Abstract
GMPPB mutations cause congenital myasthenic syndromes (CMS) overlapping with muscular dystrophy. Treatment with pyridostigmine has been reported to be effective in those patients. Nevertheless, results of functional motor assessments to determine its precise impact on the short and long term were not available. We describe the response to treatment with pyridostigmine in three siblings with GMPPB-related CMS using functional motor scales performed regularly over a period of 40 months. The beneficial effect of the treatment was outstanding within the first hours, with all the scales showing a dramatic increase in only two days. This remarkable improvement remained steady during 12 months but a moderate decrease was subsequently detected in two of the three patients. Despite this decline in the scores of the scales at the end of follow up, the functional motor status of the patients was still significantly better than it was before starting treatment. The introduction of pyridostigmine at an early age of the disease in one of the patients, before the onset of scoliosis, may have had a protective effect on it.
Collapse
Affiliation(s)
- Edna Julieth Bobadilla-Quesada
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain.
| | - Laura Carrera-García
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Jessica Exposito-Escudero
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Cecilia Jimenez-Mallebrera
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Cristina Jou
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Anna Codina
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Joan Corbera
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Obdulia Moya
- Rehabilitation and Physical Unit Department, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Veronica Saez
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Lidia Gonzalez-Quereda
- Department of Genetics, Hospital de la Santa Creu i Sant Pau and CIBERER U705, Barcelona, Spain
| | - Pia Gallano
- Department of Genetics, Hospital de la Santa Creu i Sant Pau and CIBERER U705, Barcelona, Spain
| | - Jaume Colomer
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Daniel Cuadras
- Statistics Department, Fundació Sant Joan de Déu, Barcelona, Spain
| | - Julita Medina
- Rehabilitation and Physical Unit Department, Hospital Sant Joan de Deu, Barcelona, Spain
| | - María Eugenia Yoldi
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service, Navarrabiomed, Pamplona, Spain
| | - Andrés Nascimento
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| |
Collapse
|
4
|
Congenital myasthenia and congenital disorders of glycosylation caused by mutations in the DPAGT1 gene. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2017.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
5
|
Congenital myasthenia and congenital disorders of glycosylation caused by mutations in the DPAGT1 gene. Neurologia 2017; 34:139-141. [PMID: 28712839 DOI: 10.1016/j.nrl.2017.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/24/2017] [Accepted: 05/11/2017] [Indexed: 01/18/2023] Open
|
6
|
DPAGT1-CDG: Functional analysis of disease-causing pathogenic mutations and role of endoplasmic reticulum stress. PLoS One 2017; 12:e0179456. [PMID: 28662078 PMCID: PMC5491010 DOI: 10.1371/journal.pone.0179456] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/29/2017] [Indexed: 11/23/2022] Open
Abstract
Pathogenic mutations in DPAGT1 are manifested as two possible phenotypes: congenital disorder of glycosylation DPAGT1-CDG (also known as CDG-Ij), and limb-girdle congenital myasthenic syndrome (CMS) with tubular aggregates. UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosamine phosphotransferase (GPT), the protein encoded by DPAGT1, is an endoplasmic reticulum (ER)-resident protein involved in an initial step in the N-glycosylation pathway. The aim of the present study was to examine the effect of six variants in DPAGT1 detected in patients with DPAGT1-CDG, and the role of endoplasmic reticulum stress, as part of the search for therapeutic strategies to use against DPAGT1-CDG. The effect of the six mutations, i.e., c.358C>A (p.Leu120Met), c.791T>G (p.Val264Gly), c.901C>T (p.Arg301Cys), c.902G>A (p.Arg301His), c.1154T>G (p.Leu385Arg), and of the novel mutation c.329T>C (p.Phe110Ser), were examined via the analysis of DPAGT1 transcriptional profiles and GTP levels in patient-derived fibroblasts. In addition, the transient expression of different mutations was analysed in COS-7 cells. The results obtained, together with those of bioinformatic studies, revealed these mutations to affect the splicing process, the stability of GTP, or the ability of this protein to correctly localise in the ER membrane. The unfolded protein response (UPR; the response to ER stress) was found not to be active in patient-derived fibroblasts, unlike that seen in cells from patients with PMM2-CDG or DPM1-CDG. Even so, the fibroblasts of patients with DPAGT1-CDG seemed to be more sensitive to the stressor tunicamycin. The present work improves our knowledge of DPAGT1-CDG and provides bases for developing tailored splicing and folding therapies.
