1
|
Scheldeman L, Seners P, Wouters A, Dupont P, Christensen S, Mlynash M, Arquizan C, Ter Schiphorst A, Costalat V, Henon H, Bretzner M, Albucher JF, Cognard C, Olivot JM, Heit JJ, Albers GW, Lansberg MG, Lemmens R. Early penumbral FLAIR changes predict tissue fate in patients with large vessel occlusions. Int J Stroke 2025; 20:310-318. [PMID: 39315649 DOI: 10.1177/17474930241289235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
BACKGROUND In patients with an acute ischemic stroke, the penumbra is defined as ischemic tissue that remains salvageable when reperfusion occurs. However, the expected clinical recovery congruent with penumbral salvage is not always observed. AIMS We aimed to determine whether the magnetic resonance imaging (MRI)-defined penumbra includes irreversible neuronal loss that impedes expected clinical recovery after reperfusion. METHODS In the prospective French Acute Multimodal Imaging Study to Select Patients for Mechanical Thrombectomy (FRAME) and an observational cohort of patients with large vessel occlusions undergoing endovascular treatment, we quantified penumbral integrity by fluid-attenuated inversion recovery (FLAIR) changes. We studied the influence of recanalization status on the evolution of penumbral FLAIR changes and studied penumbral FLAIR changes as predictor of tissue fate and functional outcome on the 90-day modified Rankin Scale (mRS). RESULTS Recanalization status did not modify the evolution of rFLAIR signal intensity (SI) over time in the total cohort, but was associated with lower SI in the FRAME subset (b = -0.06, p for interaction = 0.04). Median rFLAIR SI was higher at baseline in the subsequently infarcted penumbra compared to the salvaged (ratio = 1.07, standard deviation (SD) = 0.07 vs 1.03, SD = 0.06 p < 0.0001, n = 150). The severity and extent of rFLAIR SI changes did not predict 90-day functional outcome in univariate (p = 0.09) and multivariate logistic regression (p = 0.4). CONCLUSIONS Recanalization status did not influence the evolution of penumbral FLAIR changes. FLAIR SI changes in the baseline penumbra were associated with tissue fate, but not functional outcome.
Collapse
Affiliation(s)
- Lauranne Scheldeman
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Experimental Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Stanford Stroke Center, Stanford University, Palo Alto, CA, USA
| | - Pierre Seners
- Stanford Stroke Center, Stanford University, Palo Alto, CA, USA
- Neurology Department, Adolphe de Rothschild Foundation Hospital, Paris, France
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, INSERM, Université de Paris, Paris, France
| | - Anke Wouters
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Experimental Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Neurology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | | | - Michael Mlynash
- Stanford Stroke Center, Stanford University, Palo Alto, CA, USA
| | | | | | - Vincent Costalat
- Neuroradiology Department, CHRU Gui de Chauliac, Montpellier, France
| | - Hilde Henon
- University of Lille, INSERM, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, Lille, France
| | | | - Jean-François Albucher
- Intensive Stroke Unit, Neurological Department, Toulouse University Hospital, Toulouse, France
| | - Christophe Cognard
- Department of Diagnostic and Therapeutic Neuroradiology, University Hospital of Toulouse, INSERM, Toulouse, France
| | - Jean-Marc Olivot
- Acute Stroke Unit, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse and Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Jeremy J Heit
- Stanford Stroke Center, Stanford University, Palo Alto, CA, USA
| | | | | | - Robin Lemmens
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Experimental Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Bonnal J, Ozsancak C, Monnet F, Valery A, Prieur F, Auzou P. Neural Substrates for Hand and Shoulder Movement in Healthy Adults: A Functional near Infrared Spectroscopy Study. Brain Topogr 2023:10.1007/s10548-023-00972-x. [PMID: 37202647 DOI: 10.1007/s10548-023-00972-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Characterization of cortical activation patterns during movements in healthy adults may help our understanding of how the injured brain works. Upper limb motor tasks are commonly used to assess impaired motor function and to predict recovery in individuals with neurological disorders such as stroke. This study aimed to explore cortical activation patterns associated with movements of the hand and shoulder using functional near-infrared spectroscopy (fNIRS) and to demonstrate the potential of this technology to distinguish cerebral activation between distal and proximal movements. Twenty healthy, right-handed participants were recruited. Two 10-s motor tasks (right-hand opening-closing and right shoulder abduction-adduction) were performed in a sitting position at a rate of 0.5 Hz in a block paradigm. We measured the variations in oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) concentrations. fNIRS was performed with a 24-channel system (Brite 24®; Artinis) that covered most motor control brain regions bilaterally. Activation was mostly contralateral for both hand and shoulder movements. Activation was more lateral for hand movements and more medial for shoulder movements, as predicted by the classical homunculus representation. Both HbO2 and HbR concentrations varied with the activity. Our results showed that fNIRS can distinguish patterns of cortical activity in upper limb movements under ecological conditions. These results suggest that fNIRS can be used to measure spontaneous motor recovery and rehabilitation-induced recovery after brain injury. The trial was restropectively registered on January 20, 2023: NCT05691777 (clinicaltrial.gov).
Collapse
Affiliation(s)
- Julien Bonnal
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France.
- CIAMS, Université Paris-Saclay, 91405, Orsay Cedex, France.
- CIAMS, Université d'Orléans, 45067, Orléans, France.
- SAPRéM, Université d'Orléans, Orléans, France.
| | - Canan Ozsancak
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France
| | - Fanny Monnet
- Institut Denis Poisson, Bâtiment de mathématiques, Université d'Orléans, CNRS, Université de Tours, Institut Universitaire de France, Rue de Chartres, 45067, Orléans cedex 2, B.P. 6759, France
| | - Antoine Valery
- Département d'Informations Médicales, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France
| | - Fabrice Prieur
- CIAMS, Université Paris-Saclay, 91405, Orsay Cedex, France
- CIAMS, Université d'Orléans, 45067, Orléans, France
- SAPRéM, Université d'Orléans, Orléans, France
| | - Pascal Auzou
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France
| |
Collapse
|
3
|
Weston P, Behr S, Garosi L, Maeso C, Carrera I. Ischemic stroke can have a T1w hyperintense appearance in absence of intralesional hemorrhage. Front Vet Sci 2022; 9:932185. [PMID: 36204294 PMCID: PMC9530315 DOI: 10.3389/fvets.2022.932185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance imaging (MRI) signal changes associated with ischemic stroke are typically described as T2w and FLAIR hyperintense, and T1w isointense lesions. Intralesional T1w hyperintensity is generally attributed to either a hemorrhagic stroke, or an ischemic stroke with hemorrhagic transition, and has an associated signal void on gradient echo (GE) sequences. Cases of ischemic stroke with T1w hyperintense signal in absence of associated signal void on GE sequences have been sporadically demonstrated in human stroke patients, as well as in dogs with experimentally induced ischemia of the middle cerebral artery. This multicenter retrospective descriptive study investigates the presence of T1w hyperintensity in canine stroke without associated signal void on GE sequences. High field (1.5 Tesla) MRI studies of 12 dogs with clinical presentation, MRI features, and cerebrospinal fluid results suggestive of non-hemorrhagic stroke were assessed. The time between the observed onset of clinical signs and MRI assessment was recorded. All 12 patients had an intralesional T1w hyperintense signal compared to gray and white matter, and absence of signal void on T2*w GE or SWI sequences. Intralesional T1w hyperintensities were either homogenously distributed throughout the entire lesion (6/12) or had a rim-like peripheral distribution (6/12). The mean time between the recorded onset of clinical signs and MRI assessment was 3 days; however, the age range of lesions with T1w hyperintense signal observed was 1–21days, suggesting that such signal intensities can be observed in acute, subacute, or chronic stages of ischemic stroke. Follow-up was recorded for 7/12 cases, all of which showed evidence of neurological improvement while in hospital, and survived to discharge. Correlation of the age and MRI appearance of lesions in this study with similar lesions observed in human and experimental studies suggests that these T1w hyperintensities are likely caused by partial tissue infarction or selective neuronal necrosis, providing an alternative differential for these T1w hyperintensities observed.
