1
|
Trabacca A, Ferrante C, Oliva MC, Fanizza I, Gallo I, De Rinaldis M. Update on Inherited Pediatric Motor Neuron Diseases: Clinical Features and Outcome. Genes (Basel) 2024; 15:1346. [PMID: 39457470 PMCID: PMC11507535 DOI: 10.3390/genes15101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Inherited pediatric motor neuron diseases (MNDs) are a group of neurodegenerative disorders characterized by the degeneration of motor neurons in the brain and the spinal cord. These diseases can manifest as early as infancy and originate from inherited pathogenic mutations in known genes. Key clinical features of MNDs include muscle weakness, hypotonia, and atrophy due to the degeneration of lower motor neurons or spasticity, hypertonia, and hyperreflexia caused by upper motor neuron dysfunction. The course of the disease varies among individuals and is influenced by the specific subtype. METHODS We performed a non-systematic, narrative clinical review, employing a systematic methodology for the literature search and article selection to delineate the features of hereditary pediatric motor neuron diseases. RESULTS The growing availability of advanced molecular testing, such as whole-exome sequencing (WES) and whole-genome sequencing (WGS), has expanded the range of identified genetic factors. These advancements provide insights into the genetic complexity and underlying mechanisms of these disorders. As more MND-related genes are discovered, the accumulating genetic data will help prioritize promising candidate genes for future research. In some cases, targeted treatments based on specific genetic mechanisms have already emerged, underscoring the critical role of early and timely diagnosis in improving patient outcomes. Common MNDs include amyotrophic lateral sclerosis, spinal muscular atrophy, and bulbar spinal muscular atrophy. CONCLUSION This narrative clinical review covers the clinical presentation, genetics, molecular features, and pathophysiology of inherited pediatric MNDs.
Collapse
Affiliation(s)
- Antonio Trabacca
- Scientific Institute IRCCS. “E. Medea”, Scientific Direction, 23842 Bosisio Parini, Italy
| | - Camilla Ferrante
- Associazione “La Nostra Famiglia”, IRCCS “E. Medea”, Scientific Hospital for Neurorehabilitation, Unit for Severe Disabilities in Developmental Age and Young Adults, Developmental Neurology and Neurorehabilitation, 72100 Brindisi, Italy; (C.F.); (M.C.O.); (I.F.); (I.G.); (M.D.R.)
| | - Maria Carmela Oliva
- Associazione “La Nostra Famiglia”, IRCCS “E. Medea”, Scientific Hospital for Neurorehabilitation, Unit for Severe Disabilities in Developmental Age and Young Adults, Developmental Neurology and Neurorehabilitation, 72100 Brindisi, Italy; (C.F.); (M.C.O.); (I.F.); (I.G.); (M.D.R.)
| | - Isabella Fanizza
- Associazione “La Nostra Famiglia”, IRCCS “E. Medea”, Scientific Hospital for Neurorehabilitation, Unit for Severe Disabilities in Developmental Age and Young Adults, Developmental Neurology and Neurorehabilitation, 72100 Brindisi, Italy; (C.F.); (M.C.O.); (I.F.); (I.G.); (M.D.R.)
| | - Ivana Gallo
- Associazione “La Nostra Famiglia”, IRCCS “E. Medea”, Scientific Hospital for Neurorehabilitation, Unit for Severe Disabilities in Developmental Age and Young Adults, Developmental Neurology and Neurorehabilitation, 72100 Brindisi, Italy; (C.F.); (M.C.O.); (I.F.); (I.G.); (M.D.R.)
| | - Marta De Rinaldis
- Associazione “La Nostra Famiglia”, IRCCS “E. Medea”, Scientific Hospital for Neurorehabilitation, Unit for Severe Disabilities in Developmental Age and Young Adults, Developmental Neurology and Neurorehabilitation, 72100 Brindisi, Italy; (C.F.); (M.C.O.); (I.F.); (I.G.); (M.D.R.)
| |
Collapse
|
2
|
Xiong GJ, Sheng ZH. Presynaptic perspective: Axonal transport defects in neurodevelopmental disorders. J Cell Biol 2024; 223:e202401145. [PMID: 38568173 PMCID: PMC10988239 DOI: 10.1083/jcb.202401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Disruption of synapse assembly and maturation leads to a broad spectrum of neurodevelopmental disorders. Presynaptic proteins are largely synthesized in the soma, where they are packaged into precursor vesicles and transported into distal axons to ensure precise assembly and maintenance of presynapses. Due to their morphological features, neurons face challenges in the delivery of presynaptic cargos to nascent boutons. Thus, targeted axonal transport is vital to build functional synapses. A growing number of mutations in genes encoding the transport machinery have been linked to neurodevelopmental disorders. Emerging lines of evidence have started to uncover presynaptic mechanisms underlying axonal transport defects, thus broadening the view of neurodevelopmental disorders beyond postsynaptic mechanisms. In this review, we discuss presynaptic perspectives of neurodevelopmental disorders by focusing on impaired axonal transport and disturbed assembly and maintenance of presynapses. We also discuss potential strategies for restoring axonal transport as an early therapeutic intervention.
Collapse
Affiliation(s)
- Gui-Jing Xiong
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Wei H, Yuan Y, Zhu C, Ma M, Yang F, Lu Z, Wang C, Deng H, Zhao J, Tian R, Zhu W, Shen Y, Yu X, Xu Q. DNA Hyper-methylation Associated With Schizophrenia May Lead to Increased Levels of Autoantibodies. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgac047. [PMID: 39144109 PMCID: PMC11207751 DOI: 10.1093/schizbullopen/sgac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background and Hypothesis Environmental stressors may influence immune surveillance in B lymphocytes and stimulate autoimmune responses via epigenetic DNA methylation modifications in schizophrenia (SCZ). Study Design A total of 2722, Chinese Han origin subjects were recruited in this study (2005-2011), which included a discovery follow-up cohort with 40 remitters of SCZ (RSCZ), 40 nonremitters of SCZ (NRSCZ), and 40 controls (CTL), and a replication follow-up cohort (64 RSCZ, 16 NRSCZ, and 84 CTL), as well as a case-control validation cohort (1230 SCZ and 1208 CTL). Genomic DNA methylation, target gene mRNA transcripts, and plasma autoantibody levels were measured across cohorts. Study Results We found extensive differences in global DNA methylation profiles between RSCZ and NRSCZ groups, wherein differential methylation sites (DMS) were enriched with immune cell maturation and activation in the RSCZ group. Out of 2722 participants, the foremost DMS cg14341177 was hyper-methylated in the SCZ group and it inhibited the alternative splicing of its target gene BICD2 and may have increased its autoantigen exposure, leading to an increase in plasma anti-BICD2 IgG antibody levels. The levels of cg14341177 methylation and anti-BICD2 IgG decreased significantly in RSCZ endpoint samples but not in NRSCZ endpoint samples. There are strong positive correlations between cg14341177 methylation, anti-BICD2 IgG, and positive and negative syndrome scale (PANSS) scores in the RSCZ groups, but not in the NRSCZ groups. Conclusions These data suggest that abnormal DNA methylation could affect autoreactive responses in SCZ, and that cg14341177 methylation and anti-BICD2 IgG levels may potentially serve as useful biomarkers.
Collapse
Affiliation(s)
- Hui Wei
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanbo Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Caiyun Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingjie Ma
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Fude Yang
- Beijing Hui-Long-Guan Hospital, Beijing, China
| | - Zheng Lu
- Shanghai Mental Health Center, Shanghai, China
| | | | - Hong Deng
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingping Zhao
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Runhui Tian
- Mental Health Center, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Wanwan Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Shen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Theuriet J, Fernandez-Eulate G, Latour P, Stojkovic T, Masingue M, Vidoni L, Bernard E, Jacquier A, Schaeffer L, Salort-Campana E, Chanson JB, Pakleza AN, Kaminsky AL, Svahn J, Manel V, Bouhour F, Pegat A. Genetic characterization of non-5q proximal spinal muscular atrophy in a French cohort: the place of whole exome sequencing. Eur J Hum Genet 2024; 32:37-43. [PMID: 37337091 PMCID: PMC10772122 DOI: 10.1038/s41431-023-01407-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is defined by a degeneration of the anterior horn cells resulting in muscle weakness predominantly in the proximal lower limbs. While most patients carry a biallelic deletion in the SMN1 gene (localized in chromosome 5q), little is known regarding patients without SMN1-mutation, and a genetic diagnosis is not always possible. Here, we report a cohort of 24 French patients with non-5q proximal SMA from five neuromuscular centers who all, except two, had next-generation sequencing (NGS) gene panel, followed by whole exome sequencing (WES) if gene panel showed a negative result. The two remaining patients benefited directly from WES or whole genome sequencing (WGS). A total of ten patients with causative variants were identified, nine of whom were index cases (9/23 families = 39%). Eight variants were identified by gene panel: five variants in DYNC1H1, and three in BICD2. Compound heterozygous causative variants in ASAH1 were identified directly by WES, and one variant in DYNC1H1 was identified directly by WGS. No causative variant was found using WES in patients with a previous panel with negative results (14 cases). We thus recommend using primarily NGS panels in patients with non-5q-SMA and using WES, especially when several members of the same family are affected and/or when trio analyses are possible, or WGS as second-line testing if available.
Collapse
Affiliation(s)
- Julian Theuriet
- Hôpital Neurologique Pierre Wertheimer, Service d'électroneuromyographie et de Pathologies Neuromusculaires, Hospices Civils de Lyon, Groupement Est, Bron, France.
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, Lyon, France.
| | - Gorka Fernandez-Eulate
- Nord/Est/Ile-De-France Neuromuscular Reference Center, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Philippe Latour
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, Lyon, France
- Unité Fonctionnelle de Neurogénétique Moléculaire, Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Tanya Stojkovic
- Nord/Est/Ile-De-France Neuromuscular Reference Center, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Marion Masingue
- Nord/Est/Ile-De-France Neuromuscular Reference Center, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Léo Vidoni
- Unité Fonctionnelle de Neurogénétique Moléculaire, Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Emilien Bernard
- Hôpital Neurologique Pierre Wertheimer, Service d'électroneuromyographie et de Pathologies Neuromusculaires, Hospices Civils de Lyon, Groupement Est, Bron, France
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, Lyon, France
- Hôpital Neurologique Pierre-Wertheimer, Service de Neurologie, Troubles du Mouvement et Pathologies Neuromusculaires, Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Arnaud Jacquier
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, Lyon, France
- Centre de Biotechnologie Cellulaire, CBC Biotec, Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Laurent Schaeffer
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, Lyon, France
- Centre de Biotechnologie Cellulaire, CBC Biotec, Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Emmanuelle Salort-Campana
- Hôpital de la Timone, Maladies Neuromusculaires et SMA, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Jean-Baptiste Chanson
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France, Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Aleksandra Nadaj Pakleza
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France, Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anne-Laure Kaminsky
- Service de Neurologie, Centre Référent des Maladies Neuromusculaires Rares, CHU de Saint Etienne, Saint-Etienne, France
| | - Juliette Svahn
- Hôpital Neurologique Pierre Wertheimer, Service d'électroneuromyographie et de Pathologies Neuromusculaires, Hospices Civils de Lyon, Groupement Est, Bron, France
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, Lyon, France
- Hôpital Neurologique Pierre-Wertheimer, Service de Neurologie, Troubles du Mouvement et Pathologies Neuromusculaires, Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Véronique Manel
- Hôpital Neurologique Pierre Wertheimer, Service d'électroneuromyographie et de Pathologies Neuromusculaires, Hospices Civils de Lyon, Groupement Est, Bron, France
- Hôpital Femme Mère Enfant, Service de Neuropédiatrie, Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Françoise Bouhour
- Hôpital Neurologique Pierre Wertheimer, Service d'électroneuromyographie et de Pathologies Neuromusculaires, Hospices Civils de Lyon, Groupement Est, Bron, France
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, Lyon, France
| | - Antoine Pegat
- Hôpital Neurologique Pierre Wertheimer, Service d'électroneuromyographie et de Pathologies Neuromusculaires, Hospices Civils de Lyon, Groupement Est, Bron, France
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, Lyon, France
| |
Collapse
|
5
|
Esteller D, Morrow J, Alonso-Pérez J, Reyes D, Carbayo A, Bisogni G, Cateruccia M, Monforte M, Tasca G, Alangary A, Marini-Bettolo C, Sabatelli M, Laura M, Ramdharry G, Bolaño-Díaz C, Turon-Sans J, Töpf A, Guglieri M, Rossor AM, Olive M, Bertini E, Straub V, Reilly MM, Rojas-García R, Díaz-Manera J. Muscle magnetic resonance imaging of a large cohort of distal hereditary motor neuropathies reveals characteristic features useful for diagnosis. Neuromuscul Disord 2023; 33:744-753. [PMID: 37704504 DOI: 10.1016/j.nmd.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Abstract
Distal motor neuropathies (dHMN) are an heterogenous group of diseases characterized by progressive muscle weakness affecting predominantly the distal muscles of the lower and upper limbs. Our aim was to study the imaging features and pattern of muscle involvement in muscle magnetic resonance imaging (MRI) in dHMN patients of suspected genetic origin (dHMN). We conducted a retrospective study collecting clinical, genetic and muscle imaging data. Muscle MRI included T1-weighted and T2 weighted Short Tau Inversion Recovery images (STIR-T2w) sequences. Muscle replacement by fat was quantified using the Mercuri score. Identification of selective patterns of involvement was performed using hierarchical clustering. Eighty-four patients with diagnosis of dHMN were studied. Fat replacement was predominant in the distal lower leg muscles (82/84 cases), although also affected thigh and pelvis muscles. Asymmetric involvement was present in 29% of patients. The superficial posterior compartment of the leg, including the soleus and gastrocnemius muscles, was the most affected area (77/84). We observed a reticular pattern of fatty replacement progressing towards what is commonly known as "muscle islands" in 79.8%. Hyperintensities in STIR-T2w were observed in 78.6% patients mainly in distal leg muscles. Besides features common to all individuals, we identified and describe a pattern of muscle fat replacement characteristic of BICD2, HSPB1 and DYNC1H1 patients. We conclude that muscle MRI of patients with suspected dHMN reveals common features helpful in diagnosis process.