Collapse
|
7
|
Pérez-Cerdá C, Girós ML, Serrano M, Ecay MJ, Gort L, Pérez Dueñas B, Medrano C, García-Alix A, Artuch R, Briones P, Pérez B. A Population-Based Study on Congenital Disorders of Protein N- and Combined with O-Glycosylation Experience in Clinical and Genetic Diagnosis. J Pediatr 2017; 183:170-177.e1. [PMID: 28139241 DOI: 10.1016/j.jpeds.2016.12.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/18/2016] [Accepted: 12/20/2016] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To describe the clinical, biochemical, and genetic features of patients with congenital disorders of glycosylation (CDG) identified in Spain during the last 20 years. STUDY DESIGN Patients were selected among those presenting with multisystem disease of unknown etiology. The isoforms of transferrin and of ApoC3 and dolichols were analyzed in serum; phosphomannomutase and mannosephosphate isomerase activities were measured in fibroblasts. Conventional or massive parallel sequencing (customized panel or Illumina Clinical-Exome Sequencing TruSight One Gene Panel) was used to identify genes and mutations. RESULTS Ninety-seven patients were diagnosed with 18 different CDG. Eighty-nine patients had a type 1 transferrin profile; 8 patients had a type 2 transferrin profile, with 6 of them showing an alteration in the ApoC3 isoform profile. A total of 75% of the patients had PMM2-CDG presenting with a heterogeneous mutational spectrum. The remaining patients showed mutations in any of the following genes: MPI, PGM1, GFPT1, SRD5A3, DOLK, DPGAT1, ALG1, ALG6, RFT1, SSR4, B4GALT1, DPM1, COG6, COG7, COG8, ATP6V0A2, and CCDC115. CONCLUSION Based on literature and on this population-based study of CDG, a comprehensive scheme including reported clinical signs of CDG is offered, which will hopefully reduce the timeframe from clinical suspicion to genetic confirmation. The different defects of CDG identified in Spain have contributed to expand the knowledge of CDG worldwide. A predominance of PMM2 deficiency was detected, with 5 novel PMM2 mutations being described.
Collapse
Affiliation(s)
- Celia Pérez-Cerdá
- Center of Molecular Biology-Severo Ochoa, University Autonomous of Madrid-Spanish National Research Council, La Paz Institute for Health Research, Center for Biomedical Research on Rare Diseases, Madrid, Spain.
| | - Ma Luisa Girós
- Inborn Errors of Metabolism, Biochemical and Molecular Genetics Serv., Biomedical Diagnostic Center, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, Center for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Mercedes Serrano
- Department of Pediatric Neurology, Institute of Pediatric Research-Hospital Sant Joan de Déu, Center for Biomedical Research on Rare Diseases, Barcelona, Spain; Department of Clinical Biochemistry, Institute of Pediatric Research-Hospital Sant Joan de Déu, Centre for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - M Jesús Ecay
- Center of Molecular Biology-Severo Ochoa, University Autonomous of Madrid-Spanish National Research Council, La Paz Institute for Health Research, Center for Biomedical Research on Rare Diseases, Madrid, Spain
| | - Laura Gort
- Inborn Errors of Metabolism, Biochemical and Molecular Genetics Serv., Biomedical Diagnostic Center, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, Center for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Belén Pérez Dueñas
- Department of Pediatric Neurology, Institute of Pediatric Research-Hospital Sant Joan de Déu, Center for Biomedical Research on Rare Diseases, Barcelona, Spain; Department of Clinical Biochemistry, Institute of Pediatric Research-Hospital Sant Joan de Déu, Centre for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Celia Medrano
- Center of Molecular Biology-Severo Ochoa, University Autonomous of Madrid-Spanish National Research Council, La Paz Institute for Health Research, Center for Biomedical Research on Rare Diseases, Madrid, Spain
| | - Alfredo García-Alix
- Division of Neonatology, Institute of Pediatric Research-Hospital San Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Rafael Artuch
- Department of Pediatric Neurology, Institute of Pediatric Research-Hospital Sant Joan de Déu, Center for Biomedical Research on Rare Diseases, Barcelona, Spain; Department of Clinical Biochemistry, Institute of Pediatric Research-Hospital Sant Joan de Déu, Centre for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Paz Briones
- Inborn Errors of Metabolism, Biochemical and Molecular Genetics Serv., Biomedical Diagnostic Center, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, Center for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Belén Pérez
- Center of Molecular Biology-Severo Ochoa, University Autonomous of Madrid-Spanish National Research Council, La Paz Institute for Health Research, Center for Biomedical Research on Rare Diseases, Madrid, Spain
| |
Collapse
|
8
|
