1
|
Kotyk T, Varkey TC, Demydchuk A, Shamalo S, Tokaruk N, Bedei V, Yurakh O, Popadynets O. Morphometrical analysis of myelinated nerve fibers: is there a room for improvement? Anat Sci Int 2024:10.1007/s12565-024-00801-6. [PMID: 39256283 DOI: 10.1007/s12565-024-00801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Despite advancements in automatic approaches for histomorphometry analysis of peripheral nerves, manual and semi-automated methods are widely utilized. Standard software functions are often unsuitable for analysis due to their irregular shapes, especially in pathological conditions. This study aims to assess the reproducibility of nerves morphometric analysis and compare results obtained using both default and new alternative algorithms. Sciatic nerves from Wistar rats (untreated and after administration of intraperitoneal hydrargyrum chloride), previously embedded in resin, were used. Morphometric analysis (diameters, myelin thickness, g-ratio, and circularity) was conducted using ImageJ on semithin sections, with axon and myelin boundaries manually outlined. Default diameters were calculated as the mean of Feret diameters, with subsequent calculations for myelin thickness and g-ratio. The alternative approach estimated diameters based on the geometric center of axons, iterating through selected coordinates; myelin thickness was obtained using line equations. In the control group, inter-rater agreement was higher or within expected reliability (0.8 ± 0.05). However, in the experimental group, myelin thickness, g-ratio, and axon circularity showed lower agreement (0.66, 0.58, and 0.68, respectively) without visible patterns on Bland-Altman plots. The alternative approach did not reveal significant differences between approaches, except for g-ratio in the control group and fiber diameter in the experimental group (p < 0.05), with effect sizes of 0.29-0.30 and 0.19-0.20, respectively. This study highlights reduced agreement among investigators analyzing nerve fibers under pathological conditions, raising concerns about the current standard measurement methods. The proposed approach, based on a single geometric center, provides more natural estimations for irregular fibers, and can be implemented in automated nerve fibers acquisition systems.
Collapse
Affiliation(s)
- Taras Kotyk
- Department of Human Anatomy, Ivano-Frankivsk National Medical University, Halytska Street, 2, Ivano-Frankivsk, Ukraine.
| | - Thomas C Varkey
- Department of Neurology, The University of AZ College of Medicine - Phoenix, Phoenix, AZ, USA
- Department of Business Management, Grand Canyon University, Phoenix, AZ, USA
| | - Anastasiia Demydchuk
- Department of Histology and Embryology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Svitlana Shamalo
- Department of Histology and Embryology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Nadiya Tokaruk
- Department of Human Anatomy, Ivano-Frankivsk National Medical University, Halytska Street, 2, Ivano-Frankivsk, Ukraine
| | - Viktoriia Bedei
- Department of Human Anatomy, Ivano-Frankivsk National Medical University, Halytska Street, 2, Ivano-Frankivsk, Ukraine
| | - Omelian Yurakh
- Department of Human Anatomy, Ivano-Frankivsk National Medical University, Halytska Street, 2, Ivano-Frankivsk, Ukraine
| | - Oksana Popadynets
- Department of Human Anatomy, Ivano-Frankivsk National Medical University, Halytska Street, 2, Ivano-Frankivsk, Ukraine
| |
Collapse
|
2
|
Maroofian R, Sarraf P, O’Brien TJ, Kamel M, Cakar A, Elkhateeb N, Lau T, Patil SJ, Record CJ, Horga A, Essid M, Selim L, Benrhouma H, Ben Younes T, Zifarelli G, Pagnamenta AT, Bauer P, Khundadze M, Mirecki A, Kamel SM, Elmonem MA, Ghayoor Karimiani E, Jamshidi Y, Offiah AC, Rossor AM, Youssef-Turki IB, Hübner CA, Munot P, Reilly MM, Brown AEX, Nagy S, Houlden H. RTN2 deficiency results in an autosomal recessive distal motor neuropathy with lower limb spasticity. Brain 2024; 147:2334-2343. [PMID: 38527963 PMCID: PMC11224604 DOI: 10.1093/brain/awae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/30/2024] [Accepted: 02/25/2024] [Indexed: 03/27/2024] Open
Abstract
Heterozygous RTN2 variants have been previously identified in a limited cohort of families affected by autosomal dominant spastic paraplegia (SPG12-OMIM:604805) with a variable age of onset. Nevertheless, the definitive validity of SPG12 remains to be confidently confirmed due to the scarcity of supporting evidence. In this study, we identified and validated seven novel or ultra-rare homozygous loss-of-function RTN2 variants in 14 individuals from seven consanguineous families with distal hereditary motor neuropathy (dHMN) using exome, genome and Sanger sequencing coupled with deep-phenotyping. All affected individuals (seven males and seven females, aged 9-50 years) exhibited weakness in the distal upper and lower limbs, lower limb spasticity and hyperreflexia, with onset in the first decade of life. Nerve conduction studies revealed axonal motor neuropathy with neurogenic changes in the electromyography. Despite a slowly progressive disease course, all patients remained ambulatory over a mean disease duration of 19.71 ± 13.70 years. Characterization of Caenorhabditis elegans RTN2 homologous loss-of-function variants demonstrated morphological and behavioural differences compared with the parental strain. Treatment of the mutant with an endoplasmic/sarcoplasmic reticulum Ca2+ reuptake inhibitor (2,5-di-tert-butylhydroquinone) rescued key phenotypic differences, suggesting a potential therapeutic benefit for RTN2-disorder. Despite RTN2 being an endoplasmic reticulum (ER)-resident membrane shaping protein, our analysis of patient fibroblast cells did not find significant alterations in ER structure or the response to ER stress. Our findings delineate a distinct form of autosomal recessive dHMN with pyramidal features associated with RTN2 deficiency. This phenotype shares similarities with SIGMAR1-related dHMN and Silver-like syndromes, providing valuable insights into the clinical spectrum and potential therapeutic strategies for RTN2-related dHMN.
Collapse
Affiliation(s)
- Reza Maroofian
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Payam Sarraf
- Department of Neuromuscular Diseases, Iranian Centre of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran 1416753955, Iran
- Department of Neurology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Thomas J O’Brien
- Institute of Clinical Sciences, Imperial College London, London SW7 2AZ, UK
- MRC Laboratory of Medical Sciences, London W12 0HS, UK
| | - Mona Kamel
- Department of Pediatrics, Neurology and Metabolic Division, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 4240310, Egypt
| | - Arman Cakar
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Neuromuscular Unit, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Turkey
| | - Nour Elkhateeb
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Tracy Lau
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Siddaramappa Jagdish Patil
- Division of Medical Genetics, Mazumdar Shaw Medical Center, Narayana Hrudayalaya Hospital, Bangalore 560099, India
| | - Christopher J Record
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alejandro Horga
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Miriam Essid
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, 1007, Tunisia
| | - Laila Selim
- Department of Pediatrics, Neurology and Metabolic Division, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 4240310, Egypt
| | - Hanene Benrhouma
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, 1007, Tunisia
| | - Thouraya Ben Younes
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, 1007, Tunisia
| | | | - Alistair T Pagnamenta
- NIHR Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford OX3 9DU, UK
| | | | - Mukhran Khundadze
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena 07747, Germany
| | - Andrea Mirecki
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena 07747, Germany
| | | | - Mohamed A Elmonem
- Department of Clinical and Chemical Pathology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 12613, Egypt
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George’s, University of London, London SW17 0RE, UK
- Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad 9187147578, Iran
| | - Yalda Jamshidi
- Molecular and Clinical Sciences Institute, St. George’s, University of London, London SW17 0RE, UK
| | - Amaka C Offiah
- Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Alexander M Rossor
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ilhem Ben Youssef-Turki
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, 1007, Tunisia
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena 07747, Germany
- Center for Rare Diseases, Jena University Hospital, Friedrich Schiller Universität, Jena 07747, Germany
| | - Pinki Munot
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital NHS Trust, London WC1N 3JH, UK
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - André E X Brown
- Institute of Clinical Sciences, Imperial College London, London SW7 2AZ, UK
- MRC Laboratory of Medical Sciences, London W12 0HS, UK
| | - Sara Nagy
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Neurology, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - Henry Houlden
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
3
|
Ronayne CT, Latorre-Muro P. Navigating the landscape of mitochondrial-ER communication in health and disease. Front Mol Biosci 2024; 11:1356500. [PMID: 38323074 PMCID: PMC10844478 DOI: 10.3389/fmolb.2024.1356500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
Intracellular organelle communication enables the maintenance of tissue homeostasis and health through synchronized adaptive processes triggered by environmental cues. Mitochondrial-Endoplasmic Reticulum (ER) communication sustains cellular fitness by adjusting protein synthesis and degradation, and metabolite and protein trafficking through organelle membranes. Mitochondrial-ER communication is bidirectional and requires that the ER-components of the Integrated Stress Response signal to mitochondria upon activation and, likewise, mitochondria signal to the ER under conditions of metabolite and protein overload to maintain proper functionality and ensure cellular survival. Declines in the mitochondrial-ER communication occur upon ageing and correlate with the onset of a myriad of heterogeneous age-related diseases such as obesity, type 2 diabetes, cancer, or neurodegenerative pathologies. Thus, the exploration of the molecular mechanisms of mitochondrial-ER signaling and regulation will provide insights into the most fundamental cellular adaptive processes with important therapeutical opportunities. In this review, we will discuss the pathways and mechanisms of mitochondrial-ER communication at the mitochondrial-ER interface and their implications in health and disease.
Collapse
Affiliation(s)
- Conor T. Ronayne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Lim JH, Kang HM, Kim DH, Jeong B, Lee DY, Lee JR, Baek JY, Cho HS, Son MY, Kim DS, Kim NS, Jung CR. ARL6IP1 gene delivery reduces neuroinflammation and neurodegenerative pathology in hereditary spastic paraplegia model. J Exp Med 2024; 221:e20230367. [PMID: 37934410 PMCID: PMC10630151 DOI: 10.1084/jem.20230367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/24/2023] [Accepted: 09/25/2023] [Indexed: 11/08/2023] Open
Abstract
ARL6IP1 is implicated in hereditary spastic paraplegia (HSP), but the specific pathogenic mechanism leading to neurodegeneration has not been elucidated. Here, we clarified the molecular mechanism of ARL6IP1 in HSP using in vitro and in vivo models. The Arl6ip1 knockout (KO) mouse model was generated to represent the clinically involved frameshift mutations and mimicked the HSP phenotypes. Notably, in vivo brain histopathological analysis revealed demyelination of the axon and neuroinflammation in the white matter, including the corticospinal tract. In in vitro experiments, ARL6IP1 silencing caused cell death during neuronal differentiation and mitochondrial dysfunction by dysregulated autophagy. ARL6IP1 localized on mitochondria-associated membranes (MAMs) to maintain endoplasmic reticulum and mitochondrial homeostasis via direct interaction with LC3B and BCl2L13. ARL6IP1 played a crucial role in connecting the endoplasmic reticulum and mitochondria as a member of MAMs. ARL6IP1 gene therapy reduced HSP phenotypes and restored pathophysiological changes in the Arl6ip1 KO model. Our results established that ARL6IP1 could be a potential target for HSP gene therapy.