Collapse
Affiliation(s)
- Philippa Weston
- Willows Veterinary Centre and Referral Service, Linnaeus Veterinary Ltd., Birmingham, United Kingdom
- *Correspondence: Philippa Weston
| | - Sebastien Behr
- Willows Veterinary Centre and Referral Service, Linnaeus Veterinary Ltd., Birmingham, United Kingdom
| | | | - Christian Maeso
- Department of Neurology, Ars Veterinary Hospital, Barcelona, Spain
| | - Ines Carrera
- Willows Veterinary Centre and Referral Service, Linnaeus Veterinary Ltd., Birmingham, United Kingdom
- Vet Oracle Teleradiology, Norfolk, United Kingdom
| |
Collapse
|
4
|
Schlemm E, Jensen M, Kuceyeski A, Jamison K, Ingwersen T, Mayer C, Königsberg A, Boutitie F, Ebinger M, Endres M, Fiebach JB, Fiehler J, Galinovic I, Lemmens R, Muir KW, Nighoghossian N, Pedraza S, Puig J, Simonsen CZ, Thijs V, Wouters A, Gerloff C, Thomalla G, Cheng B. Early effect of thrombolysis on structural brain network organisation after anterior‐circulation stroke in the randomized
WAKE‐UP
trial. Hum Brain Mapp 2022; 43:5053-5065. [PMID: 36102287 PMCID: PMC9582379 DOI: 10.1002/hbm.26073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
The symptoms of acute ischemic stroke can be attributed to disruption of the brain network architecture. Systemic thrombolysis is an effective treatment that preserves structural connectivity in the first days after the event. Its effect on the evolution of global network organisation is, however, not well understood. We present a secondary analysis of 269 patients from the randomized WAKE‐UP trial, comparing 127 imaging‐selected patients treated with alteplase with 142 controls who received placebo. We used indirect network mapping to quantify the impact of ischemic lesions on structural brain network organisation in terms of both global parameters of segregation and integration, and local disruption of individual connections. Network damage was estimated before randomization and again 22 to 36 h after administration of either alteplase or placebo. Evolution of structural network organisation was characterised by a loss in integration and gain in segregation, and this trajectory was attenuated by the administration of alteplase. Preserved brain network organization was associated with excellent functional outcome. Furthermore, the protective effect of alteplase was spatio‐topologically nonuniform, concentrating on a subnetwork of high centrality supported in the salvageable white matter surrounding the ischemic cores. This interplay between the location of the lesion, the pathophysiology of the ischemic penumbra, and the spatial embedding of the brain network explains the observed potential of thrombolysis to attenuate topological network damage early after stroke. Our findings might, in the future, lead to new brain network‐informed imaging biomarkers and improved prognostication in ischemic stroke.
Collapse
Affiliation(s)
- Eckhard Schlemm
- Klinik und Poliklinik für Neurologie, Kopf‐ und Neurozentrum University Medical Centre Hamburg‐Eppendorf Hamburg Germany
| | - Märit Jensen
- Klinik und Poliklinik für Neurologie, Kopf‐ und Neurozentrum University Medical Centre Hamburg‐Eppendorf Hamburg Germany
| | - Amy Kuceyeski
- Department of Radiology Weill Cornell Medicine New York New York USA
| | - Keith Jamison
- Department of Radiology Weill Cornell Medicine New York New York USA
| | - Thies Ingwersen
- Klinik und Poliklinik für Neurologie, Kopf‐ und Neurozentrum University Medical Centre Hamburg‐Eppendorf Hamburg Germany
| | - Carola Mayer
- Klinik und Poliklinik für Neurologie, Kopf‐ und Neurozentrum University Medical Centre Hamburg‐Eppendorf Hamburg Germany
| | - Alina Königsberg
- Klinik und Poliklinik für Neurologie, Kopf‐ und Neurozentrum University Medical Centre Hamburg‐Eppendorf Hamburg Germany
| | - Florent Boutitie
- Department of Radiology Weill Cornell Medicine New York New York USA
- Hospices Civils de Lyon, Service de Biostatistique Lyon France
- Université Lyon 1 Villeurbanne France
- CNRS, UMR 5558 Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique‐Santé Villeurbanne France
| | - Martin Ebinger
- Centrum für Schlaganfallforschung Berlin (CSB) Charité ‐ Universitätsmedizin Berlin Berlin Germany
- Klinik für Neurologie Medical Park Berlin Humboldtmühle Berlin Germany
| | - Matthias Endres
- Centrum für Schlaganfallforschung Berlin (CSB) Charité ‐ Universitätsmedizin Berlin Berlin Germany
- Klinik und Hochschulambulanz für Neurologie Charité‐Universitätsmedizin Berlin Berlin Germany
- German Centre for Neurodegenerative Diseases (DZNE) Berlin Germany
- German Centre for Cardiovascular Research (DZHK) Berlin Germany
- ExcellenceCluster NeuroCure Berlin Germany
| | - Jochen B. Fiebach
- Centrum für Schlaganfallforschung Berlin (CSB) Charité ‐ Universitätsmedizin Berlin Berlin Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology University Medical Centre Hamburg‐Eppendorf Hamburg Germany
| | - Ivana Galinovic
- Centrum für Schlaganfallforschung Berlin (CSB) Charité ‐ Universitätsmedizin Berlin Berlin Germany
| | - Robin Lemmens
- Department of Neurology University Hospitals Leuven Leuven Belgium
- Department of Neurosciences Division of Experimental Neurology KU Leuven—University of Leuven Leuven Belgium
- VIB, Centre for Brain & Disease Research Laboratory of Neurobiology Leuven Belgium
| | - Keith W. Muir
- Institute of Neuroscience & Psychology University of Glasgow Glasgow UK
| | - Norbert Nighoghossian
- Department of Stroke Medicine, Université Claude Bernard Lyon 1 CREATIS CNRS UMR 5220‐INSERM U1206, INSA‐Lyon Lyon France
| | - Salvador Pedraza
- Department of Radiology, Institut de Diagnostic per la Image (IDI) Hospital Dr Josep Trueta, Institut d'Investigació Biomèdica de Girona (IDIBGI) Girona Spain
| | - Josep Puig
- Department of Radiology, Institut de Diagnostic per la Image (IDI) Hospital Dr Josep Trueta, Institut d'Investigació Biomèdica de Girona (IDIBGI) Girona Spain
| | | | - Vincent Thijs
- Stroke Division, Florey Institute of Neuroscience and Mental Health University of Melbourne Heidelberg Victoria Australia
- Department of Neurology Austin Health Heidelberg Victoria Australia
| | - Anke Wouters
- Department of Neurology University Hospitals Leuven Leuven Belgium
- Department of Neurosciences Division of Experimental Neurology KU Leuven—University of Leuven Leuven Belgium
- VIB, Centre for Brain & Disease Research Laboratory of Neurobiology Leuven Belgium