Collapse
Affiliation(s)
- Diana Esteller
- Neurology Department Hospital Clinic de Barcelona Universitat de Barcelona, Barcelona Spain
| | - Jasper Morrow
- Centre for Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Jorge Alonso-Pérez
- Neuromuscular Disease Unit Neurology Department Hospital Universitario Nuestra Señora de Candelaria Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC) Tenerife Spain
| | - David Reyes
- Neuromuscular Disorders Unit, Motor Neuron Diseases Clinic, Neurology Department Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona IIB Sant Pau Barcelona Spain
| | - Alvaro Carbayo
- Neuromuscular Disorders Unit, Motor Neuron Diseases Clinic, Neurology Department Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona IIB Sant Pau Barcelona Spain
| | | | - Michela Cateruccia
- Unit of Muscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Childrens' Research Hospital, Rome, Italy
| | - Mauro Monforte
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| | - Aljwhara Alangary
- Centre for Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Centre Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| | - Mario Sabatelli
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Matilde Laura
- Centre for Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Gita Ramdharry
- Centre for Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Carla Bolaño-Díaz
- John Walton Muscular Dystrophy Research Centre Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| | - Janina Turon-Sans
- Neuromuscular Disorders Unit, Motor Neuron Diseases Clinic, Neurology Department Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona IIB Sant Pau Barcelona Spain
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| | - Michella Guglieri
- John Walton Muscular Dystrophy Research Centre Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| | - Alexander M Rossor
- Centre for Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Montse Olive
- Neuromuscular Disorders Unit, Motor Neuron Diseases Clinic, Neurology Department Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona IIB Sant Pau Barcelona Spain
| | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Childrens' Research Hospital, Rome, Italy
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Ricard Rojas-García
- Neuromuscular Disorders Unit, Motor Neuron Diseases Clinic, Neurology Department Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona IIB Sant Pau Barcelona Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) Barcelona Spain.
| | - Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) Barcelona Spain; Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| |
Collapse
|
6
|
Fernández-Eulate G, Theuriet J, Record CJ, Querin G, Masingue M, Leonard-Louis S, Behin A, Le Forestier N, Pegat A, Michaud M, Chanson JB, Nadaj-Pakleza A, Tard C, Bedat-Millet AL, Sole G, Spinazzi M, Salort-Campana E, Echaniz-Laguna A, Poinsignon V, Latour P, Reilly MM, Bouhour F, Stojkovic T. Phenotype Presentation and Molecular Diagnostic Yield in Non-5q Spinal Muscular Atrophy. Neurol Genet 2023; 9:e200087. [PMID: 37470033 PMCID: PMC10352921 DOI: 10.1212/nxg.0000000000200087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/26/2023] [Indexed: 07/21/2023]
Abstract
Background and Objectives Spinal muscular atrophy (SMA) is mainly caused by homozygous SMN1 gene deletions on 5q13. Non-5q SMA patients' series are lacking, and the diagnostic yield of next-generation sequencing (NGS) is largely unknown. The aim of this study was to describe the clinical and genetic landscape of non-5q SMA and evaluate the performance of neuropathy gene panels in these disorders. Methods Description of patients with non-5q SMA followed in the different neuromuscular reference centers in France as well as in London, United Kingdom. Patients without a genetic diagnosis had undergone at least a neuropathy or large neuromuscular gene panel. Results Seventy-one patients from 65 different families were included, mostly sporadic cases (60.6%). At presentation, 21 patients (29.6%) showed exclusive proximal weakness (P-SMA), 35 (49.3%) showed associated distal weakness (PD-SMA), and 15 (21.1%) a scapuloperoneal phenotype (SP-SMA). Thirty-two patients (45.1%) had a genetic diagnosis: BICD2 (n = 9), DYNC1H1 (n = 7), TRPV4 (n = 4), VCP, HSBP1, AR (n = 2), VRK1, DNAJB2, MORC2, ASAH1, HEXB, and unexpectedly, COL6A3 (n = 1). The genetic diagnostic yield was lowest in P-SMA (6/21, 28.6%) compared with PD-SMA (16/35, 45.7%) and SP-SMA (10/15, 66.7%). An earlier disease onset and a family history of the disease or consanguinity were independent predictors of a positive genetic diagnosis. Neuropathy gene panels were performed in 59 patients with a 32.2% diagnostic yield (19/59). In 13 additional patients, a genetic diagnosis was achieved through individual gene sequencing or an alternative neuromuscular NGS. Discussion Non-5q SMA is genetically heterogeneous, and neuropathy gene panels achieve a molecular diagnosis in one-third of the patients. The diagnostic yield can be increased by sequencing of other neuromuscular and neurometabolic genes. Nevertheless, there is an unmet need to cluster these patients to aid in the identification of new genes.
Collapse
Affiliation(s)
- Gorka Fernández-Eulate
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| | - Julian Theuriet
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| | - Christopher J Record
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| | - Giorgia Querin
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| | - Marion Masingue
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| | - Sarah Leonard-Louis
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| | - Anthony Behin
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| | - Nadine Le Forestier
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| | - Antoine Pegat
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| | - Maud Michaud
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| | - Jean-Baptiste Chanson
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| | - Aleksandra Nadaj-Pakleza
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| | - Celine Tard
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| | - Anne-Laure Bedat-Millet
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| | - Guilhem Sole
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| | - Marco Spinazzi
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| | - Emmanuelle Salort-Campana
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| | - Andoni Echaniz-Laguna
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| | - Vianney Poinsignon
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| | - Philippe Latour
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| | - Mary M Reilly
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| | - Francoise Bouhour
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| | - Tanya Stojkovic
- From the Nord/Est/Ile-de-France Neuromuscular Reference Center (G.F.-E., G.Q., M. Masingue, S.L.-L., A.B., T.S.), Institut de Myologie, Pitié-Salpêtrière Hospital, Paris; Electromyography and Neuromuscular Department (J.T., A.P., F.B.), Hospices Civils de Lyon; Centre for Neuromuscular Diseases (C.J.R., M.M.R.), UCL Queen Square Institute of Neurology, London, United Kingdom; Neurology Department (N.L.F.), Pitié-Salpêtrière Hospital, Paris; Nord/Est/Ile-de-France Neuromuscular Reference Center (M. Michaud), Central Nancy University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (J.-B.C., A.N.-P.), Strasbourg University Hospitals; Nord/Est/Ile-de-France Neuromuscular Reference Center (C.T.), U1172, Lille University Hospital; Nord/Est/Ile-de-France Neuromuscular Reference Center (A.-L.B.-M.), Rouen University Hospital; Neuromuscular Reference Center 'AOC' (G.S.), Bordeaux University Hospitals (Pellegrin Hospital); Neuromuscular Reference Center (M.S.), Angers University Hospital; Neuromuscular and ALS Reference Center (E.S.-C.), La Timone University Hospital, Marseille; French National Center for Rare Neuropathies (A.E.-L.), Neurology Department, Bicêtre University Hospital, INSERM U1195, Paris-Saclay University; Molecular Genetics Lab (V.P.), Bicêtre University Hospital, Le Kremlin Bicêtre; and Center for Biology - East (P.L.), Neurological Hereditary Disorders Unit, Hospices Civils de Lyon, France
| |
Collapse
|
7
|
Unger A, Roos A, Gangfuß A, Hentschel A, Gläser D, Krause K, Doering K, Schara-Schmidt U, Hoffjan S, Vorgerd M, Güttsches AK. Microscopic and Biochemical Hallmarks of BICD2-Associated Muscle Pathology toward the Evaluation of Novel Variants. Int J Mol Sci 2023; 24:ijms24076808. [PMID: 37047781 PMCID: PMC10095373 DOI: 10.3390/ijms24076808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
BICD2 variants have been linked to neurodegenerative disorders like spinal muscular atrophy with lower extremity predominance (SMALED2) or hereditary spastic paraplegia (HSP). Recently, mutations in BICD2 were implicated in myopathies. Here, we present one patient with a known and six patients with novel BICD2 missense variants, further characterizing the molecular landscape of this heterogenous neurological disorder. A total of seven patients were genotyped and phenotyped. Skeletal muscle biopsies were analyzed by histology, electron microscopy, and protein profiling to define pathological hallmarks and pathogenicity markers with consecutive validation using fluorescence microscopy. Clinical and MRI-features revealed a typical pattern of distal paresis of the lower extremities as characteristic features of a BICD2-associated disorder. Histological evaluation showed myopathic features of varying severity including fiber size variation, lipofibromatosis, and fiber splittings. Proteomic analysis with subsequent fluorescence analysis revealed an altered abundance and localization of thrombospondin-4 and biglycan. Our combined clinical, histopathological, and proteomic approaches provide new insights into the pathophysiology of BICD2-associated disorders, confirming a primary muscle cell vulnerability. In this context, biglycan and thrombospondin-4 have been identified, may serve as tissue pathogenicity markers, and might be linked to perturbed protein secretion based on an impaired vesicular transportation.
Collapse
Affiliation(s)
- Andreas Unger
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Disease (IfGH), University Hospital Münster, 48149 Münster, Germany
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Andreas Roos
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45122 Essen, Germany
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Andrea Gangfuß
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
| | - Dieter Gläser
- Genetikum, Center for Human Genetics, 89231 Neu-Ulm, Germany
| | - Karsten Krause
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| | - Kristina Doering
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45122 Essen, Germany
| | - Sabine Hoffjan
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| | - Anne-Katrin Güttsches
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| |
Collapse
|
8
|
Mei Y, Jiang Y, Zhang Z, Zhang H. Muscle and bone characteristics of a Chinese family with spinal muscular atrophy, lower extremity predominant 1 (SMALED1) caused by a novel missense DYNC1H1 mutation. BMC Med Genomics 2023; 16:47. [PMID: 36882741 PMCID: PMC9990223 DOI: 10.1186/s12920-023-01472-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Spinal muscular atrophy, lower extremity predominant (SMALED) is a type of non-5q spinal muscular atrophy characterised by weakness and atrophy of lower limb muscles without sensory abnormalities. SMALED1 can be caused by dynein cytoplasmic 1 heavy chain 1 (DYNC1H1) gene variants. However, the phenotype and genotype of SMALED1 may overlap with those of other neuromuscular diseases, making it difficult to diagnose clinically. Additionally, bone metabolism and bone mineral density (BMD) in patients with SMALED1 have never been reported. METHODS We investigated a Chinese family in which 5 individuals from 3 generations had lower limb muscle atrophy and foot deformities. Clinical manifestations and biochemical and radiographic indices were analysed, and mutational analysis was performed by whole-exome sequencing (WES) and Sanger sequencing. RESULTS A novel mutation in exon 4 of the DYNC1H1 gene (c.587T > C, p.Leu196Ser) was identified in the proband and his affected mother by WES. Sanger sequencing confirmed that the proband and 3 affected family members were carriers of this mutation. As leucine is a hydrophobic amino acid and serine is hydrophilic, the hydrophobic interaction resulting from mutation of amino acid residue 196 could influence the stability of the DYNC1H1 protein. Leg muscle magnetic resonance imaging of the proband revealed severe atrophy and fatty infiltration, and electromyographic recordings showed chronic neurogenic impairment of the lower extremities. Bone metabolism markers and BMD of the proband were all within normal ranges. None of the 4 patients had experienced fragility fractures. CONCLUSION This study identified a novel DYNC1H1 mutation and expands the spectrum of phenotypes and genotypes of DYNC1H1-related disorders. This is the first report of bone metabolism and BMD in patients with SMALED1.
Collapse
Affiliation(s)
- Yazhao Mei
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Yunyi Jiang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| | - Hao Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| |
Collapse
|
9
|
Yi J, Zhao X, Noell CR, Helmer P, Solmaz SR, Vallee RB. Role of Nesprin-2 and RanBP2 in BICD2-associated brain developmental disorders. PLoS Genet 2023; 19:e1010642. [PMID: 36930595 PMCID: PMC10022797 DOI: 10.1371/journal.pgen.1010642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/28/2023] [Indexed: 03/18/2023] Open
Abstract
Bicaudal D2 (BICD2) is responsible for recruiting cytoplasmic dynein to diverse forms of subcellular cargo for their intracellular transport. Mutations in the human BICD2 gene have been found to cause an autosomal dominant form of spinal muscular atrophy (SMA-LED2), and brain developmental defects. Whether and how the latter mutations are related to roles we and others have identified for BICD2 in brain development remains little understood. BICD2 interacts with the nucleoporin RanBP2 to recruit dynein to the nuclear envelope (NE) of Radial Glial Progenitor cells (RGPs) to mediate their well-known but mysterious cell-cycle-regulated interkinetic nuclear migration (INM) behavior, and their subsequent differentiation to form cortical neurons. We more recently found that BICD2 also mediates NE dynein recruitment in migrating post-mitotic neurons, though via a different interactor, Nesprin-2. Here, we report that Nesprin-2 and RanBP2 compete for BICD2-binding in vitro. To test the physiological implications of this behavior, we examined the effects of known BICD2 mutations using in vitro biochemical and in vivo electroporation-mediated brain developmental assays. We find a clear relationship between the ability of BICD2 to bind RanBP2 vs. Nesprin-2 in controlling of nuclear migration and neuronal migration behavior. We propose that mutually exclusive RanBP2-BICD2 vs. Nesprin-2-BICD2 interactions at the NE play successive, critical roles in INM behavior in RGPs and in post-mitotic neuronal migration and errors in these processes contribute to specific human brain malformations.
Collapse
Affiliation(s)
- Julie Yi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Xiaoxin Zhao
- Department of Chemistry, Binghamton University, Binghamton, New York, New York, United States of America
| | - Crystal R. Noell
- Department of Chemistry, Binghamton University, Binghamton, New York, New York, United States of America
| | - Paige Helmer
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Sozanne R. Solmaz
- Department of Chemistry, Binghamton University, Binghamton, New York, New York, United States of America
| | - Richard B. Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
10
|
Matsui S, Iwatani S, Morisada N, Takenouchi T, Yoshimoto S. Vocal cord paralysis in autosomal dominant spinal muscular atrophy due to BICD2. Congenit Anom (Kyoto) 2023; 63:52-53. [PMID: 36517450 DOI: 10.1111/cga.12500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/23/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Sachiko Matsui
- Department of Neonatology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Hyogo, Japan
| | - Sota Iwatani
- Department of Neonatology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Hyogo, Japan
| | - Naoya Morisada
- Department of Clinical Genetics, Hyogo Prefectural Kobe Children's Hospital, Kobe, Hyogo, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Seiji Yoshimoto
- Department of Neonatology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Hyogo, Japan
| |
Collapse
|
11
|
Masingue M, Fernández-Eulate G, Debs R, Tard C, Labeyrie C, Leonard-Louis S, Dhaenens CM, Masson MA, Latour P, Stojkovic T. Strategy for genetic analysis in hereditary neuropathy. Rev Neurol (Paris) 2023; 179:10-29. [PMID: 36566124 DOI: 10.1016/j.neurol.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Inherited neuropathies are a heterogeneous group of slowly progressive disorders affecting either motor, sensory, and/or autonomic nerves. Peripheral neuropathy may be the major component of a disease such as Charcot-Marie-Tooth disease or a feature of a more complex multisystemic disease involving the central nervous system and other organs. The goal of this review is to provide the clinical clues orientating the genetic diagnosis in a patient with inherited peripheral neuropathy. This review focuses on primary inherited neuropathies, amyloidosis, inherited metabolic diseases, while detailing clinical, neurophysiological and potential treatment of these diseases.