Collapse
Affiliation(s)
- Jung Hwa Lim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Hyun Mi Kang
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Dae Hun Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Bohyeon Jeong
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Da Yong Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jae-Ran Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jeong Yeob Baek
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Dae Soo Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Nam-Soon Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Cho-Rok Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
5
|
Parkkinen I, Their A, Asghar MY, Sree S, Jokitalo E, Airavaara M. Pharmacological Regulation of Endoplasmic Reticulum Structure and Calcium Dynamics: Importance for Neurodegenerative Diseases. Pharmacol Rev 2023; 75:959-978. [PMID: 37127349 DOI: 10.1124/pharmrev.122.000701] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023] Open
Abstract
The endoplasmic reticulum (ER) is the largest organelle of the cell, composed of a continuous network of sheets and tubules, and is involved in protein, calcium (Ca2+), and lipid homeostasis. In neurons, the ER extends throughout the cell, both somal and axodendritic compartments, and is highly important for neuronal functions. A third of the proteome of a cell, secreted and membrane-bound proteins, are processed within the ER lumen and most of these proteins are vital for neuronal activity. The brain itself is high in lipid content, and many structural lipids are produced, in part, by the ER. Cholesterol and steroid synthesis are strictly regulated in the ER of the blood-brain barrier protected brain cells. The high Ca2+ level in the ER lumen and low cytosolic concentration is needed for Ca2+-based intracellular signaling, for synaptic signaling and Ca2+ waves, and for preparing proteins for correct folding in the presence of high Ca2+ concentrations to cope with the high concentrations of extracellular milieu. Particularly, ER Ca2+ is controlled in axodendritic areas for proper neurito- and synaptogenesis and synaptic plasticity and remodeling. In this review, we cover the physiologic functions of the neuronal ER and discuss it in context of common neurodegenerative diseases, focusing on pharmacological regulation of ER Ca2+ Furthermore, we postulate that heterogeneity of the ER, its protein folding capacity, and ensuring Ca2+ regulation are crucial factors for the aging and selective vulnerability of neurons in various neurodegenerative diseases. SIGNIFICANCE STATEMENT: Endoplasmic reticulum (ER) Ca2+ regulators are promising therapeutic targets for degenerative diseases for which efficacious drug therapies do not exist. The use of pharmacological probes targeting maintenance and restoration of ER Ca2+ can provide restoration of protein homeostasis (e.g., folding of complex plasma membrane signaling receptors) and slow down the degeneration process of neurons.
Collapse
Affiliation(s)
- Ilmari Parkkinen
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Anna Their
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Muhammad Yasir Asghar
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Sreesha Sree
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Mikko Airavaara
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Maddison DC, Malik B, Amadio L, Bis-Brewer DM, Züchner S, Peters OM, Smith GA. COPI-regulated mitochondria-ER contact site formation maintains axonal integrity. Cell Rep 2023; 42:112883. [PMID: 37498742 PMCID: PMC10840514 DOI: 10.1016/j.celrep.2023.112883] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/05/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Coat protein complex I (COPI) is best known for its role in Golgi-endoplasmic reticulum (ER) trafficking, responsible for the retrograde transport of ER-resident proteins. The ER is crucial to neuronal function, regulating Ca2+ homeostasis and the distribution and function of other organelles such as endosomes, peroxisomes, and mitochondria via functional contact sites. Here we demonstrate that disruption of COPI results in mitochondrial dysfunction in Drosophila axons and human cells. The ER network is also disrupted, and the neurons undergo rapid degeneration. We demonstrate that mitochondria-ER contact sites (MERCS) are decreased in COPI-deficient axons, leading to Ca2+ dysregulation, heightened mitophagy, and a decrease in respiratory capacity. Reintroducing MERCS is sufficient to rescue not only mitochondrial distribution and Ca2+ uptake but also ER morphology, dramatically delaying neurodegeneration. This work demonstrates an important role for COPI-mediated trafficking in MERC formation, which is an essential process for maintaining axonal integrity.
Collapse
Affiliation(s)
- Daniel C Maddison
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Bilal Malik
- UK Dementia Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Leonardo Amadio
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; UK Dementia Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Dana M Bis-Brewer
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Stephan Züchner
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Owen M Peters
- UK Dementia Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Gaynor A Smith
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK.
| |
Collapse
|
7
|
Foronda H, Fu Y, Covarrubias-Pinto A, Bocker HT, González A, Seemann E, Franzka P, Bock A, Bhaskara RM, Liebmann L, Hoffmann ME, Katona I, Koch N, Weis J, Kurth I, Gleeson JG, Reggiori F, Hummer G, Kessels MM, Qualmann B, Mari M, Dikić I, Hübner CA. Heteromeric clusters of ubiquitinated ER-shaping proteins drive ER-phagy. Nature 2023:10.1038/s41586-023-06090-9. [PMID: 37225994 DOI: 10.1038/s41586-023-06090-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/17/2023] [Indexed: 05/26/2023]
Abstract
Membrane-shaping proteins characterized by reticulon homology domains play an important part in the dynamic remodelling of the endoplasmic reticulum (ER). An example of such a protein is FAM134B, which can bind LC3 proteins and mediate the degradation of ER sheets through selective autophagy (ER-phagy)1. Mutations in FAM134B result in a neurodegenerative disorder in humans that mainly affects sensory and autonomic neurons2. Here we report that ARL6IP1, another ER-shaping protein that contains a reticulon homology domain and is associated with sensory loss3, interacts with FAM134B and participates in the formation of heteromeric multi-protein clusters required for ER-phagy. Moreover, ubiquitination of ARL6IP1 promotes this process. Accordingly, disruption of Arl6ip1 in mice causes an expansion of ER sheets in sensory neurons that degenerate over time. Primary cells obtained from Arl6ip1-deficient mice or from patients display incomplete budding of ER membranes and severe impairment of ER-phagy flux. Therefore, we propose that the clustering of ubiquitinated ER-shaping proteins facilitates the dynamic remodelling of the ER during ER-phagy and is important for neuronal maintenance.
Collapse
Affiliation(s)
- Hector Foronda
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Yangxue Fu
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
| | | | - Hartmut T Bocker
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Blink AG, Jena, Germany
| | - Alexis González
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
| | - Eric Seemann
- Institute for Biochemistry I, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Patricia Franzka
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Andrea Bock
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Ramachandra M Bhaskara
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Lutz Liebmann
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Marina E Hoffmann
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Nicole Koch
- Institute for Biochemistry I, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Joseph G Gleeson
- Department of Neurosciences, Rady Children's Institute for Genomic Medicine Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus C, Denmark
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael M Kessels
- Institute for Biochemistry I, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Britta Qualmann
- Institute for Biochemistry I, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Muriel Mari
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Ivan Dikić
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
- Center for Rare Diseases, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
8
|
Molecular machinery regulating organelle dynamics during axon growth and guidance. Semin Cell Dev Biol 2023; 133:3-9. [PMID: 35227625 DOI: 10.1016/j.semcdb.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/24/2022] [Accepted: 02/21/2022] [Indexed: 11/23/2022]
Abstract
Axon growth and guidance in the developing nervous system rely on intracellular membrane dynamics that involve endosome maturation and transport, as well as its regulated tethering to the endoplasmic reticulum (ER). Recent studies have identified several key molecules, such as protrudin, which plays a dynamic role at membrane contact sites between the ER and endosomes/lysosomes, and myosin Va, which acts as a sensor for ER-derived Ca2+ that triggers peri-ER membrane export. These molecules form different types of multiprotein complexes at the interface of organelles and, in response to their surrounding microenvironments, such as Ca2+ concentrations and lipid contents, regulate the directional movement of endosomal vesicles in extending axons. Here, we review the molecular mechanisms underlying membrane dynamics and inter-organelle interactions during neuronal morphogenesis.
Collapse
|
9
|
Suhda S, Yamamoto Y, Wisesa S, Sada R, Sakisaka T. The 14-3-3γ isoform binds to and regulates the localization of endoplasmic reticulum (ER) membrane protein TMCC3 for the reticular network of the ER. J Biol Chem 2022; 299:102813. [PMID: 36549645 PMCID: PMC9860497 DOI: 10.1016/j.jbc.2022.102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The reticular network of the endoplasmic reticulum (ER) is formed by connecting ER tubules through three-way junctions and undergoes constant remodeling through formation and loss of the three-way junctions. Transmembrane and coiled-coil domain family 3 (TMCC3), an ER membrane protein localizing at three-way junctions, has been shown to positively regulate formation of the reticular ER network. However, elements that negatively regulate TMCC3 localization have not been characterized. In this study, we report that 14-3-3γ, a phospho-serine/phospho-threonine-binding protein involved in various signal transduction pathways, is a negative regulator of TMCC3. We demonstrate that overexpression of 14-3-3γ reduced localization of TMCC3 to three-way junctions and decreased the number of three-way junctions. TMCC3 bound to 14-3-3γ through the N terminus and had deduced 14-3-3 binding motifs. Additionally, we determined that a TMCC3 mutant substituting alanine for serine to be phosphorylated in the binding motif reduced binding to 14-3-3γ. The TMCC3 mutant was more prone than wildtype TMCC3 to localize at three-way junctions in the cells overexpressing 14-3-3γ. Furthermore, the TMCC3 mutant rescued the ER sheet expansion caused by TMCC3 knockdown less than wild-type TMCC3. Taken together, these results indicate that 14-3-3γ binding negatively regulates localization of TMCC3 to the three-way junctions for the proper reticular ER network, implying that the negative regulation of TMCC3 by 14-3-3γ would underlie remodeling of the reticular network of the ER.
