1
|
Rocca MA, Preziosa P, Barkhof F, Brownlee W, Calabrese M, De Stefano N, Granziera C, Ropele S, Toosy AT, Vidal-Jordana À, Di Filippo M, Filippi M. Current and future role of MRI in the diagnosis and prognosis of multiple sclerosis. THE LANCET REGIONAL HEALTH. EUROPE 2024; 44:100978. [PMID: 39444702 PMCID: PMC11496980 DOI: 10.1016/j.lanepe.2024.100978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 10/25/2024]
Abstract
In the majority of cases, multiple sclerosis (MS) is characterized by reversible episodes of neurological dysfunction, often followed by irreversible clinical disability. Accurate diagnostic criteria and prognostic markers are critical to enable early diagnosis and correctly identify patients with MS at increased risk of disease progression. The 2017 McDonald diagnostic criteria, which include magnetic resonance imaging (MRI) as a fundamental paraclinical tool, show high sensitivity and accuracy for the diagnosis of MS allowing early diagnosis and treatment. However, their inappropriate application, especially in the context of atypical clinical presentations, may increase the risk of misdiagnosis. To further improve the diagnostic process, novel imaging markers are emerging, but rigorous validation and standardization is still needed before they can be incorporated into clinical practice. This Series article discusses the current role of MRI in the diagnosis and prognosis of MS, while examining promising MRI markers, which could serve as reliable predictors of subsequent disease progression, helping to optimize the management of individual patients with MS. We also explore the potential of new technologies, such as artificial intelligence and automated quantification tools, to support clinicians in the management of patients. Yet, to ensure consistency and improvement in the use of MRI in MS diagnosis and patient follow-up, it is essential that standardized brain and spinal cord MRI protocols are applied, and that interpretation of results is performed by qualified (neuro)radiologists in all countries.
Collapse
Affiliation(s)
- Maria A. Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Wallace Brownlee
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Massimiliano Calabrese
- The Multiple Sclerosis Center of University Hospital of Verona, Department of Neurosciences and Biomedicine and Movement, Verona, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Cristina Granziera
- Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Ahmed T. Toosy
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Àngela Vidal-Jordana
- Servicio de Neurología, Centro de Esclerosis Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Pekmez H, Altiparmak A, Inceoğlu F, Akçiçek M, Bolayir A, Özbay Z, Aydin M, Arpaci MF. Evaluation of volume measurements of neuroanatomical structures related to speech in multiple sclerosis patients. Turk J Med Sci 2024; 54:700-709. [PMID: 39295620 PMCID: PMC11407364 DOI: 10.55730/1300-0144.5839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/23/2024] [Accepted: 07/16/2024] [Indexed: 09/21/2024] Open
Abstract
Background/aim Individuals with multiple sclerosis (MS) may experience various speech-related issues, including decreased speech rate, increased pauses, and changes in speech rhythms. The purpose of this study was to compare the volumes of speech-related neuroanatomical structures in MS patients with those in a control group. Materials and methods The research was conducted in the Neurology and Radiology Departments of Malatya Training and Research Hospital. The records of patients who presented to the Neurology Department between 2019 and 2022 were examined. The study included the magnetic resonance imaging (MRI) findings of 100 individuals, with 50 in the control group and 50 patients with MS, who had applied to the hospital in the specified years. VolBrain is a free system that works automatically over the internet (http://volbrain.upv.es/), enabling the measurement of brain volumes without human interaction. The acquired images were analyzed using the VolBrain program. Results As a result of our research, a significant decrease was found in the volume of 18 of 26 speech-related regions in MS patients. It was determined that whole brain volumes decreased in the MS group compared to the control group. Conclusion In our study, volume measurements of more speech-related areas were performed, unlike the few related studies previously conducted. We observed significant atrophy findings in the speech-related areas of the frontal, temporal, and parietal lobes of MS patients.
Collapse
Affiliation(s)
- Hıdır Pekmez
- Division of Anatomy, Department of Basic Medical Sciences, Faculty of Medicine, Malatya Turgut Özal University, Malatya, Turkiye
| | - Anıl Altiparmak
- Division of Anatomy, Department of Basic Medical Sciences, Institute of Graduate Science, Malatya Turgut Özal University, Malatya, Turkiye
| | - Feyza Inceoğlu
- Division of Biostatistics, Department of Basic Medical Sciences, Faculty of Medicine, Malatya Turgut Özal University, Malatya, Turkiye
| | - Mehmet Akçiçek
- Division of Radiology, Department of Internal Medicine, Faculty of Medicine, Malatya Turgut Özal University, Malatya, Turkiye
| | - Aslı Bolayir
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Malatya Turgut Özal University, Malatya, Turkiye
| | - Zeynep Özbay
- Division of Anatomy, Department of Basic Medical Sciences, Institute of Graduate Science, Malatya Turgut Özal University, Malatya, Turkiye
| | - Merve Aydin
- Division of Anatomy, Department of Basic Medical Sciences, Faculty of Medicine, Malatya Turgut Özal University, Malatya, Turkiye
| | - Muhammed Furkan Arpaci
- Division of Anatomy, Department of Basic Medical Sciences, Faculty of Medicine, Malatya Turgut Özal University, Malatya, Turkiye
| |
Collapse
|
3
|
Talbott JF, Shah V, Ye AQ. Diffusion Imaging of the Spinal Cord: Clinical Applications. Radiol Clin North Am 2024; 62:273-285. [PMID: 38272620 DOI: 10.1016/j.rcl.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Spinal cord pathologic condition often presents as a neurologic emergency where timely and accurate diagnosis is critical to expedite appropriate treatment and minimize severe morbidity and even mortality. MR imaging is the gold standard imaging technique for diagnosing patients with suspected spinal cord pathologic condition. This review will focus on the basic principles of diffusion imaging and how spinal anatomy presents technical challenges to its application. Both the promises and shortcomings of spinal diffusion imaging will then be explored in the context of several clinical spinal cord pathologies for which diffusion has been evaluated.
Collapse
Affiliation(s)
- Jason F Talbott
- Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital and Trauma Center, 1001 Potrero Avenue, Room 1X57, San Francisco, CA 94110, USA; Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital.
| | - Vinil Shah
- Department of Radiology and Biomedical Imaging, Neuroradiology Division, University of California San Francisco, 505 Parnassus Avenue, #M-391, San Francisco, CA 94143, USA
| | - Allen Q Ye
- Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital and Trauma Center, 1001 Potrero Avenue, Room 1X57, San Francisco, CA 94110, USA; Department of Radiology and Biomedical Imaging, Neuroradiology Division, University of California San Francisco, 505 Parnassus Avenue, #M-391, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Dadvar A, Jameie M, Azizmohammad Looha M, Parsaei M, Zeynali Bujani M, Amanollahi M, Babaei M, Khosravi A, Amirifard H. Potential efficacy of caffeine ingestion on balance and mobility in patients with multiple sclerosis: Preliminary evidence from a single-arm pilot clinical trial. PLoS One 2024; 19:e0297235. [PMID: 38349929 PMCID: PMC10863863 DOI: 10.1371/journal.pone.0297235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/26/2023] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVES Caffeine's potential benefits on multiple sclerosis (MS), as well as on the ambulatory performance of non-MS populations, prompted us to evaluate its potential effects on balance, mobility, and health-related quality of life (HR-QoL) of persons with MS (PwMS). METHODS This single-arm pilot clinical trial consisted of a 2-week placebo run-in and a 12-week caffeine treatment (200 mg/day) stage. The changes in outcome measures during the study period (weeks 0, 2, 4, 8, and 12) were evaluated using the Generalized Estimation Equation (GEE). The outcome measures were the 12-item Multiple Sclerosis Walking Scale (MSWS-12) for self-reported ambulatory disability, Berg Balance Scale (BBS) for static and dynamic balance, Timed Up and Go (TUG) for dynamic balance and functional mobility, Multiple Sclerosis Impact Scale (MSIS-29) for patient's perspective on MS-related QoL (MS-QoL), and Patients' Global Impression of Change (PGIC) for subjective assessment of treatment efficacy. GEE was also used to evaluate age and sex effect on the outcome measures over time. (Iranian Registry of Clinical Trials, IRCT2017012332142N1). RESULTS Thirty PwMS were included (age: 38.89 ± 9.85, female: 76.7%). Daily caffeine consumption significantly improved the objective measures of balance and functional mobility (BBS; P-value<0.001, and TUG; P-value = 0.002) at each study time point, and the subjective measure of MS-related QoL (MSIS-29; P-value = 0.005) two weeks after the intervention. Subjective measures of ambulatory disability (MSWS-12) and treatment efficacy (PGIC) did not significantly change. The effect of age and sex on the outcome measures were also assessed; significant sex-time interaction effects were found for MSWS-12 (P-value = 0.001) and PGIC (P-value<0.001). The impact of age on BBS scores increased as time progressed (P-value = 0.006). CONCLUSIONS Caffeine may enhance balance, functional mobility, and QoL in PwMS. Being male was associated with a sharper increase in self-reported ambulatory disability over time. The effects of aging on balance get more pronounced over time. TRIAL REGISTRATION This study was registered with the Iranian Registry of Clinical Trials (Registration number: IRCT2017012332142N1), a Primary Registry in the WHO Registry Network.
Collapse
Affiliation(s)
- Afsoon Dadvar
- Student Research Committee, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Melika Jameie
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Azizmohammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Mobina Amanollahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Babaei
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Khosravi
- Clinical Immunology Research Centre, Department of Neurology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamed Amirifard
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Javier-Ormazábal A, González-Platas M, Jiménez-Sosa A, Herrero P, Lapuente-Hernández D. The Effectiveness of a Single Dry Needling Session on Gait and Quality of Life in Multiple Sclerosis: A Double-Blind Randomized Sham-Controlled Pilot Trial. Healthcare (Basel) 2023; 12:10. [PMID: 38200916 PMCID: PMC10778988 DOI: 10.3390/healthcare12010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Gait disorders are a major cause of disability and reduced health-related quality of life in people with multiple sclerosis (pwMS). Dry needling (DN) has demonstrated positive results to improve gait parameters in patients with stroke. The main aim of this study was to evaluate the effect of a single session of DN in the gait performance of pwMS. METHODS A double-blind parallel randomized sham-controlled pilot trial was conducted. Study participants received a single session of active DN or sham DN in the gastrocnemius medialis muscle. Pre-treatment and immediately post-treatment measurements were taken, as well as at one and four weeks after the intervention. Outcomes related to gait performance (Timed 25-Foot Walk), self-perceived walking capacity (Multiple Sclerosis Walking Scale), risk of falls (Timed Up and Go test), disability level (Expanded Disability Status Score) and quality of life (Multiple Sclerosis Quality of Life-54 questionnaire and Analogic Quality of Life scale) were evaluated. RESULTS 18 patients who had multiple sclerosis participated in the study. The group who received active DN showed within-group significant statistical differences immediately after treatment for gait performance (p = 0.008) and risk of falls (p = 0.008), as well as for self-perceived walking capacity at one week (p = 0.017) and four weeks (p = 0.011) and quality of life at four weeks (p = 0.014). Regarding the comparison between groups, only significant results were obtained in the physical domain of the quality of life at four weeks (p = 0.014). CONCLUSIONS DN seems to be a promising therapeutic tool for the treatment of gait disorders in pwMS. However, when results were compared with sham DN, no differences were found.