- Department of Neurology Amsterdam UMC University of Amsterdam Amsterdam Netherlands
| | - Christian Gerloff
- Klinik und Poliklinik für Neurologie, Kopf‐ und Neurozentrum University Medical Centre Hamburg‐Eppendorf Hamburg Germany
| | - Götz Thomalla
- Klinik und Poliklinik für Neurologie, Kopf‐ und Neurozentrum University Medical Centre Hamburg‐Eppendorf Hamburg Germany
| | - Bastian Cheng
- Klinik und Poliklinik für Neurologie, Kopf‐ und Neurozentrum University Medical Centre Hamburg‐Eppendorf Hamburg Germany
| |
Collapse
|
5
|
van Assche M, Dirren E, Bourgeois A, Kleinschmidt A, Richiardi J, Carrera E. Periinfarct rewiring supports recovery after primary motor cortex stroke. J Cereb Blood Flow Metab 2021; 41:2174-2184. [PMID: 33757315 PMCID: PMC8392854 DOI: 10.1177/0271678x211002968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
After stroke restricted to the primary motor cortex (M1), it is uncertain whether network reorganization associated with recovery involves the periinfarct or more remote regions. We studied 16 patients with focal M1 stroke and hand paresis. Motor function and resting-state MRI functional connectivity (FC) were assessed at three time points: acute (<10 days), early subacute (3 weeks), and late subacute (3 months). FC correlates of recovery were investigated at three spatial scales, (i) ipsilesional non-infarcted M1, (ii) core motor network (M1, premotor cortex (PMC), supplementary motor area (SMA), and primary somatosensory cortex), and (iii) extended motor network including all regions structurally connected to the upper limb representation of M1. Hand dexterity was impaired only in the acute phase (P = 0.036). At a small spatial scale, clinical recovery was more frequently associated with connections involving ipsilesional non-infarcted M1 (Odds Ratio = 6.29; P = 0.036). At a larger scale, recovery correlated with increased FC strength in the core network compared to the extended motor network (rho = 0.71;P = 0.006). These results suggest that FC changes associated with motor improvement involve the perilesional M1 and do not extend beyond the core motor network. Core motor regions, and more specifically ipsilesional non-infarcted M1, could hence become primary targets for restorative therapies.
Collapse
Affiliation(s)
- Mitsouko van Assche
- Stroke Research Group, Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Elisabeth Dirren
- Stroke Research Group, Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Alexia Bourgeois
- Stroke Research Group, Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva, Switzerland.,Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Andreas Kleinschmidt
- Stroke Research Group, Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Jonas Richiardi
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Emmanuel Carrera
- Stroke Research Group, Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
6
|
Scheldeman L, Wouters A, Dupont P, Christensen S, Boutitie F, Cheng B, Ebinger M, Endres M, Fiebach JB, Gerloff C, Muir KW, Nighoghossian N, Pedraza S, Simonsen CZ, Ringelstein EB, Chamorro A, Grond M, Laage R, Schneider A, Thomalla G, Thijs V, Lemmens R. Reversible Edema in the Penumbra Correlates With Severity of Hypoperfusion. Stroke 2021; 52:2338-2346. [PMID: 33980046 DOI: 10.1161/strokeaha.120.033071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Lauranne Scheldeman
- Department of Neurology, University Hospitals Leuven, Belgium (L.S., A.W., R. Lemmens).,Department of Neurosciences, Experimental Neurology (L.S., A.W., R. Lemmens), KU Leuven-University of Leuven, Belgium.,Center for Brain and Disease Research, Laboratory of Neurobiology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium (L.S., A.W., R. Lemmens)
| | - Anke Wouters
- Department of Neurology, University Hospitals Leuven, Belgium (L.S., A.W., R. Lemmens).,Department of Neurosciences, Experimental Neurology (L.S., A.W., R. Lemmens), KU Leuven-University of Leuven, Belgium.,Center for Brain and Disease Research, Laboratory of Neurobiology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium (L.S., A.W., R. Lemmens)
| | - Patrick Dupont
- Department of Neurosciences, Laboratory for Cognitive Neurology (P.D.), KU Leuven-University of Leuven, Belgium.,Leuven Brain Institute, Belgium (P.D.)
| | | | - Florent Boutitie
- Hospices Civils de Lyon, Service de Biostatistique, France (F.B.).,Université Lyon 1, Villeurbanne, France (F.B.)
| | - Bastian Cheng
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Germany (B.C., C.G., G.T.)
| | - Martin Ebinger
- Center for Stroke Research Berlin (M. Ebinger, M. Endres, J.B.F.), Charité-Universitätsmedizin Berlin, Germany.,Klinik für Neurologie, Medical Park Berlin Humboldtmühle, Germany (M. Ebinger)
| | - Matthias Endres
- Center for Stroke Research Berlin (M. Ebinger, M. Endres, J.B.F.), Charité-Universitätsmedizin Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie (M. Endres), Charité-Universitätsmedizin Berlin, Germany.,German Center for Cardiovascular Research, Partner Site Berlin (M. Endres).,German Center for Neurodegenerative Diseases, Partner Site Berlin (M. Endres).,ExcellenceCluster "NeuroCure" (M. Endres)
| | - Jochen B Fiebach
- Center for Stroke Research Berlin (M. Ebinger, M. Endres, J.B.F.), Charité-Universitätsmedizin Berlin, Germany
| | - Christian Gerloff
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Germany (B.C., C.G., G.T.)
| | - Keith W Muir
- Institute of Neuroscience and Psychology, University of Glasgow, United Kingdom (K.W.M.)
| | - Norbert Nighoghossian
- Department of Stroke Medicine, Université Claude Bernard Lyon 1, CREATIS CNRS UMR 5220-INSERM U1206, Hospices Civils de Lyon, France (N.N.)
| | - Salvador Pedraza
- Department of Radiology, Institut de Diagnostic per la Image, Hospital Dr Josep Trueta, Institut d'Investigació Biomedica de Girona, Parc Hospitalari Marti i Julia de Salt-Edifici M2, Spain (S.P.)
| | - Claus Z Simonsen
- Department of Neurology, Aarhus University Hospital, Denmark (C.Z.S.)
| | | | | | - Martin Grond
- Kreisklinikum Siegen GmbH, Germany (M.G.).,University of Marburg, Germany (M.G.)
| | - Rico Laage
- GUIDED Development Heidelberg GmbH, Germany (R. Laage)
| | | | - Götz Thomalla
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Germany (B.C., C.G., G.T.)
| | - Vincent Thijs
- Stroke Theme, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, Victoria, Australia (V.T.).,Department of Neurology, Austin Health, Heidelberg, Victoria, Australia (V.T.)
