1
|
Ghaziri J, Fei P, Tucholka A, Obaid S, Boucher O, Rouleau I, Nguyen DK. Resting-State Functional Connectivity Profile of Insular Subregions. Brain Sci 2024; 14:742. [PMID: 39199437 PMCID: PMC11352390 DOI: 10.3390/brainsci14080742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
The insula is often considered the fifth lobe of the brain and is increasingly recognized as one of the most connected regions in the brain, with widespread connections to cortical and subcortical structures. As a follow-up to our previous tractography work, we investigated the resting-state functional connectivity (rsFC) profiles of insular subregions and assessed their concordance with structural connectivity. We used the CONN toolbox to analyze the rsFC of the same 19 insular regions of interest (ROIs) we used in our prior tractography work and regrouped them into six subregions based on their connectivity pattern similarity. Our analysis of 50 healthy participants confirms the known broad connectivity of the insula and shows novel and specific whole-brain and intra-connectivity patterns of insular subregions. By examining such subregions, our findings provide a more detailed pattern of connectivity than prior studies that may prove useful for comparison between patients.
Collapse
Affiliation(s)
- Jimmy Ghaziri
- Département de Psychologie, Université du Québec à Montréal, Montréal, QC H2X 3P2, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Phillip Fei
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Chicoutimi, QC J4L 1C9, Canada
| | - Alan Tucholka
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, 08005 Barcelona, Spain
- Pixyl Medical, 38700 Grenoble, France
| | - Sami Obaid
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Olivier Boucher
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
- Service de Neurologie, Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC H2X 0C1, Canada
| | - Isabelle Rouleau
- Département de Psychologie, Université du Québec à Montréal, Montréal, QC H2X 3P2, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Dang K. Nguyen
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
- Service de Neurologie, Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC H2X 0C1, Canada
| |
Collapse
|
2
|
Wagner BJ, Schüller CB, Schüller T, Baldermann JC, Kohl S, Visser-Vandewalle V, Huys D, Marx M, Kuhn J, Peters J. Chronic Deep Brain Stimulation of the Human Nucleus Accumbens Region Disrupts the Stability of Intertemporal Preferences. J Neurosci 2023; 43:7175-7185. [PMID: 37684029 PMCID: PMC10601365 DOI: 10.1523/jneurosci.0138-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 09/10/2023] Open
Abstract
When choosing between rewards that differ in temporal proximity (intertemporal choice), human preferences are typically stable, constituting a clinically relevant transdiagnostic trait. Here we show, in female and male human patients undergoing deep brain stimulation (DBS) of the anterior limb of the internal capsule/NAcc region for treatment-resistant obsessive-compulsive disorder, that long-term chronic (but not phasic) DBS disrupts intertemporal preferences. Hierarchical Bayesian modeling accounting for temporal discounting behavior across multiple time points allowed us to assess both short-term and long-term reliability of intertemporal choice. In controls, temporal discounting was highly reliable, both long-term (6 months) and short-term (1 week). In contrast, in patients undergoing DBS, short-term reliability was high, but long-term reliability (6 months) was severely disrupted. Control analyses confirmed that this effect was not because of range restriction, the presence of obsessive-compulsive disorder symptoms or group differences in choice stochasticity. Model-agnostic between- and within-subject analyses confirmed this effect. These findings provide initial evidence for long-term modulation of cognitive function via DBS and highlight a potential contribution of the human NAcc region to intertemporal preference stability over time.SIGNIFICANCE STATEMENT Choosing between rewards that differ in temporal proximity is in part a stable trait with relevance for many mental disorders, and depends on prefrontal regions and regions of the dopamine system. Here we show that chronic deep brain stimulation of the human anterior limb of the internal capsule/NAcc region for treatment-resistant obsessive-compulsive disorder disrupts the stability of intertemporal preferences. These findings show that chronic stimulation of one of the brain's central motivational hubs can disrupt preferences thought to depend on this circuit.