Collapse
Affiliation(s)
- M Masingue
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France.
| | - G Fernández-Eulate
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - R Debs
- Service de neurophysiologie, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - C Tard
- CHU de Lille, clinique neurologique, centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, 59037 Lille cedex, France
| | - C Labeyrie
- Service de neurologie, hôpital Kremlin-Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - S Leonard-Louis
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - C-M Dhaenens
- Université de Lille, Inserm, CHU de Lille, U1172-LilNCog-Lille Neuroscience & Cognition, 59000 Lille, France
| | - M A Masson
- Inserm U1127, Paris Brain Institute, ICM, Sorbonne Université, CNRS UMR 7225, hôpital Pitié-Salpêtrière, Paris, France
| | - P Latour
- Service de biochimie biologie moléculaire, CHU de Lyon, centre de biologie et pathologie Est, 69677 Bron cedex, France
| | - T Stojkovic
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| |
Collapse
|
12
|
Le Tanno P, Latypova X, Rendu J, Fauré J, Bourg V, Gauthier M, Billy-Lopez G, Jouk PS, Dieterich K. Diagnostic workup in children with arthrogryposis: description of practices from a single reference centre, comparison with literature and suggestion of recommendations. J Med Genet 2023; 60:13-24. [PMID: 34876503 DOI: 10.1136/jmedgenet-2021-107823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/18/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Arthrogryposis multiplex congenita (AMC) refers to a clinical presentation of congenital contractures involving two or more body areas. More than 400 distinct conditions may lead to AMC, making the aetiological diagnosis challenging. The objective of this work was to set up evidence-based recommendations for the diagnosis of AMC by taking advantage of both data from our nation-wide cohort of children with AMC and from the literature. MATERIAL AND METHODS We conducted a retrospective single-centre observational study. Patients had been evaluated at least once at a paediatric age in the AMC clinic of Grenoble University Hospital between 2007 and 2019. After gathering data about their diagnostic procedure, a literature review was performed for each paraclinical investigation to discuss their relevance. RESULTS One hundred and twenty-five patients were included, 43% had Amyoplasia, 27% had distal arthrogryposis and 30% had other forms. A definitive aetiological diagnosis was available for 66% of cases. We recommend a two-time diagnostic process: first, non-invasive investigations that aim at classifying patients into one of the three groups, and second, selected investigations targeting a subset of patients. CONCLUSION The aetiological management for patients with AMC remains arduous. This process will be facilitated by the increasing use of next-generation sequencing combined with detailed phenotyping. Invasive investigations should be avoided because of their limited yield.
Collapse
Affiliation(s)
- Pauline Le Tanno
- Univ. Grenoble Alpes, Inserm, U1209, CHU Grenoble Alpes, Institut of Advanced Biosciences, 38000 Grenoble, France
| | - Xenia Latypova
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institute of Neurosciences, 38000 Grenoble, France
| | - John Rendu
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institute of Neurosciences, 38000 Grenoble, France
| | - Julien Fauré
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institute of Neurosciences, 38000 Grenoble, France
| | - Véronique Bourg
- Service de Médecine Physique et Réhabilitation pédiatrique, CHU Grenoble Alpes, 38000 Grenoble, France
| | - Marjolaine Gauthier
- Service de Génétique, Génomique et Procréation, CHU Grenoble Alpes, 38000 Grenoble, France
| | - Gipsy Billy-Lopez
- Service de Génétique, Génomique et Procréation, CHU Grenoble Alpes, 38000 Grenoble, France
| | - Pierre-Simon Jouk
- Service de Génétique, Génomique et Procréation, CHU Grenoble Alpes, 38000 Grenoble, France
| | - Klaus Dieterich
- Univ. Grenoble Alpes, Inserm, U1209, CHU Grenoble Alpes, Institut of Advanced Biosciences, 38000 Grenoble, France
| |
Collapse
|
13
|
Hageman G, Nihom J. Fetuses and infants with Amyoplasia congenita in congenital Zika syndrome: The evidence of a viral cause. A narrative review of 144 cases. Eur J Paediatr Neurol 2023; 42:1-14. [PMID: 36442412 DOI: 10.1016/j.ejpn.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 10/09/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Amyoplasia congenita is the most frequent type of arthrogryposis causing fetal hypokinesia, leading to congenital contractures at birth. The pathogenesis is thought to be impaired blood circulation to the fetus early in pregnancy, with hypotension and hypoxia damaging the anterior horn cells. In animal studies however a prenatal infection with a poliomyelitis-like viral agent was demonstrated. Congenital Zika virus syndrome (CZVS) has recently been described in infants with severe microcephaly, and in 10-25% of cases arthrogryposis. METHODS A search in PubMed for CZVS yielded 124 studies. After a selection for arthrogryposis, 35 papers were included, describing 144 cases. The studies were divided into two categories. 1) Those (87 cases) focussing on imaging or histological data of congenital brain defects, contained insufficient information to link arthrogryposis specifically to lesions of the brain or spinal motor neuron. 2) In the other 57 cases detailed clinical data could be linked to neurophysiological, imaging or histological data. RESULTS In category 1 the most frequent brain abnormalities in imaging studies were ventriculomegaly, calcifications (subcortical, basal ganglia, cerebellum), hypoplasia of the brainstem and cerebellum, atrophy of the cerebral cortex, migration disorders and corpus callosum anomalies. In category 2, in 38 of 57 cases clinical data were indicative of Amyoplasia congenita. This diagnosis was confirmed by electromyographic findings (13 cases), by MRI (37 cases) or histology (12 cases) of the spinal cord. The latter showed small or absent lateral corticospinal tracts, and cell loss and degeneration of motor neuron cells. Zika virus-proteins and flavivirus-like particles were detected in cytoplasm of spinal neurons. CONCLUSION The phenotype of arthrogryposis in CZVS is consistent with Amyoplasia congenita. These findings warrant search for an intrauterine infection with any neurotropic viral agent with affinity to spinal motor neurons in neonates with Amyoplasia.
Collapse
Affiliation(s)
- G Hageman
- Department of Neurology, Medical Spectrum Twente, Hospital Enschede, the Netherlands.
| | - J Nihom
- Department of Neurology, Medical Spectrum Twente, Hospital Enschede, the Netherlands
| |
Collapse
|
14
|
Devito LG, Cooper F, D'Angelo I, Smith J, Healy L. Generation of FOUR iPSC lines (CRICKi004-A; CRICKi005-A; CRICKi006-A, CRICKi007-A) from Spinal muscle atrophy patients with lower extremity dominant (SMALED) phenotype. Stem Cell Res 2022; 65:102954. [PMID: 36332468 DOI: 10.1016/j.scr.2022.102954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/08/2022] Open
Abstract
Spinal muscular atrophy with lower extremity dominant (SMALED) is a hereditary neuromuscular disorder characterized by degeneration of spinal cord motor neurons resulting in lower limbs muscle weakness and paralysis. Mutations in DYNC1H1, which encodes BICD2, a multifunctional adaptor for microtubule motor proteins, cause the disorder. Here, we generated four induced pluripotent stem cell (iPSC) lines from patients with SMALED. Dermal fibroblasts were obtained from the MRC neuromuscular disease biobank and reprogrammed using non-integrating mRNA-based protocol. Characterization of the four iPSC lines included karyotyping and Sanger sequencing, while the expression of associated markers confirmed pluripotency and differentiation potential.
Collapse
Affiliation(s)
- Liani G Devito
- Human Embryo and Stem Cell Unit, The Francis Crick Institute, London, UK.
| | - Fay Cooper
- Centre for Stem Cell Biology, School of Bioscience, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Ilenia D'Angelo
- Human Embryo and Stem Cell Unit, The Francis Crick Institute, London, UK
| | - Jim Smith
- Developmental Biology Laboratory, The Francis Crick Institute, London, UK
| | - Lyn Healy
- Human Embryo and Stem Cell Unit, The Francis Crick Institute, London, UK.
| |
Collapse
|
15
|
Zambon AA, Pini V, Bosco L, Falzone YM, Munot P, Muntoni F, Previtali SC. Early onset hereditary neuronopathies: an update on non-5q motor neuron diseases. Brain 2022; 146:806-822. [PMID: 36445400 PMCID: PMC9976982 DOI: 10.1093/brain/awac452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/21/2022] [Accepted: 11/12/2022] [Indexed: 11/30/2022] Open
Abstract
Hereditary motor neuropathies (HMN) were first defined as a group of neuromuscular disorders characterized by lower motor neuron dysfunction, slowly progressive length-dependent distal muscle weakness and atrophy, without sensory involvement. Their cumulative estimated prevalence is 2.14/100 000 and, to date, around 30 causative genes have been identified with autosomal dominant, recessive,and X-linked inheritance. Despite the advances of next generation sequencing, more than 60% of patients with HMN remain genetically uncharacterized. Of note, we are increasingly aware of the broad range of phenotypes caused by pathogenic variants in the same gene and of the considerable clinical and genetic overlap between HMN and other conditions, such as Charcot-Marie-Tooth type 2 (axonal), spinal muscular atrophy with lower extremities predominance, neurogenic arthrogryposis multiplex congenita and juvenile amyotrophic lateral sclerosis. Considering that most HMN present during childhood, in this review we primarily aim to summarize key clinical features of paediatric forms, including recent data on novel phenotypes, to help guide differential diagnosis and genetic testing. Second, we describe newly identified causative genes and molecular mechanisms, and discuss how the discovery of these is changing the paradigm through which we approach this group of conditions.
Collapse
Affiliation(s)
- Alberto A Zambon
- Correspondence to: Alberto A. Zambon Neuromuscular Repair Unit InSpe and Division of Neuroscience IRCCS Ospedale San Raffaele, Milan, Italy E-mail:
| | - Veronica Pini
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, WC1N 1EH, UK
| | - Luca Bosco
- Neuromuscular Repair Unit, Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Yuri M Falzone
- Neuromuscular Repair Unit, Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Pinki Munot
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 1EH, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, WC1N 1EH, UK,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 1EH, UK
| | - Stefano C Previtali
- Neuromuscular Repair Unit, Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| |
Collapse
|
16
|
Luo K, Zheng C, Luo R, Cao X, Sun H, Ma H, Huang J, Yang X, Wu X, Li X. Identification and functional characterization of BICD2 as a candidate disease gene in an consanguineous family with dilated cardiomyopathy. BMC Med Genomics 2022; 15:189. [PMID: 36068540 PMCID: PMC9446846 DOI: 10.1186/s12920-022-01349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
Background Familial dilated cardiomyopathy (DCM) is a genetic cardiomyopathy that is associated with reduced left ventricle function or systolic function. Fifty-one DCM-causative genes have been reported, most of which are inherited in an autosomal dominant manner. However, recessive DCM-causative gene is rarely observed. Methods Whole-exome sequencing (WES) was performed in a consanguineous family with DCM to identify candidate variants. Sanger sequencing was utilized to confirm the variant. We then checked the DCM candidate gene in 210 sporadic DCM cases. We next explored BICD2 function in both embryonic and adult bicd2-knockout zebrafish models. In vivo cardiac function of bicd2-knockout fish was detected by echocardiography and RNA-seq. Results We identified an autosomal recessive and evolutionarily conserved missense variant, NM_001003800.1:c.2429G > A, in BICD2, which segregated with the disease phenotype in a consanguineous family with DCM. Furthermore, we confirmed the presence of BICD2 variants in 3 sporadic cases. Knockout of bicd2 resulted in partial embryonic lethality in homozygotes, suggesting a vital role for bicd2 in embryogenesis. Heart dilation and decreased ejection fraction, cardiac output and stroke volume were observed in bicd2-knockout zebrafish, suggesting a phenotype similar to human DCM. Furthermore, RNA-seq confirmed a larger transcriptome shift in in bicd2 homozygotes than in heterozygotes. Gene set enrichment analysis of bicd2-deficient fish showed the enrichment of altered gene expression in cardiac pathways and mitochondrial energy metabolism. Conclusions Our study first shows that BICD2 is a novel candidate gene associated with familial DCM, and our findings will facilitate further insights into the molecular pathological mechanisms of DCM. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01349-y.
Collapse
Affiliation(s)
- Kai Luo
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, People's Republic of China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, People's Republic of China
| | - Chenqing Zheng
- Shenzhen Aone Medical Laboratory Co., Ltd., Shenzhen, People's Republic of China
| | - Rong Luo
- Institute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu, People's Republic of China
| | - Xin Cao
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Huajun Sun
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, People's Republic of China.,Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, People's Republic of China
| | - Huihui Ma
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, People's Republic of China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, People's Republic of China
| | - Jichang Huang
- Institute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu, People's Republic of China
| | - Xu Yang
- Shenzhen Aone Medical Laboratory Co., Ltd., Shenzhen, People's Republic of China
| | - Xiushan Wu
- The Center for Heart Development, Hunan Normal University, Changsha, People's Republic of China. .,Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, People's Republic of China.
| | - Xiaoping Li
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, People's Republic of China. .,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
17
|
Oliwa A, Joseph S, Millar E, Horrocks I, Penman D, Baptista J, Cullup T, Constantinou P, Heuchan AM, Hamilton R, Longman C. Cataract, abnormal electroretinogram and visual evoked potentials in a child with SMA-LED2 - extending the phenotype. J Neuromuscul Dis 2022; 9:803-808. [PMID: 36057830 DOI: 10.3233/jnd-220818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This case report describes a girl who presented antenatal arthrogryposis and postnatal hypotonia, generalized and respiratory weakness, joint deformities particularly affecting the lower limbs and poor swallow. By 5 months, cataracts, abnormal electroretinograms, visual evoked potentials and global developmental impairments were recognized. No causative variants were identified on targeted gene panels. After her unexpected death at 11 months, gene-agnostic trio whole exome sequencing revealed a likely pathogenic de novo BICD2 missense variant, NM_001003800.1, c.593T>C, p.(Leu198Pro), confirming the diagnosis of spinal muscular atrophy lower extremity predominant type 2 (SMA-LED2). We propose that cataracts and abnormal electroretinograms are novel features of SMA-LED2.
Collapse
Affiliation(s)
- Agata Oliwa
- Undergraduate Medical School, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shuko Joseph
- Fraser of Allander Neurosciences Unit, Royal Hospital for Children, Glasgow, UK
| | - Eoghan Millar
- Department of Ophthalmology, Royal Hospital for Children, Glasgow, UK
| | - Iain Horrocks
- Fraser of Allander Neurosciences Unit, Royal Hospital for Children, Glasgow, UK
| | - Dawn Penman
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Julia Baptista
- Peninsula Medical School, Faculty of Heath, University of Plymouth, Plymouth, UK
| | - Thomas Cullup
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Panayiotis Constantinou
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Ruth Hamilton
- Department of Clinical Physics and Bioengineering, Royal Hospital for Children, NHS Greater Glasgow & Clyde, Glasgow, UK
| | - Cheryl Longman
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
18
|
Astrea G, Morrow JM, Manzur A, Gunny R, Battini R, Mercuri E, Reilly MM, Muntoni F, Yousry TA. Muscle "islands": An MRI signature distinguishing neurogenic from myopathic causes of early onset distal weakness. Neuromuscul Disord 2021; 32:142-149. [PMID: 35033413 DOI: 10.1016/j.nmd.2021.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/12/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Muscle MRI has an increasing role in diagnosis of inherited neuromuscular diseases, but no features are known which reliably differentiate myopathic and neurogenic conditions. Using patients presenting with early onset distal weakness, we aimed to identify an MRI signature to distinguish myopathic and neurogenic conditions. We identified lower limb MRI scans from patients with either genetically (n = 24) or clinically (n = 13) confirmed diagnoses of childhood onset distal myopathy or distal spinal muscular atrophy. An initial exploratory phase reviewed 11 scans from genetically confirmed patients identifying a single potential discriminatory marker concerning the pattern of fat replacement within muscle, coined "islands". This pattern comprised small areas of muscle tissue with normal signal intensity completely surrounded by areas with similar intensity to subcutaneous fat. In the subsequent validation phase, islands correctly classified scans from all 12 remaining genetically confirmed patients, and 12/13 clinically classified patients. In the genetically confirmed patients MRI classification of neurogenic/myopathic aetiology had 100% accuracy (24/24) compared with 65% accuracy (15/23) for EMG, and 79% accuracy (15/19) for muscle biopsy. Future studies are needed in other clinical contexts, however the presence of islands appears to highly suggestive of a neurogenic aetiology in patients presenting with early onset distal motor weakness.