| | - Robin Lemmens
- Department of Neurology, University Hospitals Leuven, Belgium (L.S., A.W., R. Lemmens).,Department of Neurosciences, Experimental Neurology (L.S., A.W., R. Lemmens), KU Leuven-University of Leuven, Belgium.,Center for Brain and Disease Research, Laboratory of Neurobiology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium (L.S., A.W., R. Lemmens)
| |
Collapse
|
7
|
Zhang B, Zeng Z, Wu H. A Network Pharmacology-Based Analysis of the Protective Mechanism of Miao Medicine Xuemaitong Capsule Against Secondary Brain Damage in the Ischemic Area Surrounding Intracerebral Hemorrhage. J Pharmacol Exp Ther 2021; 377:86-99. [PMID: 33310816 DOI: 10.1124/jpet.120.000083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating disease with the high mortality. The poor outcome of ICH is partially due to a combination of various secondary insults, including in the ischemic area. Xuemaitong capsule (XMT), a kind of traditional Chinese medicine, has been applied to clinic practice. The purpose of this study is to explore the mechanism of XMT in alleviating secondary damage in the ischemic area after ICH. We screened XMT target, compound components, and ICH-related targets using network pharmacology, cluster analysis, and enrichment analysis. We found that the tumor necrosis factor (TNF) signaling pathway might be the key signaling pathway for XMT treatment of ICH. An ICH rat model was established, as demonstrated by poor neurologic score. In the ICH rats, Western blot analysis and immunofluorescence indicated the upregulated expression of TNF receptor 1 (TNFR1), mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), and caspase-3 (CASP3). Importantly, administration of XMT alleviated inflammation, edema, and increased perfusion in the ischemic area, whereas the expression of TNFR1, MAPK, NF-κB, and CASP3 was decreased. Furthermore, Fluoro-Jade B and terminal deoxynucleotidyl transferase-mediated digoxigenin-deoxyuridine nick-end labeling staining revealed that XMT application also inhibited apoptosis and degradation of ischemic area neurons. In conclusion, this evidence elucidates that XMT alleviates neuron apoptosis, ischemic area inflammation, edema, and perfusion through the TNFR1-mediated CASP3/NF-κB/MAPK axis. SIGNIFICANCE STATEMENT: Tumor necrosis factor (TNF) is the key signaling pathway of Xuemaitong (XMT) to intervention during intracerebral hemorrhage. Fourteen key targets [intercellular adhesion molecule 1, interleukin (IL) 6, TNF, C-C motif chemokine ligand 2, prostaglandin-endoperoxide synthase 2, v-rel reticuloendotheliosis viral oncogene homolog A, matrix metalloproteinase 9, endothelin-1 (EDN1), mitogen-activated protein kinase (MAPK) 1, fos proto-oncogene protein, caspase-3 (CASP3), jun proto-oncogene, IL1B, MAPK8] are retrieved from the data base. XMT can inhibit neuron apoptosis in the ischemic area via regulating TNF receptor 1 (TNFR1)/CASP3. XMT alleviates inflammation and edema through regulating TNFR1/nuclear factor-κB and TNFR1/MAPK signaling pathways. XMT alleviates hypoperfusion in the cerebral ischemic area through mediating TNFR1/MAPK/EDN1.
Collapse
Affiliation(s)
- Bo Zhang
- Neurosurgery Department, Huiya Hospital of the First Affiliated Hospital, Sun Yat-Sen University, Huizhou, P. R. China (B.Z.), Neurosurgery Department, the First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, P. R. China (B.Z., H.W.), and Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, P. R. China (Z.Z.)
| | - Zhengyan Zeng
- Neurosurgery Department, Huiya Hospital of the First Affiliated Hospital, Sun Yat-Sen University, Huizhou, P. R. China (B.Z.), Neurosurgery Department, the First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, P. R. China (B.Z., H.W.), and Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, P. R. China (Z.Z.)
| | - Haijun Wu
- Neurosurgery Department, Huiya Hospital of the First Affiliated Hospital, Sun Yat-Sen University, Huizhou, P. R. China (B.Z.), Neurosurgery Department, the First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, P. R. China (B.Z., H.W.), and Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, P. R. China (Z.Z.)
| |
Collapse
|
8
|
Ter Schiphorst A, Charron S, Hassen WB, Provost C, Naggara O, Benzakoun J, Seners P, Turc G, Baron JC, Oppenheim C. Tissue no-reflow despite full recanalization following thrombectomy for anterior circulation stroke with proximal occlusion: A clinical study. J Cereb Blood Flow Metab 2021; 41:253-266. [PMID: 32960688 PMCID: PMC8370008 DOI: 10.1177/0271678x20954929] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite early thrombectomy, a sizeable fraction of acute stroke patients with large vessel occlusion have poor outcome. The no-reflow phenomenon, i.e. impaired microvascular reperfusion despite complete recanalization, may contribute to such "futile recanalizations". Although well reported in animal models, no-reflow is still poorly characterized in man. From a large prospective thrombectomy database, we included all patients with intracranial proximal occlusion, complete recanalization (modified thrombolysis in cerebral infarction score 2c-3), and availability of both baseline and 24 h follow-up MRI including arterial spin labeling perfusion mapping. No-reflow was operationally defined as i) hypoperfusion ≥40% relative to contralateral homologous region, assessed with both visual (two independent investigators) and automatic image analysis, and ii) infarction on follow-up MRI. Thirty-three patients were eligible (median age: 70 years, NIHSS: 18, and stroke onset-to-recanalization delay: 208 min). The operational criteria were met in one patient only, consistently with the visual and automatic analyses. This patient recanalized 160 min after stroke onset and had excellent functional outcome. In our cohort of patients with complete and stable recanalization following thrombectomy for intracranial proximal occlusion, severe ipsilateral hypoperfusion on follow-up imaging associated with newly developed infarction was a rare occurrence. Thus, no-reflow may be infrequent in human stroke and may not substantially contribute to futile recanalizations.
Collapse
Affiliation(s)
- Adrien Ter Schiphorst
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neurology, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Sylvain Charron
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neuroradiology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Wagih Ben Hassen
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neuroradiology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Corentin Provost
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neuroradiology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Olivier Naggara
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neuroradiology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Joseph Benzakoun
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neuroradiology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Pierre Seners
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neurology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Guillaume Turc
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neurology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Jean-Claude Baron
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neurology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Catherine Oppenheim
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neuroradiology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| |
Collapse
|
9
|
High definition transcranial direct current stimulation modulates abnormal neurophysiological activity in post-stroke aphasia. Sci Rep 2020; 10:19625. [PMID: 33184382 PMCID: PMC7665190 DOI: 10.1038/s41598-020-76533-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Recent findings indicate that measures derived from resting-state magnetoencephalography (rsMEG) are sensitive to cortical dysfunction in post-stroke aphasia. Spectral power and multiscale entropy (MSE) measures show that left-hemispheric areas surrounding the stroke lesion (perilesional) exhibit pathological oscillatory slowing and alterations in signal complexity. In the current study, we tested whether individually-targeted high-definition transcranial direct current stimulation (HD-tDCS) can reduce MEG abnormalities and transiently improve language performance. In eleven chronic aphasia survivors, we devised a method to localize perilesional areas exhibiting peak MSE abnormalities, and subsequently targeted these areas with excitatory/anodal-tDCS, or targeted the contralateral homolog areas with inhibitory/cathodal-tDCS, based on prominent theories of stroke recovery. Pathological MEG slowing in these patients was correlated with aphasia severity. Sentence/phrase repetition accuracy was assessed before and after tDCS. A delayed word reading task was administered inside MEG to assess tDCS-induced neurophysiological changes in relative power and MSE computed on the pre-stimulus and delay task time windows. Results indicated increases in repetition accuracy, decreases in contralateral theta (4–7 Hz) and coarse-scale MSE (slow activity), and increases in perilesional low-gamma (25–50 Hz) and fine-scale MSE (fast activity) after anodal-tDCS, indicating reversal of pathological abnormalities. RsMEG may be a sensitive measure for guiding therapeutic tDCS.
