1
|
Kalousios S, Müller J, Yang H, Eberlein M, Uckermann O, Schackert G, Polanski WH, Leonhardt G. ECG-based epileptic seizure prediction: Challenges of current data-driven models. Epilepsia Open 2025; 10:143-154. [PMID: 39529572 PMCID: PMC11803288 DOI: 10.1002/epi4.13073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE Up to a third of patients with epilepsy fail to achieve satisfactory seizure control. A reliable method of predicting seizures would alleviate psychological and physical impact. Dysregulation in heart rate variability (HRV) has been found to precede epileptic seizures and may serve as an extracerebral predictive biomarker. This study aims to identify the preictal HRV dynamics and unveil the factors impeding the clinical application of ECG-based seizure prediction. METHODS Thirty-nine adult patients (eight women; median age: 38, [IQR = 31, 56.5]) with 252 seizures were included. Each patient had more than three recorded epileptic seizures, each at least 2 hours apart. For each seizure, one hour of ECG prior to seizure onset was analyzed and 97 HRV features were extracted from overlapping three-minute windows with 10s stride. Two separate patient-specific experiments were performed using a support vector machine (SVM). Firstly, the separability of training data was examined in a non-causal trial. Secondly, the prediction was attempted in pseudo-prospective conditions. Finally, visualized HRV data, clinical metadata, and results were correlated. RESULTS The mean receiver operating characteristic (ROC) area under the curve (AUC) for the non-causal experiment was 0.823 (±0.12), with 208 (82.5%) seizures achieving an improvement over chance (IoC) classification score (p < 0.05, Hanley & McNeil test). In pseudo-prospective classification, the ROC-AUC was 0.569 (±0.17), and 86 (49.4%) seizures were classified with IoC. Off-sample optimized SVMs failed to improve performance. Major limiting factors identified include non-stationarity, variable preictal duration and dynamics. The latter is expressed as both inter-seizure onset zone (SOZ) and intra-SOZ variability. SIGNIFICANCE The pseudo-prospective preictal classification achieving IoC in approximately half of tested seizures suggests the presence of genuine preictal HRV dynamics, but the overall performance does not warrant clinical application at present. The limiting factors identified are often overlooked in non-causal study designs. While current deterministic prediction methods prove inadequate, probabilistic approaches may offer a promising alternative. PLAIN LANGUAGE SUMMARY Many patients with epilepsy suffer from uncontrollable seizures and would greatly benefit from a reliable seizure prediction method. Currently, no such system is available to meet this need. Previous studies suggest that changes in the electrocardiogram (ECG) precede seizures by several minutes. In our work, we evaluated whether variations in heart rate could be used to predict epileptic seizures. Our findings indicate that we are still far from achieving results suitable for clinical application and highlight several limiting factors of present seizure prediction approaches.
Collapse
Affiliation(s)
- Sotirios Kalousios
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität DresdenDresdenGermany
| | - Jens Müller
- TU Dresden, Faculty of Electrical and Computer EngineeringInstitute of Circuits and SystemsDresdenGermany
| | - Hongliu Yang
- TU Dresden, Faculty of Electrical and Computer EngineeringInstitute of Circuits and SystemsDresdenGermany
| | - Matthias Eberlein
- TU Dresden, Faculty of Electrical and Computer EngineeringInstitute of Circuits and SystemsDresdenGermany
| | - Ortrud Uckermann
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität DresdenDresdenGermany
- Division of Medical Biology, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität DresdenDresdenGermany
| | - Gabriele Schackert
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität DresdenDresdenGermany
| | - Witold H. Polanski
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität DresdenDresdenGermany
| | - Georg Leonhardt
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität DresdenDresdenGermany
| |
Collapse
|
2
|
Chang CY, Zhang B, Moss R, Picard R, Westover MB, Goldenholz D. Necessary for seizure forecasting outcome metrics: Seizure frequency and benchmark model. Epilepsy Res 2024; 208:107474. [PMID: 39522392 PMCID: PMC11614381 DOI: 10.1016/j.eplepsyres.2024.107474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND This study aims to illustrate the connection between seizure frequency (SF) and performance metrics in seizure forecasting, and to compare the effectiveness of a moving average (MA) model versus the commonly used permutation benchmark. METHODS Metrics of calibration and discrimination were computed for each dataset, comparing MA and permutation performance across SF values. Three datasets were used: (1) self-reported seizure diaries from 3994 Seizure Tracker patients, (2) automatically detected and sometimes manually reported or edited generalized tonic-clonic seizures from 2350 Empatica Embrace 2 and Mate App users, and (3) simulated datasets with varying SFs. RESULTS Most metrics were found to depend on SF. The MA model outperformed or matched the permutation model in all cases. These more advanced metrics show that comparison to permutation will falsely elevate poor forecasting models. CONCLUSIONS The findings highlight SF's role in seizure forecasting accuracy and the MA model's suitability as a benchmark. This study underscores the need for considering patient SF in forecasting studies and suggests the MA model may provide a better standard for evaluating future seizure forecasting models.