Collapse
Affiliation(s)
- Saihas Suhda
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Yasunori Yamamoto
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Sindhu Wisesa
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Risa Sada
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Toshiaki Sakisaka
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan.
| |
Collapse
|
10
|
The Adhesion GPCR VLGR1/ADGRV1 Regulates the Ca2+ Homeostasis at Mitochondria-Associated ER Membranes. Cells 2022; 11:cells11182790. [PMID: 36139365 PMCID: PMC9496679 DOI: 10.3390/cells11182790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
The very large G protein-coupled receptor (VLGR1, ADGRV1) is the largest member of the adhesion GPCR family. Mutations in VLGR1 have been associated with the human Usher syndrome (USH), the most common form of inherited deaf-blindness as well as childhood absence epilepsy. VLGR1 was previously found as membrane–membrane adhesion complexes and focal adhesions. Affinity proteomics revealed that in the interactome of VLGR1, molecules are enriched that are associated with both the ER and mitochondria, as well as mitochondria-associated ER membranes (MAMs), a compartment at the contact sites of both organelles. We confirmed the interaction of VLGR1 with key proteins of MAMs by pull-down assays in vitro complemented by in situ proximity ligation assays in cells. Immunocytochemistry by light and electron microscopy demonstrated the localization of VLGR1 in MAMs. The absence of VLGR1 in tissues and cells derived from VLGR1-deficient mouse models resulted in alterations in the MAM architecture and in the dysregulation of the Ca2+ transient from ER to mitochondria. Our data demonstrate the molecular and functional interaction of VLGR1 with components in MAMs and point to an essential role of VLGR1 in the regulation of Ca2+ homeostasis, one of the key functions of MAMs.
Collapse
|
11
|
Lischka A, Lassuthova P, Çakar A, Record CJ, Van Lent J, Baets J, Dohrn MF, Senderek J, Lampert A, Bennett DL, Wood JN, Timmerman V, Hornemann T, Auer-Grumbach M, Parman Y, Hübner CA, Elbracht M, Eggermann K, Geoffrey Woods C, Cox JJ, Reilly MM, Kurth I. Genetic pain loss disorders. Nat Rev Dis Primers 2022; 8:41. [PMID: 35710757 DOI: 10.1038/s41572-022-00365-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Abstract
Genetic pain loss includes congenital insensitivity to pain (CIP), hereditary sensory neuropathies and, if autonomic nerves are involved, hereditary sensory and autonomic neuropathy (HSAN). This heterogeneous group of disorders highlights the essential role of nociception in protecting against tissue damage. Patients with genetic pain loss have recurrent injuries, burns and poorly healing wounds as disease hallmarks. CIP and HSAN are caused by pathogenic genetic variants in >20 genes that lead to developmental defects, neurodegeneration or altered neuronal excitability of peripheral damage-sensing neurons. These genetic variants lead to hyperactivity of sodium channels, disturbed haem metabolism, altered clathrin-mediated transport and impaired gene regulatory mechanisms affecting epigenetic marks, long non-coding RNAs and repetitive elements. Therapies for pain loss disorders are mainly symptomatic but the first targeted therapies are being tested. Conversely, chronic pain remains one of the greatest unresolved medical challenges, and the genes and mechanisms associated with pain loss offer new targets for analgesics. Given the progress that has been made, the coming years are promising both in terms of targeted treatments for pain loss disorders and the development of innovative pain medicines based on knowledge of these genetic diseases.
Collapse
Affiliation(s)
- Annette Lischka
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Petra Lassuthova
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Arman Çakar
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Christopher J Record
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
| | - Jonathan Baets
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium.,Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Maike F Dohrn
- Department of Neurology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany.,Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jan Senderek
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
| | - Thorsten Hornemann
- Department of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michaela Auer-Grumbach
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Yesim Parman
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Katja Eggermann
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - C Geoffrey Woods
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
12
|
Deng C, Reinhard S, Hennlein L, Eilts J, Sachs S, Doose S, Jablonka S, Sauer M, Moradi M, Sendtner M. Impaired dynamic interaction of axonal endoplasmic reticulum and ribosomes contributes to defective stimulus-response in spinal muscular atrophy. Transl Neurodegener 2022; 11:31. [PMID: 35650592 PMCID: PMC9161492 DOI: 10.1186/s40035-022-00304-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/28/2022] [Indexed: 11/19/2022] Open
Abstract
Background Axonal degeneration and defects in neuromuscular neurotransmission represent a pathological hallmark in spinal muscular atrophy (SMA) and other forms of motoneuron disease. These pathological changes do not only base on altered axonal and presynaptic architecture, but also on alterations in dynamic movements of organelles and subcellular structures that are not necessarily reflected by static histopathological changes. The dynamic interplay between the axonal endoplasmic reticulum (ER) and ribosomes is essential for stimulus-induced local translation in motor axons and presynaptic terminals. However, it remains enigmatic whether the ER and ribosome crosstalk is impaired in the presynaptic compartment of motoneurons with Smn (survival of motor neuron) deficiency that could contribute to axonopathy and presynaptic dysfunction in SMA. Methods Using super-resolution microscopy, proximity ligation assay (PLA) and live imaging of cultured motoneurons from a mouse model of SMA, we investigated the dynamics of the axonal ER and ribosome distribution and activation. Results We observed that the dynamic remodeling of ER was impaired in axon terminals of Smn-deficient motoneurons. In addition, in axon terminals of Smn-deficient motoneurons, ribosomes failed to respond to the brain-derived neurotrophic factor stimulation, and did not undergo rapid association with the axonal ER in response to extracellular stimuli. Conclusions These findings implicate impaired dynamic interplay between the ribosomes and ER in axon terminals of motoneurons as a contributor to the pathophysiology of SMA and possibly also other motoneuron diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-022-00304-2.
Collapse
Affiliation(s)
- Chunchu Deng
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078, Würzburg, Germany
| | - Sebastian Reinhard
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Wuerzburg, 97074, Würzburg, Germany
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078, Würzburg, Germany
| | - Janna Eilts
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Wuerzburg, 97074, Würzburg, Germany
| | - Stefan Sachs
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Wuerzburg, 97074, Würzburg, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Wuerzburg, 97074, Würzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Wuerzburg, 97074, Würzburg, Germany
| | - Mehri Moradi
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078, Würzburg, Germany.
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078, Würzburg, Germany.
| |
Collapse
|
13
|
Gubas A, Dikic I. ER remodeling via ER-phagy. Mol Cell 2022; 82:1492-1500. [PMID: 35452617 PMCID: PMC9098120 DOI: 10.1016/j.molcel.2022.02.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 01/01/2023]
Abstract
The endoplasmic reticulum (ER) is a hotspot for many essential cellular functions. The ER membrane is highly dynamic, which affects many cellular processes that take place within the ER. One such process is ER-phagy, a selective degradation of ER fragments (including membranes and luminal content), which serves to preserve the size of ER while adapting its morphology under basal and stress conditions. In order to be degraded, the ER undergoes selective fragmentation facilitated by specialized ER-shaping proteins that also act as ER-phagy receptors. Their ability to sense and induce membrane curvature, as well as to bridge the ER with autophagy machinery, allows for a successful ER fragmentation and delivery of these fragments to the lysosome for degradation and recycling. In this review, we provide insights into ER-phagy from the perspective of membrane remodeling. We highlight the importance of ER membrane dynamics during ER-phagy and emphasize how its dysregulation reflects on human physiology and pathology.
Collapse
Affiliation(s)
- Andrea Gubas
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany.
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany; Max Planck Institute of Biophysics, Frankfurt, Germany.
| |
Collapse
|
14
|
Byrne DJ, Garcia-Pardo ME, Cole NB, Batnasan B, Heneghan S, Sohail A, Blackstone C, O'Sullivan NC. Liver X receptor-agonist treatment rescues degeneration in a Drosophila model of hereditary spastic paraplegia. Acta Neuropathol Commun 2022; 10:40. [PMID: 35346366 PMCID: PMC8961908 DOI: 10.1186/s40478-022-01343-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 12/26/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a group of inherited, progressive neurodegenerative conditions characterised by prominent lower-limb spasticity and weakness, caused by a length-dependent degeneration of the longest corticospinal upper motor neurons. While more than 80 spastic paraplegia genes (SPGs) have been identified, many cases arise from mutations in genes encoding proteins which generate and maintain tubular endoplasmic reticulum (ER) membrane organisation. The ER-shaping proteins are essential for the health and survival of long motor neurons, however the mechanisms by which mutations in these genes cause the axonopathy observed in HSP have not been elucidated. To further develop our understanding of the ER-shaping proteins, this study outlines the generation of novel in vivo and in vitro models, using CRISPR/Cas9-mediated gene editing to knockout the ER-shaping protein ADP-ribosylation factor-like 6 interacting protein 1 (ARL6IP1), mutations in which give rise to the HSP subtype SPG61. Loss of Arl6IP1 in Drosophila results in progressive locomotor deficits, emulating a key aspect of HSP in patients. ARL6IP1 interacts with ER-shaping proteins and is required for regulating the organisation of ER tubules, particularly within long motor neuron axons. Unexpectedly, we identified physical and functional interactions between ARL6IP1 and the phospholipid transporter oxysterol-binding protein-related protein 8 in both human and Drosophila model systems, pointing to a conserved role for ARL6IP1 in lipid homeostasis. Furthermore, loss of Arl6IP1 from Drosophila neurons results in a cell non-autonomous accumulation of lipid droplets in axonal glia. Importantly, treatment with lipid regulating liver X receptor-agonists blocked lipid droplet accumulation, restored axonal ER organisation, and improved locomotor function in Arl6IP1 knockout Drosophila. Our findings indicate that disrupted lipid homeostasis contributes to neurodegeneration in HSP, identifying a potential novel therapeutic avenue for the treatment of this disorder.
Collapse
Affiliation(s)
- Dwayne J Byrne
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - M Elena Garcia-Pardo
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Nelson B Cole
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Belguun Batnasan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Sophia Heneghan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Anood Sohail
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Niamh C O'Sullivan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
15
|
McCray BA, Scherer SS. Axonal Charcot-Marie-Tooth Disease: from Common Pathogenic Mechanisms to Emerging Treatment Opportunities. Neurotherapeutics 2021; 18:2269-2285. [PMID: 34606075 PMCID: PMC8804038 DOI: 10.1007/s13311-021-01099-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/12/2023] Open
Abstract
Inherited peripheral neuropathies are a genetically and phenotypically diverse group of disorders that lead to degeneration of peripheral neurons with resulting sensory and motor dysfunction. Genetic neuropathies that primarily cause axonal degeneration, as opposed to demyelination, are most often classified as Charcot-Marie-Tooth disease type 2 (CMT2) and are the focus of this review. Gene identification efforts over the past three decades have dramatically expanded the genetic landscape of CMT and revealed several common pathological mechanisms among various forms of the disease. In some cases, identification of the precise genetic defect and/or the downstream pathological consequences of disease mutations have yielded promising therapeutic opportunities. In this review, we discuss evidence for pathogenic overlap among multiple forms of inherited neuropathy, highlighting genetic defects in axonal transport, mitochondrial dynamics, organelle-organelle contacts, and local axonal protein translation as recurrent pathological processes in inherited axonal neuropathies. We also discuss how these insights have informed emerging treatment strategies, including specific approaches for single forms of neuropathy, as well as more general approaches that have the potential to treat multiple types of neuropathy. Such therapeutic opportunities, made possible by improved understanding of molecular and cellular pathogenesis and advances in gene therapy technologies, herald a new and exciting phase in inherited peripheral neuropathy.