Collapse
|
10
|
Hughes JL, Beech JS, Jones PS, Wang D, Menon DK, Aigbirhio FI, Fryer TD, Baron JC. Early-stage 11C-Flumazenil PET predicts day-14 selective neuronal loss in a rodent model of transient focal cerebral ischemia. J Cereb Blood Flow Metab 2020; 40:1997-2009. [PMID: 31637947 PMCID: PMC7786851 DOI: 10.1177/0271678x19883040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Predicting tissue outcome early after stroke is an important goal. MRI >3 h accurately predicts infarction but is insensitive to selective neuronal loss (SNL). Previous studies suggest that chronic-stage 11C-flumazenil PET (FMZ-PET) is a validated marker of SNL in rats, while early-stage FMZ-PET may predict infarction. Whether early FMZ-PET also predicts SNL is unknown. Following 45-min distal MCA occlusion, adult rats underwent FMZ-PET at 1 h and 48 h post-reperfusion to map distribution volume (VT), which reflects GABA-A receptor binding. NeuN immunohistochemistry was performed at Day 14. In each rat, VT and %NeuN loss were determined in 44 ROIs spanning the hemisphere. NeuN revealed isolated SNL and cortical infarction in five and one rats, respectively. In the SNL subgroup, VT-1 h was mildly reduced and only weakly predicted SNL, while VT-48 h was significantly increased and predicted SNL both individually (p < 0.01, Kendall) and across the group (p < 0.001), i.e. the higher the VT, the stronger the SNL. Similar correlations were found in the rat with infarction. Our findings suggest GABA-A receptors are still present on injured neurons at the 48 h timepoint, and the increased 48 h VT observed here is consistent with earlier rat studies showing early GABA-A receptor upregulation. That FMZ binding at 48 h was predictive of SNL may have clinical implications.
Collapse
Affiliation(s)
- Jessica L Hughes
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John S Beech
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - P Simon Jones
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Dechao Wang
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Franklin I Aigbirhio
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jean-Claude Baron
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Inserm U1266, Paris Descartes University, Sainte-Anne Hospital, Paris, France
| |
Collapse
|
11
|
Assessing the Effects of Cytoprotectants on Selective Neuronal Loss, Sensorimotor Deficit and Microglial Activation after Temporary Middle Cerebral Occlusion. Brain Sci 2019; 9:brainsci9100287. [PMID: 31652564 PMCID: PMC6827002 DOI: 10.3390/brainsci9100287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 01/21/2023] Open
Abstract
Although early reperfusion after stroke salvages the still-viable ischemic tissue, peri-infarct selective neuronal loss (SNL) can cause sensorimotor deficits (SMD). We designed a longitudinal protocol to assess the effects of cytoprotectants on SMD, microglial activation (MA) and SNL, and specifically tested whether the KCa3.1-blocker TRAM-34 would prevent SNL. Spontaneously hypertensive rats underwent 15 min middle-cerebral artery occlusion and were randomized into control or treatment group, which received TRAM-34 intraperitoneally for 4 weeks starting 12 h after reperfusion. SMD was assessed longitudinally using the sticky-label test. MA was quantified at day 14 using in vivo [11C]-PK111195 positron emission tomography (PET), and again across the same regions-of-interest template by immunofluorescence together with SNL at day 28. SMD recovered significantly faster in the treated group (p = 0.004). On PET, MA was present in 5/6 rats in each group, with no significant between-group difference. On immunofluorescence, both SNL and MA were present in 5/6 control rats and 4/6 TRAM-34 rats, with a non-significantly lower degree of MA but a significantly (p = 0.009) lower degree of SNL in the treated group. These findings document the utility of our longitudinal protocol and suggest that TRAM-34 reduces SNL and hastens behavioural recovery without marked MA blocking at the assessed time-points.
Collapse
|
12
|
Yamauchi H, Kagawa S, Takahashi M, Kusano K, Okuyama C. Selective neuronal damage and blood pressure in atherosclerotic major cerebral artery disease. J Neurol Neurosurg Psychiatry 2019; 90:975-980. [PMID: 31127015 PMCID: PMC6820160 DOI: 10.1136/jnnp-2019-320326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 11/04/2022]
Abstract
OBJECTIVE In patients with atherosclerotic major cerebral artery disease, low blood pressure might impair cerebral perfusion, thereby exacerbate the risk of selective neuronal damage. The purpose of this retrospective study was to determine whether low blood pressure at follow-up is associated with increased selective neuronal damage. METHODS We retrospectively analysed data from 76 medically treated patients with atherosclerotic internal carotid artery or middle cerebral artery disease with no ischaemic episodes on a follow-up of 6 months or more. All patients had measurements of the distribution of central benzodiazepine receptors twice using positron emission tomography and 11C-flumazenil. Using three-dimensional stereotactic surface projections, we quantified abnormal decreases in the benzodiazepine receptors of the cerebral cortex within the middle cerebral artery distribution and correlated these changes in the benzodiazepine receptors index with blood pressure values at follow-up examinations. RESULTS The changes in the benzodiazepine receptor index during follow-up (mean 27±21 months) were negatively correlated with systolic blood pressure at follow-up. The relationship between changes in benzodiazepine receptor index and systolic blood pressure was different among patients with and without decreased cerebral blood flow at baseline (interaction, p<0.005). Larger increases in benzodiazepine receptor index (neuronal damage) were observed at lower systolic blood pressure levels in patients with decreased cerebral blood flow than in patients without such decreases. CONCLUSION In patients without ischaemic stroke episodes at follow-up but with decreased cerebral blood flow due to arterial disease, low systolic blood pressure at follow-up may be associated with increased selective neuronal damage.