Collapse
Affiliation(s)
- Guja Astrea
- Department of Developmental Neuroscience, IRCCS Stella Maris, Calambrone, Pisa, Italy; Dubowitz Neuromuscular Center, UCL GOS Institute of Child Health, UK
| | - Jasper M Morrow
- Queen Square Center for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | - Adnan Manzur
- Dubowitz Neuromuscular Center, UCL GOS Institute of Child Health, UK
| | - Roxana Gunny
- Paediatric neuroradiology, Sidra Medicine, Qatar
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris, Calambrone, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eugenio Mercuri
- Department of Pediatric Neurology, Catholic University, Rome, Italy; Centro Clinico Nemo, Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Mary M Reilly
- Queen Square Center for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Francesco Muntoni
- NIHR Great Ormond Street Hospital Biomedical Research Center, Great Ormond Street Institute of Child Health University College London and Great Ormond Street Hospital Trust, London, UK
| | - Tarek A Yousry
- Neuroradiological Academic Unit, Queen Square UCL Institute of Neurology and Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, UCLH, London, UK
| |
Collapse
|
19
|
Neurogenic arthrogryposis and the power of phenotyping. Neuromuscul Disord 2021; 31:1062-1069. [PMID: 34736627 DOI: 10.1016/j.nmd.2021.07.399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/23/2022]
Abstract
In this article we review the commonest cause of neurogenic arthrogryposis, termed Spinal Muscular Atrophy Lower Extremity Dominant (SMALED), due to variants in DYNC1H1 and BICD2. We discuss the characteristic clinical and radiological phenotype of this disorder and how this has facilitated the identification of the genetic cause of SMALED2. We also review the similarities and differences between the human SMALED phenotype and mouse models and how this has informed our understanding of the potential mechanisms governing motor neuron loss in these disorders.
Collapse
|
20
|
Pinto WBVDR, Souza PVSD, Badia BML, Farias IB, Albuquerque Filho JMVD, Gonçalves EA, Machado RIL, Oliveira ASB. Adult-onset non-5q proximal spinal muscular atrophy: a comprehensive review. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:912-923. [PMID: 34706022 DOI: 10.1590/0004-282x-anp-2020-0429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/24/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Adult-onset spinal muscular atrophy (SMA) represents an expanding group of inherited neurodegenerative disorders in clinical practice. OBJECTIVE This review aims to synthesize the main clinical, genetic, radiological, biochemical, and neurophysiological aspects related to the classical and recently described forms of proximal SMA. METHODS The authors performed a non-systematic critical review summarizing adult-onset proximal SMA presentations. RESULTS Previously limited to cases of SMN1-related SMA type 4 (adult form), this group has now more than 15 different clinical conditions that have in common the symmetrical and progressive compromise of lower motor neurons starting in adulthood or elderly stage. New clinical and genetic subtypes of adult-onset proximal SMA have been recognized and are currently target of wide neuroradiological, pathological, and genetic studies. CONCLUSIONS This new complex group of rare disorders typically present with lower motor neuron disease in association with other neurological or systemic signs of impairment, which are relatively specific and typical for each genetic subtype.
Collapse
Affiliation(s)
| | - Paulo Victor Sgobbi de Souza
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| | - Bruno Mattos Lombardi Badia
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| | - Igor Braga Farias
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| | | | - Eduardo Augusto Gonçalves
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| | - Roberta Ismael Lacerda Machado
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| | - Acary Souza Bulle Oliveira
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| |
Collapse
|
21
|
Tumurkhuu M, Batbuyan U, Yuzawa S, Munkhsaikhan Y, Batmunkh G, Nishimura W. A novel BICD2 mutation of a patient with Spinal Muscular Atrophy Lower Extremity Predominant 2. Intractable Rare Dis Res 2021; 10:102-108. [PMID: 33996355 PMCID: PMC8122317 DOI: 10.5582/irdr.2021.01004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The bicaudal D homolog 2 (BICD2) gene encodes a protein required for the stable complex of dynein and dynactin, which functions as a motor protein working along the microtubule cytoskeleton. Both inherited and de novo variants of BICD2 are reported with autosomal dominant spinal muscular atrophy with lower extremity predominance (SMALED2). Here, we report a male patient with a novel mutation in the BICD2 gene caused by a heterozygous substitution of arginine with cysteine at residue 162 (Arg162Cys); inherited from his asymptomatic mother. The patient showed typical clinical symptoms of SMALED2, which was genetically confirmed by sequencing. The Arg162Cys mutant clusters with four previously reported variants (c.361C>G, p.Leu121Val; c.581A>G, p.Gln194Arg; c.320C>T, p.Ser107Leu; c.565A>T, p.Ile189Phe) in a region that binds to the dynein-dynactin complex (DDC). The BICD2 domain structures were predicted and the Arg162Cys mutation was localized in the N-terminus coiled-coil segment 1 (CC1) domain. Protein modeling of BICD2's CC1 domain predicted that the Arg162Cys missense variant disrupted interactions with dynein cytoplasmic 1 heavy chain 1 within the DDC. The mutant did this by either changing the electrostatic surface potential or making a broader hydrophobic unit with the neighboring residues. This hereditary case supports the complex and broad genotype-phenotype correlation of BICD2 mutations, which could be explained by incomplete penetrance or variable expressivity in the next generation.
Collapse
Affiliation(s)
- Munkhtuya Tumurkhuu
- Department of Molecular Biology, International University of Health and Welfare, School of Medicine, Narita, Chiba, Japan
- Department of Genetics and Molecular Biology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Mongolia
- Address correspondence to:Munkhtuya Tumurkhuu, Department of Molecular Biology, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba 286-8686, Japan. E-mail: , munkhtuya.tumurkhuu@ gmail.com
| | - Uranchimeg Batbuyan
- Department of Genetics and Molecular Biology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Mongolia
| | - Satoru Yuzawa
- Department of Biochemistry, International University of Health and Welfare, School of Medicine, Narita, Chiba, Japan
| | - Yanjinlkham Munkhsaikhan
- Department of Genetics and Molecular Biology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Mongolia
| | - Ganbayar Batmunkh
- Laboratory of Medical Genetics, National Center of Maternal and Child Health, Mongolia
| | - Wataru Nishimura
- Department of Molecular Biology, International University of Health and Welfare, School of Medicine, Narita, Chiba, Japan
| |
Collapse
|
22
|
Laquerriere A, Jaber D, Abiusi E, Maluenda J, Mejlachowicz D, Vivanti A, Dieterich K, Stoeva R, Quevarec L, Nolent F, Biancalana V, Latour P, Sternberg D, Capri Y, Verloes A, Bessieres B, Loeuillet L, Attie-Bitach T, Martinovic J, Blesson S, Petit F, Beneteau C, Whalen S, Marguet F, Bouligand J, Héron D, Viot G, Amiel J, Amram D, Bellesme C, Bucourt M, Faivre L, Jouk PS, Khung S, Sigaudy S, Delezoide AL, Goldenberg A, Jacquemont ML, Lambert L, Layet V, Lyonnet S, Munnich A, Van Maldergem L, Piard J, Guimiot F, Landrieu P, Letard P, Pelluard F, Perrin L, Saint-Frison MH, Topaloglu H, Trestard L, Vincent-Delorme C, Amthor H, Barnerias C, Benachi A, Bieth E, Boucher E, Cormier-Daire V, Delahaye-Duriez A, Desguerre I, Eymard B, Francannet C, Grotto S, Lacombe D, Laffargue F, Legendre M, Martin-Coignard D, Mégarbané A, Mercier S, Nizon M, Rigonnot L, Prieur F, Quélin C, Ranjatoelina-Randrianaivo H, Resta N, Toutain A, Verhelst H, Vincent M, Colin E, Fallet-Bianco C, Granier M, Grigorescu R, Saada J, Gonzales M, Guiochon-Mantel A, Bessereau JL, Tawk M, Gut I, Gitiaux C, Melki J. Phenotypic spectrum and genomics of undiagnosed arthrogryposis multiplex congenita. J Med Genet 2021; 59:559-567. [PMID: 33820833 PMCID: PMC9132874 DOI: 10.1136/jmedgenet-2020-107595] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/23/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Arthrogryposis multiplex congenita (AMC) is characterised by congenital joint contractures in two or more body areas. AMC exhibits wide phenotypic and genetic heterogeneity. Our goals were to improve the genetic diagnosis rates of AMC, to evaluate the added value of whole exome sequencing (WES) compared with targeted exome sequencing (TES) and to identify new genes in 315 unrelated undiagnosed AMC families. METHODS Several genomic approaches were used including genetic mapping of disease loci in multiplex or consanguineous families, TES then WES. Sanger sequencing was performed to identify or validate variants. RESULTS We achieved disease gene identification in 52.7% of AMC index patients including nine recently identified genes (CNTNAP1, MAGEL2, ADGRG6, ADCY6, GLDN, LGI4, LMOD3, UNC50 and SCN1A). Moreover, we identified pathogenic variants in ASXL3 and STAC3 expanding the phenotypes associated with these genes. The most frequent cause of AMC was a primary involvement of skeletal muscle (40%) followed by brain (22%). The most frequent mode of inheritance is autosomal recessive (66.3% of patients). In sporadic patients born to non-consanguineous parents (n=60), de novo dominant autosomal or X linked variants were observed in 30 of them (50%). CONCLUSION New genes recently identified in AMC represent 21% of causing genes in our cohort. A high proportion of de novo variants were observed indicating that this mechanism plays a prominent part in this developmental disease. Our data showed the added value of WES when compared with TES due to the larger clinical spectrum of some disease genes than initially described and the identification of novel genes.