Collapse
Affiliation(s)
- Brett A. McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Steven S. Scherer
- Department of Neurology, The University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
16
|
Behrendt L, Hoischen C, Kaether C. Disease-causing mutated ATLASTIN 3 is excluded from distal axons and reduces axonal autophagy. Neurobiol Dis 2021; 155:105400. [PMID: 34019998 DOI: 10.1016/j.nbd.2021.105400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/27/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022] Open
Abstract
Mutations in the ER-network forming GTPase atlastin3 (ATL3) can cause axon degeneration of sensory neurons by not fully understood mechanisms. We here show that the hereditary sensory and autonomous neuropathy (HSAN)-causing ATL3 Y192C or P338R are excluded from distal axons by a barrier at the axon initial segment (AIS). This barrier is selective for mutated ATL3, but not wildtype ATL3 or unrelated ER-membrane proteins. Actin-depolymerization partially restores the transport of ATL3 Y192C into distal axons. The results point to the existence of a selective diffusion barrier in the ER membrane at the AIS, analogous to the AIS-based barriers for plasma membrane and cytosolic proteins. Functionally, the absence of ATL3 at the distal axon reduces axonal autophagy and the ER network deformation in the soma causes a reduction in axonal lysosomes. Both could contribute to axonal degeneration and eventually to HSAN.
Collapse
Affiliation(s)
- Laura Behrendt
- Leibniz-Institut für Alternsforschung-Fritz-Lipmann-Institut, 07745 Jena, Germany
| | - Christian Hoischen
- Leibniz-Institut für Alternsforschung-Fritz-Lipmann-Institut, 07745 Jena, Germany
| | - Christoph Kaether
- Leibniz-Institut für Alternsforschung-Fritz-Lipmann-Institut, 07745 Jena, Germany.
| |
Collapse
|
17
|
Tadepalle N, Rugarli EI. Lipid Droplets in the Pathogenesis of Hereditary Spastic Paraplegia. Front Mol Biosci 2021; 8:673977. [PMID: 34041268 PMCID: PMC8141572 DOI: 10.3389/fmolb.2021.673977] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are genetically heterogeneous conditions caused by the progressive dying back of the longest axons in the central nervous system, the corticospinal axons. A wealth of data in the last decade has unraveled disturbances of lipid droplet (LD) biogenesis, maturation, turnover and contact sites in cellular and animal models with perturbed expression and function of HSP proteins. As ubiquitous organelles that segregate neutral lipid into a phospholipid monolayer, LDs are at the cross-road of several processes including lipid metabolism and trafficking, energy homeostasis, and stress signaling cascades. However, their role in brain cells, especially in neurons remains enigmatic. Here, we review experimental findings linking LD abnormalities to defective function of proteins encoded by HSP genes, and discuss arising questions in the context of the pathogenesis of HSP.
Collapse
Affiliation(s)
- Nimesha Tadepalle
- Molecular and Cell Biology Laboratory, Salk Institute of Biological Sciences, La Jolla, CA, United States
| | - Elena I Rugarli
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,Center for Molecular Medicine (CMMC),Cologne, Germany
| |
Collapse
|
18
|
Morphological Heterogeneity of the Endoplasmic Reticulum within Neurons and Its Implications in Neurodegeneration. Cells 2021; 10:cells10050970. [PMID: 33919188 PMCID: PMC8143122 DOI: 10.3390/cells10050970] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
The endoplasmic reticulum (ER) is a multipurpose organelle comprising dynamic structural subdomains, such as ER sheets and tubules, serving to maintain protein, calcium, and lipid homeostasis. In neurons, the single ER is compartmentalized with a careful segregation of the structural subdomains in somatic and neurite (axodendritic) regions. The distribution and arrangement of these ER subdomains varies between different neuronal types. Mutations in ER membrane shaping proteins and morphological changes in the ER are associated with various neurodegenerative diseases implying significance of ER morphology in maintaining neuronal integrity. Specific neurons, such as the highly arborized dopaminergic neurons, are prone to stress and neurodegeneration. Differences in morphology and functionality of ER between the neurons may account for their varied sensitivity to stress and neurodegenerative changes. In this review, we explore the neuronal ER and discuss its distinct morphological attributes and specific functions. We hypothesize that morphological heterogeneity of the ER in neurons is an important factor that accounts for their selective susceptibility to neurodegeneration.
Collapse
|
19
|
Axonal Organelles as Molecular Platforms for Axon Growth and Regeneration after Injury. Int J Mol Sci 2021; 22:ijms22041798. [PMID: 33670312 PMCID: PMC7918155 DOI: 10.3390/ijms22041798] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Investigating the molecular mechanisms governing developmental axon growth has been a useful approach for identifying new strategies for boosting axon regeneration after injury, with the goal of treating debilitating conditions such as spinal cord injury and vision loss. The picture emerging is that various axonal organelles are important centers for organizing the molecular mechanisms and machinery required for growth cone development and axon extension, and these have recently been targeted to stimulate robust regeneration in the injured adult central nervous system (CNS). This review summarizes recent literature highlighting a central role for organelles such as recycling endosomes, the endoplasmic reticulum, mitochondria, lysosomes, autophagosomes and the proteasome in developmental axon growth, and describes how these organelles can be targeted to promote axon regeneration after injury to the adult CNS. This review also examines the connections between these organelles in developing and regenerating axons, and finally discusses the molecular mechanisms within the axon that are required for successful axon growth.
Collapse
|
20
|
Kozono T, Sato H, Okumura W, Jogano C, Tamura-Nakano M, Kawamura YI, Rohrer J, Tonozuka T, Nishikawa A. The N-terminal region of Jaw1 has a role to inhibit the formation of organized smooth endoplasmic reticulum as an intrinsically disordered region. Sci Rep 2021; 11:753. [PMID: 33436890 PMCID: PMC7804115 DOI: 10.1038/s41598-020-80258-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Jaw1/LRMP is a type II integral membrane protein that is localized at the endoplasmic reticulum (ER) and outer nuclear membrane. We previously reported that a function of Jaw1 is to maintain the nuclear shape as a KASH protein via its carboxyl terminal region, a component of linker of nucleoskeleton and cytoskeleton complex in the oligomeric state. Although the oligomerization of some KASH proteins via the cytosolic regions serves to stabilize protein-protein interactions, the issue of how the oligomerization of Jaw1 is regulated is not completely understood. Therefore, we focused on three distinct regions on the cytosolic face of Jaw1: the N-terminal region, the coiled-coil domain and the stem region, in terms of oligomerization. A co-immunoprecipitation assay showed that its coiled-coil domain is a candidate for the oligomerization site. Furthermore, our data indicated that the N-terminal region prevents the aberrant oligomerization of Jaw1 as an intrinsically disordered region (IDR). Importantly, the ectopic expression of an N-terminal region deleted mutant caused the formation of organized smooth ER (OSER), structures such as nuclear karmellae and whorls, in B16F10 cells. Furthermore, this OSER interfered with the localization of the oligomer and interactors such as the type III inositol 1,4,5-triphosphate receptor (IP3R3) and SUN2. In summary, the N-terminal region of Jaw1 inhibits the formation of OSER as an IDR to maintain the homeostatic localization of interactors on the ER membrane.
Collapse
Affiliation(s)
- Takuma Kozono
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan.,Department of Gastroenterology, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, 272-8516, Japan
| | - Hiroyuki Sato
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Wataru Okumura
- Department of Food and Energy Systems Science, Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Chifuyu Jogano
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Miwa Tamura-Nakano
- Communal Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Yuki I Kawamura
- Department of Gastroenterology, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, 272-8516, Japan
| | - Jack Rohrer
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, CH-8820, Waedenswil, Switzerland
| | - Takashi Tonozuka
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Atsushi Nishikawa
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan. .,Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan. .,Department of Food and Energy Systems Science, Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan.
| |
Collapse
|
21
|
Shirane M. Lipid Transfer-Dependent Endosome Maturation Mediated by Protrudin and PDZD8 in Neurons. Front Cell Dev Biol 2020; 8:615600. [PMID: 33385000 PMCID: PMC7769939 DOI: 10.3389/fcell.2020.615600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Endosome maturation refers to the conversion of early endosomes (EEs) to late endosomes (LEs) for subsequent fusion with lysosomes. It is an incremental process that involves a combination of endosome fusion and fission and which occurs at contact sites between endosomes and the endoplasmic reticulum (ER), with knowledge of the underlying mechanisms having increased greatly in recent years. Protrudin is an ER-resident protein that was originally shown to regulate neurite formation by promoting endosome trafficking, whereas PDZD8 is a mammalian paralog of a subunit of the yeast ERMES (ER-mitochondrial encounter structure) complex that possesses lipid transfer activity. A complex of protrudin and PDZD8 was recently found to promote endosome maturation by mediating lipid transfer at ER-endosome membrane contact sites. This review focuses on the roles of the protrudin-PDZD8 complex in tethering of endosomes to the ER, in mediating lipid transfer at such contact sites, and in regulating endosome dynamics, especially in neuronal cells. It also addresses the physiological contribution of endosome maturation mediated by this complex to neuronal polarity and integrity.