Collapse
Affiliation(s)
- Hiroshi Yamauchi
- Division of PET Imaging, Shiga Medical Center Research Institute, Moriyama, Japan
| | - Shinya Kagawa
- Division of PET Imaging, Shiga Medical Center Research Institute, Moriyama, Japan
| | - Masaaki Takahashi
- Division of PET Imaging, Shiga Medical Center Research Institute, Moriyama, Japan
| | - Kuninori Kusano
- Division of PET Imaging, Shiga Medical Center Research Institute, Moriyama, Japan
| | - Chio Okuyama
- Division of PET Imaging, Shiga Medical Center Research Institute, Moriyama, Japan
| |
Collapse
|
13
|
Hayashi K, Uekawa K, Kawano T, Ohmori Y, Amadatsu T, Takemoto Y, Mukasa A. Cortical Venous Reddening Predicts Remote Cerebral Infarction Post Superficial Temporal Artery-Middle Cerebral Artery Bypass in Atherosclerotic Occlusive Cerebrovascular Disease. World Neurosurg 2019; 127:e864-e872. [PMID: 30954735 DOI: 10.1016/j.wneu.2019.03.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND The superficial temporal artery (STA)-middle cerebral artery (MCA) anastomosis (STA-MCA bypass) currently is performed to prevent atherosclerotic occlusive cerebrovascular disease. However, the benefits of the bypass surgery remain controversial. To ensure consistent surgical benefits, understanding the mechanisms of perioperative cerebral infarction (CI) is required. Moreover, appropriate patient selection procedures must be determined to decrease the rate of perioperative stroke. We retrospectively investigated patients who underwent bypass surgery at our institution and determined that the patients who presented with cortical venous reddening after anastomosis during the surgery developed perioperative CI. METHODS A total of 45 consecutive patients who underwent bypass surgery were retrospectively investigated. Twenty-five of the 45 patients underwent bypass for atherosclerotic occlusion or stenosis of the internal carotid artery or middle cerebral artery. Preoperative iodine-123-N-isopropyl-iodoamphetamine single-photon emission computed tomography was performed with and without acetazolamide administration. Change in color of the cortical veins was observed on recorded surgical videos, and its correlation with perioperative CI was investigated. RESULTS We experienced 2 cases of perioperative extensive CI at a region remote from the site of anastomosis. In both cases, retrospective investigation of surgical videos demonstrated reddening of cortical veins soon after the anastomosis procedure. Of all 45 patients, postoperative CI and venous reddening were observed in only these 2 cases. CONCLUSIONS We determined that patients presenting with cortical venous reddening after anastomosis developed perioperative CI. Cortical venous reddening may be an important predictor for the occurrence of CI after STA-MCA bypass surgery for patients with atherosclerotic occlusive cerebrovascular disease.
Collapse
Affiliation(s)
- Kenyu Hayashi
- Department of Neurosurgery, Kumamoto University School of Medicine, Honjo, Kumamoto, Japan
| | - Ken Uekawa
- Department of Neurosurgery, Saiseikai Kumamoto Hospital, Chikami, Kumamoto, Japan
| | - Takayuki Kawano
- Department of Neurosurgery, Kumamoto University School of Medicine, Honjo, Kumamoto, Japan.
| | - Yuki Ohmori
- Department of Neurosurgery, Kumamoto University School of Medicine, Honjo, Kumamoto, Japan
| | - Toshihiro Amadatsu
- Department of Neurosurgery, Kumamoto University School of Medicine, Honjo, Kumamoto, Japan
| | - Yushin Takemoto
- Department of Neurosurgery, Kumamoto University School of Medicine, Honjo, Kumamoto, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Kumamoto University School of Medicine, Honjo, Kumamoto, Japan
| |
Collapse
|
14
|
Abstract
BACKGROUND Post-stroke aphasia syndromes as a clinical entity arise from the disruption of brain networks specialized in language production and comprehension due to permanent focal ischemia. This approach to post-stroke aphasia is based on two pathophysiological concepts: 1) Understanding language processing in terms of distributed networks rather than language centers and 2) understanding the molecular pathophysiology of ischemic brain injury as a dynamic process beyond the direct destruction of network centers and their connections. While considerable progress has been made in the past 10 years to develop such models on a systems as well as a molecular level, the influence of these approaches on understanding and treating clinical aphasia syndromes has been limited. OBJECTIVE & METHODS In this article, we review current pathophysiological concepts of ischemic brain injury, their relationship to altered information processing in language networks after ischemic stroke and how these mechanisms may be influenced therapeutically to improve treatment of post-stroke aphasia. CONCLUSION Understanding the pathophysiological mechanism of post-stroke aphasia on a neurophysiological systems level as well as on the molecular level becomes more and more important for aphasia treatment, as the field moves from standardized therapies towards more targeted individualized treatment strategies comprising behavioural therapies as well as non-invasive brain stimulation (NIBS).
Collapse
|
15
|
Evans NR, Tarkin JM, Buscombe JR, Markus HS, Rudd JHF, Warburton EA. PET imaging of the neurovascular interface in cerebrovascular disease. Nat Rev Neurol 2017; 13:676-688. [PMID: 28984315 DOI: 10.1038/nrneurol.2017.129] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cerebrovascular disease encompasses a range of pathologies that affect different components of the cerebral vasculature and brain parenchyma. Large artery atherosclerosis, acute cerebral ischaemia, and intracerebral small vessel disease all demonstrate altered metabolic processes that are key to their pathogenesis. Although structural imaging techniques such as MRI are the mainstay of clinical care and research in cerebrovascular disease, they have limited ability to detect these pathophysiological processes in vivo. By contrast, PET can detect and quantify metabolic processes that are relevant to each facet of cerebrovascular disease. Information obtained from PET studies has helped to shape the understanding of key concepts in cerebrovascular medicine, including vulnerable atherosclerotic plaque, salvageable ischaemic penumbra, neuroinflammation and selective neuronal loss after ischaemic insult. PET has also helped to elucidate the relationships between chronic hypoxia, neuroinflammation, and amyloid-β deposition in cerebral small vessel disease. This Review describes how PET-based imaging of metabolic processes at the neurovascular interface has contributed to our understanding of cerebrovascular disease.