Collapse
Affiliation(s)
- Alberto Javier-Ormazábal
- Division of Physiotherapy, Hospital Universitario de Canarias, Carretera Ofra S/N, 38320 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
- Research Institute of Biomedical and Health Sciences, Universidad de Las Palmas de Gran Canaria, C. Juan de Quesada 30, 35001 Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Montserrat González-Platas
- Research Institute of Biomedical and Health Sciences, Universidad de Las Palmas de Gran Canaria, C. Juan de Quesada 30, 35001 Las Palmas de Gran Canaria, Las Palmas, Spain
- Division of Neurology, Hospital Universitario de Canarias, Carretera Ofra S/N, 38320 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Alejandro Jiménez-Sosa
- Research Unit, Hospital Universitario de Canarias, Carretera Ofra S/N, 38320 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Pablo Herrero
- Department of Physiatry and Nursing, Faculty of Health Sciences, University of Zaragoza, C/Domingo Miral s/n, 50009 Zaragoza, Zaragoza, Spain
- iHealthy Research Group, IIS Aragon, Avda San Juan Bosco 13, 50009 Zaragoza, Zaragoza, Spain
| | - Diego Lapuente-Hernández
- Department of Physiatry and Nursing, Faculty of Health Sciences, University of Zaragoza, C/Domingo Miral s/n, 50009 Zaragoza, Zaragoza, Spain
- iHealthy Research Group, IIS Aragon, Avda San Juan Bosco 13, 50009 Zaragoza, Zaragoza, Spain
| |
Collapse
|
6
|
Althobity AA, Khan N, Sandrock CJ, Woodruff TM, Cowin GJ, Brereton IM, Kurniawan ND. Multiparametric magnetic resonance imaging for detection of pathological changes in the central nervous system of a mouse model of multiple sclerosis in vivo. NMR IN BIOMEDICINE 2023; 36:e4964. [PMID: 37122101 PMCID: PMC10909458 DOI: 10.1002/nbm.4964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/28/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease involving demyelination and axonal damage in the central nervous system (CNS). In this study, we investigated pathological changes in the lumbar spinal cord of C57BL/6 mice induced with progressive experimental autoimmune encephalomyelitis (EAE) disease using 9.4-T magnetic resonance imaging (MRI). Multiparametric MRI measurements including MR spectroscopy, diffusion tensor imaging (DTI) and volumetric analyses were applied to detect metabolic changes in the CNS of EAE mice. Compared with healthy mice, EAE mice showed a significant reduction in N-acetyl aspartate and increases in choline, glycine, taurine and lactate. DTI revealed a significant reduction in fractional anisotropy and axial diffusivity and an increase in radial diffusivity in the lumbar spinal cord white matter (WM), while in the grey matter (GM), fractional anisotropy increased. High-resolution structural imaging also revealed lumbar spinal cord WM hypertrophy and GM atrophy. Importantly, these MRI changes were strongly correlated with EAE disease scoring and pathological changes in the lumbar (L2-L6), particularly WM demyelination lesions and aggregation of immune cells (microglia/macrophages and astrocytes) in this region. This study identified changes in MRI biomarker signatures that can be useful for evaluating the efficacy of novel drugs using EAE models in vivo.
Collapse
Affiliation(s)
- Abdullah A. Althobity
- Centre for Advanced ImagingThe University of QueenslandBrisbaneAustralia
- Al Azhar HospitalRiyadhSaudi Arabia
- Society of Artificial Intelligence in HealthcareRiyadhSaudi Arabia
- Department of Radiological Sciences and Medical Imaging, College of Applied Medical SciencesMajmaah UniversityMajmaahSaudi Arabia
| | - Nemat Khan
- Faculty of Medicine, School of Biomedical SciencesThe University of QueenslandBrisbaneAustralia
| | - Cheyenne J. Sandrock
- Faculty of Medicine, School of Biomedical SciencesThe University of QueenslandBrisbaneAustralia
| | - Trent M. Woodruff
- Faculty of Medicine, School of Biomedical SciencesThe University of QueenslandBrisbaneAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| | - Gary J. Cowin
- Centre for Advanced ImagingThe University of QueenslandBrisbaneAustralia
- NCRIS Australian National Imaging FacilityThe University of QueenslandBrisbaneAustralia
| | - Ian M. Brereton
- Centre for Advanced ImagingThe University of QueenslandBrisbaneAustralia
- NCRIS Australian National Imaging FacilityThe University of QueenslandBrisbaneAustralia
| | | |
Collapse
|
7
|
Bédard S, Bouthillier M, Cohen-Adad J. Pontomedullary junction as a reference for spinal cord cross-sectional area: validation across neck positions. Sci Rep 2023; 13:13527. [PMID: 37598229 PMCID: PMC10439961 DOI: 10.1038/s41598-023-40731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
Spinal cord cross-sectional area (CSA) is an important MRI biomarker to assess spinal cord atrophy in various neurodegenerative and traumatic spinal cord diseases. However, the conventional method of computing CSA based on vertebral levels is inherently flawed, as the prediction of spinal levels from vertebral levels lacks reliability, leading to considerable variability in CSA measurements. Computing CSA from an intrinsic neuroanatomical reference, the pontomedullary junction (PMJ), has been proposed in previous work to overcome limitations associated with using a vertebral reference. However, the validation of this alternative approach, along with its variability across and within participants under variable neck extensions, remains unexplored. The goal of this study was to determine if the variability of CSA across neck flexions/extensions is reduced when using the PMJ, compared to vertebral levels. Ten participants underwent a 3T MRI T2w isotropic scan at 0.6 mm3 for 3 neck positions: extension, neutral and flexion. Spinal cord segmentation, vertebral labeling, PMJ labeling, and CSA were computed automatically while spinal segments were labeled manually. Mean coefficient of variation for CSA across neck positions was 3.99 ± 2.96% for the PMJ method vs. 4.02 ± 3.01% for manual spinal segment method vs. 4.46 ± 3.10% for the disc method. These differences were not statistically significant. The PMJ method was slightly more reliable than the disc-based method to compute CSA at specific spinal segments, although the difference was not statistically significant. This suggests that the PMJ can serve as a valuable alternative and reliable method for estimating CSA when a disc-based approach is challenging or not feasible, such as in cases involving fused discs in individuals with spinal cord injuries.
Collapse
Affiliation(s)
- Sandrine Bédard
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.
| | - Maxime Bouthillier
- Centre Hospitalier de l'Université de Montréal, University of Montreal, Montreal, QC, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Centre de Recherche du CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
8
|
Khan AF, Haynes G, Mohammadi E, Muhammad F, Hameed S, Smith ZA. Utility of MRI in Quantifying Tissue Injury in Cervical Spondylotic Myelopathy. J Clin Med 2023; 12:jcm12093337. [PMID: 37176777 PMCID: PMC10179707 DOI: 10.3390/jcm12093337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Cervical spondylotic myelopathy (CSM) is a progressive disease that worsens over time if untreated. However, the rate of progression can vary among individuals and may be influenced by various factors, such as the age of the patients, underlying conditions, and the severity and location of the spinal cord compression. Early diagnosis and prompt treatment can help slow the progression of CSM and improve symptoms. There has been an increased use of magnetic resonance imaging (MRI) methods in diagnosing and managing CSM. MRI methods provide detailed images and quantitative structural and functional data of the cervical spinal cord and brain, allowing for an accurate evaluation of the extent and location of tissue injury. This review aims to provide an understanding of the use of MRI methods in interrogating functional and structural changes in the central nervous system in CSM. Further, we identified several challenges hindering the clinical utility of these neuroimaging methods.
Collapse
Affiliation(s)
- Ali Fahim Khan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Grace Haynes
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Esmaeil Mohammadi
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Fauziyya Muhammad
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sanaa Hameed
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zachary A Smith
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
9
|
Onoue H, Kato Y, Ishido H, Ogawa T, Akaiwa Y, Miyamoto T. [A case of primary progressive multiple sclerosis with improvement in cognitive impairment by anti-CD20 monoclonal antibody therapy]. Rinsho Shinkeigaku 2023; 63:152-158. [PMID: 36843088 DOI: 10.5692/clinicalneurol.cn-001779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
The patient was a 44-year-old man who developed cognitive impairment beginning at the age of 35 years that gradually worsened. The cognitive impairment led to a difficult social life, and he retired from his company. After hospitalization and workup, he was diagnosed with primary progressive multiple sclerosis (PPMS) that presented only with cognitive impairment for 10 years. Since he had multiple predictive factors for poor prognosis, anti-CD20 monoclonal antibody therapy was implemented. Cognitive impairment and cerebral blood flow SPECT findings improved, and he returned to a social life 3 months later. Anti-CD20 monoclonal antibody therapy was effective in improving cognitive impairment in a case of an advanced stage of PPMS.
Collapse
Affiliation(s)
- Hiroyuki Onoue
- Department of Neurology, Dokkyo Medical University Saitama Medical Center
| | - Yuta Kato
- Department of Neurology, Dokkyo Medical University Saitama Medical Center.,Department of Neurology, Showa University
| | - Hideaki Ishido
- Department of Neurology, Dokkyo Medical University Saitama Medical Center
| | - Tomohiro Ogawa
- Department of Neurology, Dokkyo Medical University Saitama Medical Center
| | - Yasuhisa Akaiwa
- Department of Neurology, Dokkyo Medical University Saitama Medical Center
| | - Tomoyuki Miyamoto
- Department of Neurology, Dokkyo Medical University Saitama Medical Center
| |
Collapse
|
10
|
Yaşa ME, Özkan T, Ünlüer NÖ, Çelenay ŞT, Anlar Ö. Core stability-based balance training and kinesio taping for balance, trunk control, fear of falling and walking capacity in patients with multiple sclerosis: A randomized single-blinded study. Mult Scler Relat Disord 2022; 68:104178. [PMID: 36113275 DOI: 10.1016/j.msard.2022.104178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Trunk performance-based therapies are important in the Multiple Sclerosis (MS) rehabilitation process since they have been associated with balance, trunk performance, fall prevention, and walking capacity. Kinesio taping (KT) is a popular approach that has recently been used to treat a variety of musculoskeletal and neuromuscular impairments. Therefore, the aim of this single-blind, randomized controlled study was to investigate the effects of KT combined trunk stabilization-based balance training on balance, trunk control, walking capacity, and fear of falling in patients with MS. MATERIAL AND METHODS Thirty patients diagnosed with MS were randomly assigned to the KT group or the control group. The control group received core stability-based balance training and the KT group was treated with KT applied on global trunk muscles in addition to core stability-based balance training. Balance was measured with the Mini BESTest, trunk control with the Trunk Impairment Scale, fear of falling with the Falls Efficacy Scale and walking capacity with the 2-minute walk test. RESULTS Balance, trunk control, fear of falling, and walking capacity of all the patients improved after treatment (p < 0.05). No superiority was found between the groups in terms of treatment efficacy (p > 0.05). CONCLUSION In conclusion, core stability-based balance training was effective in patients with MS, and the addition of KT had no additional effect in terms of balance, trunk control, fear of falling, and walking capacity.
Collapse
Affiliation(s)
- Mustafa Ertuğrul Yaşa
- Gülhane Faculty of Physiotherapy and Rehabilitation, University of Health Sciences, Gulhane Complex, Emrah Mahallesi, Etlik/Keçiören, Ankara 06018, Türkiye.
| | - Taşkın Özkan
- Vocational School of Health Services, Giresun University, Giresun, Türkiye
| | - Nezehat Özgül Ünlüer
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Ankara Yıldırım Beyazıt University, Ankara, Türkiye
| | - Şeyda Toprak Çelenay
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Ankara Yıldırım Beyazıt University, Ankara, Türkiye
| | - Ömer Anlar
- Energy Physical Therapy Center, Ankara, Türkiye
| |
Collapse
|
11
|
Hori M, Maekawa T, Kamiya K, Hagiwara A, Goto M, Takemura MY, Fujita S, Andica C, Kamagata K, Cohen-Adad J, Aoki S. Advanced Diffusion MR Imaging for Multiple Sclerosis in the Brain and Spinal Cord. Magn Reson Med Sci 2022; 21:58-70. [PMID: 35173096 PMCID: PMC9199983 DOI: 10.2463/mrms.rev.2021-0091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diffusion tensor imaging (DTI) has been established its usefulness in evaluating normal-appearing white matter (NAWM) and other lesions that are difficult to evaluate with routine clinical MRI in the evaluation of the brain and spinal cord lesions in multiple sclerosis (MS), a demyelinating disease. With the recent advances in the software and hardware of MRI systems, increasingly complex and sophisticated MRI and analysis methods, such as q-space imaging, diffusional kurtosis imaging, neurite orientation dispersion and density imaging, white matter tract integrity, and multiple diffusion encoding, referred to as advanced diffusion MRI, have been proposed. These are capable of capturing in vivo microstructural changes in the brain and spinal cord in normal and pathological states in greater detail than DTI. This paper reviews the current status of recent advanced diffusion MRI for assessing MS in vivo as part of an issue celebrating two decades of magnetic resonance in medical sciences (MRMS), an official journal of the Japanese Society of Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Masaaki Hori
- Department of Radiology, Toho University Omori Medical Center.,Department of Radiology, Juntendo University School of Medicine
| | - Tomoko Maekawa
- Department of Radiology, Juntendo University School of Medicine
| | - Kouhei Kamiya
- Department of Radiology, Toho University Omori Medical Center.,Department of Radiology, Juntendo University School of Medicine
| | | | - Masami Goto
- Department of Radiological Technology, Faculty of Health Science, Juntendo University
| | | | - Shohei Fujita
- Department of Radiology, Juntendo University School of Medicine
| | | | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine
| | | | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine
| |
Collapse
|
12
|
Granziera C, Wuerfel J, Barkhof F, Calabrese M, De Stefano N, Enzinger C, Evangelou N, Filippi M, Geurts JJG, Reich DS, Rocca MA, Ropele S, Rovira À, Sati P, Toosy AT, Vrenken H, Gandini Wheeler-Kingshott CAM, Kappos L. Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain 2021; 144:1296-1311. [PMID: 33970206 PMCID: PMC8219362 DOI: 10.1093/brain/awab029] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/25/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Quantitative MRI provides biophysical measures of the microstructural integrity of the CNS, which can be compared across CNS regions, patients, and centres. In patients with multiple sclerosis, quantitative MRI techniques such as relaxometry, myelin imaging, magnetization transfer, diffusion MRI, quantitative susceptibility mapping, and perfusion MRI, complement conventional MRI techniques by providing insight into disease mechanisms. These include: (i) presence and extent of diffuse damage in CNS tissue outside lesions (normal-appearing tissue); (ii) heterogeneity of damage and repair in focal lesions; and (iii) specific damage to CNS tissue components. This review summarizes recent technical advances in quantitative MRI, existing pathological validation of quantitative MRI techniques, and emerging applications of quantitative MRI to patients with multiple sclerosis in both research and clinical settings. The current level of clinical maturity of each quantitative MRI technique, especially regarding its integration into clinical routine, is discussed. We aim to provide a better understanding of how quantitative MRI may help clinical practice by improving stratification of patients with multiple sclerosis, and assessment of disease progression, and evaluation of treatment response.