Collapse
Affiliation(s)
- Michiko Shirane
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
22
|
Shirane M, Shoji H, Hashimoto Y, Katagiri H, Kobayashi S, Manabe T, Miyakawa T, Nakayama KI. Protrudin-deficient mice manifest depression-like behavior with abnormalities in activity, attention, and cued fear-conditioning. Mol Brain 2020; 13:146. [PMID: 33172474 PMCID: PMC7654181 DOI: 10.1186/s13041-020-00693-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/03/2020] [Indexed: 01/02/2023] Open
Abstract
Protrudin is a protein that resides in the membrane of the endoplasmic reticulum and is highly expressed in the nervous system. Although mutations in the human protrudin gene (ZFYVE27, also known as SPG33) give rise to hereditary spastic paraplegia (HSP), the physiological role of the encoded protein has been largely unclear. We therefore generated mice deficient in protrudin and subjected them to a battery of behavioral tests designed to examine their intermediate phenotypes. The protrudin-deficient mice were found to have a reduced body size and to manifest pleiotropic behavioral abnormalities, including hyperactivity, depression-like behavior, and deficits in attention and fear-conditioning memory. They exhibited no signs of HSP, however, consistent with the notion that HSP-associated mutations of protrudin may elicit neural degeneration, not as a result of a loss of function, but rather as a result of a gain of toxic function. Overall, our results suggest that protrudin might play an indispensable role in normal neuronal development and behavior.
Collapse
Affiliation(s)
- Michiko Shirane
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan.
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Yutaka Hashimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Hiroyuki Katagiri
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shizuka Kobayashi
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Toshiya Manabe
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan.
| |
Collapse
|
23
|
Protrudin and PDZD8 contribute to neuronal integrity by promoting lipid extraction required for endosome maturation. Nat Commun 2020; 11:4576. [PMID: 32917905 PMCID: PMC7486383 DOI: 10.1038/s41467-020-18413-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/21/2020] [Indexed: 01/08/2023] Open
Abstract
Endosome maturation depends on membrane contact sites (MCSs) formed between endoplasmic reticulum (ER) and endolysosomes (LyLEs). The mechanism underlying lipid supply for this process and its pathophysiological relevance remains unclear, however. Here, we identify PDZD8-the mammalian ortholog of a yeast ERMES subunit-as a protein that interacts with protrudin, which is located at ER-LyLE MCSs. Protrudin and PDZD8 promote the formation of ER-LyLE MCSs, and PDZD8 shows the ability to extract various lipids from the ER. Overexpression of both protrudin and PDZD8 in HeLa cells, as well as their depletion in mouse primary neurons, impairs endosomal homeostasis by inducing the formation of abnormal large vacuoles reminiscent of those apparent in spastin- or REEP1-deficient neurons. The protrudin-PDZD8 system is also essential for the establishment of neuronal polarity. Our results suggest that protrudin and PDZD8 cooperatively promote endosome maturation by mediating ER-LyLE tethering and lipid extraction at MCSs, thereby maintaining neuronal polarity and integrity.
Collapse
|
24
|
TMCC3 localizes at the three-way junctions for the proper tubular network of the endoplasmic reticulum. Biochem J 2020; 476:3241-3260. [PMID: 31696206 DOI: 10.1042/bcj20190359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 01/26/2023]
Abstract
The tubular network of the endoplasmic reticulum (ER) is formed by connecting ER tubules through three-way junctions. Two classes of the conserved ER membrane proteins, atlastins and lunapark, have been shown to reside at the three-way junctions so far and be involved in the generation and stabilization of the three-way junctions. In this study, we report TMCC3 (transmembrane and coiled-coil domain family 3), a member of the TEX28 family, as another ER membrane protein that resides at the three-way junctions in mammalian cells. When the TEX28 family members were transfected into U2OS cells, TMCC3 specifically localized at the three-way junctions in the peripheral ER. TMCC3 bound to atlastins through the C-terminal transmembrane domains. A TMCC3 mutant lacking the N-terminal coiled-coil domain abolished localization to the three-way junctions, suggesting that TMCC3 localized independently of binding to atlastins. TMCC3 knockdown caused a decrease in the number of three-way junctions and expansion of ER sheets, leading to a reduction of the tubular ER network in U2OS cells. The TMCC3 knockdown phenotype was partially rescued by the overexpression of atlastin-2, suggesting that TMCC3 knockdown would decrease the activity of atlastins. These results indicate that TMCC3 localizes at the three-way junctions for the proper tubular ER network.
Collapse
|
25
|
D'Eletto M, Oliverio S, Di Sano F. Reticulon Homology Domain-Containing Proteins and ER-Phagy. Front Cell Dev Biol 2020; 8:90. [PMID: 32154249 PMCID: PMC7047209 DOI: 10.3389/fcell.2020.00090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
The endoplasmic reticulum (ER) is a dynamic membrane system comprising different and interconnected subdomains. The ER structure changes in response to different stress conditions through the activation of a selective autophagic pathway called ER-phagy. This represents a quality control mechanism for ER turnover and component recycling. Several ER-resident proteins have been indicated as receptors for ER-phagy; among these, there are proteins characterized by the presence of a reticulon homology domain (RHD). RHD-containing proteins promote ER fragmentation by a mechanism that involves LC3 binding and lysosome delivery. Moreover, the presence of a correct RHD structure is closely related to their capability to regulate ER shape and morphology by curvature induction and membrane remodeling. Deregulation of the ER-selective autophagic pathway due to defects in proteins with RHD has been implicated in several human diseases, infectious and neurodegenerative diseases in particular, as well as in cancer development. While the molecular mechanisms and the physiological role of ER-phagy are not yet fully understood, it is quite clear that this process is involved in different cellular signaling pathways and has an impact in several human pathologies.
Collapse
Affiliation(s)
- Manuela D'Eletto
- Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Serafina Oliverio
- Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Federica Di Sano
- Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| |
Collapse
|
26
|
Öztürk Z, O’Kane CJ, Pérez-Moreno JJ. Axonal Endoplasmic Reticulum Dynamics and Its Roles in Neurodegeneration. Front Neurosci 2020; 14:48. [PMID: 32116502 PMCID: PMC7025499 DOI: 10.3389/fnins.2020.00048] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
The physical continuity of axons over long cellular distances poses challenges for their maintenance. One organelle that faces this challenge is endoplasmic reticulum (ER); unlike other intracellular organelles, this forms a physically continuous network throughout the cell, with a single membrane and a single lumen. In axons, ER is mainly smooth, forming a tubular network with occasional sheets or cisternae and low amounts of rough ER. It has many potential roles: lipid biosynthesis, glucose homeostasis, a Ca2+ store, protein export, and contacting and regulating other organelles. This tubular network structure is determined by ER-shaping proteins, mutations in some of which are causative for neurodegenerative disorders such as hereditary spastic paraplegia (HSP). While axonal ER shares many features with the tubular ER network in other contexts, these features must be adapted to the long and narrow dimensions of axons. ER appears to be physically continuous throughout axons, over distances that are enormous on a subcellular scale. It is therefore a potential channel for long-distance or regional communication within neurons, independent of action potentials or physical transport of cargos, but involving its physiological roles such as Ca2+ or organelle homeostasis. Despite its apparent stability, axonal ER is highly dynamic, showing features like anterograde and retrograde transport, potentially reflecting continuous fusion and breakage of the network. Here we discuss the transport processes that must contribute to this dynamic behavior of ER. We also discuss the model that these processes underpin a homeostatic process that ensures both enough ER to maintain continuity of the network and repair breaks in it, but not too much ER that might disrupt local cellular physiology. Finally, we discuss how failure of ER organization in axons could lead to axon degenerative diseases, and how a requirement for ER continuity could make distal axons most susceptible to degeneration in conditions that disrupt ER continuity.
Collapse
Affiliation(s)
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
27
|
Sensory-Neuropathy-Causing Mutations in ATL3 Cause Aberrant ER Membrane Tethering. Cell Rep 2019; 23:2026-2038. [PMID: 29768202 DOI: 10.1016/j.celrep.2018.04.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/28/2018] [Accepted: 04/13/2018] [Indexed: 12/31/2022] Open
Abstract
The endoplasmic reticulum (ER) is a complex network of sheets and tubules that is continuously remodeled. The relevance of this membrane dynamics is underscored by the fact that mutations in atlastins (ATLs), the ER fusion proteins in mammals, cause neurodegeneration. How defects in this process disrupt neuronal homeostasis is unclear. Using electron microscopy (EM) volume reconstruction of transfected cells, neurons, and patient fibroblasts, we show that hereditary sensory and autonomic neuropathy (HSAN)-causing ATL3 mutants promote aberrant ER tethering hallmarked by bundles of laterally attached ER tubules. In vitro, these mutants cause excessive liposome tethering, recapitulating the results in cells. Moreover, ATL3 variants retain their dimerization-dependent GTPase activity but are unable to promote membrane fusion, suggesting a defect in an intermediate step of the ATL3 functional cycle. Our data show that the effects of ATL3 mutations on ER network organization go beyond a loss of fusion and shed light on neuropathies caused by atlastin defects.
Collapse
|
28
|
Atlastin Endoplasmic Reticulum-Shaping Proteins Facilitate Zika Virus Replication. J Virol 2019; 93:JVI.01047-19. [PMID: 31534046 DOI: 10.1128/jvi.01047-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/08/2019] [Indexed: 01/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is the site for Zika virus (ZIKV) replication and is central to the cytopathic effects observed in infected cells. ZIKV induces the formation of ER-derived large cytoplasmic vacuoles followed by "implosive" cell death. Little is known about the nature of the ER factors that regulate flavivirus replication. Atlastins (ATL1, -2, and -3) are dynamin-related GTPases that control the structure and the dynamics of the ER membrane. We show here that ZIKV replication is significantly decreased in the absence of ATL proteins. The appearance of infected cells is delayed, the levels of intracellular viral proteins and released virus are reduced, and the cytopathic effects are strongly impaired. We further show that ATL3 is recruited to viral replication sites and interacts with the nonstructural viral proteins NS2A and NS2B3. Thus, proteins that shape and maintain the ER tubular network ensure efficient ZIKV replication.IMPORTANCE Zika virus (ZIKV) is an emerging virus associated with Guillain-Barré syndrome, and fetal microcephaly as well as other neurological complications. There is no vaccine or specific antiviral treatment against ZIKV. We found that endoplasmic reticulum (ER)-shaping atlastin proteins (ATL1, -2, and -3), which induce ER membrane fusion, facilitate ZIKV replication. We show that ATL3 is recruited to the viral replication site and colocalize with the viral proteins NS2A and NS2B3. The results provide insights into host factors used by ZIKV to enhance its replication.
Collapse
|
29
|
ER-phagy and human diseases. Cell Death Differ 2019; 27:833-842. [PMID: 31659280 DOI: 10.1038/s41418-019-0444-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 12/27/2022] Open
Abstract
Autophagy regulates the degradation of unnecessary or dysfunctional cellular components. This catabolic process requires the formation of a double-membrane vesicle, the autophagosome, that engulfs the cytosolic material and delivers it to the lysosome. Substrate specificity is achieved by autophagy receptors, which are characterized by the presence of at least one LC3-interaction region (LIR) or GABARAP-interaction motif (GIM). Only recently, several receptors that mediate the specific degradation of endoplasmic reticulum (ER) components via autophagy have been identified (the process known as ER-phagy or reticulophagy). Here, we give an update on the current knowledge about the role of ER-phagy receptors in health and disease.