Collapse
Affiliation(s)
- Nicholas R Evans
- Department of Clinical Neurosciences, University of Cambridge, Box 83, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Jason M Tarkin
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - John R Buscombe
- Department of Nuclear Medicine, Box 219, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK
| | - Hugh S Markus
- Department of Clinical Neurosciences, University of Cambridge, Box 83, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - James H F Rudd
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Elizabeth A Warburton
- Department of Clinical Neurosciences, University of Cambridge, Box 83, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
16
|
Baron JC. Mapping neuronal density in peri-infarct cortex with PET. Hum Brain Mapp 2017; 38:5822-5824. [PMID: 28731596 DOI: 10.1002/hbm.23733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 11/11/2022] Open
Affiliation(s)
- Jean-Claude Baron
- Department of Neurology, Hopital Sainte-Anne, Inserm U894, Paris Descartes University, France.,Department of Clinical Neurosciences, Stroke Research Group, University of Cambridge, United Kingdom
| |
Collapse
|
17
|
Penumbral salvage and thrombolysis outcome: a drop of brain, a week of life. Brain 2017; 140:519-522. [DOI: 10.1093/brain/awx020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Funck T, Al‐Kuwaiti M, Lepage C, Zepper P, Minuk J, Schipper HM, Evans AC, Thiel A. Assessing neuronal density in peri-infarct cortex with PET: Effects of cortical topology and partial volume correction. Hum Brain Mapp 2017; 38:326-338. [PMID: 27614005 PMCID: PMC6866936 DOI: 10.1002/hbm.23363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 08/05/2016] [Accepted: 08/18/2016] [Indexed: 01/02/2023] Open
Abstract
The peri-infarct cortex (PIC) is the site of long-term physiologic changes after ischemic stroke. Traditional methods for delineating the peri-infarct gray matter (GM) have used a volumetric Euclidean distance metric to define its extent around the infarct. This metric has limitations in the case of cortical stroke, i.e., those where ischemia leads to infarction in the cortical GM, because the vascularization of the cerebral cortex follows the complex, folded topology of the cortical surface. Instead, we used a geodesic distance metric along the cortical surface to subdivide the PIC into equidistant rings emanating from the infarct border and compared this new approach to a Euclidean distance metric definition. This was done in 11 patients with [F-18]-Flumazenil ([18-F]-FMZ) positron emission tomography (PET) scans at 2 weeks post-stroke and at 6 month follow-up. FMZ is a PET radiotracer with specific binding to the alpha subunits of the type A γ-aminobutyric acid (GABAA) receptor. Additionally, we used partial-volume correction (PVC) of the PET images to compensate for potential cortical thinning and long-term neuronal loss in follow-up images. The difference in non-displaceable binding potential (BPND ) between the stroke unaffected and affected hemispheres was 35% larger in the geodesic versus the Euclidean peri-infarct models in initial PET images and 48% larger in follow-up PET images. The inter-hemispheric BPND difference was approximately 17-20% larger after PVC when compared to uncorrected PET images. PET studies of peri-infarct GM in cortical strokes should use a geodesic model and include PVC as a preprocessing step. Hum Brain Mapp 38:326-338, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thomas Funck
- Montreal Neurological Institute, McGill UniversityMontrealCanada
- Jewish General HospitalLady Davis InstituteMontrealCanada
| | - Mohammed Al‐Kuwaiti
- Montreal Neurological Institute, McGill UniversityMontrealCanada
- Jewish General HospitalLady Davis InstituteMontrealCanada
| | - Claude Lepage
- Montreal Neurological Institute, McGill UniversityMontrealCanada
| | - Peter Zepper
- Department of NeurologyTechnische Universität MünchenMunichGermany
| | - Jeffrey Minuk
- Jewish General HospitalLady Davis InstituteMontrealCanada
| | | | - Alan C. Evans
- Montreal Neurological Institute, McGill UniversityMontrealCanada
| | - Alexander Thiel
- Montreal Neurological Institute, McGill UniversityMontrealCanada
- Jewish General HospitalLady Davis InstituteMontrealCanada
| |
Collapse
|
19
|
Magnetic resonance imaging detection of multiple ischemic injury produced in an adult rat model of minor stroke followed by mild transient cerebral ischemia. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 30:175-188. [PMID: 27815649 PMCID: PMC5364243 DOI: 10.1007/s10334-016-0597-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 10/26/2022]
Abstract
OBJECTIVES To determine whether cumulative brain damage produced adjacent to a minor stroke that is followed by a mild transient ischemia is detectable with MRI and histology, and whether acute or chronic recovery between insults influences this damage. MATERIALS AND METHODS A minor photothrombotic (PT) stroke was followed acutely (1-2 days) or chronically (7 days) by a mild transient middle cerebral artery occlusion (tMCAO). MRI was performed after each insult, followed by final histology. RESULTS The initial PT produced small hyperintense T2 and DW infarct lesions and peri-lesion regions of scattered necrosis and modestly increased T2. Following tMCAO, in a slice and a region adjacent to the PT, a region of T2 augmentation was observed when recovery between insults was acute but not chronic. Within the PT slice, a modest region of exacerbated T2 change proximate to the PT was also observed in the chronic group. Corresponding histological changes within regions of augmented T2 included increased vacuolation and cell death. CONCLUSION Within regions adjacent to an experimental minor stroke, a recurrence of a mild transient cerebral ischemia augmented T2 above increases produced by tMCAO alone, reflecting increased damage in this region. Exacerbation appeared broader with acute versus chronic recovery between insults.
Collapse
|
20
|
Ejaz S, Emmrich JV, Sitnikov SL, Hong YT, Sawiak SJ, Fryer TD, Aigbirhio FI, Williamson DJ, Baron JC. Normobaric hyperoxia markedly reduces brain damage and sensorimotor deficits following brief focal ischaemia. Brain 2016; 139:751-64. [PMID: 26767570 DOI: 10.1093/brain/awv391] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/16/2015] [Indexed: 01/02/2023] Open
Abstract
'True' transient ischaemic attacks are characterized not only clinically, but also radiologically by a lack of corresponding changes on magnetic resonance imaging. During a transient ischaemic attack it is assumed that the affected tissue is penumbral but rescued by early spontaneous reperfusion. There is, however, evidence from rodent studies that even brief focal ischaemia not resulting in tissue infarction can cause extensive selective neuronal loss associated with long-lasting sensorimotor impairment but normal magnetic resonance imaging. Selective neuronal loss might therefore contribute to the increasingly recognized cognitive impairment occurring in patients with transient ischaemic attacks. It is therefore relevant to consider treatments to reduce brain damage occurring with transient ischaemic attacks. As penumbral neurons are threatened by markedly constrained oxygen delivery, improving the latter by increasing arterial O2 content would seem logical. Despite only small increases in arterial O2 content, normobaric oxygen therapy experimentally induces significant increases in penumbral O2 pressure and by such may maintain the penumbra alive until reperfusion. Nevertheless, the effects of normobaric oxygen therapy on infarct volume in rodent models have been conflicting, although duration of occlusion appeared an important factor. Likewise, in the single randomized trial published to date, early-administered normobaric oxygen therapy had no significant effect on clinical outcome despite reduced diffusion-weighted imaging lesion growth during therapy. Here we tested the hypothesis that normobaric oxygen therapy prevents both selective neuronal loss and sensorimotor deficits in a rodent model mimicking true transient ischaemic attack. Normobaric oxygen therapy was applied from the onset and until completion of 15 min distal middle cerebral artery occlusion in spontaneously hypertensive rats, a strain representative of the transient ischaemic attack-prone population. Whereas normoxic controls showed normal magnetic resonance imaging but extensive cortical selective neuronal loss associated with microglial activation (present both at Day 14 in vivo and at Day 28 post-mortem) and marked and long-lasting sensorimotor deficits, normobaric oxygen therapy completely prevented sensorimotor deficit (P < 0.02) and near-completely Day 28 selective neuronal loss (P < 0.005). Microglial activation was substantially reduced at Day 14 and completely prevented at Day 28 (P = 0.002). Our findings document that normobaric oxygen therapy administered during ischaemia nearly completely prevents the neuronal death, microglial inflammation and sensorimotor impairment that characterize this rodent true transient ischaemic attack model. Taken together with the available literature, normobaric oxygen therapy appears a promising therapy for short-lasting ischaemia, and is attractive clinically as it could be started at home in at-risk patients or in the ambulance in subjects suspected of transient ischaemic attack/early stroke. It may also be a straightforward adjunct to reperfusion therapies, and help prevent subtle brain damage potentially contributing to long-term cognitive and sensorimotor impairment in at-risk populations.