Collapse
Affiliation(s)
- Ben J Wagner
- Department of Psychology, Biological Psychology, University of Cologne, 50969 Cologne, Germany
- Faculty of Psychology, Chair of Cognitive Computational Neuroscience, TU Dresden, 01187 Dresden, Germany
| | - Canan B Schüller
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
| | - Thomas Schüller
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
| | - Juan C Baldermann
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
- Department of Neurology, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Sina Kohl
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
- Department of Psychiatry and Psychotherapy III, LVR Klinik Bonn, 53111 Bonn, Germany
| | - Milena Marx
- Department of Psychology, Developmental Psychology, University of Heidelberg, 69117 Heidelberg, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatic, Johanniter Hospital Oberhausen, 46145 Oberhausen, Germany
| | - Jan Peters
- Department of Psychology, Biological Psychology, University of Cologne, 50969 Cologne, Germany
| |
Collapse
|
3
|
Treu S, Gonzalez-Rosa JJ, Soto-Leon V, Lozano-Soldevilla D, Oliviero A, Lopez-Sosa F, Reneses-Prieto B, Barcia JA, Strange BA. A ventromedial prefrontal dysrhythmia in obsessive-compulsive disorder is attenuated by nucleus accumbens deep brain stimulation. Brain Stimul 2021; 14:761-770. [PMID: 33984535 DOI: 10.1016/j.brs.2021.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) has consistently been linked to abnormal frontostriatal activity. The electrophysiological disruption in this circuit, however, remains to be characterized. OBJECTIVE/HYPOTHESIS The primary goal of this study was to investigate the neuronal synchronization in OCD patients. We predicted aberrant oscillatory activity in frontal regions compared to healthy control subjects, which would be alleviated by deep brain stimulation (DBS) of the nucleus accumbens (NAc). METHODS We compared scalp EEG recordings from nine patients with OCD treated with NAc-DBS with recordings from healthy controls, matched for age and gender. Within the patient group, EEG activity was compared with DBS turned off vs. stimulation at typical clinical settings (3.5 V, frequency of stimulation 130 Hz, pulse width 60 μs). In addition, intracranial EEG was recorded directly from depth macroelectrodes in the NAc in four OCD patients. RESULTS Cross-frequency coupling between the phase of alpha/low beta oscillations and amplitude of high gamma was significantly increased over midline frontal and parietal electrodes in patients when stimulation was turned off, compared to controls. Critically, in patients, beta (16-25 Hz) -gamma (110-166 Hz) phase amplitude coupling source localized to the ventromedial prefrontal cortex, and was reduced when NAc-DBS was active. In contrast, intracranial EEG recordings showed no beta-gamma phase amplitude coupling. The contribution of non-sinusoidal beta waveforms to this coupling are reported. CONCLUSION We reveal an increased beta-gamma phase amplitude coupling in fronto-central scalp sensors in patients suffering from OCD, compared to healthy controls, which may derive from ventromedial prefrontal regions implicated in OCD and is normalized by DBS of the nucleus accumbens. This aberrant cross-frequency coupling could represent a biomarker of OCD, as well as a target for novel therapeutic approaches.
Collapse
Affiliation(s)
- Svenja Treu
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Spain.