Collapse
Affiliation(s)
- Annie Laquerriere
- Normandie Univ, UNIROUEN, INSERM U1245; Rouen University Hospital, Department of Pathology, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Dana Jaber
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France
| | - Emanuela Abiusi
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France.,Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico and Sezione di Medicina Genomica, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Jérome Maluenda
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France
| | - Dan Mejlachowicz
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France
| | - Alexandre Vivanti
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France
| | - Klaus Dieterich
- Univ. Grenoble Alpes, Inserm, U1209, CHU Grenoble Alpes, Grenoble, France
| | - Radka Stoeva
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France.,Department of Medical Genetics, Le Mans Hospital, Le Mans, France
| | - Loic Quevarec
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France
| | - Flora Nolent
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France
| | - Valerie Biancalana
- Laboratoire Diagnostic Génétique, CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Illkirch, France
| | - Philippe Latour
- Centre de Biologie Est, Hospices Civils de Lyon, Bron, France
| | - Damien Sternberg
- Service de Biochimie Métabolique et Centre de Génétique, APHP. Sorbonne Université, GH Pitié-Salpêtrière; Centre of Research in Myology, Sorbonne University, UMRS 974, Paris, France
| | - Yline Capri
- Département de Génétique, Assistance publique-Hopitaux de Paris (AP-HP), Hopital Robert Debré, Paris, France
| | - Alain Verloes
- Département de Génétique, Assistance publique-Hopitaux de Paris (AP-HP), Hopital Robert Debré, Paris, France
| | - Bettina Bessieres
- Unité d'Embryofoetopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Laurence Loeuillet
- Unité d'Embryofoetopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Tania Attie-Bitach
- Unité d'Embryofoetopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Jelena Martinovic
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France.,Unité d'Embryofoetopathologie, Hôpital Antoine Béclère, APHP, Clamart, France
| | - Sophie Blesson
- Service de Génétique, Unité de Génétique Clinique, CHRU de Tours, Hôpital Bretonneau, Tours, France
| | - Florence Petit
- Service de Génétique Clinique Guy Fontaine, CHU Lille, Lille, France
| | - Claire Beneteau
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes; Institut du Thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Sandra Whalen
- UF de Génétique clinique et Centre de Référence Maladies Rares des Anomalies du Développement et Syndromes Malformatifs, APHP. Sorbonne Université, Hôpital Armand Trousseau, Paris, France
| | - Florent Marguet
- Normandie Univ, UNIROUEN, INSERM U1245; Rouen University Hospital, Department of Pathology, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Jerome Bouligand
- Laboratoire de Génétique moléculaire, Pharmacogénétique et Hormonologie, Hôpital Bicêtre, APHP Université Paris Saclay, Le Kremlin-Bicêtre; Inserm UMR_S 1185, Faculté de médecine Paris Saclay, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Delphine Héron
- Département de Génétique, APHP Sorbonne Université, Hôpital Pitié-Salpêtrière et Trousseau, PARIS, France
| | - Géraldine Viot
- Unité de Génétique, Clinique de la Muette, Paris, France
| | - Jeanne Amiel
- Service de Génétique Clinique, Centre de référence pour les maladies osseuses constitutionnelles APHP, Hôpital Necker-Enfants Malades; Université de Paris, UMR1163, INSERM, Institut Imagine, Paris, France
| | - Daniel Amram
- Unité de Génétique Clinique, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Céline Bellesme
- Department of Pediatric Neurology, APHP-Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Martine Bucourt
- Service d'Histologie, Embryologie, et Cytogénétique, Hôpital Jean Verdier, APHP, Bondy, France
| | - Laurence Faivre
- Centre de Génétique et Centre de référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'Enfants, CHU Dijon; UMR-Inserm 1231 GAD team, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pierre-Simon Jouk
- Univ. Grenoble Alpes, Inserm, U1209, CHU Grenoble Alpes, Grenoble, France
| | - Suonavy Khung
- Unité Fonctionnelle de Fœtopathologie, Hôpital Universitaire Robert Debré; Inserm UMR 1141, Paris, France
| | - Sabine Sigaudy
- Département de Génétique Médicale, Hôpital Timone Enfant, Marseille, France
| | - Anne-Lise Delezoide
- Unité Fonctionnelle de Fœtopathologie, Hôpital Universitaire Robert Debré; Inserm UMR 1141, Paris, France
| | - Alice Goldenberg
- Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Marie-Line Jacquemont
- UF de Génétique Médicale, CHU la Réunion, site GHSR, Ile de La Réunion, Saint-Pierre, France
| | | | - Valérie Layet
- Consultations de Génétique, Groupe Hospitalier du Havre, Le Havre, France
| | - Stanislas Lyonnet
- Imagine Institute, INSERM UMR 1163, Université de Paris; Fédération de Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Arnold Munnich
- Imagine Institute, INSERM UMR 1163, Université de Paris; Fédération de Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | | | - Juliette Piard
- Centre de Génétique Humaine, Université de Franche-Comté, Besançon, France
| | - Fabien Guimiot
- Unité Fonctionnelle de Fœtopathologie, Hôpital Universitaire Robert Debré; Inserm UMR 1141, Paris, France
| | - Pierre Landrieu
- Department of Pediatric Neurology, APHP-Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Pascaline Letard
- Service d'Histologie, Embryologie, et Cytogénétique, Hôpital Jean Verdier, APHP, Bondy, France
| | - Fanny Pelluard
- UMR U1053, INSERM et Université de Bordeaux; Unité de fœtopathologie, Service de pathologie, CHU de Bordeaux, Bordeaux, France
| | - Laurence Perrin
- Département de Génétique, Assistance publique-Hopitaux de Paris (AP-HP), Hopital Robert Debré, Paris, France
| | - Marie-Hélène Saint-Frison
- Unité Fonctionnelle de Fœtopathologie, Hôpital Universitaire Robert Debré; Inserm UMR 1141, Paris, France
| | - Haluk Topaloglu
- Yeditepe University Deparment of Pediatrics, Istanbul, Turkey
| | | | | | - Helge Amthor
- Neuromuscular Reference Centre, Pediatric Department, University Hospital Raymond Poincaré, Garches, France
| | - Christine Barnerias
- Service de Neuropédiatrie, CR Neuromusculaire Necker, Hôpital Necker- Enfants Malades, Paris, France
| | - Alexandra Benachi
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France.,Service de Gynécologie-Obstétrique, Hôpital Antoine Béclère, AP-HP, Clamart, France
| | - Eric Bieth
- Service de Génétique Médicale, Hopital Purpan, Toulouse, France
| | - Elise Boucher
- Centre de Génétique Humaine, Université de Franche-Comté, Besançon, France
| | - Valerie Cormier-Daire
- Service de Génétique Clinique, Centre de référence pour les maladies osseuses constitutionnelles APHP, Hôpital Necker-Enfants Malades; Université de Paris, UMR1163, INSERM, Institut Imagine, Paris, France
| | - Andrée Delahaye-Duriez
- Service d'Histologie, Embryologie, et Cytogénétique, Hôpital Jean Verdier, APHP, Bondy, France.,Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Isabelle Desguerre
- Service de Neuropédiatrie, CR Neuromusculaire Necker, Hôpital Necker- Enfants Malades, Paris, France
| | - Bruno Eymard
- Sorbonne Université, GH Pitié-Salpêtrière, Paris, France
| | - Christine Francannet
- Service de génétique médicale et centre de référence des anomalies du développement et des déficits intellectuels rares, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Sarah Grotto
- Maternité Port-Royal, AP-HP, Hôpital Cochin, Paris, France
| | - Didier Lacombe
- Service de Génétique Médicale, CHU Bordeaux, Hopital Pellegrin, Bordeaux, France
| | - Fanny Laffargue
- Service de génétique médicale et centre de référence des anomalies du développement et des déficits intellectuels rares, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Marine Legendre
- Service de Génétique Médicale, CHU Bordeaux, Hopital Pellegrin, Bordeaux, France
| | | | - André Mégarbané
- Department of Human Genetics, Gilbert and Rose-Marie Ghagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Sandra Mercier
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes; Institut du Thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Mathilde Nizon
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes; Institut du Thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Luc Rigonnot
- Service de gynécologie obstétrique, Centre Hospitalier Sud Francilien, Corbeil Essonnes, France
| | - Fabienne Prieur
- Service de Génétique Clinique, CHU de Saint Etienne, Saint-Etienne, France
| | - Chloé Quélin
- Service de Génétique Clinique, CLAD Ouest, CHU Rennes, F-35033 RENNES, France
| | | | - Nicoletta Resta
- Department of Biomedical Sciences and Human Oncology (DIMO), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Annick Toutain
- Service de Génétique, Centre Hospitalier Universitaire de Tours; UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Helene Verhelst
- Department of Pediatrics, Division of Pediatric Neurology, Ghent University Hospital, Ghent, Belgium
| | - Marie Vincent
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes; Institut du Thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Estelle Colin
- Service de Génétique Médicale, CHU d'Angers, Angers, France
| | | | - Michèle Granier
- Neonatology and Neonatal Intensive Care Unit, Centre Hospitalier Sud Francilien, Corbeil Essonnes, France
| | - Romulus Grigorescu
- Unité de Génétique du Développement fœtal, Département de Génétique et Embryologie médicales, CHU Paris Est, Hôpital d'Enfants Armand-Trousseau, Paris, France
| | - Julien Saada
- Service de Gynécologie-Obstétrique, Hôpital Antoine Béclère, AP-HP, Clamart, France
| | - Marie Gonzales
- Unité d'Embryofoetopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Anne Guiochon-Mantel
- Laboratoire de Génétique moléculaire, Pharmacogénétique et Hormonologie, Hôpital Bicêtre, APHP Université Paris Saclay, Le Kremlin-Bicêtre; Inserm UMR_S 1185, Faculté de médecine Paris Saclay, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Jean-Louis Bessereau
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Marcel Tawk
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cyril Gitiaux
- Unité de Neurophysiologie Clinique, Centre de référence des maladies neuromusculaires, Hôpital Necker Enfants Malades, APHP, Université de Paris, Paris, France
| | - Judith Melki
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France .,Unité de Génétique Médicale, Centre de référence des anomalies du développement et syndromes malformatifs d'Île-de-France, APHP, Le Kremlin Bicêtre, France
| |
Collapse
|
23
|
Pagnamenta AT, Kaiyrzhanov R, Zou Y, Da'as SI, Maroofian R, Donkervoort S, Dominik N, Lauffer M, Ferla MP, Orioli A, Giess A, Tucci A, Beetz C, Sedghi M, Ansari B, Barresi R, Basiri K, Cortese A, Elgar G, Fernandez-Garcia MA, Yip J, Foley AR, Gutowski N, Jungbluth H, Lassche S, Lavin T, Marcelis C, Marks P, Marini-Bettolo C, Medne L, Moslemi AR, Sarkozy A, Reilly MM, Muntoni F, Millan F, Muraresku CC, Need AC, Nemeth AH, Neuhaus SB, Norwood F, O'Donnell M, O'Driscoll M, Rankin J, Yum SW, Zolkipli-Cunningham Z, Brusius I, Wunderlich G, Karakaya M, Wirth B, Fakhro KA, Tajsharghi H, Bönnemann CG, Taylor JC, Houlden H. An ancestral 10-bp repeat expansion in VWA1 causes recessive hereditary motor neuropathy. Brain 2021; 144:584-600. [PMID: 33559681 PMCID: PMC8263055 DOI: 10.1093/brain/awaa420] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/16/2020] [Accepted: 10/15/2020] [Indexed: 01/26/2023] Open
Abstract
The extracellular matrix comprises a network of macromolecules such as collagens, proteoglycans and glycoproteins. VWA1 (von Willebrand factor A domain containing 1) encodes a component of the extracellular matrix that interacts with perlecan/collagen VI, appears to be involved in stabilizing extracellular matrix structures, and demonstrates high expression levels in tibial nerve. Vwa1-deficient mice manifest with abnormal peripheral nerve structure/function; however, VWA1 variants have not previously been associated with human disease. By interrogating the genome sequences of 74 180 individuals from the 100K Genomes Project in combination with international gene-matching efforts and targeted sequencing, we identified 17 individuals from 15 families with an autosomal-recessive, non-length dependent, hereditary motor neuropathy and rare biallelic variants in VWA1. A single disease-associated allele p.(G25Rfs*74), a 10-bp repeat expansion, was observed in 14/15 families and was homozygous in 10/15. Given an allele frequency in European populations approaching 1/1000, the seven unrelated homozygote individuals ascertained from the 100K Genomes Project represents a substantial enrichment above expected. Haplotype analysis identified a shared 220 kb region suggesting that this founder mutation arose >7000 years ago. A wide age-range of patients (6-83 years) helped delineate the clinical phenotype over time. The commonest disease presentation in the cohort was an early-onset (mean 2.0 ± 1.4 years) non-length-dependent axonal hereditary motor neuropathy, confirmed on electrophysiology, which will have to be differentiated from other predominantly or pure motor neuropathies and neuronopathies. Because of slow disease progression, ambulation was largely preserved. Neurophysiology, muscle histopathology, and muscle MRI findings typically revealed clear neurogenic changes with single isolated cases displaying additional myopathic process. We speculate that a few findings of myopathic changes might be secondary to chronic denervation rather than indicating an additional myopathic disease process. Duplex reverse transcription polymerase chain reaction and immunoblotting using patient fibroblasts revealed that the founder allele results in partial nonsense mediated decay and an absence of detectable protein. CRISPR and morpholino vwa1 modelling in zebrafish demonstrated reductions in motor neuron axonal growth, synaptic formation in the skeletal muscles and locomotive behaviour. In summary, we estimate that biallelic variants in VWA1 may be responsible for up to 1% of unexplained hereditary motor neuropathy cases in Europeans. The detailed clinical characterization provided here will facilitate targeted testing on suitable patient cohorts. This novel disease gene may have previously evaded detection because of high GC content, consequential low coverage and computational difficulties associated with robustly detecting repeat-expansions. Reviewing previously unsolved exomes using lower QC filters may generate further diagnoses.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- NIHR Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Yaqun Zou
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Sahar I Da'as
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Natalia Dominik
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Marlen Lauffer
- Institute of Human Genetics, Center for Molecular Medicine Cologne (CMMC), Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Matteo P Ferla
- NIHR Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Andrea Orioli
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Genomics England, London, UK
| | - Adam Giess
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Genomics England, London, UK
| | - Arianna Tucci
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Genomics England, London, UK
| | | | - Maryam Sedghi
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnaz Ansari
- Department of Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rita Barresi
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle, UK
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Keivan Basiri
- Department of Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Andrea Cortese
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Greg Elgar
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Genomics England, London, UK
| | - Miguel A Fernandez-Garcia
- Department of Paediatric Neurology - Neuromuscular Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Janice Yip
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Gutowski
- Department of Neurology, Royal Devon and Exeter NHS Trust, Exeter, UK
| | - Heinz Jungbluth
- Department of Paediatric Neurology - Neuromuscular Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
- Randall Division of Cell and Molecular Biophysics Muscle Signalling Section, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Saskia Lassche
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tim Lavin
- Department of Neurology, Salford Royal NHS Foundation Trust, Manchester, UK
| | - Carlo Marcelis
- Department of Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter Marks
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle, UK
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Livija Medne
- Divisions of Neurology and Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ali-Reza Moslemi
- Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, Sweden
| | - Anna Sarkozy
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital Trust, London, UK
| | - Mary M Reilly
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital Trust, London, UK
| | | | - Colleen C Muraresku
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Children's Hospital of Philadelphia, PA, USA
| | - Anna C Need
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Genomics England, London, UK
| | - Andrea H Nemeth
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Sarah B Neuhaus
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Fiona Norwood
- Department of Neurology, King's College Hospital, London, UK
| | - Marie O'Donnell
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Mary O'Driscoll
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Julia Rankin
- Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Trust, Exeter, UK
| | - Sabrina W Yum
- Division of Pediatric Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Children's Hospital of Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Isabell Brusius
- Institute of Human Genetics, Center for Molecular Medicine Cologne (CMMC), Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Gilbert Wunderlich
- Department of Neurology, Center for Rare Diseases Cologne, University Hospital Cologne, Cologne, Germany
| | - Mert Karakaya
- Institute of Human Genetics, Center for Molecular Medicine Cologne (CMMC), Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne (CMMC), Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Homa Tajsharghi
- School of Health Science, Division Biomedicine and Translational Medicine, University of Skovde, Sweden
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Jenny C Taylor
- NIHR Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
24
|
Marchionni E, Agolini E, Mastromoro G, Guadagnolo D, Coppola G, Roggini M, Riminucci M, Novelli A, Giancotti A, Corsi A, Pizzuti A. Fetal early motor neuron disruption and prenatal molecular diagnosis in a severe BICD2-opathy. Am J Med Genet A 2021; 185:1509-1514. [PMID: 33547725 DOI: 10.1002/ajmg.a.62111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022]
Abstract
BICD2 (BICD Cargo Adaptor 2, MIM*609797) mutations are associated with severe prenatal-onset forms of spinal muscular atrophy, lower extremity-predominant 2B (SMALED2B MIM 618291) or milder forms with childhood-onset (SMALED2A MIM 615290). Etiopathogenesis is not fully clarified and a wide spectrum of phenotypic presentations is reported, ranging from extreme prenatal forms with adverse outcome, to slow progressive late-onset forms. We report a fetus at 22 gestational weeks with evidence of Arthrogryposis Multiplex Congenita on ultrasound, presenting with fixed extended lower limbs and flexed upper limbs, bilateral clubfoot and absent fetal movements. A trio-based prenatal Exome Sequencing was performed, disclosing a de novo heterozygous pathogenic in frame deletion (NM_015250.3: c.1636_1638delAAT; p.Asn546del) in BICD2. After pregnancy termination, quantitative analysis on NeuN immunostained spinal cord sections of the ventral horns, revealed that neuronal density was markedly reduced compared to the one of an age-matched normal fetus and an age-matched type-I Spinal Muscular Atrophy sample, used as a comparative model. The present case, the first prenatally diagnosed and neuropathologically characterized, showed an early motor neuron loss in SMALED2B, providing further insight into the pathological basis of BICD2-opathies.