Collapse
Affiliation(s)
- Sohail Ejaz
- 1 Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Julius V Emmrich
- 1 Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, UK 2 Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Sergey L Sitnikov
- 1 Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Young T Hong
- 3 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Stephen J Sawiak
- 3 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Tim D Fryer
- 3 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Franklin I Aigbirhio
- 3 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, UK
| | - David J Williamson
- 3 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Jean-Claude Baron
- 1 Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, UK 4 INSERM U894, Hôpital Sainte-Anne, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
21
|
Villamil-Ortiz JG, Cardona-Gomez GP. Comparative analysis of autophagy and tauopathy related markers in cerebral ischemia and Alzheimer's disease animal models. Front Aging Neurosci 2015; 7:84. [PMID: 26042033 PMCID: PMC4436888 DOI: 10.3389/fnagi.2015.00084] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/30/2015] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) and cerebral ischemia (CI) are neuropathologies that are characterized by aggregates of tau protein, a hallmark of cognitive disorder and dementia. Protein accumulation can be induced by autophagic failure. Autophagy is a metabolic pathway involved in the homeostatic recycling of cellular components. However, the role of autophagy in those tauopathies remains unclear. In this study, we performed a comparative analysis to identify autophagy related markers in tauopathy generated by AD and CI during short-term, intermediate, and long-term progression using the 3xTg-AD mouse model (aged 6,12, and 18 months) and the global CI 2-VO (2-Vessel Occlusion) rat model (1,15, and 30 days post-ischemia). Our findings confirmed neuronal loss and hyperphosphorylated tau aggregation in the somatosensory cortex (SS-Cx) of the 3xTg-AD mice in the late stage (aged 18 months), which was supported by a failure in autophagy. These results were in contrast to those obtained in the SS-Cx of the CI rats, in which we detected neuronal loss and tauopathy at 1 and 15 days post-ischemia, and this phenomenon was reversed at 30 days. We proposed that this phenomenon was associated with autophagy induction in the late stage, since the data showed a decrease in p-mTOR activity, an association of Beclin-1 and Vps34, a progressive reduction in PHF-1, an increase in LC3B puncta and autophago-lysosomes formation were observed. Furthermore, the survival pathways remained unaffected. Together, our comparative study suggest that autophagy could ameliorates tauopathy in CI but not in AD, suggesting a differential temporal approach to the induction of neuroprotection and the prevention of neurodegeneration.
Collapse
Affiliation(s)
| | - Gloria P. Cardona-Gomez
- *Correspondence: Gloria P. Cardona-Gomez, Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria, University of Antioquia, Calle 62 #52–59, Torre 1, Piso 4, Laboratorio 412, Antioquia, Medellín, Colombia
| |
Collapse
|
22
|
Ejaz S, Williamson DJ, Jensen-Kondering U, Ahmed T, Sawiak SJ, Baron JC. What is the Optimal Duration of Middle-Cerebral Artery Occlusion Consistently Resulting in Isolated Cortical Selective Neuronal Loss in the Spontaneously Hypertensive Rat? Front Neurol 2015; 6:64. [PMID: 25859239 PMCID: PMC4374627 DOI: 10.3389/fneur.2015.00064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/11/2015] [Indexed: 12/03/2022] Open
Abstract
Introduction and objectives: Selective neuronal loss (SNL) in the reperfused penumbra may impact clinical recovery and is thus important to investigate. Brief proximal middle cerebral artery occlusion (MCAo) results in predominantly striatal SNL, yet cortical damage is more relevant given its behavioral implications and that thrombolytic therapy mainly rescues the cortex. Distal temporary MCAo (tMCAo) does target the cortex, but the optimal occlusion duration that results in isolated SNL has not been determined. In the present study, we assessed different distal tMCAo durations looking for consistently pure SNL. Methods: Microclip distal tMCAo (md-tMCAo) was performed in ~6-month old male spontaneously hypertensive rats (SHRs). We previously reported that 45 min md-tMCAo in SHRs results in pan-necrosis in the majority of subjects. Accordingly, three shorter MCAo durations were investigated here in decremental succession, namely 30, 22, and 15 min (n = 3, 3, and 7 subjects, respectively). Recanalization was confirmed by MR angiography just prior to brain collection at 28 days and T2-weighted MRI was obtained for characterization of ischemic lesions. NeuN, OX42, and GFAP immunohistochemistry appraised changes in neurons, microglia, and astrocytes, respectively. Ischemic lesions were categorized into three main types: (1) pan-necrosis; (2) partial infarction; and (3) SNL. Results: Pan-necrosis or partial infarction was present in all 30 min and 22 min subjects, but not in the 15 min group (p < 0.001), in which isolated cortical SNL was consistently present. MRI revealed characteristic hyperintense abnormalities in all rats with pan-necrosis or partial infarction, but no change in any 15 min subject. Conclusion: We found that 15 min distal MCAo consistently resulted in pure cortical SNL, whereas durations equal or longer than 22 min consistently resulted in infarcts. This model may be of use to study the pathophysiology of cortical SNL and its prevention by appropriate interventions.
Collapse
Affiliation(s)
- Sohail Ejaz
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge , Cambridge , UK
| | - David J Williamson
- Department of Clinical Neurosciences, Wolfson Brain Imaging Centre, Addenbrooke's Hospital, University of Cambridge , Cambridge , UK
| | - Ulf Jensen-Kondering
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge , Cambridge , UK
| | - Tahir Ahmed
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge , Cambridge , UK
| | - Steve J Sawiak
- Department of Clinical Neurosciences, Wolfson Brain Imaging Centre, Addenbrooke's Hospital, University of Cambridge , Cambridge , UK
| | - Jean-Claude Baron
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge , Cambridge , UK ; INSERM U 894, Université Paris Descartes , Paris , France
| |
Collapse
|
23
|
Selective neuronal loss in ischemic stroke and cerebrovascular disease. J Cereb Blood Flow Metab 2014; 34:2-18. [PMID: 24192635 PMCID: PMC3887360 DOI: 10.1038/jcbfm.2013.188] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 01/23/2023]
Abstract
As a sequel of brain ischemia, selective neuronal loss (SNL)-as opposed to pannecrosis (i.e. infarction)-is attracting growing interest, particularly because it is now detectable in vivo. In acute stroke, SNL may affect the salvaged penumbra and hamper functional recovery following reperfusion. Rodent occlusion models can generate SNL predominantly in the striatum or cortex, showing that it can affect behavior for weeks despite normal magnetic resonance imaging. In humans, SNL in the salvaged penumbra has been documented in vivo mainly using positron emission tomography and (11)C-flumazenil, a neuronal tracer validated against immunohistochemistry in rodent stroke models. Cortical SNL has also been documented using this approach in chronic carotid disease in association with misery perfusion and behavioral deficits, suggesting that it can result from chronic or unstable hemodynamic compromise. Given these consequences, SNL may constitute a novel therapeutic target. Selective neuronal loss may also develop at sites remote from infarcts, representing secondary 'exofocal' phenomena akin to degeneration, potentially related to poststroke behavioral or mood impairments again amenable to therapy. Further work should aim to better characterize the time course, behavioral consequences-including the impact on neurological recovery and contribution to vascular cognitive impairment-association with possible causal processes such as microglial activation, and preventability of SNL.
Collapse
|