Lam CW, Wong KS, Leung HW, Law CY. Limb girdle myasthenia with digenic RAPSN and a novel disease gene AK9 mutations. Eur J Hum Genet 2016; 25:192-199. [PMID: 27966543 DOI: 10.1038/ejhg.2016.162] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 10/04/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022] Open
Abstract
Though dysfunction of neuromuscular junction (NMJ) is associated with congenital myasthenic syndrome (CMS), the proteins involved in neuromuscular transmission have not been completely identified. In this study, we aimed to identify a novel CMS gene in a consanguineous family with limb-girdle type CMS. Homozygosity mapping of the novel CMS gene was performed using high-density single-nucleotide polymorphism microarrays. The variants in CMS gene were identified by whole-exome sequencing (WES) and Sanger sequencing. A 20 MB-region of homozygosity (ROH) was mapped on chromosome 6q15-21. This was the only ROH that present in all clinically affected siblings and absent in all clinically unaffected siblings. WES showed a novel variant of AK9 gene located in this ROH. This variant was a start-gain mutation and introduced a cryptic 5'-UTR signal in intron 5 of the AK9 gene. The normal splicing signal would be interfered by the cryptic translation signal leading to defective splicing. Another 25 MB-ROH was found on chromosome 11p13-q12 in all siblings. WES showed a homozygous RAPSN pathogenic variant in this ROH. Since RAPSN-associated limb-girdle type CMS was only manifested in AK9 homozygous variant carriers, the disease phenotype was of digenic inheritance, and was determined by the novel disease modifier AK9 which provides NTPs for N-glycosylation. This is the first time that this specific genotype-phenotype correlation is reported. Importantly, the AK9-associated nucleotide deficiency may replete by dietary supplements. Since AK9 is a disease modifier, enhancing N-glycosylation by increasing dietary nucleotides may be a new therapeutic option for CMS patients.
Collapse
Affiliation(s)
- Ching-Wan Lam
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Ka-Sing Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho-Wan Leung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Yiu Law
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Abstract
This review presents principles of glycosylation, describes the relevant glycosylation pathways and their related disorders, and highlights some of the neurological aspects and issues that continue to challenge researchers. More than 100 rare human genetic disorders that result from deficiencies in the different glycosylation pathways are known today. Most of these disorders impact the central and/or peripheral nervous systems. Patients typically have developmental delays/intellectual disabilities, hypotonia, seizures, neuropathy, and metabolic abnormalities in multiple organ systems. Among these disorders there is great clinical diversity because all cell types differentially glycosylate proteins and lipids. The patients have hundreds of misglycosylated products, which afflict a myriad of processes, including cell signaling, cell-cell interaction, and cell migration. This vast complexity in glycan composition and function, along with the limited availability of analytic tools, has impeded the identification of key glycosylated molecules that cause pathologies. To date, few critical target proteins have been pinpointed.
Collapse
|
10
|
Freeze HH, Chong JX, Bamshad MJ, Ng BG. Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am J Hum Genet 2014; 94:161-75. [PMID: 24507773 DOI: 10.1016/j.ajhg.2013.10.024] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Indexed: 11/30/2022] Open
Abstract
Over 100 human genetic disorders result from mutations in glycosylation-related genes. In 2013, a new glycosylation disorder was reported every 17 days. This trend will probably continue given that at least 2% of the human genome encodes glycan-biosynthesis and -recognition proteins. Established biosynthetic pathways provide many candidate genes, but finding unanticipated mutated genes will offer new insights into glycosylation. Simple glycobiomarkers can be used in narrowing the candidates identified by exome and genome sequencing, and those can be validated by glycosylation analysis of serum or cells from affected individuals. Model organisms will expand the understanding of these mutations' impact on glycosylation and pathology. Here, we highlight some recently discovered glycosylation disorders and the barriers, breakthroughs, and surprises they presented. We predict that some glycosylation disorders might occur with greater frequency than current estimates of their prevalence. Moreover, the prevalence of some disorders differs substantially between European and African Americans.
Collapse
Affiliation(s)
- Hudson H Freeze
- Human Genetics Program, Sanford Children's Health Research Center, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | - Jessica X Chong
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Bobby G Ng
- Human Genetics Program, Sanford Children's Health Research Center, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|