Collapse
Affiliation(s)
- Cristina Granziera
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jens Wuerfel
- Medical Image Analysis Center, Basel, Switzerland
- Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, multiple sclerosis Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
- UCL Institutes of Healthcare Engineering and Neurology, London, UK
| | - Massimiliano Calabrese
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicola De Stefano
- Neurology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Christian Enzinger
- Department of Neurology and Division of Neuroradiology, Medical University of Graz, Graz, Austria
| | - Nikos Evangelou
- Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, multiple sclerosis Center Amsterdam, Neuroscience Amsterdam, Amsterdam University Medical Centers, location VUmc, Amsterdam, The Netherlands
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefan Ropele
- Neuroimaging Research Unit, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Àlex Rovira
- Section of Neuroradiology (Department of Radiology), Vall d'Hebron University Hospital and Research Institute, Barcelona, Spain
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ahmed T Toosy
- Queen Square multiple sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London, UK
| | - Hugo Vrenken
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, multiple sclerosis Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Claudia A M Gandini Wheeler-Kingshott
- Queen Square multiple sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
13
|
Imaging of the Spinal Cord in Multiple Sclerosis: Past, Present, Future. Brain Sci 2020; 10:brainsci10110857. [PMID: 33202821 PMCID: PMC7696997 DOI: 10.3390/brainsci10110857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 11/17/2022] Open
Abstract
Spinal cord imaging in multiple sclerosis (MS) plays a significant role in diagnosing and tracking disease progression. The spinal cord is one of four key areas of the central nervous system where documenting the dissemination in space in the McDonald criteria for diagnosing MS. Spinal cord lesion load and the severity of cord atrophy are believed to be more relevant to disability than white matter lesions in the brain in different phenotypes of MS. Axonal loss contributes to spinal cord atrophy in MS and its degree correlates with disease severity and prognosis. Therefore, measures of axonal loss are often reliable biomarkers for monitoring disease progression. With recent technical advances, more and more qualitative and quantitative MRI techniques have been investigated in an attempt to provide objective and reliable diagnostic and monitoring biomarkers in MS. In this article, we discuss the role of spinal cord imaging in the diagnosis and prognosis of MS and, additionally, we review various techniques that may improve our understanding of the disease.
Collapse
|
14
|
Solanky BS, Prados F, Tur C, Yiannakas MC, Kanber B, Cawley N, Brownlee W, Ourselin S, Golay X, Ciccarelli O, Gandini Wheeler-Kingshott CAM. Sodium in the Relapsing-Remitting Multiple Sclerosis Spinal Cord: Increased Concentrations and Associations With Microstructural Tissue Anisotropy. J Magn Reson Imaging 2020; 52:1429-1438. [PMID: 32476227 DOI: 10.1002/jmri.27201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Associations between brain total sodium concentration, disability, and disease progression have recently been reported in multiple sclerosis. However, such measures in spinal cord have not been reported. PURPOSE To measure total sodium concentration (TSC) alterations in the cervical spinal cord of people with relapsing-remitting multiple sclerosis (RRMS) and a control cohort using sodium MR spectroscopy (MRS). STUDY TYPE Retrospective cohort. SUBJECTS Nineteen people with RRMS and 21 healthy controls. FIELD STRENGTH/SEQUENCE 3 T sodium MRS, diffusion tensor imaging, and 3D gradient echo. ASSESSMENT Quantification of total sodium concentration in the cervical cord using a reference phantom. Measures of spinal cord cross-sectional area, fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity from 1 H MRI. Clinical assessments of 9-Hole Peg Test, 25-Foot Timed walk test, Paced Auditory Serial Addition Test with 3-second intervals, grip strength, vibration sensitivity, and posturography were performed on the RRMS cohort as well as reporting lesions in the C2/3 area. STATISTICAL TESTS Multiple linear regression models were run between sodium and clinical scores, cross-sectional area, and diffusion metrics to establish any correlations. RESULTS A significant increase in spinal cord total sodium concentration was found in people with RRMS relative to healthy controls (57.6 ± 18 mmol and 38.0 ± 8.6 mmol, respectively, P < 0.001). Increased TSC correlated with reduced fractional anisotropy (P = 0.034) and clinically with decreased mediolateral stability assessed with posturography (P = 0.045). DATA CONCLUSION Total sodium concentration in the cervical spinal cord is elevated in RRMS. This alteration is associated with reduced fractional anisotropy, which may be due to changes in tissue microstructure and, hence, in the integrity of spinal cord tissue. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Bhavana S Solanky
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Ferran Prados
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Carmen Tur
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Marios C Yiannakas
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Baris Kanber
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Niamh Cawley
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Wallace Brownlee
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Xavier Golay
- Brain Repair and Rehabilitation, Queen Square Institute of Neurology, University College London, London, UK
| | - Olga Ciccarelli
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.,Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
15
|
Solstrand Dahlberg L, Viessmann O, Linnman C. Heritability of cervical spinal cord structure. Neurol Genet 2020; 6:e401. [PMID: 32185240 PMCID: PMC7061306 DOI: 10.1212/nxg.0000000000000401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 01/13/2020] [Indexed: 12/04/2022]
Abstract
OBJECTIVE Measures of spinal cord structure can be a useful phenotype to track disease severity and development; this observational study measures the hereditability of cervical spinal cord anatomy and its correlates in healthy human beings. METHODS Twin data from the Human Connectome Project were analyzed with semiautomated spinal cord segmentation, evaluating test-retest reliability and broad-sense heritability with an AE model. Relationships between spinal cord metrics, general physical measures, regional brain structural measures, and motor function were assessed. RESULTS We found that the spinal cord C2 cross-sectional area (CSA), left-right width (LRW), and anterior-posterior width (APW) are highly heritable (85%-91%). All measures were highly correlated with the brain volume, and CSA only was positively correlated with thalamic volumes (p = 0.005) but negatively correlated with the occipital cortex area (p = 0.001). LRW was correlated with the participant's height (p = 0.00027). The subjects' sex significantly influenced these metrics. Analyses of a test-retest data set confirmed validity of the approach. CONCLUSIONS This study provides the evidence of genetic influence on spinal cord structure. MRI metrics of cervical spinal cord anatomy are robust and not easily influenced by nonpathological environmental factors, providing a useful metric for monitoring normal development and progression of neurodegenerative disorders affecting the spinal cord, including-but not limited to-spinal cord injury and MS.
Collapse
Affiliation(s)
- Linda Solstrand Dahlberg
- Department of Anesthesiology, Perioperative and Pain Medicine (L.S.D., C.L.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Psychiatry and Radiology (L.S.D., C.L.), Massachusetts General Hospital, Harvard Medical School; Department of Neurology and Neurosurgery (L.S.D.), Montreal Neurological Institute, McGill University, Canada; Athinoula A. Martinos Center for Biomedical Imaging (O.V.), Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Boston; and Spaulding Neuroimaging Lab (C.L.), Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA
| | - Olivia Viessmann
- Department of Anesthesiology, Perioperative and Pain Medicine (L.S.D., C.L.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Psychiatry and Radiology (L.S.D., C.L.), Massachusetts General Hospital, Harvard Medical School; Department of Neurology and Neurosurgery (L.S.D.), Montreal Neurological Institute, McGill University, Canada; Athinoula A. Martinos Center for Biomedical Imaging (O.V.), Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Boston; and Spaulding Neuroimaging Lab (C.L.), Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA
| | - Clas Linnman
- Department of Anesthesiology, Perioperative and Pain Medicine (L.S.D., C.L.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Psychiatry and Radiology (L.S.D., C.L.), Massachusetts General Hospital, Harvard Medical School; Department of Neurology and Neurosurgery (L.S.D.), Montreal Neurological Institute, McGill University, Canada; Athinoula A. Martinos Center for Biomedical Imaging (O.V.), Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Boston; and Spaulding Neuroimaging Lab (C.L.), Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Rocca MA, Preziosa P, Filippi M. What role should spinal cord MRI take in the future of multiple sclerosis surveillance? Expert Rev Neurother 2020; 20:783-797. [PMID: 32133874 DOI: 10.1080/14737175.2020.1739524] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In multiple sclerosis (MS), inflammatory, demyelinating, and neurodegenerative phenomena affect the spinal cord, with detrimental effects on patients' clinical disability. Although spinal cord imaging may be challenging, improvements in MRI technologies have contributed to better evaluate spinal cord involvement in MS. AREAS COVERED This review summarizes the current state-of-art of the application of conventional and advanced MRI techniques to evaluate spinal cord damage in MS. Typical features of spinal cord lesions, their role in the diagnostic work-up of suspected MS, their predictive role for subsequent disease course and clinical worsening, and their utility to define treatment response are discussed. The role of spinal cord atrophy and of other advanced MRI techniques to better evaluate the associations between spinal cord abnormalities and the accumulation of clinical disability are also evaluated. Finally, how spinal cord assessment could evolve in the future to improve monitoring of disease progression and treatment effects is examined. EXPERT OPINION Spinal cord MRI provides relevant additional information to brain MRI in understanding MS pathophysiology, in allowing an earlier and more accurate diagnosis of MS, and in identifying MS patients at higher risk to develop more severe disability. A future role in monitoring the effects of treatments is also foreseen.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute , Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute , Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute , Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute , Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute , Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute , Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute , Milan, Italy.,Vita-Salute San Raffaele University , Milan, Italy
| |
Collapse
|
17
|
Vaughn CB, Jakimovski D, Kavak KS, Ramanathan M, Benedict RHB, Zivadinov R, Weinstock-Guttman B. Epidemiology and treatment of multiple sclerosis in elderly populations. Nat Rev Neurol 2020; 15:329-342. [PMID: 31000816 DOI: 10.1038/s41582-019-0183-3] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The prevalence of multiple sclerosis (MS) and the age of affected patients are increasing owing to increased longevity of the general population and the availability of effective disease-modifying therapies. However, ageing presents unique challenges in patients with MS largely as a result of their increased frequency of age-related and MS-related comorbidities as well as transition of the disease course from an inflammatory to a neurodegenerative phenotype. Immunosenescence (the weakening of the immune system associated with natural ageing) might be at least partly responsible for this transition, which further complicates disease management. Currently approved therapies for MS are effective in preventing relapse but are not as effective in preventing the accumulation of disability associated with ageing and disease progression. Thus, ageing patients with MS represent a uniquely challenging population that is currently underserved by existing therapeutic regimens. This Review focuses on the epidemiology of MS in ageing patients. Unique considerations relevant to this population are discussed, including the immunology and pathobiology of the complex relationship between ageing and MS, the safety and efficacy of disease-modifying therapies, when discontinuation of treatment might be appropriate and the important role of approaches to support wellness and cognition.