| | - Javier J Gonzalez-Rosa
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Spain; University of Cadiz, Institute of Biomedical Research Cadiz (INiBICA), Cádiz, Spain
| | - Vanesa Soto-Leon
- Hospital Nacional de Parapléjicos, FENNSI Group, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Diego Lozano-Soldevilla
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Spain
| | - Antonio Oliviero
- Hospital Nacional de Parapléjicos, FENNSI Group, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Fernando Lopez-Sosa
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Spain; University of Cadiz, Institute of Biomedical Research Cadiz (INiBICA), Cádiz, Spain
| | - Blanca Reneses-Prieto
- Department of Psychiatry, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos, Universidad Complutense de Madrid, Spain
| | - Juan A Barcia
- Department of Neurosurgery, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos, Universidad Complutense de Madrid, Spain
| | - Bryan A Strange
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Spain
| |
Collapse
|
4
|
Lopez-Sosa F, Reneses B, Sanmartino F, Galarza-Vallejo A, Garcia-Albea J, Cruz-Gomez AJ, Yebra M, Oliviero A, Barcia JA, Strange BA, Gonzalez-Rosa JJ. Nucleus Accumbens Stimulation Modulates Inhibitory Control by Right Prefrontal Cortex Activation in Obsessive-Compulsive Disorder. Cereb Cortex 2021; 31:2742-2758. [PMID: 33406245 DOI: 10.1093/cercor/bhaa397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 11/14/2022] Open
Abstract
Inhibitory control is considered a compromised cognitive function in obsessive-compulsive (OCD) patients and likely linked to corticostriatal circuitry disturbances. Here, 9 refractory OCD patients treated with deep brain stimulation (DBS) were evaluated to address the dynamic modulations of large-scale cortical network activity involved in inhibitory control after nucleus accumbens (NAc) stimulation and their relationship with cortical thickness. A comparison of DBS "On/Off" states showed that patients committed fewer errors and exhibited increased intraindividual reaction time variability, resulting in improved goal maintenance abilities and proactive inhibitory control. Visual P3 event-related potentials showed increased amplitudes during Go/NoGo performance. Go and NoGo responses increased cortical activation mainly over the right inferior frontal gyrus and medial frontal gyrus, respectively. Moreover, increased cortical activation in these areas was equally associated with a higher cortical thickness within the prefrontal cortex. These results highlight the critical role of NAc DBS for preferentially modulating the neuronal activity underlying sustained speed responses and inhibitory control in OCD patients and show that it is triggered by reorganizing brain functions to the right prefrontal regions, which may depend on the underlying cortical thinning. Our findings provide updated structural and functional evidence that supports critical dopaminergic-mediated frontal-striatal network interactions in OCD.
Collapse
Affiliation(s)
- Fernando Lopez-Sosa
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), 11009 Cádiz, Spain.,Laboratory for Clinical Neuroscience, Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), 28040 Madrid, Spain
| | - Blanca Reneses
- Department of Psychiatry, Health Research Institute of Hospital Clinico San Carlos (IdISSC), Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | | | - Ana Galarza-Vallejo
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), 28040 Madrid, Spain
| | - Julia Garcia-Albea
- Department of Psychiatry, Health Research Institute of Hospital Clinico San Carlos (IdISSC), Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Alvaro J Cruz-Gomez
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), 11009 Cádiz, Spain
| | - Mar Yebra
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), 28040 Madrid, Spain.,Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, 45004 Toledo, Spain
| | - Juan A Barcia
- Department of Neurosurgery, Health Research Institute of Hospital Clinico San Carlos (IdISSC), Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Bryan A Strange
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), 28040 Madrid, Spain.,Department of Neuroimaging, Alzheimer's Disease Research Centre, Reina Sofia-CIEN Foundation, 28013 Madrid, Spain
| | - Javier J Gonzalez-Rosa
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), 11009 Cádiz, Spain.,Laboratory for Clinical Neuroscience, Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), 28040 Madrid, Spain.,Department of Psychology, University of Cadiz. 11003 Cádiz, Spain
| |
Collapse
|
5
|
Abstract
Real-life choices often require that we draw inferences about the value of options based on structured, schematic knowledge about their utility for our current goals. Other times, value information may be retrieved directly from a specific prior experience with an option. In an fMRI experiment, we investigated the neural systems involved in retrieving and assessing information from different memory sources to support value-based choice. Participants completed a task in which items could be conferred positive or negative value based on schematic associations (i.e., schema value) or learned directly from experience via deterministic feedback (i.e., experienced value). We found that ventromedial pFC (vmPFC) activity correlated with the influence of both experience- and schema-based values on participants' decisions. Connectivity between the vmPFC and middle temporal cortex also tracked the inferred value of items based on schematic associations on the first presentation of ingredients, before any feedback. In contrast, the striatum responded to participants' willingness to bet on ingredients as a function of the unsigned strength of their memory for those options' values. These results argue that the striatum and vmPFC play distinct roles in memory-based value judgment and decision-making. Specifically, the vmPFC assesses the value of options based on information inferred from schematic knowledge and retrieved from prior direct experience, whereas the striatum controls a decision to act on options based on memory strength.