Collapse
|
30
|
Chauhan MZ, Valencia AK, Piqueras MC, Enriquez-Algeciras M, Bhattacharya SK. Optic Nerve Lipidomics Reveal Impaired Glucosylsphingosine Lipids Pathway in Glaucoma. Invest Ophthalmol Vis Sci 2019; 60:1789-1798. [PMID: 31022733 PMCID: PMC6485987 DOI: 10.1167/iovs.18-25802] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose To determine major differences in lipid profile between human control and glaucomatous optic nerve. To assess major enzymes in lipid pathway if aberration is revealed for a lipid class by profiling. Methods Optic nerve (ON) samples were obtained from human cadaveric donors [control (n = 11) and primary open-angle glaucoma (POAG; n = 12)]; the lipids were extracted using Bligh and Dyer methods. Control and glaucoma donors were all Caucasians age 72.3 ± 5.9 and 70.3 ± 10.5 (inclusive of both sexes), respectively. Lipids were extracted after weighing the tissue; the protein amounts in the corresponding aqueous phase of organic solvent extraction were recorded. High-resolution mass spectrometry was performed using a Q-exactive mass spectrometer coupled with an EASY-nLC 1000 liquid chromatograph instrument. Bioinformatics and statistical analysis were performed using LipidSearch v.4.1 and MetaboAnalyst 4.0/STATA 14.2. Protein amounts were determined using Bradford's method. Western blot, ELISA, and immunohistochemistry utilized established protocols and were performed for protein quantification and localization, respectively. Additional donor tissues were utilized for Western blot, ELISA, and immunohistochemistry. Results Principal component analysis (PCA) placed control and glaucomatous ONs in two distinct groups based on analysis of lipid profiles. Total lipid, total phospholipids, total ceramide, and total sphingolipids were similar (without significant difference) between control and glaucoma. However, we found a significant increase in glucosylsphingosine in glaucoma compared to control samples. We found similar levels of glucocerebrosidase (GBA), ceramide glucosyltransferase (UGCG), decreased nonlysosomal glucocerebrosidase (GBA2), and increased lysosomal and nonlysosomal acylsphingosine amidohydrolase (ASAH1 and ASAH2) levels in glaucomatous ON compared to control. Conclusions We found significant differences in glucosylsphingosine lipids, consistent with decreased GBA and GBA2 and increased ASAH1 and ASAH2 immunoreactivity in glaucoma, suggesting the potential impairment of sphingolipid enzymatic pathways in lysosomal and nonlysosomal cellular compartments.
Collapse
Affiliation(s)
- Muhammad Zain Chauhan
- Department of Ophthalmology & Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Ann-Katrin Valencia
- Department of Ophthalmology & Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Maria Carmen Piqueras
- Department of Ophthalmology & Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Mabel Enriquez-Algeciras
- Department of Ophthalmology & Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Sanjoy K Bhattacharya
- Department of Ophthalmology & Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| |
Collapse
|
31
|
Knapp B, Roedig J, Boldt K, Krzysko J, Horn N, Ueffing M, Wolfrum U. Affinity proteomics identifies novel functional modules related to adhesion GPCRs. Ann N Y Acad Sci 2019; 1456:144-167. [PMID: 31441075 DOI: 10.1111/nyas.14220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/08/2019] [Accepted: 07/25/2019] [Indexed: 01/04/2023]
Abstract
Adhesion G protein-coupled receptors (ADGRs) have recently become a target of intense research. Their unique protein structure, which consists of a G protein-coupled receptor combined with long adhesive extracellular domains, suggests a dual role in cell signaling and adhesion. Despite considerable progress in the understanding of ADGR signaling over the past years, the knowledge about ADGR protein networks is still limited. For most receptors, only a few interaction partners are known thus far. We aimed to identify novel ADGR-interacting partners to shed light on cellular protein networks that rely on ADGR function. For this, we applied affinity proteomics, utilizing tandem affinity purifications combined with mass spectrometry. Analysis of the acquired proteomics data provides evidence that ADGRs not only have functional roles at synapses but also at intracellular membranes, namely at the endoplasmic reticulum, the Golgi apparatus, mitochondria, and mitochondria-associated membranes (MAMs). Specifically, we found an association of ADGRs with several scaffold proteins of the membrane-associated guanylate kinases family, elementary units of the γ-secretase complex, the outer/inner mitochondrial membrane, MAMs, and regulators of the Wnt signaling pathways. Furthermore, the nuclear localization of ADGR domains together with their physical interaction with nuclear proteins and several transcription factors suggests a role of ADGRs in gene regulation.
Collapse
Affiliation(s)
- Barbara Knapp
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Jens Roedig
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Karsten Boldt
- Institute for Ophthalmic Research and Medical Bioanalytics, Centre for Ophthalmology, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Jacek Krzysko
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Nicola Horn
- Institute for Ophthalmic Research and Medical Bioanalytics, Centre for Ophthalmology, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research and Medical Bioanalytics, Centre for Ophthalmology, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
32
|
Eggermann K, Gess B, Häusler M, Weis J, Hahn A, Kurth I. Hereditary Neuropathies. DEUTSCHES ARZTEBLATT INTERNATIONAL 2019; 115:91-97. [PMID: 29478438 DOI: 10.3238/arztebl.2018.0091] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 06/30/2017] [Accepted: 11/22/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hereditary peripheral neuropathies constitute a large group of genetic diseases, with an overall prevalence of 1:2500. In recent years, the use of so-called next-generation sequencing (NGS) has led to the identification of many previously unknown involved genes and genetic defects that cause neuropathy. In this article, we review the procedures and utility of genetic evaluation for hereditary neurop - athies, while also considering the implications of the fact that causally directed treatment of these disorders is generally unavailable. METHODS This review is based on pertinent publications retrieved by a PubMed search employing the search terms "hereditary neuropathy," "Charcot-Marie-Tooth disease," "hereditary sensory neuropathy," and "hereditary motor neuropathy." RESULTS With rare exceptions, the diagnostic evaluation for hereditary neuropathies proceeds in stepwise fashion, beginning with the study of individual genes. If this fails to detect any abnormality, NGS analysis, which involves the sequencing of many different genes in parallel and has now become available for routine diagnosis, should be performed early on in the diagnostic work-up. Exome and genome analyses are currently performed only when considered to be indicated in the individual case. Whenever a hereditary neuropathy is suspected, other (including potentially treatable) causes of neuropathy should be ruled out. Mutations in neurop athy-associated genes may also be associated with other clinical entities such as spastic paraplegia or myopathy. Thus, interdisciplinary assessment is necessary. CONCLUSION The molecular diagnosis of neuropathies has become much more successful through the use of NGS. Although causally directed treatment approaches still need to be developed, the correct diagnosis puts an end to the often highly stressful search for a cause and enables determination of the risk of disease in other members of the patient's family.
Collapse
Affiliation(s)
- Katja Eggermann
- Institute of Human Genetics, Uniklinik RWTH Aachen; Department of Neurology, Uniklinik RWTH Aachen; Department of Pediatrics, Division of Neuropediatrics and Social Pediatrics, Uniklinik RWTH Aachen; Department of Neuropediatrics, Developmental Medicine and Epileptology, Children's Medical Center; Giessen, University of Giessen; Institute of Neuropathology, Uniklinik RWTH Aachen
| | | | | | | | | | | |
Collapse
|
33
|
Behrendt L, Kurth I, Kaether C. A disease causing ATLASTIN 3 mutation affects multiple endoplasmic reticulum-related pathways. Cell Mol Life Sci 2019; 76:1433-1445. [PMID: 30666337 PMCID: PMC6420906 DOI: 10.1007/s00018-019-03010-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/01/2022]
Abstract
Atlastins (ATLs) are membrane-bound GTPases involved in shaping of the endoplasmic reticulum (ER). Mutations in ATL1 and ATL3 cause spastic paraplegia and hereditary sensory neuropathy. We here show that the sensory neuropathy causing ATL3 Y192C mutation reduces the complexity of the tubular ER-network. ATL3 Y192C delays ER-export by reducing the number of ER exit sites, reduces autophagy, fragments the Golgi and causes malformation of the nucleus. In cultured primary neurons, ATL3 Y192C does not localize to the growing axon, resulting in axon growth deficits. Patient-derived fibroblasts possess a tubular ER with reduced complexity and have a reduced number of autophagosomes. The data suggest that the disease-causing ATL3 Y192C mutation affects multiple ER-related pathways, possibly as a consequence of the distorted ER morphology.
Collapse
Affiliation(s)
- Laura Behrendt
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Beutenbergstr. 11, 07745, Jena, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Christoph Kaether
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Beutenbergstr. 11, 07745, Jena, Germany.
| |
Collapse
|
34
|
Krols M, Asselbergh B, De Rycke R, De Winter V, Seyer A, Müller FJ, Kurth I, Bultynck G, Timmerman V, Janssens S. Sensory neuropathy-causing mutations in ATL3 affect ER-mitochondria contact sites and impair axonal mitochondrial distribution. Hum Mol Genet 2019; 28:615-627. [PMID: 30339187 PMCID: PMC6360276 DOI: 10.1093/hmg/ddy352] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/22/2018] [Accepted: 09/28/2018] [Indexed: 11/25/2022] Open
Abstract
Axonopathies are neurodegenerative disorders caused by axonal degeneration, affecting predominantly the longest neurons. Several of these axonopathies are caused by genetic defects in proteins involved in the shaping and dynamics of the endoplasmic reticulum (ER); however, it is unclear how these defects impinge on neuronal survival. Given its central and widespread position within a cell, the ER is a pivotal player in inter-organelle communication. Here, we demonstrate that defects in the ER fusion protein ATL3, which were identified in patients suffering from hereditary sensory and autonomic neuropathy, result in an increased number of ER-mitochondria contact sites both in HeLa cells and in patient-derived fibroblasts. This increased contact is reflected in higher phospholipid metabolism, upregulated autophagy and augmented Ca2+ crosstalk between both organelles. Moreover, the mitochondria in these cells display lowered motility, and the number of axonal mitochondria in neurons expressing disease-causing mutations in ATL3 is strongly decreased. These results underscore the functional interdependence of subcellular organelles in health and disease and show that disorders caused by ER-shaping defects are more complex than previously assumed.