Collapse
Affiliation(s)
- Caila B Vaughn
- Jacobs Multiple Sclerosis Center for Treatment and Research, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Katelyn S Kavak
- Jacobs Multiple Sclerosis Center for Treatment and Research, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Ralph H B Benedict
- Jacobs Multiple Sclerosis Center for Treatment and Research, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA.,Center for Biomedical Imaging at the Clinical Translational Science Institute, State University of New York (SUNY), Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Multiple Sclerosis Center for Treatment and Research, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA.
| |
Collapse
|
18
|
Cortese R, Tur C, Prados F, Schneider T, Kanber B, Moccia M, Wheeler-Kingshott CAG, Thompson AJ, Barkhof F, Ciccarelli O. Ongoing microstructural changes in the cervical cord underpin disability progression in early primary progressive multiple sclerosis. Mult Scler 2020; 27:28-38. [PMID: 31961242 DOI: 10.1177/1352458519900971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pathology in the spinal cord of patients with primary progressive multiple sclerosis (PPMS) contributes to disability progression. We previously reported abnormal Q-space imaging (QSI)-derived indices in the spinal cord at baseline in patients with early PPMS, suggesting early neurodegeneration. OBJECTIVE The aim was to investigate whether changes in spinal cord QSI over 3 years in the same cohort are associated with disability progression and if baseline QSI metrics predict clinical outcome. METHODS Twenty-three PPMS patients and 23 healthy controls recruited at baseline were invited for follow-up cervical cord 3T magnetic resonance imaging (MRI) and clinical assessment after 1 year and 3 years. Cord cross-sectional area (CSA) and QSI measures were obtained, together with standard brain MRI measures. Mixed-effect models assessed MRI changes over time and their association with clinical changes. Linear regression identified baseline MRI indices associated with disability at 3 years. RESULTS Over time, patients deteriorated clinically and showed an increase in cord QSI indices of perpendicular diffusivity that was associated with disability worsening, independently of the decrease in CSA. Higher perpendicular diffusivity and lower CSA at baseline predicted worse disability at 3 years. CONCLUSION Increasing spinal cord perpendicular diffusivity may indicate ongoing neurodegeneration, which underpins disability progression in PPMS, independently of the development of spinal cord atrophy.
Collapse
Affiliation(s)
- Rosa Cortese
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Carmen Tur
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ferran Prados
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK/Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College of London, London, UK/Universitat Oberta de Catalunya, Barcelona, Spain
| | | | - Baris Kanber
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK/Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College of London, London, UK/Biomedical Research Centre, University College London Hospitals (UCLH), National Institute for Health Research (NIHR), London, UK
| | - Marcello Moccia
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK/MS Clinical Care and Research Centre, Department of Neuroscience, Federico II University, Naples, Italy
| | - Claudia Am Gandini Wheeler-Kingshott
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK/Brain MRI 3T Research Center, C. Mondino National Neurological Institute, Pavia, Italy/Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Alan J Thompson
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Frederik Barkhof
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK/Department of Radiology and Nuclear Medicine, MS Centre Amsterdam, VU Medical Centre, Amsterdam, The Netherlands/Biomedical Research Centre, University College London Hospitals (UCLH), National Institute for Health Research (NIHR), London, UK
| | - Olga Ciccarelli
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK/Biomedical Research Centre, University College London Hospitals (UCLH), National Institute for Health Research (NIHR), London, UK
| |
Collapse
|
19
|
Van Schependom J, Guldolf K, D'hooghe MB, Nagels G, D'haeseleer M. Detecting neurodegenerative pathology in multiple sclerosis before irreversible brain tissue loss sets in. Transl Neurodegener 2019; 8:37. [PMID: 31827784 PMCID: PMC6900860 DOI: 10.1186/s40035-019-0178-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background Multiple sclerosis (MS) is a complex chronic inflammatory and degenerative disorder of the central nervous system. Accelerated brain volume loss, or also termed atrophy, is currently emerging as a popular imaging marker of neurodegeneration in affected patients, but, unfortunately, can only be reliably interpreted at the time when irreversible tissue damage likely has already occurred. Timing of treatment decisions based on brain atrophy may therefore be viewed as suboptimal. Main body This Narrative Review focuses on alternative techniques with the potential of detecting neurodegenerative events in the brain of subjects with MS prior to the atrophic stage. First, metabolic and molecular imaging provide the opportunity to identify early subcellular changes associated with energy dysfunction, which is an assumed core mechanism of axonal degeneration in MS. Second, cerebral hypoperfusion has been observed throughout the entire clinical spectrum of the disorder but it remains an open question whether this serves as an alternative marker of reduced metabolic activity, or exists as an independent contributing process, mediated by endothelin-1 hyperexpression. Third, both metabolic and perfusion alterations may lead to repercussions at the level of network performance and structural connectivity, respectively assessable by functional and diffusion tensor imaging. Fourth and finally, elevated body fluid levels of neurofilaments are gaining interest as a biochemical mirror of axonal damage in a wide range of neurological conditions, with early rises in patients with MS appearing to be predictive of future brain atrophy. Conclusions Recent findings from the fields of advanced neuroradiology and neurochemistry provide the promising prospect of demonstrating degenerative brain pathology in patients with MS before atrophy has installed. Although the overall level of evidence on the presented topic is still preliminary, this Review may pave the way for further longitudinal and multimodal studies exploring the relationships between the abovementioned measures, possibly leading to novel insights in early disease mechanisms and therapeutic intervention strategies.
Collapse
Affiliation(s)
- Jeroen Van Schependom
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,2Radiology Department Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Kaat Guldolf
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium
| | - Marie Béatrice D'hooghe
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| | - Guy Nagels
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| | - Miguel D'haeseleer
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| |
Collapse
|
20
|
Swanberg KM, Landheer K, Pitt D, Juchem C. Quantifying the Metabolic Signature of Multiple Sclerosis by in vivo Proton Magnetic Resonance Spectroscopy: Current Challenges and Future Outlook in the Translation From Proton Signal to Diagnostic Biomarker. Front Neurol 2019; 10:1173. [PMID: 31803127 PMCID: PMC6876616 DOI: 10.3389/fneur.2019.01173] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/21/2019] [Indexed: 01/03/2023] Open
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) offers a growing variety of methods for querying potential diagnostic biomarkers of multiple sclerosis in living central nervous system tissue. For the past three decades, 1H-MRS has enabled the acquisition of a rich dataset suggestive of numerous metabolic alterations in lesions, normal-appearing white matter, gray matter, and spinal cord of individuals with multiple sclerosis, but this body of information is not free of seeming internal contradiction. The use of 1H-MRS signals as diagnostic biomarkers depends on reproducible and generalizable sensitivity and specificity to disease state that can be confounded by a multitude of influences, including experiment group classification and demographics; acquisition sequence; spectral quality and quantifiability; the contribution of macromolecules and lipids to the spectroscopic baseline; spectral quantification pipeline; voxel tissue and lesion composition; T1 and T2 relaxation; B1 field characteristics; and other features of study design, spectral acquisition and processing, and metabolite quantification about which the experimenter may possess imperfect or incomplete information. The direct comparison of 1H-MRS data from individuals with and without multiple sclerosis poses a special challenge in this regard, as several lines of evidence suggest that experimental cohorts may differ significantly in some of these parameters. We review the existing findings of in vivo1H-MRS on central nervous system metabolic abnormalities in multiple sclerosis and its subtypes within the context of study design, spectral acquisition and processing, and metabolite quantification and offer an outlook on technical considerations, including the growing use of machine learning, by future investigations into diagnostic biomarkers of multiple sclerosis measurable by 1H-MRS.
Collapse
Affiliation(s)
- Kelley M Swanberg
- Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, New York, NY, United States
| | - Karl Landheer
- Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, New York, NY, United States
| | - David Pitt
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Christoph Juchem
- Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, New York, NY, United States.,Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
21
|
Moccia M, Ruggieri S, Ianniello A, Toosy A, Pozzilli C, Ciccarelli O. Advances in spinal cord imaging in multiple sclerosis. Ther Adv Neurol Disord 2019; 12:1756286419840593. [PMID: 31040881 PMCID: PMC6477770 DOI: 10.1177/1756286419840593] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/03/2019] [Indexed: 11/18/2022] Open
Abstract
The spinal cord is frequently affected in multiple sclerosis (MS), causing motor, sensory and autonomic dysfunction. A number of pathological abnormalities, including demyelination and neuroaxonal loss, occur in the MS spinal cord and are studied in vivo with magnetic resonance imaging (MRI). The aim of this review is to summarise and discuss recent advances in spinal cord MRI. Advances in conventional spinal cord MRI include improved identification of MS lesions, recommended spinal cord MRI protocols, enhanced recognition of MRI lesion characteristics that allow MS to be distinguished from other myelopathies, evidence for the role of spinal cord lesions in predicting prognosis and monitoring disease course, and novel post-processing methods to obtain lesion probability maps. The rate of spinal cord atrophy is greater than that of brain atrophy (-1.78% versus -0.5% per year), and reflects neuroaxonal loss in an eloquent site of the central nervous system, suggesting that it can become an important outcome measure in clinical trials, especially in progressive MS. Recent developments allow the calculation of spinal cord atrophy from brain volumetric scans and evaluation of its progression over time with registration-based techniques. Fully automated analysis methods, including segmentation of grey matter and intramedullary lesions, will facilitate the use of spinal cord atrophy in trial designs and observational studies. Advances in quantitative imaging techniques to evaluate neuroaxonal integrity, myelin content, metabolic changes, and functional connectivity, have provided new insights into the mechanisms of damage in MS. Future directions of research and the possible impact of 7T scanners on spinal cord imaging will be discussed.
Collapse
Affiliation(s)
- Marcello Moccia
- Queen Square MS Centre, NMR Research Unit, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Federico II University of Naples, via Sergio Pansini, 5, Edificio 17 - piano terra, Napoli, 80131 Naples, Italy
| | - Serena Ruggieri
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| | - Antonio Ianniello
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| | - Ahmed Toosy
- Queen Square MS Centre, NMR Research Unit, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Carlo Pozzilli
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| | - Olga Ciccarelli
- Queen Square MS Centre, NMR Research Unit, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- National Institute for Health Research, University College London Hospitals Biomedical Research Centre, London, UK
| |
Collapse
|
22
|
Cercignani M, Gandini Wheeler-Kingshott C. From micro- to macro-structures in multiple sclerosis: what is the added value of diffusion imaging. NMR IN BIOMEDICINE 2019; 32:e3888. [PMID: 29350435 DOI: 10.1002/nbm.3888] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 10/29/2017] [Accepted: 11/25/2017] [Indexed: 06/07/2023]
Abstract
Diffusion imaging has been instrumental in understanding damage to the central nervous system as a result of its sensitivity to microstructural changes. Clinical applications of diffusion imaging have grown exponentially over the past couple of decades in many neurological and neurodegenerative diseases, such as multiple sclerosis (MS). For several reasons, MS has been extensively researched using advanced neuroimaging techniques, which makes it an 'example disease' to illustrate the potential of diffusion imaging for clinical applications. In addition, MS pathology is characterized by several key processes competing with each other, such as inflammation, demyelination, remyelination, gliosis and axonal loss, enabling the specificity of diffusion to be challenged. In this review, we describe how diffusion imaging can be exploited to investigate micro-, meso- and macro-scale properties of the brain structure and discuss how they are affected by different pathological substrates. Conclusions from the literature are that larger studies are needed to confirm the exciting results from initial investigations before current trends in diffusion imaging can be translated to the neurology clinic. Also, for a comprehensive understanding of pathological processes, it is essential to take a multiple-level approach, in which information at the micro-, meso- and macroscopic scales is fully integrated.
Collapse
Affiliation(s)
- Mara Cercignani
- Clinical Imaging Sciences Centre, Department of Neuroscience, Brighton and Sussex Medical School, Brighton, UK
- Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Claudia Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain MRI 3T Mondino Research Center, C. Mondino National Neurological Institute, Pavia, Italy
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Clinical MRI is of paramount importance for multiple sclerosis diagnosis but lacks the specificity to investigate the pathogenic mechanisms underlying disease onset and progression. The application of advanced MR sequences allows the characterization of diverse and complex pathological mechanisms, granting insights into multiple sclerosis natural history and response to treatment. RECENT FINDINGS This review provides an update on the most recent international guidelines for optimal standard imaging of multiple sclerosis and discusses advantages and limitations of advanced imaging approaches for investigating inflammation, demyelination and neurodegeneration. An overview is provided for methods devoted to imaging leptomeningeal enhancement, microglial activation, demyelination, neuronal metabolic damage and neuronal loss. SUMMARY The application of magnetic resonance (MR) guidelines to standard-of-care MR protocols, although still limited, would substantially contribute to the optimization of multiple sclerosis management. From an academic perspective, different mechanism-specific imaging techniques are available and offer a powerful tool to elucidate multiple sclerosis pathogenesis, monitor disease progression and guide therapeutic choices.