Collapse
Affiliation(s)
- Avinash R. Vaidya
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, 02912
| | - David Badre
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, 02912
- Carney Institute for Brain Science, Brown University, Providence, RI, 02912
| |
Collapse
|
6
|
Treu S, Strange B, Oxenford S, Neumann WJ, Kühn A, Li N, Horn A. Deep brain stimulation: Imaging on a group level. Neuroimage 2020; 219:117018. [PMID: 32505698 DOI: 10.1016/j.neuroimage.2020.117018] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/07/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Deep Brain Stimulation (DBS) is an established treatment option for movement disorders and is under investigation for treatment in a growing number of other brain diseases. It has been shown that exact electrode placement crucially affects the efficacy of DBS and this should be considered when investigating novel indications or DBS targets. To measure clinical improvement as a function of electrode placement, neuroscientific methodology and specialized software tools are needed. Such tools should have the goal to make electrode placement comparable across patients and DBS centers, and include statistical analysis options to validate and define optimal targets. Moreover, to allow for comparability across different centers, these need to be performed within an algorithmically and anatomically standardized and openly available group space. With the publication of Lead-DBS software in 2014, an open-source tool was introduced that allowed for precise electrode reconstructions based on pre- and postoperative neuroimaging data. Here, we introduce Lead Group, implemented within the Lead-DBS environment and specifically designed to meet aforementioned demands. In the present article, we showcase the various processing streams of Lead Group in a retrospective cohort of 51 patients suffering from Parkinson's disease, who were implanted with DBS electrodes to the subthalamic nucleus (STN). Specifically, we demonstrate various ways to visualize placement of all electrodes in the group and map clinical improvement values to subcortical space. We do so by using active coordinates and volumes of tissue activated, showing converging evidence of an optimal DBS target in the dorsolateral STN. Second, we relate DBS outcome to the impact of each electrode on local structures by measuring overlap of stimulation volumes with the STN. Finally, we explore the software functions for connectomic mapping, which may be used to relate DBS outcomes to connectivity estimates with remote brain areas. The manuscript is accompanied by a walkthrough tutorial which allows users to reproduce all main results presented here. All data and code needed to reproduce results are openly available.
Collapse
Affiliation(s)
- Svenja Treu
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Spain; Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany.
| | - Bryan Strange
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Spain
| | - Simon Oxenford
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| | - Wolf-Julian Neumann
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| | - Andrea Kühn
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany; Exzellenzcluster NeuroCure, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ningfei Li
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| | - Andreas Horn
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| |
Collapse
|
7
|
Roles of the Amygdala and Basal Forebrain in Defense: a Reply to Luyck Et al. and Implications for Defensive Action. Neuropsychol Rev 2019; 29:186-189. [PMID: 30888605 PMCID: PMC6560019 DOI: 10.1007/s11065-019-09401-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/26/2019] [Indexed: 12/19/2022]
Abstract
The commentary by Luyck and colleagues on our paper provides many stimulating viewpoints and interpretations of our original study on dissociable responses in the amygdala and bed nucleus of the stria terminalis in threat processing. Here, we reply to some of the points raised and while agreeing with most of the comments also provide some alternative viewpoints. We end by putting forward a research agenda for how to further investigate the roles of these regions in threat processing, with an emphasis on studying their roles in defensive action.