Collapse
Affiliation(s)
- Michiel Krols
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Institute Born Bunge, Antwerp, Belgium
| | - Bob Asselbergh
- VIB Center for Molecular Neurology, University of Antwerp, Antwerpen, Belgium
| | - Riet De Rycke
- VIB BioImaging Core, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Institute Born Bunge, Antwerp, Belgium
| | - Alexandre Seyer
- Profilomic SA, Boulogne-Billancourt, and MedDay Pharmaceuticals, Paris, France
| | - Franz-Josef Müller
- Zentrum für Integrative Psychiatrie, University Hospital Schleswig-Holstein, Kiel, Germany
- Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Institute Born Bunge, Antwerp, Belgium
| | - Sophie Janssens
- Laboratory of ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
35
|
Wang N, Rapoport TA. Reconstituting the reticular ER network - mechanistic implications and open questions. J Cell Sci 2019; 132:132/4/jcs227611. [PMID: 30670475 DOI: 10.1242/jcs.227611] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The endoplasmic reticulum (ER) is a major membrane-bound organelle in all eukaryotic cells. This organelle comprises morphologically distinct domains, including the nuclear envelope and peripheral sheets and tubules. The tubules are connected by three-way junctions into a network. Several membrane proteins have been implicated in network formation; curvature-stabilizing proteins generate the tubules themselves, and membrane-anchored GTPases fuse tubules into a network. Recent experiments have shown that a tubular network can be formed with reconstituted proteoliposomes containing the yeast membrane-fusing GTPase Sey1 and a curvature-stabilizing protein of either the reticulon or REEP protein families. The network forms in the presence of GTP and is rapidly disassembled when GTP hydrolysis of Sey1 is inhibited, indicating that continuous membrane fusion is required for its maintenance. Atlastin, the ortholog of Sey1 in metazoans, forms a network on its own, serving both as a fusion and curvature-stabilizing protein. These results show that the reticular ER can be generated by a surprisingly small set of proteins, and represents an energy-dependent steady state between formation and disassembly. Models for the molecular mechanism by which curvature-stabilizing proteins cooperate with fusion GTPases to form a reticular network have been proposed, but many aspects remain speculative, including the function of additional proteins, such as the lunapark protein, and the mechanism by which the ER interacts with the cytoskeleton. How the nuclear envelope and peripheral ER sheets are formed remain major unresolved questions in the field. Here, we review reconstitution experiments with purified curvature-stabilizing proteins and fusion GTPases, discuss mechanistic implications and point out open questions.
Collapse
Affiliation(s)
- Ning Wang
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
36
|
SHIRANE M. Roles of protrudin at interorganelle membrane contact sites. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:312-320. [PMID: 31406056 PMCID: PMC6766452 DOI: 10.2183/pjab.95.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/08/2019] [Indexed: 06/10/2023]
Abstract
Intracellular organelles were long viewed as isolated compartments floating in the cytosol. However, this view has been radically changed within the last decade by the discovery that most organelles communicate with the endoplasmic reticulum (ER) network via membrane contact sites (MCSs) that are essential for intracellular homeostasis. Protrudin is an ER resident protein that was originally shown to regulate neurite formation by promoting endosome trafficking. More recently, however, protrudin has been found to serve as a tethering factor at MCSs. The roles performed by protrudin at MCSs are mediated by its various domains, including inactivation of the small GTPase Rab11, bending of the ER membrane, and functional interactions with other molecules such as the motor protein KIF5 and the ER protein VAP. Mutations in the protrudin gene (ZFYVE27) are associated with hereditary spastic paraplegia, an axonopathy that results from defective ER structure. This review, examines the pleiotropic molecular functions of protrudin and its role in interorganellar communication.
Collapse
Affiliation(s)
- Michiko SHIRANE
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| |
Collapse
|
37
|
Betancourt-Solis MA, Desai T, McNew JA. The atlastin membrane anchor forms an intramembrane hairpin that does not span the phospholipid bilayer. J Biol Chem 2018; 293:18514-18524. [PMID: 30287684 DOI: 10.1074/jbc.ra118.003812] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/27/2018] [Indexed: 12/27/2022] Open
Abstract
The endoplasmic reticulum (ER) is composed of flattened sheets and interconnected tubules that extend throughout the cytosol and makes physical contact with all other cytoplasmic organelles. This cytoplasmic distribution requires continuous remodeling. These discrete ER morphologies require specialized proteins that drive and maintain membrane curvature. The GTPase atlastin is required for homotypic fusion of ER tubules. All atlastin homologs possess a conserved domain architecture consisting of a GTPase domain, a three-helix bundle middle domain, a hydrophobic membrane anchor, and a C-terminal cytosolic tail. Here, we examined several Drosophila-human atlastin chimeras to identify functional domains of human atlastin-1 in vitro Although all chimeras could hydrolyze GTP, only chimeras containing the human C-terminal tail, hydrophobic segments, or both could fuse membranes in vitro We also determined that co-reconstitution of atlastin with reticulon does not influence GTPase activity or membrane fusion. Finally, we found that both human and Drosophila atlastin hydrophobic membrane anchors do not span the membrane, but rather form two intramembrane hairpin loops. The topology of these hairpins remains static during membrane fusion and does not appear to play an active role in lipid mixing.
Collapse
Affiliation(s)
| | - Tanvi Desai
- From the Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
| | - James A McNew
- From the Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
| |
Collapse
|
38
|
Single particle trajectories reveal active endoplasmic reticulum luminal flow. Nat Cell Biol 2018; 20:1118-1125. [PMID: 30224760 PMCID: PMC6435195 DOI: 10.1038/s41556-018-0192-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 08/09/2018] [Indexed: 01/22/2023]
Abstract
The Endoplasmic Reticulum (ER), a network of membranous sheets and pipes, supports functions encompassing biogenesis of secretory proteins and delivery of functional solutes throughout the cell1,2. Molecular mobility through the ER network enables these functionalities, but diffusion alone is not sufficient to explain luminal transport across supramicron distances. Understanding the ER structure-function relationship is critical in light of mutations in ER morphology regulating proteins that give rise to neurodegenerative disorders3,4. Here, super-resolution microscopy and analysis of single particle trajectories of ER luminal proteins revealed that the topological organization of the ER correlates with distinct trafficking modes of its luminal content: with a dominant diffusive component in tubular junctions and a fast flow component in tubules. Particle trajectory orientations resolved over time revealed an alternating current of the ER contents, whilst fast ER super-resolution identified energy-dependent tubule contraction events at specific points as a plausible mechanism for generating active ER luminal flow. The discovery of active flow in the ER has implications for timely ER content distribution throughout the cell, particularly important for cells with extensive ER-containing projections such as neurons.
Collapse
|
39
|
Beetz C, Khundadze M, Goldberg LV, Hübner CA. Erbliche spastische Spinalparalysen: aktuelle Erkenntnisse und Entwicklungen. MED GENET-BERLIN 2018. [DOI: 10.1007/s11825-018-0196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Zusammenfassung
Die erblichen spastischen Spinalparalysen („hereditary spastic paraplegias“, HSPs) sind Bewegungsstörungen, die aus der Degeneration der Axone oberer Motoneuronen resultieren. Sie sind klinisch und genetisch sehr heterogen. Der vorliegende Übersichtsartikel fasst aktuelle Strategien zur genetischen Diagnostik der HSPs zusammen, erörtert mögliche Mutationsmechanismen, diskutiert Erklärungen für die klinische Variabilität innerhalb ausgewählter Formen und verweist auf noch ungeklärte und zum Teil wenig beachtete Phänomene. Außerdem wird die Notwendigkeit eines tieferen Verständnisses der zellulären und molekularen Mechanismen für die Entwicklung neuer Therapien dargestellt.
Collapse
Affiliation(s)
- Christian Beetz
- Aff1 0000 0000 8517 6224 grid.275559.9 Institut für Klinische Chemie und Laboratoriumsdiagnostik Universitätsklinikum Jena Jena Deutschland
| | - Mukhran Khundadze
- Aff2 0000 0000 8517 6224 grid.275559.9 Institut für Humangenetik Universitätsklinikum Jena Am Klinikum 1 07747 Jena Deutschland
| | - Lisa V. Goldberg
- Aff1 0000 0000 8517 6224 grid.275559.9 Institut für Klinische Chemie und Laboratoriumsdiagnostik Universitätsklinikum Jena Jena Deutschland
| | - Christian A. Hübner
- Aff2 0000 0000 8517 6224 grid.275559.9 Institut für Humangenetik Universitätsklinikum Jena Am Klinikum 1 07747 Jena Deutschland
| |
Collapse
|
40
|
O'Donnell JP, Byrnes LJ, Cooley RB, Sondermann H. A hereditary spastic paraplegia-associated atlastin variant exhibits defective allosteric coupling in the catalytic core. J Biol Chem 2017; 293:687-700. [PMID: 29180453 DOI: 10.1074/jbc.ra117.000380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/17/2017] [Indexed: 11/06/2022] Open
Abstract
The dynamin-related GTPase atlastin (ATL) catalyzes membrane fusion of the endoplasmic reticulum and thus establishes a network of branched membrane tubules. When ATL function is compromised, the morphology of the endoplasmic reticulum deteriorates, and these defects can result in neurological disorders such as hereditary spastic paraplegia and hereditary sensory neuropathy. ATLs harness the energy of GTP hydrolysis to initiate a series of conformational changes that enable homodimerization and subsequent membrane fusion. Disease-associated amino acid substitutions cluster in regions adjacent to ATL's catalytic site, but the consequences for the GTPase's molecular mechanism are often poorly understood. Here, we elucidate structural and functional defects of an atypical hereditary spastic paraplegia mutant, ATL1-F151S, that is impaired in its nucleotide-hydrolysis cycle but can still adopt a high-affinity homodimer when bound to a transition-state analog. Crystal structures of mutant proteins yielded models of the monomeric pre- and post-hydrolysis states of ATL. Together, these findings define a mechanism for allosteric coupling in which Phe151 is the central residue in a hydrophobic interaction network connecting the active site to an interdomain interface responsible for nucleotide loading.