Collapse
Affiliation(s)
- Enrica Marchionni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Gioia Mastromoro
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniele Guadagnolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Coppola
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mario Roggini
- Department of Pediatrics and Child Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Antonella Giancotti
- Department of Maternal and Child Health and Urologic Science, Sapienza University of Rome, Rome, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,Clinical Genomics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| |
Collapse
|
25
|
Liu J, Wang K, Li B, Yang X. A novel Xp11.22-22.33 deletion suggesting a possible mechanism of congenital cervical spinal muscular atrophy. Mol Genet Genomic Med 2021; 9:e1606. [PMID: 33513289 PMCID: PMC8104167 DOI: 10.1002/mgg3.1606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Congenital cervical spinal muscular atrophy (CCSMA) is a rare, nonprogressive, neurogenic disorder characterized by symmetric arthrogryposis and motor deficits mainly confined to upper extremities. Since its first proposal by Darwish et al. 39 years ago, only few cases have ever been reported. Vascular insult to the anterior horn of cervical spinal cord during fetal development was speculated to be the cause, however, the exact pathogenesis is still not well understood. METHODS In this study, whole-exome sequencing (WES) and copy number variation (CNV) analysis were conducted on a definitive CCSMA patient, confirmed by the clinical manifestations and other supplementary examinations. RESULTS On physical examination, the patient was mainly characterized by symmetric, congenital, nonprogressive contractures, hypotonia, and muscle weakness mainly confined to the upper limbs, which were further supported by MRI and electromyography. Neuromuscular biopsy of the deltoid muscle demonstrated the type 1 myofiber predominance without any infiltration of inflammatory cells. The WES and CNV analysis unveiled a de novo Xp11.22-22.33 deletion. On further examination of the genes contained within this segment, we recognize UBA1 gene as the most likely pathogenic gene. Ubiquitin-like modifier activating enzyme 1 is encoded by UBA1 gene (MIM 314370) located in Xp11.3 and is a critical protein that plays a vital role in ubiquitin-proteasome system and autophagy. It is well documented that UBA1 gene mutation causes X-linked infantile spinal muscular atrophy (XL-SMA), which manifests phenotypes of arthrogryposis, hypotonia, and myopathic face. Type 2 XL-SMA, which follows a nonprogressive and nonlethal course is very similar to the presentations of CCSMA. CONCLUSION The phenotypic similarities between this CCSMA case and XL-SMA prompt us to hypothesize a possible connection between UBA1 gene deficit and the pathogenesis of CCSMA. Our study is the first to demonstrate that CCSMA might have a genetic etiology, thus, expanding our insights into the underlying cause of CCSMA.
Collapse
Affiliation(s)
- Jingwei Liu
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Kelai Wang
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Baomin Li
- Department of Pediatric, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaofan Yang
- Department of Pediatric, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
26
|
Frasquet M, Rojas-García R, Argente-Escrig H, Vázquez-Costa JF, Muelas N, Vílchez JJ, Sivera R, Millet E, Barreiro M, Díaz-Manera J, Turon-Sans J, Cortés-Vicente E, Querol L, Ramírez-Jiménez L, Martínez-Rubio D, Sánchez-Monteagudo A, Espinós C, Sevilla T, Lupo V. Distal hereditary motor neuropathies: Mutation spectrum and genotype-phenotype correlation. Eur J Neurol 2021; 28:1334-1343. [PMID: 33369814 DOI: 10.1111/ene.14700] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/28/2020] [Accepted: 12/17/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND PURPOSE Distal hereditary motor neuropathies (dHMNs) are a heterogeneous group of disorders characterized by degeneration of the motor component of peripheral nerves. Currently, only 15% to 32.5% of patients with dHMN are characterized genetically. Additionally, the prevalence of these genetic disorders is not well known. Recently, biallelic mutations in the sorbitol dehydrogenase gene (SORD) have been identified as a cause of dHMN, with an estimated frequency in undiagnosed cases of up to 10%. METHODS In the present study, we included 163 patients belonging to 108 different families who were diagnosed with a dHMN and who underwent a thorough genetic screening that included next-generation sequencing and subsequent Sanger sequencing of SORD. RESULTS Most probands were sporadic cases (62.3%), and the most frequent age of onset of symptoms was 2 to 10 years (28.8%). A genetic diagnosis was achieved in 37/108 (34.2%) families and 78/163 (47.8%) of all patients. The most frequent cause of distal hereditary motor neuropathies were mutations in HSPB1 (10.4%), GARS1 (9.8%), BICD2 (8.0%), and DNAJB2 (6.7%) genes. In addition, 3.1% of patients were found to be carriers of biallelic mutations in SORD. Mutations in another seven genes were also identified, although they were much less frequent. Eight new pathogenic mutations were detected, and 17 patients without a definite genetic diagnosis carried variants of uncertain significance. The calculated minimum prevalence of dHMN was 2.3 per 100,000 individuals. CONCLUSIONS This study confirms the genetic heterogeneity of dHMN and that biallelic SORD mutations are a cause of dHMN in different populations.
Collapse
Affiliation(s)
- Marina Frasquet
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain
| | - Ricard Rojas-García
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Herminia Argente-Escrig
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain
| | - Juan Francisco Vázquez-Costa
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain.,Department of Medicine, Universitat de València, Valencia, Spain
| | - Nuria Muelas
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain
| | - Juan Jesús Vílchez
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain
| | - Rafael Sivera
- Department of Neurology, Hospital Francesc de Borja, Gandía, Spain
| | - Elvira Millet
- Department of Clinical Neurophysiology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Marisa Barreiro
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Jordi Díaz-Manera
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Janina Turon-Sans
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Cortés-Vicente
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luis Querol
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Ramírez-Jiménez
- Department of Genomics and Translational Genetics, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Dolores Martínez-Rubio
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Rare Diseases Joint Units, INCLIVA and IIS La Fe-CIPF, Valencia, Spain
| | - Ana Sánchez-Monteagudo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Rare Diseases Joint Units, INCLIVA and IIS La Fe-CIPF, Valencia, Spain
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Rare Diseases Joint Units, INCLIVA and IIS La Fe-CIPF, Valencia, Spain
| | - Teresa Sevilla
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain.,Department of Medicine, Universitat de València, Valencia, Spain
| | - Vincenzo Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Rare Diseases Joint Units, INCLIVA and IIS La Fe-CIPF, Valencia, Spain
| |
Collapse
|
27
|
Ueda Y, Suganuma T, Narumi-Kishimoto Y, Kaname T, Sato T. A case of severe autosomal dominant spinal muscular atrophy with lower extremity predominance caused by a de novo BICD2 mutation. Brain Dev 2021; 43:135-139. [PMID: 32888736 DOI: 10.1016/j.braindev.2020.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Heterozygous variants in BICD2 cause autosomal dominant spinal muscular atrophy with lower extremity predominance. These variants are also identified in individuals with severe forms of congenital muscle atrophy representing arthrogryposis multiplex. CASE REPORT A girl was born with severe muscle weakness and respiratory distress. A fetal ultrasound had detected polyhydramnios and multiple joint contractures in utero. She was born with severe muscle weakness and respiratory distress. Bilateral hip joint dislocation and multiple bone fractures were also present at birth. Although she depends on medical care, including assisted ventilation and tube feeding, she has reached eight years of age. Her motor developmental skills were reduced owing to muscle weakness and deformity of her lower extremities, whereas her cognitive development slowly but steadily grew. Whole exome sequencing revealed a novel de novo missense BICD2 variant (c.1625G > A, p.(Cys542Tyr)), which was evaluated as likely pathogenic. CONCLUSION This is the first case report of a severe form of spinal muscular atrophy with lower extremity predominance caused by a de novo BICD2 variant in Japan.
Collapse
Affiliation(s)
- Yuki Ueda
- Department of Pediatrics, Japanese Kitami Red Cross Hospital, Japan; Department of Pediatrics, Hokkaido University Graduate School of Medicine, Japan.
| | - Takashi Suganuma
- Department of Pediatrics, Japanese Kitami Red Cross Hospital, Japan
| | - Yoko Narumi-Kishimoto
- Medical Genome Center, National Research Institute for Child Health and Development, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Japan
| | - Tomonobu Sato
- Department of Pediatrics, Japanese Kitami Red Cross Hospital, Japan
| |
Collapse
|
28
|
Belter L, Cruz R, Kulas S, McGinnis E, Dabbous O, Jarecki J. Economic burden of spinal muscular atrophy: an analysis of claims data. JOURNAL OF MARKET ACCESS & HEALTH POLICY 2020; 8:1843277. [PMID: 33224449 PMCID: PMC7655070 DOI: 10.1080/20016689.2020.1843277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 05/21/2023]
Abstract
Background: Spinal muscular atrophy (SMA) is a rare genetic neuromuscular disease. Objective: Characterize direct costs associated with SMA management. Data source: Truven Health Analytics MarketScan claims data (2012-2016). Patients: Eligible patients had ≥2 SMA-related medical claims ≥30 days apart. Patients were matched (1:1) to controls by birth year, gender, and geographic region. Patients were categorized as having infantile, child, or juvenile SMA based on diagnosis at age <1, 1-3, or 3-18 years, respectively. Main outcome measures: Annual inpatient and outpatient insurance claims and costs (2019 USD) for cases versus controls. Results: Fifty-eight, 56, and 279 cases and controls comprised the infantile, child, and juvenile cohorts, respectively. Cases had more inpatient claims than controls (infantile: 60.3% vs 1.7%; child: 35.7% vs 3.6%; juvenile: 47.0% vs 4.3%; all P ≤ 0.002). Mean net payments for inpatient admissions were higher for cases versus controls (infantile: $118,609.00 vs $58.79; child: $26,940.01 vs $143.56; juvenile: $39,389.91 vs $701.21; all P ≤ 0.01), as were mean net payments for outpatient services (infantile: $55,537.83 vs $2,047.20; child: $73,093.66 vs $1,307.56; juvenile: $49,067.83 vs $1,134.69; all P ≤ 0.0002). Conclusions: Direct costs of SMA are tremendous, often >50-fold higher compared with matched controls. Efforts are needed to reduce costs through improved standards of care.
Collapse
Affiliation(s)
- Lisa Belter
- Research Department, Cure SMA, Elk Grove Village, IL, USA
| | - Rosángel Cruz
- Research Department, Cure SMA, Elk Grove Village, IL, USA
| | | | | | | | - Jill Jarecki
- Research Department, Cure SMA, Elk Grove Village, IL, USA
| |
Collapse
|
29
|
de Fuenmayor-Fernández de la Hoz CP, Hernández-Laín A, Olivé M, Arteche López A, Esteban J, Domínguez-González C. SOD1 mutations in adult-onset distal spinal muscular atrophy. Eur J Neurol 2020; 27:e75-e76. [PMID: 32619288 DOI: 10.1111/ene.14426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/25/2020] [Indexed: 11/30/2022]
Affiliation(s)
| | - Aurelio Hernández-Laín
- Neuromuscular Unit, Department of Pathology (Neuropathology), 12 de Octubre University Hospital, Madrid, Spain.,Hospital 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Montse Olivé
- Neuromuscular Unit, Department of Neurology, Bellvitge Hospital, Barcelona, Spain.,Department of Pathology, Bellvitge Hospital, Barcelona, Spain.,IDIBELL Research Institute, Barcelona, Spain
| | - Ana Arteche López
- Department of Genetics, 12 de Octubre University Hospital, Madrid, Spain
| | - Jesús Esteban
- Neuromuscular Unit, Department of Neurology, 12 de Octubre University Hospital, Madrid, Spain
| | - Cristina Domínguez-González
- Neuromuscular Unit, Department of Neurology, 12 de Octubre University Hospital, Madrid, Spain.,Hospital 12 de Octubre Research Institute (imas12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
30
|
Tasca G, Udd B, Sabatelli M. Response to: SOD1 mutations in adult-onset distal spinal muscular atrophy. Eur J Neurol 2020; 27:e74. [PMID: 32618054 DOI: 10.1111/ene.14425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 12/23/2022]
Affiliation(s)
- G Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - B Udd
- Folkhälsan Research Center, Helsinki, Finland.,Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland
| | - M Sabatelli
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia.,Centro Clinico NEMO, Roma, Italia.,Istituto di Neurologia, Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
31
|
Picher-Martel V, Morin C, Brunet D, Dionne A. SMALED2 with BICD2 gene mutations: Report of two cases and portrayal of a classical phenotype. Neuromuscul Disord 2020; 30:669-673. [PMID: 32709491 DOI: 10.1016/j.nmd.2020.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
The spinal muscular atrophies (SMA) affect lower motor neurons leading to important muscle atrophy and paralysis. Some cases of SMA affect mostly the lower limbs and are called autosomal dominant spinal muscular atrophy, lower extremity predominant (SMALED). So far, two genes have been identified to cause this phenotype, DYNC1H1 (SMALED1) and BICD2 (SMALED2). This pathology is rare, but patients exhibit classical features which should be recognised by physicians. We present two unrelated cases of SMALED2 with previously described c.320C>T BICD2 mutations. Our cases exhibit non-progressive weakness and atrophy of the lower limbs associated with contractures and unique muscle MRI findings suggestive of classical SMALED2. We also performed an extensive review of the literature to present the classical and atypical phenotypes of BICD2. Indeed, some features appear to be highly suggestive of the disease, including upper limb sparing, sparing of the adductors muscles on physical examination and MRI, congenital contractures and normal nerve conductions studies.
Collapse
Affiliation(s)
- Vincent Picher-Martel
- CERVO Brain Research Center, 2601 Chemin de la Canardière, Quebec, Quebec G1J 2G3, Canada; Université Laval, Québec, Canada; CHU de Québec, Hôpital de l'Enfant-Jésus, Département des sciences neurologiques, Quebec, Quebec, Canada.
| | - Clément Morin
- Centre régional de Rimouski, Département de neurologie, Quebec, Quebec, Canada
| | - Denis Brunet
- Université Laval, Québec, Canada; CHU de Québec, Hôpital de l'Enfant-Jésus, Département des sciences neurologiques, Quebec, Quebec, Canada
| | - Annie Dionne
- Université Laval, Québec, Canada; CHU de Québec, Hôpital de l'Enfant-Jésus, Département des sciences neurologiques, Quebec, Quebec, Canada
| |
Collapse
|
32
|
Rossor AM, Sleigh JN, Groves M, Muntoni F, Reilly MM, Hoogenraad CC, Schiavo G. Loss of BICD2 in muscle drives motor neuron loss in a developmental form of spinal muscular atrophy. Acta Neuropathol Commun 2020; 8:34. [PMID: 32183910 PMCID: PMC7076953 DOI: 10.1186/s40478-020-00909-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/01/2020] [Indexed: 12/27/2022] Open
Abstract
Autosomal dominant missense mutations in BICD2 cause Spinal Muscular Atrophy Lower Extremity Predominant 2 (SMALED2), a developmental disease of motor neurons. BICD2 is a key component of the cytoplasmic dynein/dynactin motor complex, which in axons drives the microtubule-dependent retrograde transport of intracellular cargo towards the cell soma. Patients with pathological mutations in BICD2 develop malformations of cortical and cerebellar development similar to Bicd2 knockout (-/-) mice. In this study we sought to re-examine the motor neuron phenotype of conditional Bicd2-/- mice. Bicd2-/- mice show a significant reduction in the number of large calibre motor neurons of the L4 ventral root compared to wild type mice. Muscle-specific knockout of Bicd2 results in a similar reduction in L4 ventral axons comparable to global Bicd2-/- mice. Rab6, a small GTPase required for the sorting of exocytic vesicles from the Trans Golgi Network to the plasma membrane is a major binding partner of BICD2. We therefore examined the secretory pathway in SMALED2 patient fibroblasts and demonstrated that BICD2 is required for physiological flow of constitutive secretory cargoes from the Trans Golgi Network to the plasma membrane using a VSV-G reporter assay. Together, these data indicate that BICD2 loss from muscles is a major driver of non-cell autonomous pathology in the motor nervous system, which has important implications for future therapeutic approaches in SMALED2.
Collapse
Affiliation(s)
- Alexander M Rossor
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| | - James N Sleigh
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | - Michael Groves
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre and National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Institute of Child Health, London, WC1N 1EH, UK
| | - Mary M Reilly
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Giampietro Schiavo
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.
- Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London, WC1N 3BG, UK.
| |
Collapse
|
33
|
Koboldt DC, Waldrop MA, Wilson RK, Flanigan KM. The Genotypic and Phenotypic Spectrum of
BICD2
Variants in Spinal Muscular Atrophy. Ann Neurol 2020; 87:487-496. [DOI: 10.1002/ana.25704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel C. Koboldt
- Institute for Genomic Medicine Nationwide Children's Hospital Columbus OH
- Department of Pediatrics Ohio State University Columbus OH
| | - Megan A. Waldrop
- Department of Pediatrics Ohio State University Columbus OH
- Center for Gene Therapy Nationwide Children's Hospital Columbus OH
- Department of Neurology Ohio State University Columbus OH
| | - Richard K. Wilson
- Institute for Genomic Medicine Nationwide Children's Hospital Columbus OH
- Department of Pediatrics Ohio State University Columbus OH
| | - Kevin M. Flanigan
- Department of Pediatrics Ohio State University Columbus OH
- Center for Gene Therapy Nationwide Children's Hospital Columbus OH
- Department of Neurology Ohio State University Columbus OH
| |
Collapse
|
34
|
Frasquet M, Camacho A, Vílchez R, Argente‐Escrig H, Millet E, Vázquez‐Costa JF, Silla R, Sánchez‐Monteagudo A, Vílchez JJ, Espinós C, Lupo V, Sevilla T. Clinical spectrum of
BICD2
mutations. Eur J Neurol 2020; 27:1327-1335. [DOI: 10.1111/ene.14173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/03/2020] [Indexed: 11/27/2022]
Affiliation(s)
- M. Frasquet
- Neuromuscular Diseases Unit Neurology Department Hospital Universitari i Politècnic La Fe ValenciaSpain
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
| | - A. Camacho
- Division of Child Neurology Hospital Universitario 12 de Octubre MadridSpain
- Faculty of Medicine Complutense University of Madrid Madrid Spain
| | - R. Vílchez
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
| | - H. Argente‐Escrig
- Neuromuscular Diseases Unit Neurology Department Hospital Universitari i Politècnic La Fe ValenciaSpain
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ValenciaSpain
| | - E. Millet
- Department of Clinical Neurophysiology Hospital Universitari i Politècnic La Fe ValenciaSpain
| | - J. F. Vázquez‐Costa
- Neuromuscular Diseases Unit Neurology Department Hospital Universitari i Politècnic La Fe ValenciaSpain
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ValenciaSpain
- Department of Medicine Universitat de València ValenciaSpain
| | - R. Silla
- Neurology Department Hospital Clínico Universitario ValenciaSpain
| | - A. Sánchez‐Monteagudo
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Service of Genomics and Translational Genetics Centro de Investigación Príncipe Felipe (CIPF) ValenciaSpain
| | - J. J. Vílchez
- Neuromuscular Diseases Unit Neurology Department Hospital Universitari i Politècnic La Fe ValenciaSpain
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ValenciaSpain
| | - C. Espinós
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Service of Genomics and Translational Genetics Centro de Investigación Príncipe Felipe (CIPF) ValenciaSpain
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders ValenciaSpain
- Department of Genetics Universitat de València Valencia Spain
| | - V. Lupo
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Service of Genomics and Translational Genetics Centro de Investigación Príncipe Felipe (CIPF) ValenciaSpain
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders ValenciaSpain
| | - T. Sevilla
- Neuromuscular Diseases Unit Neurology Department Hospital Universitari i Politècnic La Fe ValenciaSpain
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ValenciaSpain
- Department of Medicine Universitat de València ValenciaSpain
| |
Collapse
|
35
|
Azeez OI, Myburgh JG, Bosman AM, Featherston J, Sibeko-Matjilla KP, Oosthuizen MC, Chamunorwa JP. Next generation sequencing and RNA-seq characterization of adipose tissue in the Nile crocodile (Crocodylus niloticus) in South Africa: Possible mechanism(s) of pathogenesis and pathophysiology of pansteatitis. PLoS One 2019; 14:e0225073. [PMID: 31738794 PMCID: PMC6861000 DOI: 10.1371/journal.pone.0225073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/27/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Concerted efforts to identify the pathogenesis and mechanism(s) involved in pansteatitis, (a generalized inflammation of the adipose tissue), that was attributed to the recent crocodile die off in the Olifants River and Loskop Dam in Kruger National Park, Mpumalanga, South Africa have been in the forefront of research in recent time. As part of the efforts, molecular characterization of healthy and pansteatitis adipose tissue was carried out by RNA sequencing (RNA-Seq) using Next Generation Sequencing (NGS) and de novo assembly of the adipose transcriptome, followed by differential gene expression analysis. METHODOLOGY Healthy adipose tissue consisting of fifty samples was collected from the subcutaneous, visceral, intermuscular adipose tissues and the abdominal fat body of ten 4 years old juvenile crocodiles from a local crocodile farm in Pretoria, South Africa. Ten pansteatitis samples were collected from visceral and intermuscular adipose tissues of five crocodiles that were dying of pansteatitis. RESULTS Forty-two thousand, two hundred and one (42,201) transcripts were assembled, out of which 37, 835 had previously been characterized. The de novo assembled transcriptome had an N50 (average sequence) of 436 bp, percentage GC content of 43.92, which compared well with previously assembled transcripts in the saltwater crocodile. Seventy genes were differentially expressed and upregulated in pansteatitis. These included genes coding for extracellular matrix (ECM) signaling ligands, inflammatory cytokines and tumour necrosis factor alpha (TNFα) receptors, fatty acid synthase and fatty acid binding proteins, peroxisome proliferator-activated receptor gamma (PPARγ), nuclear factor and apoptosis signaling ligands, and mitogen activated protein kinase enzymes among others. Majority (88.6%) of the upregulated genes were found to be involved in hypoxia inducible pathways for activation of NFkβ and inflammation, apoptosis, Toll-like receptor pathway and PPARγ. Bicaudal homologous 2 Drosophila gene (BICD2) associated with spinal and lower extremity muscle atrophy was also upregulated in pansteatitis while Sphingosine -1-phosphate phosphatase 2 (SGPP2) involved in Sphingosine -1- phosphate metabolism was downregulated. Futhermore, Doublesex-mab-related transcription factor 1 (DMRT1) responsible for sex gonad development and germ cell differentiation was also downregulated. CONCLUSION Thus, from the present study, based on differentially expressed genes in pansteatitis, affected Nile crocodiles might have died partly due to their inability to utilize stored triglycerides as a result of inflammation induced insulin resistance, leading to starvation in the midst of plenty. Affected animals may have also suffered muscular atrophy of the lower extremities and poor fertility.
Collapse
Affiliation(s)
- Odunayo I. Azeez
- Anatomy and Physiology Dept., Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
- Dept. of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Jan G. Myburgh
- Paraclinical Science Dept., Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - Ana-Mari Bosman
- Veterinary Tropical Diseases Dept., Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - Jonathan Featherston
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, Pretoria, South Africa
| | - Kgomotso P. Sibeko-Matjilla
- Veterinary Tropical Diseases Dept., Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - Marinda C. Oosthuizen
- Veterinary Tropical Diseases Dept., Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - Joseph P. Chamunorwa
- Anatomy and Physiology Dept., Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| |
Collapse
|
36
|
Next-generation sequencing in Charcot-Marie-Tooth disease: opportunities and challenges. Nat Rev Neurol 2019; 15:644-656. [PMID: 31582811 DOI: 10.1038/s41582-019-0254-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2019] [Indexed: 01/08/2023]
Abstract
Charcot-Marie-Tooth disease and the related disorders hereditary motor neuropathy and hereditary sensory neuropathy, collectively termed CMT, are the commonest group of inherited neuromuscular diseases, and they exhibit wide phenotypic and genetic heterogeneity. CMT is usually characterized by distal muscle atrophy, often with foot deformity, weakness and sensory loss. In the past decade, next-generation sequencing (NGS) technologies have revolutionized genomic medicine and, as these technologies are being applied to clinical practice, they are changing our diagnostic approach to CMT. In this Review, we discuss the application of NGS technologies, including disease-specific gene panels, whole-exome sequencing, whole-genome sequencing (WGS), mitochondrial sequencing and high-throughput transcriptome sequencing, to the diagnosis of CMT. We discuss the growing challenge of variant interpretation and consider how the clinical phenotype can be combined with genetic, bioinformatic and functional evidence to assess the pathogenicity of genetic variants in patients with CMT. WGS has several advantages over the other techniques that we discuss, which include unparalleled coverage of coding, non-coding and intergenic areas of both nuclear and mitochondrial genomes, the ability to identify structural variants and the opportunity to perform genome-wide dense homozygosity mapping. We propose an algorithm for incorporating WGS into the CMT diagnostic pathway.
Collapse
|
37
|
Bugiardini E, Khan AM, Phadke R, Lynch DS, Cortese A, Feng L, Gang Q, Pittman AM, Morrow JM, Turner C, Carr AS, Quinlivan R, Rossor AM, Holton JL, Parton M, Blake JC, Reilly MM, Houlden H, Matthews E, Hanna MG. Genetic and phenotypic characterisation of inherited myopathies in a tertiary neuromuscular centre. Neuromuscul Disord 2019; 29:747-757. [DOI: 10.1016/j.nmd.2019.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/12/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023]
|
38
|
|
39
|
Martinez Carrera LA, Gabriel E, Donohoe CD, Hölker I, Mariappan A, Storbeck M, Uhlirova M, Gopalakrishnan J, Wirth B. Novel insights into SMALED2: BICD2 mutations increase microtubule stability and cause defects in axonal and NMJ development. Hum Mol Genet 2019. [PMID: 29528393 DOI: 10.1093/hmg/ddy086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bicaudal D2 (BICD2) encodes a highly conserved motor adaptor protein that regulates the dynein-dynactin complex in different cellular processes. Heterozygous mutations in BICD2 cause autosomal dominant lower extremity-predominant spinal muscular atrophy-2 (SMALED2). Although, various BICD2 mutations have been shown to alter interactions with different binding partners or the integrity of the Golgi apparatus, the specific pathological effects of BICD2 mutations underlying SMALED2 remain elusive. Here, we show that the fibroblasts derived from individuals with SMALED2 exhibit stable microtubules. Importantly, this effect was observed regardless of where the BICD2 mutation is located, which unifies the most likely cellular mechanism affecting microtubules. Significantly, overexpression of SMALED2-causing BICD2 mutations in the disease-relevant cell type, motor neurons, also results in an increased microtubule stability which is accompanied by axonal aberrations such as collateral branching and overgrowth. To study the pathological consequences of BICD2 mutations in vivo, and to address the controversial debate whether two of these mutations are neuron or muscle specific, we generated the first Drosophila model of SMALED2. Strikingly, neuron-specific expression of BICD2 mutants resulted in reduced neuromuscular junction size in larvae and impaired locomotion of adult flies. In contrast, expressing BICD2 mutations in muscles had no obvious effect on motor function, supporting a primarily neurological etiology of the disease. Thus, our findings contribute to the better understanding of SMALED2 pathology by providing evidence for a common pathomechanism of BICD2 mutations that increase microtubule stability in motor neurons leading to increased axonal branching and to impaired neuromuscular junction development.
Collapse
Affiliation(s)
- Lilian A Martinez Carrera
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Elke Gabriel
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Colin D Donohoe
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Irmgard Hölker
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Aruljothi Mariappan
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Markus Storbeck
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Mirka Uhlirova
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Jay Gopalakrishnan
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Center for Rare Diseases Cologne, University Hospital of Cologne, 50931 Cologne, Germany
| |
Collapse
|
40
|
Chang YS, Chang CC, Huang HY, Lin CY, Yeh KT, Chang JG. Detection of Molecular Alterations in Taiwanese Patients with Medullary Thyroid Cancer Using Whole-Exome Sequencing. Endocr Pathol 2018; 29:324-331. [PMID: 30120715 DOI: 10.1007/s12022-018-9543-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genetic and epigenetic alterations are associated with the progression and prognosis of medullary thyroid carcinoma (MTC). We performed whole-exome sequencing of tumor tissue from seven patients with sporadic MTC using an Illumina HiSeq 2000 sequencing system. We conducted Sanger sequencing to confirm the somatic mutations in both tumor and matched normal tissues. We applied Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis with the Database for Annotation, Visualization, and Integrated Discovery and STRING for pathway analysis. We detected new somatic mutations in the BICD2, DLG1, FSD2, IL17RD, KLHL25, PAPPA2, PRDM2, PSEN1, SCRN1, and TTC1 genes. We found a somatic mutation in the PDE4DIP gene that had previously been discovered mutated in other tumors but that had not been characterized in MTC. We investigated pathway deregulation in MTC. Data regarding 1152 MTCs were assembled from the Catalogue of Somatic Mutations in Cancer (COSMIC) and seven of our patients. Ontological analysis revealed that most of the variants aggregated in pathways that included the signaling pathways of thyroid cancer, central carbon metabolism, microRNAs in cancer, PI3K-Akt, ErbB, MAPK, mTOR, VEGF, and RAS. In conclusion, we conducted wide-ranging exome-wide analysis of the mutational spectrum of MTC in Taiwan's population and detected novel genes with potential associations with MTC tumorigenesis and irregularities in pathways that resulted in MTC pathogenesis.
Collapse
Affiliation(s)
- Ya-Sian Chang
- Epigenome Research Center, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Chun-Chi Chang
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsi-Yuan Huang
- Epigenome Research Center, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Yu Lin
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Jan-Gowth Chang
- Epigenome Research Center, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan.
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan.
- School of Medicine, China Medical University, Taichung, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
41
|
Surana S, Tosolini AP, Meyer IF, Fellows AD, Novoselov SS, Schiavo G. The travel diaries of tetanus and botulinum neurotoxins. Toxicon 2018; 147:58-67. [DOI: 10.1016/j.toxicon.2017.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
|
42
|
Thompson LW, Morrison KD, Shirran SL, Groen EJN, Gillingwater TH, Botting CH, Sleeman JE. Neurochondrin interacts with the SMN protein suggesting a novel mechanism for spinal muscular atrophy pathology. J Cell Sci 2018; 131:jcs.211482. [PMID: 29507115 PMCID: PMC5963842 DOI: 10.1242/jcs.211482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/16/2018] [Indexed: 12/15/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited neurodegenerative condition caused by a reduction in the amount of functional survival motor neuron (SMN) protein. SMN has been implicated in transport of mRNA in neural cells for local translation. We previously identified microtubule-dependent mobile vesicles rich in SMN and SNRPB, a member of the Sm family of small nuclear ribonucleoprotein (snRNP)-associated proteins, in neural cells. By comparing the interactomes of SNRPB and SNRPN, a neural-specific Sm protein, we now show that the essential neural protein neurochondrin (NCDN) interacts with Sm proteins and SMN in the context of mobile vesicles in neurites. NCDN has roles in protein localisation in neural cells and in maintenance of cell polarity. NCDN is required for the correct localisation of SMN, suggesting they may both be required for formation and transport of trafficking vesicles. NCDN may have potential as a therapeutic target for SMA together with, or in place of the targeting of SMN expression. This article has an associated First Person interview with the first author of the paper. Highlighted Article: The essential neural protein neurochondrin interacts with the spinal muscular atrophy (SMA) protein SMN in cell lines and in mice. This might be relevant to the molecular pathology of SMA.