Collapse
|
24
|
Ciccarelli O, Cohen JA, Reingold SC, Weinshenker BG, Amato MP, Banwell B, Barkhof F, Bebo B, Becher B, Bethoux F, Brandt A, Brownlee W, Calabresi P, Chatway J, Chien C, Chitnis T, Ciccarelli O, Cohen J, Comi G, Correale J, De Sèze J, De Stefano N, Fazekas F, Flanagan E, Freedman M, Fujihara K, Galetta S, Goldman M, Greenberg B, Hartung HP, Hemmer B, Henning A, Izbudak I, Kappos L, Lassmann H, Laule C, Levy M, Lublin F, Lucchinetti C, Lukas C, Marrie RA, Miller A, Miller D, Montalban X, Mowry E, Ourselin S, Paul F, Pelletier D, Ranjeva JP, Reich D, Reingold S, Rocca MA, Rovira A, Schlaerger R, Soelberg Sorensen P, Sormani M, Stuve O, Thompson A, Tintoré M, Traboulsee A, Trapp B, Trojano M, Uitdehaag B, Vukusic S, Waubant E, Weinshenker B, Wheeler-Kingshott CG, Xu J. Spinal cord involvement in multiple sclerosis and neuromyelitis optica spectrum disorders. Lancet Neurol 2019; 18:185-197. [DOI: 10.1016/s1474-4422(18)30460-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022]
|
25
|
Wyss PO, Huber E, Curt A, Kollias S, Freund P, Henning A. MR Spectroscopy of the Cervical Spinal Cord in Chronic Spinal Cord Injury. Radiology 2019; 291:131-138. [PMID: 30694162 DOI: 10.1148/radiol.2018181037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purpose To investigate metabolic changes in chronic spinal cord injury (SCI) by applying MR spectroscopy in the cervical spinal cord. Materials and Methods Single-voxel short-echo spectroscopic data in study participants with chronic SCI and healthy control subjects were prospectively acquired in the cervical spinal cord at C2 above the level of injury between March 2016 and January 2017 and were compared between groups. Concentrations of total N-acetylaspartate (tNAA), myo-inositol (mI), total choline-containing compounds (tCho), creatine, and glutamine and glutamate complex were estimated from the acquired spectra. Participants were assessed with a comprehensive clinical evaluation investigating sensory and motor deficits. Correlation analysis was applied to investigate relationships between observed metabolic differences, lesion severity, and clinical outcome. Results There were 18 male study participants with chronic SCI (median age, 51 years; range, 30-68 years) and 11 male healthy control subjects (median age, 45 years; range, 30-67 years). At cervical level C2, tNAA/mI and tCho/mI ratios were lower in participants with SCI (tNAA/mI: -26%, P = .003; tCho/mI: -18%; P = .04) than in healthy control subjects. The magnitude of difference was greater with the severity of cord atrophy (tNAA/mI: R2 = 0.44, P = .003; tCho/mI: R2 = 0.166, P = .09). Smaller tissue bridges at the lesion site correlated with lower ratios of tNAA/mI (R2 = 0.69, P = .006) and tCho/mI (R2 = 0.51, P = .03) at the C2 level. Lower tNAA/mI and tCho/mI ratios were associated with worse sensory and motor outcomes (P < .05). Conclusion Supralesional metabolic alterations are observed in chronic spinal cord injury, likely reflecting neurodegeneration, demyelination, and astrocytic gliosis in the injured cervical cord. Lesion severity and greater clinical impairment are both linked to the biochemical changes in the atrophied cervical cord after spinal cord injury. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Lin in this issue.
Collapse
Affiliation(s)
- Patrik O Wyss
- From the Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland (P.O.W., A.H.); Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland (P.O.W.); Max Planck Institute for Biological Cybernetics, Tuebingen, Germany (P.O.W., A.H.); Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland (E.H., A.C., P.F.); Institute of Neuroradiology, University Hospital, Zurich, Switzerland (S.K.); Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London, England (P.F.); Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, England (P.F.); Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (P.F.); and Institute of Physics, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany (A.H.)
| | - Eveline Huber
- From the Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland (P.O.W., A.H.); Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland (P.O.W.); Max Planck Institute for Biological Cybernetics, Tuebingen, Germany (P.O.W., A.H.); Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland (E.H., A.C., P.F.); Institute of Neuroradiology, University Hospital, Zurich, Switzerland (S.K.); Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London, England (P.F.); Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, England (P.F.); Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (P.F.); and Institute of Physics, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany (A.H.)
| | - Armin Curt
- From the Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland (P.O.W., A.H.); Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland (P.O.W.); Max Planck Institute for Biological Cybernetics, Tuebingen, Germany (P.O.W., A.H.); Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland (E.H., A.C., P.F.); Institute of Neuroradiology, University Hospital, Zurich, Switzerland (S.K.); Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London, England (P.F.); Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, England (P.F.); Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (P.F.); and Institute of Physics, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany (A.H.)
| | - Spyros Kollias
- From the Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland (P.O.W., A.H.); Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland (P.O.W.); Max Planck Institute for Biological Cybernetics, Tuebingen, Germany (P.O.W., A.H.); Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland (E.H., A.C., P.F.); Institute of Neuroradiology, University Hospital, Zurich, Switzerland (S.K.); Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London, England (P.F.); Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, England (P.F.); Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (P.F.); and Institute of Physics, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany (A.H.)
| | - Patrick Freund
- From the Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland (P.O.W., A.H.); Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland (P.O.W.); Max Planck Institute for Biological Cybernetics, Tuebingen, Germany (P.O.W., A.H.); Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland (E.H., A.C., P.F.); Institute of Neuroradiology, University Hospital, Zurich, Switzerland (S.K.); Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London, England (P.F.); Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, England (P.F.); Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (P.F.); and Institute of Physics, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany (A.H.)
| | - Anke Henning
- From the Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland (P.O.W., A.H.); Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland (P.O.W.); Max Planck Institute for Biological Cybernetics, Tuebingen, Germany (P.O.W., A.H.); Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland (E.H., A.C., P.F.); Institute of Neuroradiology, University Hospital, Zurich, Switzerland (S.K.); Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London, England (P.F.); Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, England (P.F.); Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (P.F.); and Institute of Physics, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany (A.H.)
| |
Collapse
|
26
|
Polachini CRN, Spanevello RM, Schetinger MRC, Morsch VM. Cholinergic and purinergic systems: A key to multiple sclerosis? J Neurol Sci 2018; 392:8-21. [PMID: 30097157 DOI: 10.1016/j.jns.2018.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/21/2018] [Accepted: 06/24/2018] [Indexed: 12/20/2022]
|
27
|
Casserly C, Seyman EE, Alcaide-Leon P, Guenette M, Lyons C, Sankar S, Svendrovski A, Baral S, Oh J. Spinal Cord Atrophy in Multiple Sclerosis: A Systematic Review and Meta-Analysis. J Neuroimaging 2018; 28:556-586. [PMID: 30102003 DOI: 10.1111/jon.12553] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Spinal cord atrophy (SCA) is an important emerging outcome measure in multiple sclerosis (MS); however, there is limited consensus on the magnitude and rate of atrophy. The objective of this study was to synthesize the available data on measures of SCA in MS. METHODS Using published guidelines, relevant literature databases were searched between 1977 and 2017 for case-control or cohort studies reporting a quantitative measure of SCA in MS patients. Random-effects models pooled cross-sectional measures and longitudinal rates of SCA in MS and healthy controls (HCs). Student's t-test assessed differences between pooled measures in patient subgroups. Heterogeneity was assessed using DerSimonian and Laird's Q-test and the I 2 -index. RESULTS A total of 1,465 studies were retrieved including 94 that met inclusion and exclusion criteria. Pooled estimates of mean cervical spinal cord (SC) cross-sectional area (CSA) in all MS patients, relapsing-remitting MS (RRMS), all progressive MS, secondary progressive MS (SPMS), primary-progressive MS (PPMS), and HC were: 73.07 mm2 (95% CI [71.52-74.62]), 78.88 mm2 (95% CI [76.92-80.85]), 69.72 mm2 (95% CI [67.96-71.48]), 68.55 mm2 (95% CI [65.43-71.66]), 70.98 mm2 (95% CI [68.78-73.19]), and 80.87 mm2 (95% C I [78.70-83.04]), respectively. Pooled SC-CSA was greater in HC versus MS (P < .001) and RRMS versus progressive MS (P < .001). SCA showed moderate correlations with global disability in cross-sectional studies (r-value with disability score range [-.75 to -.22]). In longitudinal studies, the pooled annual rate of SCA was 1.78%/year (95%CI [1.28-2.27]). CONCLUSIONS The SC is atrophied in MS. The magnitude of SCA is greater in progressive versus relapsing forms and correlates with clinical disability. The pooled estimate of annual rate of SCA is greater than reported rates of brain atrophy in MS. These results demonstrate that SCA is highly relevant as an imaging outcome in MS clinical trials.
Collapse
Affiliation(s)
- Courtney Casserly
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Neurology, London Health Sciences Centre, Western University, London, Ontario, Canada
| | - Estelle E Seyman
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Paula Alcaide-Leon
- Division of Neuroradiology, Department of Medical Imaging, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Melanie Guenette
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Carrie Lyons
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Sankar
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Anton Svendrovski
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Stefan Baral
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Neurology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
28
|
Tsagkas C, Magon S, Gaetano L, Pezold S, Naegelin Y, Amann M, Stippich C, Cattin P, Wuerfel J, Bieri O, Sprenger T, Kappos L, Parmar K. Spinal cord volume loss: A marker of disease progression in multiple sclerosis. Neurology 2018; 91:e349-e358. [PMID: 29950437 DOI: 10.1212/wnl.0000000000005853] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/19/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Cross-sectional studies have shown that spinal cord volume (SCV) loss is related to disease severity in multiple sclerosis (MS). However, long-term data are lacking. Our aim was to evaluate SCV loss as a biomarker of disease progression in comparison to other MRI measurements in a large cohort of patients with relapse-onset MS with 6-year follow-up. METHODS The upper cervical SCV, the total brain volume, and the brain T2 lesion volume were measured annually in 231 patients with MS (180 relapsing-remitting [RRMS] and 51 secondary progressive [SPMS]) over 6 years on 3-dimensional, T1-weighted, magnetization-prepared rapid-acquisition gradient echo images. Expanded Disability Status Scale (EDSS) score and relapses were recorded at every follow-up. RESULTS Patients with SPMS had lower baseline SCV (p < 0.01) but no accelerated SCV loss compared to those with RRMS. Clinical relapses were found to predict SCV loss over time (p < 0.05) in RRMS. Furthermore, SCV loss, but not total brain volume and T2 lesion volume, was a strong predictor of EDSS score worsening over time (p < 0.05). The mean annual rate of SCV loss was the strongest MRI predictor for the mean annual EDSS score change of both RRMS and SPMS separately, while correlating stronger in SPMS. Every 1% increase of the annual SCV loss rate was associated with an extra 28% risk increase of disease progression in the following year in both groups. CONCLUSION SCV loss over time relates to the number of clinical relapses in RRMS, but overall does not differ between RRMS and SPMS. SCV proved to be a strong predictor of physical disability and disease progression, indicating that SCV may be a suitable marker for monitoring disease activity and severity.
Collapse
Affiliation(s)
- Charidimos Tsagkas
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Stefano Magon
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Laura Gaetano
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Simon Pezold
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Yvonne Naegelin
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Michael Amann
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Christoph Stippich
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Philippe Cattin
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Jens Wuerfel
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Oliver Bieri
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Till Sprenger
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Ludwig Kappos
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Katrin Parmar
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany.
| |
Collapse
|
29
|
Basha MAA, Bessar MA, Ahmed AF, Elfiki IM, Elkhatib THM, Mohamed AME. Does MR spectroscopy of normal-appearing cervical spinal cord in patients with multiple sclerosis have diagnostic value in assessing disease progression? A prospective comparative analysis. Clin Radiol 2018; 73:835.e1-835.e9. [PMID: 29853303 DOI: 10.1016/j.crad.2018.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/24/2018] [Indexed: 11/25/2022]
Abstract
AIM To clarify the role of magnetic resonance spectroscopy (MRS) in examining the normal-appearing cervical spinal cord of patients with multiple sclerosis (MS) to detect metabolite abnormalities in this disease and to assess its progression. MATERIAL AND METHODS Thirty-six patients with MS and 30 healthy controls were enrolled. Each patient was submitted to MRS performed using a 1.5 T magnetic resonance imaging (MRI) scanner. The spectra of total N-acetyl-aspartate (tNAA), choline (Cho), creatine (Cr), and myoinositol (M-Ins), as well as the metabolite ratios of tNAA/Cr, tNAA/Cho, Cho/Cr, and M-Ins/Cr of the two groups were measured and compared. The correlations between the metabolite concentrations, disease duration, and clinical disability (expanded disability status scale, EDSS) were further explored. RESULTS Significantly lower tNAA and higher M-Ins were observed in MS patients than in health controls. The tNAA/Cr and tNAA/Cho ratios were significantly lower in MS patients than in healthy controls. In MS patients, the EDSS was correlated with the tNAA/Cr ratio. The spinal cord cross-sectional area was significantly smaller in MS patients than in healthy controls. CONCLUSION Reduced tNAA and increased M-Ins are important, sensitive indices for differentiating between MS patients and healthy controls. In MS patients, before lesions appear, MRS of the spinal cord may provide crucial information for assessing disease progression.