Collapse
Affiliation(s)
- John P O'Donnell
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Laura J Byrnes
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Richard B Cooley
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Holger Sondermann
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
41
|
Luarte A, Cornejo VH, Bertin F, Gallardo J, Couve A. The axonal endoplasmic reticulum: One organelle-many functions in development, maintenance, and plasticity. Dev Neurobiol 2017; 78:181-208. [PMID: 29134778 DOI: 10.1002/dneu.22560] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is highly conserved in eukaryotes and neurons. Indeed, the localization of the organelle in axons has been known for nearly half a century. However, the relevance of the axonal ER is only beginning to emerge. In this review, we discuss the structure of the ER in axons, examining the role of ER-shaping proteins and highlighting reticulons. We analyze the multiple functions of the ER and their potential contribution to axonal physiology. First, we examine the emerging roles of the axonal ER in lipid synthesis, protein translation, processing, quality control, and secretory trafficking of transmembrane proteins. We also review the impact of the ER on calcium dynamics, focusing on intracellular mechanisms and functions. We describe the interactions between the ER and endosomes, mitochondria, and synaptic vesicles. Finally, we analyze available proteomic data of axonal preparations to reveal the dynamic functionality of the ER in axons during development. We suggest that the dynamic proteome and a validated axonal interactome, together with state-of-the-art methodologies, may provide interesting research avenues in axon physiology that may extend to pathology and regeneration. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 181-208, 2018.
Collapse
Affiliation(s)
- Alejandro Luarte
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Víctor Hugo Cornejo
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisca Bertin
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Javiera Gallardo
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrés Couve
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
42
|
Pawar S, Ungricht R, Tiefenboeck P, Leroux JC, Kutay U. Efficient protein targeting to the inner nuclear membrane requires Atlastin-dependent maintenance of ER topology. eLife 2017; 6:28202. [PMID: 28826471 PMCID: PMC5587084 DOI: 10.7554/elife.28202] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/13/2017] [Indexed: 01/06/2023] Open
Abstract
Newly synthesized membrane proteins are targeted to the inner nuclear membrane (INM) by diffusion within the membrane system of the endoplasmic reticulum (ER), translocation through nuclear pore complexes (NPCs) and retention on nuclear partners. Using a visual in vitro assay we previously showed that efficient protein targeting to the INM depends on nucleotide hydrolysis. We now reveal that INM targeting is GTP-dependent. Exploiting in vitro reconstitution and in vivo analysis of INM targeting, we establish that Atlastins, membrane-bound GTPases of the ER, sustain the efficient targeting of proteins to the INM by their continued activity in preserving ER topology. When ER topology is altered, the long-range diffusional exchange of proteins in the ER network and targeting efficiency to the INM are diminished. Highlighting the general importance of proper ER topology, we show that Atlastins also influence NPC biogenesis and timely exit of secretory cargo from the ER.
Collapse
Affiliation(s)
- Sumit Pawar
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Rosemarie Ungricht
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Peter Tiefenboeck
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Timing and Reset Mechanism of GTP Hydrolysis-Driven Conformational Changes of Atlastin. Structure 2017; 25:997-1010.e4. [PMID: 28602821 DOI: 10.1016/j.str.2017.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/12/2017] [Accepted: 05/10/2017] [Indexed: 01/09/2023]
Abstract
The endoplasmic reticulum (ER) forms a branched, dynamic membrane tubule network that is vital for cellular function. Branching arises from membrane fusion facilitated by the GTPase atlastin (ATL). Many metazoan genomes encode for three ATL isoforms that appear to fulfill partially redundant function despite differences in their intrinsic GTPase activity and localization within the ER; however, the underlying mechanistic differences between the isoforms are poorly understood. Here, we identify discrete temporal steps in the catalytic cycle for the two most dissimilar isoforms, ATL1 and ATL3, revealing an overall conserved progression of molecular events from nucleotide binding and hydrolysis to ATL dimerization and phosphate release. A crystal structure of ATL3 suggests a mechanism for the displacement of the catalytic Mg2+ ion following guanosine triphosphate (GTP) hydrolysis. Together, the data extend the mechanistic framework for how GTP hydrolysis drives conformational changes in ATL and how the cycle is reset for subsequent rounds of catalysis.
Collapse
|
44
|
|
45
|
Zhang H, Hu J. Shaping the Endoplasmic Reticulum into a Social Network. Trends Cell Biol 2016; 26:934-943. [PMID: 27339937 DOI: 10.1016/j.tcb.2016.06.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/25/2016] [Accepted: 06/02/2016] [Indexed: 10/21/2022]
Abstract
In eukaryotic cells, the endoplasmic reticulum (ER) is constructed as a network of tubules and sheets that exist in one continuous membrane system. Several classes of integral membrane protein have been shown to shape ER membranes. Functional studies using mutant proteins have begun to reveal the significance of ER morphology and membrane dynamics. In this review, we discuss the common protein modules and mechanisms that generate the characteristic shape of the ER. We also describe the cellular functions closely related to ER morphology, particularly contacts with other membrane systems, and their potential roles in the development of multicellular organisms.
Collapse
Affiliation(s)
- Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Junjie Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
46
|
Fowler PC, O'Sullivan NC. ER-shaping proteins are required for ER and mitochondrial network organization in motor neurons. Hum Mol Genet 2016; 25:2827-2837. [PMID: 27170313 DOI: 10.1093/hmg/ddw139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/26/2016] [Accepted: 04/29/2016] [Indexed: 12/19/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a group of neurodegenerative disorders characterized by degeneration of the longest motor neurons in the corticospinal tract, leading to muscle weakness and spasticity of the lower limbs. Pathogenic variants in genes encoding proteins that shape the endoplasmic-reticulum (ER) network are a leading cause of HSP, however, the mechanisms by which loss of ER-shaping proteins underpin degeneration of selective neurons in HSP remain poorly understood. To begin to address this, we have generated a novel in vivo model of HSP in Drosophila melanogaster by targeted knockdown of the ER-shaping protein Arl6IP1 Variants in the human homolog of this gene have recently been linked to HSP subtype SPG61. Arl6IP1 RNAi flies display progressive locomotor deficits without a marked reduction in lifespan, recapitulating key features of HSP in human patients. Loss of Arl6IP1 leads to fragmentation of the smooth ER and disrupted mitochondrial network organization within the distal ends of long motor neurons. Furthermore, genetically increasing mitochondrial fission, by overexpression of dynamin-related protein 1 (Drp1), restores mitochondrial network organization and rescues locomotor deficits in two independent Drosophila models of HSP. Taken together, these results propose a role for ER-shaping proteins in mitochondrial network organization in vivo and suggest that impaired mitochondrial organization may be a common mechanism underpinning some forms of HSP.
Collapse
Affiliation(s)
- Philippa C Fowler
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Niamh C O'Sullivan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
47
|
Krols M, van Isterdael G, Asselbergh B, Kremer A, Lippens S, Timmerman V, Janssens S. Mitochondria-associated membranes as hubs for neurodegeneration. Acta Neuropathol 2016; 131:505-23. [PMID: 26744348 PMCID: PMC4789254 DOI: 10.1007/s00401-015-1528-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 12/17/2022]
Abstract
There is a growing appreciation that membrane-bound organelles in eukaryotic cells communicate directly with one another through direct membrane contact sites. Mitochondria-associated membranes are specialized subdomains of the endoplasmic reticulum that function as membrane contact sites between the endoplasmic reticulum and mitochondria. These sites have emerged as major players in lipid metabolism and calcium signaling. More recently also autophagy and mitochondrial dynamics have been found to be regulated at ER-mitochondria contact sites. Neurons critically depend on mitochondria-associated membranes as a means to exchange metabolites and signaling molecules between these organelles. This is underscored by the fact that genes affecting mitochondrial and endoplasmic reticulum homeostasis are clearly overrepresented in several hereditary neurodegenerative disorders. Conversely, the processes affected by the contact sites between the endoplasmic reticulum and mitochondria are widely implicated in neurodegeneration. This review will focus on the most recent data addressing the structural composition and function of the mitochondria-associated membranes. In addition, the 3D morphology of the contact sites as observed using volume electron microscopy is discussed. Finally, it will highlight the role of several key proteins associated with these contact sites that are involved not only in dementias, amyotrophic lateral sclerosis and Parkinson's disease, but also in axonopathies such as hereditary spastic paraplegia and Charcot-Marie-Tooth disease.
Collapse
|
48
|
Abstract
Loss of pain perception can result from neurodevelopmental defects, degeneration of nociceptive fibers, or altered excitability of sensory neurons. Hereditary neurodegeneration leading to pain loss is classified as sensory and autonomic neuropathy (HSAN). Mutations in approximately 15 genes have been identified in the group of HSAN disorders. Hallmark of the disease is a liability to injury because of impaired acute pain as a warning system to prevent harm. The clinically overlapping "congenital insensitivity to pain (CIP)" is caused by mutations in voltage-gated sodium channels, which control the excitability of nociceptors. However, mutations in the latter genes can also result in disorders with increased pain susceptibility. This review summarizes the clinical presentation of HSAN and pain-related channelopathies and discusses the underlying disease mechanisms.
Collapse
Affiliation(s)
- I Kurth
- Institut für Humangenetik, Universitätsklinikum Jena, Kollegiengasse 10, 07743, Jena, Deutschland,
| |
Collapse
|
49
|
Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 2015; 522:354-8. [PMID: 26040720 DOI: 10.1038/nature14498] [Citation(s) in RCA: 662] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/24/2015] [Indexed: 12/26/2022]
Abstract
The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication. Constant ER turnover and modulation is needed to meet different cellular requirements and autophagy has an important role in this process. However, its underlying regulatory mechanisms remain unexplained. Here we show that members of the FAM134 reticulon protein family are ER-resident receptors that bind to autophagy modifiers LC3 and GABARAP, and facilitate ER degradation by autophagy ('ER-phagy'). Downregulation of FAM134B protein in human cells causes an expansion of the ER, while FAM134B overexpression results in ER fragmentation and lysosomal degradation. Mutant FAM134B proteins that cause sensory neuropathy in humans are unable to act as ER-phagy receptors. Consistently, disruption of Fam134b in mice causes expansion of the ER, inhibits ER turnover, sensitizes cells to stress-induced apoptotic cell death and leads to degeneration of sensory neurons. Therefore, selective ER-phagy via FAM134 proteins is indispensable for mammalian cell homeostasis and controls ER morphology and turnover in mice and humans.
Collapse
|
50
|
Abstract
Endoplasmic reticulum (ER) sheet membranes are covered with ribosomes and RNAs that are involved in protein synthesis. A new study reveals that a calcium-activated endoribonuclease of the EndoU protein family promotes the formation of tubular ER networks, contributing to dynamic shaping of the ER in cells.
Collapse
Affiliation(s)
- Guohua Zhao
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 2C-913, 9000 Rockville Pike, Bethesda, MD 20892-3738, USA
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 2C-913, 9000 Rockville Pike, Bethesda, MD 20892-3738, USA.
| |
Collapse
|