Collapse
|
8
|
Ghaziri J, Tucholka A, Girard G, Boucher O, Houde JC, Descoteaux M, Obaid S, Gilbert G, Rouleau I, Nguyen DK. Subcortical structural connectivity of insular subregions. Sci Rep 2018; 8:8596. [PMID: 29872212 PMCID: PMC5988839 DOI: 10.1038/s41598-018-26995-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/18/2018] [Indexed: 12/19/2022] Open
Abstract
Hidden beneath the Sylvian fissure and sometimes considered as the fifth lobe of the brain, the insula plays a multi-modal role from its strategic location. Previous structural studies have reported cortico-cortical connections with the frontal, temporal, parietal and occipital lobes, but only a few have looked at its connections with subcortical structures. The insular cortex plays a role in a wide range of functions including processing of visceral and somatosensory inputs, olfaction, audition, language, motivation, craving, addiction and emotions such as pain, empathy and disgust. These functions implicate numerous subcortical structures, as suggested by various functional studies. Based on these premises, we explored the structural connectivity of insular ROIs with the thalamus, amygdala, hippocampus, putamen, globus pallidus, caudate nucleus and nucleus accumbens. More precisely, we were interested in unraveling the specific areas of the insula connected to these subcortical structures. By using state-of-the-art HARDI tractography algorithm, we explored here the subcortical connectivity of the insula.
Collapse
Affiliation(s)
- Jimmy Ghaziri
- Département de psychologie, Université du Québec à Montréal, Montréal, Qc, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Qc, Canada
| | - Alan Tucholka
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Gabriel Girard
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science department, Université de Sherbrooke, Sherbrooke, Qc, Canada
| | - Olivier Boucher
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Qc, Canada.,Département de psychologie, Université de Montréal, Montréal, Qc, Canada
| | - Jean-Christophe Houde
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science department, Université de Sherbrooke, Sherbrooke, Qc, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science department, Université de Sherbrooke, Sherbrooke, Qc, Canada
| | - Sami Obaid
- Service de Neurochirurgie, Centre Hospitalier de l'Université de Montréal, Montréal, Qc, Canada
| | | | - Isabelle Rouleau
- Département de psychologie, Université du Québec à Montréal, Montréal, Qc, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Qc, Canada
| | - Dang Khoa Nguyen
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Qc, Canada. .,Service de Neurologie, Centre Hospitalier de l'Université de Montréal, Montréal, Qc, Canada.
| |
Collapse
|
9
|
Peisker CB, Schüller T, Peters J, Wagner BJ, Schilbach L, Müller UJ, Visser-Vandewalle V, Kuhn J. Nucleus Accumbens Deep Brain Stimulation in Patients with Substance Use Disorders and Delay Discounting. Brain Sci 2018; 8:brainsci8020021. [PMID: 29382059 PMCID: PMC5836040 DOI: 10.3390/brainsci8020021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/27/2022] Open
Abstract
Deep brain stimulation (DBS) of the nucleus accumbens (NAc) shows first promising results in patients with severe substance use disorder (SUD), a patient group known to have deficits in self-control. One facet of self-control is the ability to forego smaller sooner rewards in favor of larger later rewards (delay discounting, DD). The NAc has been suggested to integrate motivational information to guide behavior while the consequences of NAc-DBS on DD are unknown. To this end, nine patients with SUD performed a DD task with DBS on and after a 24 h DBS off period. Furthermore, 18 healthy controls were measured to assess possible alterations in DD in patients with SUD. Our findings implicate that DD was not significantly modulated by NAc-DBS and also that patients with SUD did not differ from healthy controls. While null results must be interpreted with caution, the commonly observed association of impaired DD in SUD might suggest a long-term effect of NAc-DBS that was not sufficiently modulated by a 24 h DBS off period.