Collapse
Affiliation(s)
- M A A Basha
- Department of Diagnostic Radiology, Zagazig University, Egypt.
| | - M A Bessar
- Department of Diagnostic Radiology, Zagazig University, Egypt
| | - A F Ahmed
- Department of Diagnostic Radiology, Zagazig University, Egypt
| | - I M Elfiki
- Department of Diagnostic Radiology, Zagazig University, Egypt
| | | | - A M E Mohamed
- Department of Ophthalmology, Zagazig University, Egypt
| |
Collapse
|
30
|
Tsagkas C, Magon S, Gaetano L, Pezold S, Naegelin Y, Amann M, Stippich C, Cattin P, Wuerfel J, Bieri O, Sprenger T, Kappos L, Parmar K. Preferential spinal cord volume loss in primary progressive multiple sclerosis. Mult Scler 2018; 25:947-957. [PMID: 29781383 DOI: 10.1177/1352458518775006] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Little is known on longer term changes of spinal cord volume (SCV) in primary progressive multiple sclerosis (PPMS). OBJECTIVE Longitudinal evaluation of SCV loss in PPMS and its correlation to clinical outcomes, compared to relapse-onset multiple sclerosis (MS) subtypes. METHODS A total of 60 MS age-, sex- and disease duration-matched patients (12 PPMS, each 24 relapsing-remitting (RRMS) and secondary progressive MS (SPMS)) were analysed annually over 6 years of follow-up. The upper cervical SCV was measured on 3D T1-weighted magnetization-prepared rapid gradient-echo (MPRAGE) images using a semi-automatic software (CORDIAL), along with the total brain volume (TBV), brain T2 lesion volume (T2LV) and Expanded Disability Status Scale (EDSS). RESULTS PPMS showed faster SCV loss over time than RRMS ( p < 0.01) and by trend ( p = 0.066) compared with SPMS. In contrast to relapse-onset MS, in PPMS SCV loss progressed independent of TBV and T2LV changes. Moreover, in PPMS, SCV was the only magnetic resonance imaging (MRI) measurement associated with EDSS increase over time ( p < 0.01), as opposed to RRMS and SPMS. CONCLUSION SCV loss is a strong predictor of clinical outcomes in PPMS and has shown to be faster and independent of brain MRI metrics compared to relapse-onset MS.
Collapse
Affiliation(s)
- Charidimos Tsagkas
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland / Medical Image Analysis Center (MIAC AG), Basel, Switzerland
| | - Stefano Magon
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland / Medical Image Analysis Center (MIAC AG), Basel, Switzerland
| | - Laura Gaetano
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland / Medical Image Analysis Center (MIAC AG), Basel, Switzerland
| | - Simon Pezold
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Yvonne Naegelin
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michael Amann
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland / Medical Image Analysis Center (MIAC AG), Basel, Switzerland / Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christoph Stippich
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Philippe Cattin
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Jens Wuerfel
- Medical Image Analysis Center (MIAC AG), Basel, Switzerland / Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Till Sprenger
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland / Department of Neurology, DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany
| | - Ludwig Kappos
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katrin Parmar
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
31
|
Abstract
Multiple sclerosis is a multifactorial disease with heterogeneous pathogenetic mechanisms, which deserve to be studied to evaluate new possible targets for treatments and improve patient management. MR spectroscopy and PET allow assessing in vivo the molecular and metabolic mechanisms underlying the pathogenesis of multiple sclerosis. This article focuses on the relationship between these imaging techniques and the biologic and chemical pathways leading to multiple sclerosis pathology and its clinical features. Future directions of research are also presented.
Collapse
Affiliation(s)
- Marcello Moccia
- NMR Research Unit, Queen Square MS Centre, University College London, Institute of Neurology, 10-12 Russell Square, London WC1B 5EH, UK; MS Clinical Care and Research Centre, Department of Neuroscience, Federico II University, Via Sergio Pansini 5, Naples 80131, Italy
| | - Olga Ciccarelli
- NMR Research Unit, Queen Square MS Centre, University College London, Institute of Neurology, 10-12 Russell Square, London WC1B 5EH, UK; NIHR University College London Hospitals, Biomedical Research Centre, Maple House Suite A 1st floor, 149 Tottenham Court Road, London W1T 7DN, UK.
| |
Collapse
|
32
|
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS) and the most widespread nontraumatic cause of disability in young adults around the world. MS occurs in people of all ages, races, and ethnicities. MS is characterized by clinical symptoms resulting from lesions in the brain, spinal cord, or optic nerves that can affect balance, gait, and fall risk. Lesions accumulate over time and occur in different areas of the CNS causing symptoms that include weakness, spasticity, and fatigue, as well as changes in sensation, coordination, vision, cognition, and bladder function. Thus, it is not surprising that imbalance, gait dysfunction, and falls are common in people with MS. The overwhelming majority have abnormalities of postural control and gait even early in the disease course. In all, 50-80% have balance and gait dysfunction and over 50% fall at least once each year. Balance dysfunction in MS is conceptualized as three interrelated problems: decreased ability to maintain position, limited and slowed movement towards limits of stability, and delayed responses to postural displacements and perturbations. In addition, functional balance performance may be affected by impaired dual-task integration. Walking changes in MS include reduced gait speed, impaired walking balance, and reduced walking-related physical activity. Falls in people with MS are associated with injuries, reduced participation, and increased fear of falling. A wide and growing range of rehabilitation and medical interventions are available to address the changes in balance, gait, and fall risk associated with MS.
Collapse
Affiliation(s)
- Michelle H Cameron
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States.
| | - Ylva Nilsagard
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
33
|
Pulido-Valdeolivas I, Zubizarreta I, Martinez-Lapiscina EH, Villoslada P. Precision medicine for multiple sclerosis: an update of the available biomarkers and their use in therapeutic decision making. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1393315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Irene Pulido-Valdeolivas
- Institut d’Investigacions Biomediques August Pi Sunyer (IDBAPS), University of Barcelona, Barcelona, Spain
| | - Irati Zubizarreta
- Institut d’Investigacions Biomediques August Pi Sunyer (IDBAPS), University of Barcelona, Barcelona, Spain
| | - Elena H Martinez-Lapiscina
- Institut d’Investigacions Biomediques August Pi Sunyer (IDBAPS), University of Barcelona, Barcelona, Spain
| | - Pablo Villoslada
- Institut d’Investigacions Biomediques August Pi Sunyer (IDBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Immunoregulatory effect of mast cells influenced by microbes in neurodegenerative diseases. Brain Behav Immun 2017; 65:68-89. [PMID: 28676349 DOI: 10.1016/j.bbi.2017.06.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/17/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023] Open
Abstract
When related to central nervous system (CNS) health and disease, brain mast cells (MCs) can be a source of either beneficial or deleterious signals acting on neural cells. We review the current state of knowledge about molecular interactions between MCs and glia in neurodegenerative diseases such as Multiple Sclerosis, Alzheimer's disease, Amyotrophic Lateral Sclerosis, Parkinson's disease, Epilepsy. We also discuss the influence on MC actions evoked by the host microbiota, which has a profound effect on the host immune system, inducing important consequences in neurodegenerative disorders. Gut dysbiosis, reduced intestinal motility and increased intestinal permeability, that allow bacterial products to circulate and pass through the blood-brain barrier, are associated with neurodegenerative disease. There are differences between the microbiota of neurologic patients and healthy controls. Distinguishing between cause and effect is a challenging task, and the molecular mechanisms whereby remote gut microbiota can alter the brain have not been fully elucidated. Nevertheless, modulation of the microbiota and MC activation have been shown to promote neuroprotection. We review this new information contributing to a greater understanding of MC-microbiota-neural cells interactions modulating the brain, behavior and neurodegenerative processes.
Collapse
|
35
|
Gray-Edwards HL, Randle AN, Maitland SA, Benatti HR, Hubbard SM, Canning PF, Vogel MB, Brunson BL, Hwang M, Ellis LE, Bradbury AM, Gentry AS, Taylor AR, Wooldridge AA, Wilhite DR, Winter RL, Whitlock BK, Johnson JA, Holland M, Salibi N, Beyers RJ, Sartin JL, Denney TS, Cox NR, Sena-Esteves M, Martin DR. Adeno-Associated Virus Gene Therapy in a Sheep Model of Tay-Sachs Disease. Hum Gene Ther 2017; 29:312-326. [PMID: 28922945 DOI: 10.1089/hum.2017.163] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Tay-Sachs disease (TSD) is a fatal neurodegenerative disorder caused by a deficiency of the enzyme hexosaminidase A (HexA). TSD also occurs in sheep, the only experimental model of TSD that has clinical signs of disease. The natural history of sheep TSD was characterized using serial neurological evaluations, 7 Tesla magnetic resonance imaging, echocardiograms, electrodiagnostics, and cerebrospinal fluid biomarkers. Intracranial gene therapy was also tested using AAVrh8 monocistronic vectors encoding the α-subunit of Hex (TSD α) or a mixture of two vectors encoding both the α and β subunits separately (TSD α + β) injected at high (1.3 × 1013 vector genomes) or low (4.2 × 1012 vector genomes) dose. Delay of symptom onset and/or reduction of acquired symptoms were noted in all adeno-associated virus-treated sheep. Postmortem evaluation showed superior HexA and vector genome distribution in the brain of TSD α + β sheep compared to TSD α sheep, but spinal cord distribution was low in all groups. Isozyme analysis showed superior HexA formation after treatment with both vectors (TSD α + β), and ganglioside clearance was most widespread in the TSD α + β high-dose sheep. Microglial activation and proliferation in TSD sheep-most prominent in the cerebrum-were attenuated after gene therapy. This report demonstrates therapeutic efficacy for TSD in the sheep brain, which is on the same order of magnitude as a child's brain.