Collapse
Affiliation(s)
- Luke W Thompson
- School of Biology, University of St Andrews, BSRC Complex, North Haugh St Andrews, KY16 9ST, UK
| | - Kim D Morrison
- School of Biology, University of St Andrews, BSRC Complex, North Haugh St Andrews, KY16 9ST, UK
| | - Sally L Shirran
- School of Biology, University of St Andrews, BSRC Complex, North Haugh St Andrews, KY16 9ST, UK
| | - Ewout J N Groen
- Edinburgh Medical School, Biomedical Sciences and Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School, Biomedical Sciences and Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Catherine H Botting
- School of Biology, University of St Andrews, BSRC Complex, North Haugh St Andrews, KY16 9ST, UK
| | - Judith E Sleeman
- School of Biology, University of St Andrews, BSRC Complex, North Haugh St Andrews, KY16 9ST, UK
| |
Collapse
|
43
|
Trimouille A, Obre É, Banneau G, Durr A, Stevanin G, Clot F, Pennamen P, Perez JT, Bailly-Scappaticci C, Rouanet M, Delleci C, Sole G, Mathis S, Goizet C. An in-frame deletion in BICD2 associated with a non-progressive form of SMALED. Clin Neurol Neurosurg 2018; 166:1-3. [DOI: 10.1016/j.clineuro.2018.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
|
44
|
Kalmar B, Innes A, Wanisch K, Kolaszynska AK, Pandraud A, Kelly G, Abramov AY, Reilly MM, Schiavo G, Greensmith L. Mitochondrial deficits and abnormal mitochondrial retrograde axonal transport play a role in the pathogenesis of mutant Hsp27-induced Charcot Marie Tooth Disease. Hum Mol Genet 2018; 26:3313-3326. [PMID: 28595321 PMCID: PMC5808738 DOI: 10.1093/hmg/ddx216] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/25/2017] [Indexed: 11/26/2022] Open
Abstract
Mutations in the small heat shock protein Hsp27, encoded by the HSPB1 gene, have been shown to cause Charcot Marie Tooth Disease type 2 (CMT-2) or distal hereditary motor neuropathy (dHMN). Protein aggregation and axonal transport deficits have been implicated in the disease. In this study, we conducted analysis of bidirectional movements of mitochondria in primary motor neuron axons expressing wild type and mutant Hsp27. We found significantly slower retrograde transport of mitochondria in Ser135Phe, Pro39Leu and Arg140Gly mutant Hsp27 expressing motor neurons than in wild type Hsp27 neurons, although anterograde movement velocities remained normal. Retrograde transport of other important cargoes, such as the p75 neurotrophic factor receptor was minimally altered in mutant Hsp27 neurons, implicating that axonal transport deficits primarily affect mitochondria and the axonal transport machinery itself is less affected. Investigation of mitochondrial function revealed a decrease in mitochondrial membrane potential in mutant Hsp27 expressing motor axons, as well as a reduction in mitochondrial complex 1 activity, increased vulnerability of mitochondria to mitochondrial stressors, leading to elevated superoxide release and reduced mitochondrial glutathione (GSH) levels, although cytosolic GSH remained normal. This mitochondrial redox imbalance in mutant Hsp27 motor neurons is likely to cause low level of oxidative stress, which in turn will contribute to, and indeed may be the underlying cause of the deficits in mitochondrial axonal transport. Together, these findings suggest that the mitochondrial abnormalities in mutant Hsp27-induced neuropathies may be a primary cause of pathology, leading to further deficits in the mitochondrial axonal transport and onset of disease.
Collapse
Affiliation(s)
| | - Amy Innes
- Sobell Department of Motor Neuroscience and Movement Disorders.,MRC Centre for Neuromuscular Diseases
| | - Klaus Wanisch
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square House, Queen Square, London WC1N 3BG, UK
| | | | - Amelie Pandraud
- MRC Centre for Neuromuscular Diseases.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square House, Queen Square, London WC1N 3BG, UK
| | - Gavin Kelly
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London NW1?1AT, UK
| | | | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square House, Queen Square, London WC1N 3BG, UK
| | | | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders.,MRC Centre for Neuromuscular Diseases
| |
Collapse
|
45
|
Ahmed AA, Skaria P, Safina NP, Thiffault I, Kats A, Taboada E, Habeebu S, Saunders C. Arthrogryposis and pterygia as lethal end manifestations of genetically defined congenital myopathies. Am J Med Genet A 2017; 176:359-367. [DOI: 10.1002/ajmg.a.38577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Atif A. Ahmed
- Department of PathologyChildren's Mercy HospitalKansas CityMissouri
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
| | - Priya Skaria
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
| | - Nicole P. Safina
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
- Center for Pediatric Genomic MedicineChildren's Mercy HospitalKansas CityMissouri
- Division of Clinical GeneticsChildren's Mercy HospitalKansas CityMissouri
| | - Isabelle Thiffault
- Department of PathologyChildren's Mercy HospitalKansas CityMissouri
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
- Center for Pediatric Genomic MedicineChildren's Mercy HospitalKansas CityMissouri
| | - Alex Kats
- Department of PathologyChildren's Mercy HospitalKansas CityMissouri
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
| | - Eugenio Taboada
- Department of PathologyChildren's Mercy HospitalKansas CityMissouri
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
| | - Sultan Habeebu
- Department of PathologyChildren's Mercy HospitalKansas CityMissouri
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
| | - Carol Saunders
- Department of PathologyChildren's Mercy HospitalKansas CityMissouri
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
- Center for Pediatric Genomic MedicineChildren's Mercy HospitalKansas CityMissouri
| |
Collapse
|
46
|
Das J, Lilleker JB, Jabbal K, Ealing J. A missense mutation in DYNC1H1 gene causing spinal muscular atrophy - Lower extremity, dominant. Neurol Neurochir Pol 2017; 52:293-297. [PMID: 29306600 DOI: 10.1016/j.pjnns.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/21/2017] [Accepted: 12/08/2017] [Indexed: 12/11/2022]
Abstract
Spinal muscular atrophy (SMA) is a hereditary neuromuscular disorder, which causes progressive muscle weakness and in severe cases respiratory failure and death. Although the majority of the SMA cases are autosomal recessive, there is an autosomal dominant variant of SMA that primarily affects the lower extremities, known as 'spinal muscular atrophy - lower extremity, dominant' (SMALED). Mutations in the Dynein Cytoplasmic 1 Heavy Chain 1 (DYNC1H1) gene were the first to be associated with SMALED. Here we report a family with SMALED caused by a pathogenic heterozygous missense c.1809 A>T, p.glu603Asp mutation in DYNC1H1. The main clinical features were congenital hip displacement, talipes, delayed motor development, wasting and weakness in lower limbs with relative sparing of upper extremities and very slow disease progression. SMALED is extremely rare and only a handful of families have been reported. Over the years other phenotypes including Charcot Marie Tooth type 2 and hereditary mental retardation with cortical neural migration defects have also been reported to be caused by DYNC1H1 mutations. This report aims to increase our awareness of SMALED and various other phenotypes associated with mutations in this gene.
Collapse
Affiliation(s)
- Joyutpal Das
- Department of Neurology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield S10 2JF, United Kingdom.
| | - James B Lilleker
- Greater Manchester Neurosciences Centre, Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, United Kingdom.
| | - Kavaldeep Jabbal
- Greater Manchester Neurosciences Centre, Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, United Kingdom.
| | - John Ealing
- Greater Manchester Neurosciences Centre, Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, United Kingdom.
| |
Collapse
|
47
|
Reble E, Dineen A, Barr CL. The contribution of alternative splicing to genetic risk for psychiatric disorders. GENES BRAIN AND BEHAVIOR 2017; 17:e12430. [PMID: 29052934 DOI: 10.1111/gbb.12430] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/25/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
A genetic contribution to psychiatric disorders has clearly been established and genome-wide association studies now provide the location of risk genes and genetic variants associated with risk. However, the mechanism by which these genes and variants contribute to psychiatric disorders is mostly undetermined. This is in part because non-synonymous protein coding changes cannot explain the majority of variants associated with complex genetic traits. Based on this, it is predicted that these variants are causing gene expression changes, including changes to alternative splicing. Genetic changes influencing alternative splicing have been identified as risk factors in Mendelian disorders; however, currently there is a paucity of research on the role of alternative splicing in complex traits. This stems partly from the difficulty of predicting the role of genetic variation in splicing. Alterations to canonical splice site sequences, nucleotides adjacent to splice junctions, and exonic and intronic splicing regulatory sequences can influence splice site choice. Recent studies have identified global changes in alternatively spliced transcripts in brain tissues, some of which correlate with altered levels of splicing trans factors. Disease-associated variants have also been found to affect cis-acting splicing regulatory sequences and alter the ratio of alternatively spliced transcripts. These findings are reviewed here, as well as the current datasets and resources available to study alternative splicing in psychiatric disorders. Identifying and understanding risk variants that cause alternative splicing is critical to understanding the mechanisms of risk as well as to pave the way for new therapeutic options.
Collapse
Affiliation(s)
- E Reble
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - A Dineen
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - C L Barr
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Xia B, Li Y, Zhou J, Tian B, Feng L. Identification of potential pathogenic genes associated with osteoporosis. Bone Joint Res 2017; 6:640-648. [PMID: 29203636 PMCID: PMC5935809 DOI: 10.1302/2046-3758.612.bjr-2017-0102.r1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/24/2017] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Osteoporosis is a chronic disease. The aim of this study was to identify key genes in osteoporosis. METHODS Microarray data sets GSE56815 and GSE56814, comprising 67 osteoporosis blood samples and 62 control blood samples, were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified in osteoporosis using Limma package (3.2.1) and Meta-MA packages. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to identify biological functions. Furthermore, the transcriptional regulatory network was established between the top 20 DEGs and transcriptional factors using the UCSC ENCODE Genome Browser. Receiver operating characteristic (ROC) analysis was applied to investigate the diagnostic value of several DEGs. RESULTS A total of 1320 DEGs were obtained, of which 855 were up-regulated and 465 were down-regulated. These differentially expressed genes were enriched in Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways, mainly associated with gene expression and osteoclast differentiation. In the transcriptional regulatory network, there were 6038 interactions pairs involving 88 transcriptional factors. In addition, the quantitative reverse transcriptase-polymerase chain reaction result validated the expression of several genes (VPS35, FCGR2A, TBCA, HIRA, TYROBP, and JUND). Finally, ROC analyses showed that VPS35, HIRA, PHF20 and NFKB2 had a significant diagnostic value for osteoporosis. CONCLUSION Genes such as VPS35, FCGR2A, TBCA, HIRA, TYROBP, JUND, PHF20, NFKB2, RPL35A and BICD2 may be considered to be potential pathogenic genes of osteoporosis and may be useful for further study of the mechanisms underlying osteoporosis.Cite this article: B. Xia, Y. Li, J. Zhou, B. Tian, L. Feng. Identification of potential pathogenic genes associated with osteoporosis. Bone Joint Res 2017;6:640-648. DOI: 10.1302/2046-3758.612.BJR-2017-0102.R1.
Collapse
Affiliation(s)
- B Xia
- Attending Doctor Department of Orthopedics, Jining No. 1 People's Hospital, 272011 Shandong Province, China
| | - Y Li
- Attending Doctor Department of Orthopedics, Jining No. 1 People's Hospital, 272011 Shandong Province, China
| | - J Zhou
- Attending Doctor Department of Gynecology, Jining No. 1 People's Hospital, 272011 Shandong Province, China
| | - B Tian
- Attending Doctor Department of Orthopedics, Jining No. 1 People's Hospital, 272011 Shandong Province, China
| | - L Feng
- Attending Doctor Department of Orthopedics, Jining No. 1 People's Hospital, 272011 Shandong Province, China
| |
Collapse
|
49
|
Phenotypic extremes of BICD2-opathies: from lethal, congenital muscular atrophy with arthrogryposis to asymptomatic with subclinical features. Eur J Hum Genet 2017. [PMID: 28635954 DOI: 10.1038/ejhg.2017.98] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Heterozygous variants in BICD cargo adapter 2 (BICD2) cause autosomal dominant spinal muscular atrophy, lower extremity-predominant 2 (SMALED2). The disease is usually characterized by a benign or slowly progressive, congenital or early onset muscle weakness and atrophy that mainly affects the lower extremities, although some affected individuals show involvement of the arms and the shoulder girdle. Here we report unusual extremes of BICD2-related diseases: A severe form of congenital muscular atrophy with arthrogryposis multiplex, respiratory insufficiency and lethality within four months. This was caused by three BICD2 variants, (c.581A>G, p.(Gln194Arg)), (c.1626C>G, p.(Cys542Trp)) and (c.2080C>T, p.(Arg694Cys)), two of which were proven to be de novo. Affected individuals showed reduced fetal movement, weak muscle tone and sparse or no spontaneous activity after birth. Despite assisted ventilation, the condition led to early death. At the other extreme, we identified an asymptomatic woman with a known BICD2 variant (c.2108C>T, p.(Thr703Met)). Radiological examination showed fatty degeneration of selected thigh and calf muscles without clinical consequences. Instead, her son carrying the same variant is affected by a mild childhood onset disease with myopathic and neurogenic features. Mechanisms leading to variable expressivity and onset of BICD2-related disease may include alterations in molecular interactions of BICD2 and suggest the presence of genetic modifiers that may act in a protective fashion to ameliorate or abrogate disease. Our data define an additional severe disease type caused by BICD2 and emphasize a possibly variable etiology of BICD2-opathies with regard to primary muscle and neuronal involvement.
Collapse
|
50
|
Abstract
Paediatric motor neuron diseases encompass a group of neurodegenerative diseases characterised by the onset of muscle weakness and atrophy before the age of 18 years, attributable to motor neuron loss across various neuronal networks in the brain and spinal cord. While the genetic underpinnings are diverse, advances in next generation sequencing have transformed diagnostic paradigms. This has reinforced the clinical phenotyping and molecular genetic expertise required to navigate the complexities of such diagnoses. In turn, improved genetic technology and subsequent gene identification have enabled further insights into the mechanisms of motor neuron degeneration and how these diseases form part of a neurodegenerative disorder spectrum. Common pathophysiologies include abnormalities in axonal architecture and function, RNA processing, and protein quality control. This review incorporates an overview of the clinical manifestations, genetics, and pathophysiology of inherited paediatric motor neuron disorders beyond classic SMN1-related spinal muscular atrophy and describes recent advances in next generation sequencing and its clinical application. Specific disease-modifying treatment is becoming a clinical reality in some disorders of the motor neuron highlighting the importance of a timely and specific diagnosis.
Collapse
|