Collapse
Affiliation(s)
- Canan B Peisker
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany.
| | - Thomas Schüller
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany.
| | - Jan Peters
- Department of Psychology, Biological Psychology, University of Cologne, Bernhard-Feilchenfeld-Straße 11, 50969 Cologne, Germany.
| | - Ben J Wagner
- Department of Psychology, Biological Psychology, University of Cologne, Bernhard-Feilchenfeld-Straße 11, 50969 Cologne, Germany.
| | - Leonhard Schilbach
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804 Munich, Germany.
| | - Ulf J Müller
- Department of Psychiatry, Otto-von-Guericke-University of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
- Pychosomatic Hospital Buching, Rauhenbichl, 87642 Halblech, Germany.
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Medical Faculty, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany.
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany.
- Department of Psychiatry, Psychotherapy and Psychosomatic, Johanniter Hospital Oberhausen, Steinbrinkstraße 96a, 46145 Oberhausen, Germany.
| |
Collapse
|
10
|
Pes R, Godar SC, Fox AT, Burgeno LM, Strathman HJ, Jarmolowicz DP, Devoto P, Levant B, Phillips PE, Fowler SC, Bortolato M. Pramipexole enhances disadvantageous decision-making: Lack of relation to changes in phasic dopamine release. Neuropharmacology 2016; 114:77-87. [PMID: 27889491 DOI: 10.1016/j.neuropharm.2016.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
Abstract
Pramipexole (PPX) is a high-affinity D2-like dopamine receptor agonist, used in the treatment of Parkinson's disease (PD) and restless leg syndrome. Recent evidence indicates that PPX increases the risk of problem gambling and impulse-control disorders in vulnerable patients. Although the molecular bases of these complications remain unclear, several authors have theorized that PPX may increase risk propensity by activating presynaptic dopamine receptors in the mesolimbic system, resulting in the reduction of dopamine release in the nucleus accumbens (NAcc). To test this possibility, we subjected rats to a probability-discounting task specifically designed to capture the response to disadvantageous options. PPX enhanced disadvantageous decision-making at a dose (0.3 mg/kg/day, SC) that reduced phasic dopamine release in the NAcc. To test whether these modifications in dopamine efflux were responsible for the observed neuroeconomic deficits, PPX was administered in combination with the monoamine-depleting agent reserpine (RES), at a low dose (1 mg/kg/day, SC) that did not affect baseline locomotor and operant responses. Contrary to our predictions, RES surprisingly exacerbated the effects of PPX on disadvantageous decision-making, even though it failed to augment PPX-induced decreases in phasic dopamine release. These results collectively suggest that PPX impairs the discounting of probabilistic losses and that the enhancement in risk-taking behaviors secondary to this drug may be dissociated from dynamic changes in mesolimbic dopamine release.
Collapse
Affiliation(s)
- Romina Pes
- Dept. of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, United States; Dept. of Biomedical Sciences, Neuroscience Division, University of Cagliari, Italy
| | - Sean C Godar
- Dept. of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, United States; Dept. of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - Andrew T Fox
- Dept. of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, United States
| | - Lauren M Burgeno
- Dept. of Pharmacology, University of Washington, Seattle, WA, United States
| | - Hunter J Strathman
- Dept. of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - David P Jarmolowicz
- Problem Gambling Research Studies (ProGResS) Network, University of Kansas, Lawrence, KS, United States; Dept. of Applied Behavioral Science, University of Kansas, Lawrence, KS, United States
| | - Paola Devoto
- Dept. of Biomedical Sciences, Neuroscience Division, University of Cagliari, Italy
| | - Beth Levant
- Dept. of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Paul E Phillips
- Dept. of Pharmacology, University of Washington, Seattle, WA, United States; Dept. of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| | - Stephen C Fowler
- Dept. of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, United States
| | - Marco Bortolato
- Dept. of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, United States; Problem Gambling Research Studies (ProGResS) Network, University of Kansas, Lawrence, KS, United States; Dept. of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
11
|
Mavridis' Area and the Mathematical Science of Subnuclear Accumbens Targeting: Precision Matters. World Neurosurg 2016; 90:691-692. [PMID: 27324939 DOI: 10.1016/j.wneu.2015.11.093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 11/23/2022]
|