Collapse
Affiliation(s)
- Heather L Gray-Edwards
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Ashley N Randle
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Stacy A Maitland
- 2 Department of Neurology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Hector R Benatti
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Spencer M Hubbard
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Peter F Canning
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Matthew B Vogel
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Brandon L Brunson
- 3 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Misako Hwang
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Lauren E Ellis
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Allison M Bradbury
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama.,3 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Atoska S Gentry
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Amanda R Taylor
- 4 Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Anne A Wooldridge
- 4 Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Dewey R Wilhite
- 3 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Randolph L Winter
- 4 Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Brian K Whitlock
- 5 Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee , Knoxville, Tennessee
| | - Jacob A Johnson
- 4 Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Merilee Holland
- 4 Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Nouha Salibi
- 6 MR R&D Siemens Healthcare, Malvern, Pennsylvania
| | - Ronald J Beyers
- 7 Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama
| | - James L Sartin
- 3 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Thomas S Denney
- 7 Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama
| | - Nancy R Cox
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama.,8 Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Miguel Sena-Esteves
- 2 Department of Neurology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Douglas R Martin
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama.,3 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| |
Collapse
|
36
|
Battiston M, Grussu F, Ianus A, Schneider T, Prados F, Fairney J, Ourselin S, Alexander DC, Cercignani M, Gandini Wheeler-Kingshott CAM, Samson RS. An optimized framework for quantitative magnetization transfer imaging of the cervical spinal cord in vivo. Magn Reson Med 2017; 79:2576-2588. [PMID: 28921614 PMCID: PMC5836910 DOI: 10.1002/mrm.26909] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 11/06/2022]
Abstract
PURPOSE To develop a framework to fully characterize quantitative magnetization transfer indices in the human cervical cord in vivo within a clinically feasible time. METHODS A dedicated spinal cord imaging protocol for quantitative magnetization transfer was developed using a reduced field-of-view approach with echo planar imaging (EPI) readout. Sequence parameters were optimized based in the Cramer-Rao-lower bound. Quantitative model parameters (i.e., bound pool fraction, free and bound pool transverse relaxation times [ T2F, T2B], and forward exchange rate [kFB ]) were estimated implementing a numerical model capable of dealing with the novelties of the sequence adopted. The framework was tested on five healthy subjects. RESULTS Cramer-Rao-lower bound minimization produces optimal sampling schemes without requiring the establishment of a steady-state MT effect. The proposed framework allows quantitative voxel-wise estimation of model parameters at the resolution typically used for spinal cord imaging (i.e. 0.75 × 0.75 × 5 mm3 ), with a protocol duration of ∼35 min. Quantitative magnetization transfer parametric maps agree with literature values. Whole-cord mean values are: bound pool fraction = 0.11(±0.01), T2F = 46.5(±1.6) ms, T2B = 11.0(±0.2) µs, and kFB = 1.95(±0.06) Hz. Protocol optimization has a beneficial effect on reproducibility, especially for T2B and kFB . CONCLUSION The framework developed enables robust characterization of spinal cord microstructure in vivo using qMT. Magn Reson Med 79:2576-2588, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Marco Battiston
- Queen Square MS Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Francesco Grussu
- Queen Square MS Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Andrada Ianus
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom.,Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Ferran Prados
- Queen Square MS Centre, UCL Institute of Neurology, University College London, London, United Kingdom.,Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - James Fairney
- Queen Square MS Centre, UCL Institute of Neurology, University College London, London, United Kingdom.,UCL Department of Medical Physics and Bioengineering, University College London, London, United Kingdom
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Mara Cercignani
- CISC, Department of Neuroscience, Brighton & Sussex Medical School, Brighton, Sussex, United Kingdom
| | - Claudia A M Gandini Wheeler-Kingshott
- Queen Square MS Centre, UCL Institute of Neurology, University College London, London, United Kingdom.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.,Brain MRI 3T Mondino Research Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Rebecca S Samson
- Queen Square MS Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
37
|
Axonal transport deficits in multiple sclerosis: spiraling into the abyss. Acta Neuropathol 2017; 134:1-14. [PMID: 28315956 PMCID: PMC5486629 DOI: 10.1007/s00401-017-1697-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/16/2022]
Abstract
The transport of mitochondria and other cellular components along the axonal microtubule cytoskeleton plays an essential role in neuronal survival. Defects in this system have been linked to a large number of neurological disorders. In multiple sclerosis (MS) and associated models such as experimental autoimmune encephalomyelitis (EAE), alterations in axonal transport have been shown to exist before neurodegeneration occurs. Genome-wide association (GWA) studies have linked several motor proteins to MS susceptibility, while neuropathological studies have shown accumulations of proteins and organelles suggestive for transport deficits. A reduced effectiveness of axonal transport can lead to neurodegeneration through inhibition of mitochondrial motility, disruption of axoglial interaction or prevention of remyelination. In MS, demyelination leads to dysregulation of axonal transport, aggravated by the effects of TNF-alpha, nitric oxide and glutamate on the cytoskeleton. The combined effect of all these pathways is a vicious cycle in which a defective axonal transport system leads to an increase in ATP consumption through loss of membrane organization and a reduction in available ATP through inhibition of mitochondrial transport, resulting in even further inhibition of transport. The persistent activity of this positive feedback loop contributes to neurodegeneration in MS.
Collapse
|
38
|
Ketelhut NB, Kindred JH, Pimentel RE, Hess AM, Tracy BL, Reiser RF, Rudroff T. Functional factors that are important correlates to physical activity in people with multiple sclerosis: a pilot study. Disabil Rehabil 2017; 40:2416-2423. [DOI: 10.1080/09638288.2017.1336647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nathaniel B Ketelhut
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - John H Kindred
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Richard E Pimentel
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Ann M Hess
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Brian L Tracy
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Raoul F Reiser
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Thorsten Rudroff
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
39
|
Cawley N, Tur C, Prados F, Plantone D, Kearney H, Abdel-Aziz K, Ourselin S, Wheeler-Kingshott CAMG, Miller DH, Thompson AJ, Ciccarelli O. Spinal cord atrophy as a primary outcome measure in phase II trials of progressive multiple sclerosis. Mult Scler 2017; 24:932-941. [DOI: 10.1177/1352458517709954] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives: To measure the development of spinal cord (SC) atrophy over 1 year in patients with progressive multiple sclerosis (PMS) and determine the sample sizes required to demonstrate a reduction in spinal cord cross-sectional area (SC-CSA) as an outcome measure in clinical trials. Methods: In total, 44 PMS patients (26 primary progressive multiple sclerosis (PPMS), 18 secondary progressive multiple sclerosis (SPMS)) and 29 healthy controls (HCs) were studied at baseline and 12 months. SC-CSA was measured using the three-dimensional (3D) fast field echo sequences acquired at 3T and the active surface model. Multiple linear regressions were used to investigate changes in imaging measurements. Results: PPMS patients had shorter disease duration, lower Expanded Disability Status Scale (EDSS) and larger SC-CSA than SPMS patients. All patients together showed a significantly greater decrease in percentage SC-CSA change than HCs, which was driven by the PPMS. All patients deteriorated over 1 year, but no association was found between percentage SC-CSA change and clinical changes. The sample size per arm required to detect a 50% treatment effect over 1 year, at 80% power, was 57 for PPMS and 546 for SPMS. Conclusion: SC-CSA may become an outcome measure in trials of PPMS patients, when they are at an early stage of the disease, have moderate disability and modest SC atrophy.
Collapse
Affiliation(s)
- Niamh Cawley
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London (UCL), London, UK
| | - Carmen Tur
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London (UCL), London, UK
| | - Ferran Prados
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London (UCL), London, UK/Translational Imaging Group, Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London (UCL), London, UK
| | - Domenico Plantone
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London (UCL), London, UK
| | - Hugh Kearney
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London (UCL), London, UK
| | - Khaled Abdel-Aziz
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London (UCL), London, UK
| | - Sebastian Ourselin
- Translational Imaging Group, Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London (UCL), London, UK
| | | | - David H Miller
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London (UCL), London, UK/UCL Hospitals Biomedical Research Centre, London, UK
| | - Alan J Thompson
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London (UCL), London, UK/UCL Hospitals Biomedical Research Centre, London, UK
| | - Olga Ciccarelli
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London (UCL), London, UK/UCL Hospitals Biomedical Research Centre, London, UK
| |
Collapse
|
40
|
Gray-Edwards HL, Regier DS, Shirley JL, Randle AN, Salibi N, Thomas SE, Latour YL, Johnston J, Golas G, Maguire AS, Taylor AR, Sorjonen DC, McCurdy VJ, Christopherson PW, Bradbury AM, Beyers RJ, Johnson AK, Brunson BL, Cox NR, Baker HJ, Denney TS, Sena-Esteves M, Tifft CJ, Martin DR. Novel Biomarkers of Human GM1 Gangliosidosis Reflect the Clinical Efficacy of Gene Therapy in a Feline Model. Mol Ther 2017; 25:892-903. [PMID: 28236574 PMCID: PMC5383552 DOI: 10.1016/j.ymthe.2017.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 01/06/2017] [Accepted: 01/14/2017] [Indexed: 11/26/2022] Open
Abstract
GM1 gangliosidosis is a fatal neurodegenerative disease that affects individuals of all ages. Favorable outcomes using adeno-associated viral (AAV) gene therapy in GM1 mice and cats have prompted consideration of human clinical trials, yet there remains a paucity of objective biomarkers to track disease status. We developed a panel of biomarkers using blood, urine, cerebrospinal fluid (CSF), electrodiagnostics, 7 T MRI, and magnetic resonance spectroscopy in GM1 cats-either untreated or AAV treated for more than 5 years-and compared them to markers in human GM1 patients where possible. Significant alterations were noted in CSF and blood of GM1 humans and cats, with partial or full normalization after gene therapy in cats. Gene therapy improved the rhythmic slowing of electroencephalograms (EEGs) in GM1 cats, a phenomenon present also in GM1 patients, but nonetheless the epileptiform activity persisted. After gene therapy, MR-based analyses revealed remarkable preservation of brain architecture and correction of brain metabolites associated with microgliosis, neuroaxonal loss, and demyelination. Therapeutic benefit of AAV gene therapy in GM1 cats, many of which maintain near-normal function >5 years post-treatment, supports the strong consideration of human clinical trials, for which the biomarkers described herein will be essential for outcome assessment.
Collapse
Affiliation(s)
- Heather L Gray-Edwards
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Debra S Regier
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jamie L Shirley
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Ashley N Randle
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Nouha Salibi
- MR R&D, Siemens Healthcare, Malvern, PA 19355, USA
| | - Sarah E Thomas
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yvonne L Latour
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jean Johnston
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gretchen Golas
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Annie S Maguire
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Amanda R Taylor
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Donald C Sorjonen
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Victoria J McCurdy
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Peter W Christopherson
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Allison M Bradbury
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Ronald J Beyers
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849, USA
| | - Aime K Johnson
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Brandon L Brunson
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Nancy R Cox
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Henry J Baker
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Thomas S Denney
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849, USA
| | - Miguel Sena-Esteves
- Department of Neurology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Cynthia J Tifft
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
41
|
Wyss PO, Hock A, Kollias S. The Application of Human Spinal Cord Magnetic Resonance Spectroscopy to Clinical Studies: A Review. Semin Ultrasound CT MR 2017; 38:153-162. [DOI: 10.1053/j.sult.2016.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Cohen Y, Anaby D, Morozov D. Diffusion MRI of the spinal cord: from structural studies to pathology. NMR IN BIOMEDICINE 2017; 30:e3592. [PMID: 27598689 DOI: 10.1002/nbm.3592] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 06/01/2016] [Accepted: 07/05/2016] [Indexed: 05/27/2023]
Abstract
Diffusion MRI is extensively used to study brain microarchitecture and pathologies, and water diffusion appears highly anisotropic in the white matter (WM) of the spinal cord (SC). Despite these facts, the use of diffusion MRI to study the SC, which has increased in recent years, is much less common than that in the brain. In the present review, after a brief outline of early studies of diffusion MRI (DWI) and diffusion tensor MRI (DTI) of the SC, we provide a short survey on DTI and on diffusion MRI methods beyond the tensor that have been used to study SC microstructure and pathologies. After introducing the porous view of WM and describing the q-space approach and q-space diffusion MRI (QSI), we describe other methodologies that can be applied to study the SC. Selected applications of the use of DTI, QSI, and other more advanced diffusion MRI methods to study SC microstructure and pathologies are presented, with some emphasis on the use of less conventional diffusion methodologies. Because of length constraints, we concentrate on structural studies and on a few selected pathologies. Examples of the use of diffusion MRI to study dysmyelination, demyelination as in experimental autoimmune encephalomyelitis and multiple sclerosis, amyotrophic lateral sclerosis, and traumatic SC injury are presented. We conclude with a brief summary and a discussion of challenges and future directions for diffusion MRI of the SC. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yoram Cohen
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Debbie Anaby
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Darya Morozov
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
43
|
Eippert F, Kong Y, Jenkinson M, Tracey I, Brooks JCW. Denoising spinal cord fMRI data: Approaches to acquisition and analysis. Neuroimage 2016; 154:255-266. [PMID: 27693613 DOI: 10.1016/j.neuroimage.2016.09.065] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 01/11/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) of the human spinal cord is a difficult endeavour due to the cord's small cross-sectional diameter, signal drop-out as well as image distortion due to magnetic field inhomogeneity, and the confounding influence of physiological noise from cardiac and respiratory sources. Nevertheless, there is great interest in spinal fMRI due to the spinal cord's role as the principal sensorimotor interface between the brain and the body and its involvement in a variety of sensory and motor pathologies. In this review, we give an overview of the various methods that have been used to address the technical challenges in spinal fMRI, with a focus on reducing the impact of physiological noise. We start out by describing acquisition methods that have been tailored to the special needs of spinal fMRI and aim to increase the signal-to-noise ratio and reduce distortion in obtained images. Following this, we concentrate on image processing and analysis approaches that address the detrimental effects of noise. While these include variations of standard pre-processing methods such as motion correction and spatial filtering, the main focus lies on denoising techniques that can be applied to task-based as well as resting-state data sets. We review both model-based approaches that rely on externally acquired respiratory and cardiac signals as well as data-driven approaches that estimate and correct for noise using the data themselves. We conclude with an outlook on techniques that have been successfully applied for noise reduction in brain imaging and whose use might be beneficial for fMRI of the human spinal cord.
Collapse
Affiliation(s)
- Falk Eippert
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yazhuo Kong
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mark Jenkinson
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Irene Tracey
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
44
|
Tur C, Goodkin O, Altmann DR, Jenkins TM, Miszkiel K, Mirigliani A, Fini C, Gandini Wheeler-Kingshott CAM, Thompson AJ, Ciccarelli O, Toosy AT. Longitudinal evidence for anterograde trans-synaptic degeneration after optic neuritis. Brain 2016; 139:816-28. [PMID: 26912640 DOI: 10.1093/brain/awv396] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/18/2015] [Indexed: 11/14/2022] Open
Abstract
In multiple sclerosis, microstructural damage of normal-appearing brain tissue is an important feature of its pathology. Understanding these mechanisms is vital to help develop neuroprotective strategies. The visual pathway is a key model to study mechanisms of damage and recovery in demyelination. Anterograde trans-synaptic degeneration across the lateral geniculate nuclei has been suggested as a mechanism of tissue damage to explain optic radiation abnormalities seen in association with demyelinating disease and optic neuritis, although evidence for this has relied solely on cross-sectional studies. We therefore aimed to assess: (i) longitudinal changes in the diffusion properties of optic radiations after optic neuritis suggesting trans-synaptic degeneration; (ii) the predictive value of early optic nerve magnetic resonance imaging measures for late optic radiations changes; and (iii) the impact on visual outcome of both optic nerve and brain post-optic neuritis changes. Twenty-eight consecutive patients with acute optic neuritis and eight healthy controls were assessed visually (logMAR, colour vision, and Sloan 1.25%, 5%, 25%) and by magnetic resonance imaging, at baseline, 3, 6, and 12 months. Magnetic resonance imaging sequences performed (and metrics obtained) were: (i) optic nerve fluid-attenuated inversion-recovery (optic nerve cross-sectional area); (ii) optic nerve proton density fast spin-echo (optic nerve proton density-lesion length); (iii) optic nerve post-gadolinium T1-weighted (Gd-enhanced lesion length); and (iv) brain diffusion-weighted imaging (to derive optic radiation fractional anisotropy, radial diffusivity, and axial diffusivity). Mixed-effects and multivariate regression models were performed, adjusting for age, gender, and optic radiation lesion load. These identified changes over time and associations between early optic nerve measures and 1-year global optic radiation/clinical measures. The fractional anisotropy in patients' optic radiations decreased (P = 0.018) and radial diffusivity increased (P = 0.002) over 1 year following optic neuritis, whereas optic radiation measures were unchanged in controls. Also, smaller cross-sectional areas of affected optic nerves at 3 months post-optic neuritis predicted lower fractional anisotropy and higher radial diffusivity at 1 year (P = 0.007) in the optic radiations, whereas none of the inflammatory measures of the optic nerve predicted changes in optic radiations. Finally, greater Gd-enhanced lesion length at baseline and greater optic nerve proton density-lesion length at 1 year were associated with worse visual function at 1 year (P = 0.034 for both). Neither the cross-sectional area of the affected optic nerve after optic neuritis nor the damage in optic radiations was associated with 1-year visual outcome. Our longitudinal study shows that, after optic neuritis, there is progressive damage to the optic radiations, greater in patients with early residual optic nerve atrophy, even after adjusting for optic radiation lesions. These findings provide evidence for trans-synaptic degeneration.
Collapse
Affiliation(s)
- Carmen Tur
- 1 Queen Square Multiple Sclerosis Centre, University College London, UCL Institute of Neurology, London, UK
| | - Olivia Goodkin
- 1 Queen Square Multiple Sclerosis Centre, University College London, UCL Institute of Neurology, London, UK
| | - Daniel R Altmann
- 1 Queen Square Multiple Sclerosis Centre, University College London, UCL Institute of Neurology, London, UK 2 Medical Statistics Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Thomas M Jenkins
- 1 Queen Square Multiple Sclerosis Centre, University College London, UCL Institute of Neurology, London, UK
| | - Katherine Miszkiel
- 1 Queen Square Multiple Sclerosis Centre, University College London, UCL Institute of Neurology, London, UK
| | - Alessia Mirigliani
- 1 Queen Square Multiple Sclerosis Centre, University College London, UCL Institute of Neurology, London, UK
| | - Camilla Fini
- 1 Queen Square Multiple Sclerosis Centre, University College London, UCL Institute of Neurology, London, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- 1 Queen Square Multiple Sclerosis Centre, University College London, UCL Institute of Neurology, London, UK 3 Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Alan J Thompson
- 1 Queen Square Multiple Sclerosis Centre, University College London, UCL Institute of Neurology, London, UK
| | - Olga Ciccarelli
- 1 Queen Square Multiple Sclerosis Centre, University College London, UCL Institute of Neurology, London, UK
| | - Ahmed T Toosy
- 1 Queen Square Multiple Sclerosis Centre, University College London, UCL Institute of Neurology, London, UK
| |
Collapse
|
45
|
Cawley N, Solanky BS, Muhlert N, Tur C, Edden RAE, Wheeler-Kingshott CAM, Miller DH, Thompson AJ, Ciccarelli O. Reduced gamma-aminobutyric acid concentration is associated with physical disability in progressive multiple sclerosis. Brain 2015; 138:2584-95. [PMID: 26304151 DOI: 10.1093/brain/awv209] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is the principle inhibitory neurotransmitter in the brain. The aims of this study were to investigate if gamma-aminobutyric acid levels (i) are abnormal in patients with secondary progressive multiple sclerosis compared with healthy controls; and (ii) correlate with physical and cognitive performance in this patient population. Thirty patients with secondary progressive multiple sclerosis and 17 healthy control subjects underwent single-voxel MEGA-PRESS (MEscher-GArwood Point RESolved Spectroscopy) magnetic resonance spectroscopy at 3 T, to quantify gamma-aminobutyric acid levels in the prefrontal cortex, right hippocampus and left sensorimotor cortex. All subjects were assessed clinically and underwent a cognitive assessment. Multiple linear regression models were used to compare differences in gamma-aminobutyric acid concentrations between patients and controls adjusting for age, gender and tissue fractions within each spectroscopic voxel. Regression was used to examine the relationships between the cognitive function and physical disability scores specific for these regions with gamma-aminobuytric acid levels, adjusting for age, gender, and total N-acetyl-aspartate and glutamine-glutamate complex levels. When compared with controls, patients performed significantly worse on all motor and sensory tests, and were cognitively impaired in processing speed and verbal memory. Patients had significantly lower gamma-aminobutyric acid levels in the hippocampus (adjusted difference = -0.403 mM, 95% confidence intervals -0.792, -0.014, P = 0.043) and sensorimotor cortex (adjusted difference = -0.385 mM, 95% confidence intervals -0.667, -0.104, P = 0.009) compared with controls. In patients, reduced motor function in the right upper and lower limb was associated with lower gamma-aminobutyric acid concentration in the sensorimotor cortex. Specifically for each unit decrease in gamma-aminobutyric acid levels (in mM), there was a predicted -10.86 (95% confidence intervals -16.786 to -4.482) decrease in grip strength (kg force) (P < 0.001) and -8.74 (95% confidence intervals -13.943 to -3.015) decrease in muscle strength (P < 0.006). This study suggests that reduced gamma-aminobutyric acid levels reflect pathological abnormalities that may play a role in determining physical disability. These abnormalities may include decreases in the pre- and postsynaptic components of gamma-aminobutyric acid neurotransmission and in the density of inhibitory neurons. Additionally, the reduced gamma-aminobutyric acid concentration may contribute to the neurodegenerative process, resulting in increased firing of axons, with consequent increased energy demands, which may lead to neuroaxonal degeneration and loss of the compensatory mechanisms that maintain motor function. This study supports the idea that modulation of gamma-aminobutyric acid neurotransmission may be an important target for neuroprotection in multiple sclerosis.See De Stefano and Giorgio (doi:10.1093/brain/awv213) for a scientific commentary on this article.
Collapse
Affiliation(s)
- Niamh Cawley
- 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
| | - Bhavana S Solanky
- 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
| | - Nils Muhlert
- 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK 2 School of Psychology and Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK 3 School of Psychological Sciences, University of Manchester, Manchester, UK
| | - Carmen Tur
- 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
| | - Richard A E Edden
- 4 Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA 5 FM Kirby Centre for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Claudia A M Wheeler-Kingshott
- 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK 6 Brain Connectivity Centre, C. Mondino National Neurological Institute, Pavia, Italy
| | - David H Miller
- 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK 7 National Institute of Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
| | - Alan J Thompson
- 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK 7 National Institute of Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
| | - Olga Ciccarelli
- 1 NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK 7 National Institute of Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
| |
Collapse
|
46
|
Yiannakas MC, Mustafa AM, De Leener B, Kearney H, Tur C, Altmann DR, De Angelis F, Plantone D, Ciccarelli O, Miller DH, Cohen-Adad J, Gandini Wheeler-Kingshott CAM. Fully automated segmentation of the cervical cord from T1-weighted MRI using PropSeg: Application to multiple sclerosis. NEUROIMAGE-CLINICAL 2015; 10:71-7. [PMID: 26793433 PMCID: PMC4678307 DOI: 10.1016/j.nicl.2015.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/14/2015] [Accepted: 11/02/2015] [Indexed: 12/14/2022]
Abstract
Spinal cord (SC) atrophy, i.e. a reduction in the SC cross-sectional area (CSA) over time, can be measured by means of image segmentation using magnetic resonance imaging (MRI). However, segmentation methods have been limited by factors relating to reproducibility or sensitivity to change. The purpose of this study was to evaluate a fully automated SC segmentation method (PropSeg), and compare this to a semi-automated active surface (AS) method, in healthy controls (HC) and people with multiple sclerosis (MS). MRI data from 120 people were retrospectively analysed; 26 HC, 21 with clinically isolated syndrome, 26 relapsing remitting MS, 26 primary and 21 secondary progressive MS. MRI data from 40 people returning after one year were also analysed. CSA measurements were obtained within the cervical SC. Reproducibility of the measurements was assessed using the intraclass correlation coefficient (ICC). A comparison between mean CSA changes obtained with the two methods over time was performed using multivariate structural equation regression models. Associations between CSA measures and clinical scores were investigated using linear regression models. Compared to the AS method, the reproducibility of CSA measurements obtained with PropSeg was high, both in patients and in HC, with ICC > 0.98 in all cases. There was no significant difference between PropSeg and AS in terms of detecting change over time. Furthermore, PropSeg provided measures that correlated with physical disability, similar to the AS method. PropSeg is a time-efficient and reliable segmentation method, which requires no manual intervention, and may facilitate large multi-centre neuroprotective trials in progressive MS. PropSeg is a fully automated segmentation method to measure cord atrophy in MS. PropSeg offers comparable results to a widely used semi-automated method. PropSeg is available for immediate clinical utility.
Collapse
Affiliation(s)
- Marios C Yiannakas
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Ahmed M Mustafa
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Benjamin De Leener
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Hugh Kearney
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Carmen Tur
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Daniel R Altmann
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK; Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Floriana De Angelis
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Domenico Plantone
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Olga Ciccarelli
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - David H Miller
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Julien Cohen-Adad
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK; Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| |
Collapse
|
47
|
Abstract
Multiple sclerosis (MS) is an inflammatory disorder of the CNS that affects both the brain and the spinal cord. MRI studies in MS focus more often on the brain than on the spinal cord, owing to the technical challenges in imaging this smaller, mobile structure. However, spinal cord abnormalities at disease onset have important implications for diagnosis and prognosis. Furthermore, later in the disease course, in progressive MS, myelopathy becomes the primary characteristic of the clinical presentation, and extensive spinal cord pathology--including atrophy, diffuse abnormalities and numerous focal lesions--is common. Recent spinal cord imaging studies have employed increasingly sophisticated techniques to improve detection and quantification of spinal cord lesions, and to elucidate their relationship with physical disability. Quantitative MRI measures of cord size and tissue integrity could be more sensitive to the axonal loss and other pathological processes in the spinal cord than is conventional MRI, putting quantitative MRI in a key role to elucidate the association between disability and spinal cord abnormalities seen in people with MS. In this Review, we summarize the most recent MS spinal cord imaging studies and discuss the new insights they have provided into the mechanisms of neurological impairment. Finally, we suggest directions for further and future research.
Collapse
|