Collapse
Affiliation(s)
- Chi-Yuan Chang
- Harvard Medical School, Boston MA, United States; Beth Israel Deaconess Medical Center, Boston, MA, United States.
| | - Boyu Zhang
- Massachusetts Institute of Technology, Cambridge, MA, United States; Empatica USA, Cambridge, MA, United States; Brigham and Women's Hospital, Boston, MA, United States.
| | - Robert Moss
- Seizure Tracker LLC, Springfield, VA, United States.
| | - Rosalind Picard
- Massachusetts Institute of Technology, Cambridge, MA, United States; Empatica USA, Cambridge, MA, United States.
| | - M Brandon Westover
- Harvard Medical School, Boston MA, United States; Beth Israel Deaconess Medical Center, Boston, MA, United States.
| | - Daniel Goldenholz
- Harvard Medical School, Boston MA, United States; Beth Israel Deaconess Medical Center, Boston, MA, United States.
| |
Collapse
|
3
|
Liang D, Liu A, Wu L, Li C, Qian R, Chen X. Privacy-preserving multi-source semi-supervised domain adaptation for seizure prediction. Cogn Neurodyn 2024; 18:3521-3534. [PMID: 39712093 PMCID: PMC11655995 DOI: 10.1007/s11571-023-10026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 12/24/2024] Open
Abstract
Domain adaptation (DA) has been frequently used to solve the inter-patient variability problem in EEG-based seizure prediction. However, existing DA methods require access to the existing patients' data when adapting the model, which leads to privacy concerns. Besides, most of them treat the whole existing patients' data as one single source and attempt to minimize the discrepancy with the target patient. This manner ignores the inter-patient variability among source patients, making the adaptation more difficult. Considering theses issues simultaneously, we present a novel multi-source-free semi-supervised domain adaptive seizure prediction model (MSF-SSDA-SPM). MSF-SSDA-SPM considers each source patient as one single source and generates a pretrained model from each source. Without requiring access to the source data, MSF-SSDA-SPM performs adaptation just using these pretrained source models and limited labeled target data. Specifically, we freeze the classifiers of all the source models and optimize the source feature extractors in a joint manner. Then we design a knowledge distillation strategy to integrate the knowledge of these well-adapted source models into one single target model. On the CHB-MIT dataset, MSF-SSDA-SPM attains a sensitivity of 88.6%, a FPR of 0.182/h and an AUC of 0.856; on the Kaggle dataset, it achieves 78.6%, 0.178/h and 0.784, respectively. Experimental results demonstrate that MSF-SSDA-SPM achieves both high privacy-protection and promising prediction performance.
Collapse
Affiliation(s)
- Deng Liang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027 Anhui China
| | - Aiping Liu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027 Anhui China
| | - Le Wu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027 Anhui China
| | - Chang Li
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009 Anhui China
| | - Ruobing Qian
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui China
| | - Xun Chen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027 Anhui China
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui China
| |
Collapse
|
4
|
Yang H, Müller J, Eberlein M, Kalousios S, Leonhardt G, Duun-Henriksen J, Kjaer T, Tetzlaff R. Seizure forecasting with ultra long-term EEG signals. Clin Neurophysiol 2024; 167:211-220. [PMID: 39353259 DOI: 10.1016/j.clinph.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVE The apparent randomness of seizure occurrence affects greatly the quality of life of persons with epilepsy. Since seizures are often phase-locked to multidien cycles of interictal epileptiform activity, a recent forecasting scheme, exploiting RNS data, is capable of forecasting seizures days in advance. METHODS We tested the use of a bandpass filter to capture the universal mid-term dynamics enabling both patient-specific and cross-patient forecasting. In a retrospective study, we explored the feasibility of the scheme on three long-term recordings obtained by the NeuroPace RNS System, the NeuroVista intracranial, and the UNEEG subcutaneous devices, respectively. RESULTS Better-than-chance forecasting was observed in 15 (83 %) of 18 patients, and in 16 (89 %) patients for daily and hourly forecast, respectively. Meaningful forecast up to 30 days could be achieved in 4 (22 %) patients for hourly forecast frequency. The cross-patient performance decreased only marginally and was patient-wise strongly correlated with the patient-specific one. Comparable performance was obtained for NeuroVista and UNEEG data sets. SIGNIFICANCE The feasibility of cross-patient forecasting supports the universal importance of mid-term dynamics for seizure forecasting, demonstrates promising inter-subject-applicability of the scheme on ultra long-term EEG recordings, and highlights its huge potential for clinical use.
Collapse
Affiliation(s)
- Hongliu Yang
- TU Dresden, Faculty of Electrical and Computer Engineering, Institute of Circuits and Systems, 01062 Dresden, Germany.
| | - Jens Müller
- TU Dresden, Faculty of Electrical and Computer Engineering, Institute of Circuits and Systems, 01062 Dresden, Germany
| | - Matthias Eberlein
- TU Dresden, Faculty of Electrical and Computer Engineering, Institute of Circuits and Systems, 01062 Dresden, Germany
| | - Sotirios Kalousios
- Technische Universität Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, Department of Neurosurgery, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Georg Leonhardt
- Technische Universität Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, Department of Neurosurgery, Fetscherstrasse 74, 01307, Dresden, Germany
| | | | - Troels Kjaer
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ronald Tetzlaff
- TU Dresden, Faculty of Electrical and Computer Engineering, Institute of Circuits and Systems, 01062 Dresden, Germany
| |
Collapse
|
5
|
Wang X, Gao Z, Zhang M, Wang Y, Yang L, Lin J, Karkkainen T, Cong F. Combination of Channel Reordering Strategy and Dual CNN-LSTM for Epileptic Seizure Prediction Using Three iEEG Datasets. IEEE J Biomed Health Inform 2024; 28:6557-6567. [PMID: 39106143 DOI: 10.1109/jbhi.2024.3438829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
OBJECTIVE Intracranial electroencephalogram (iEEG) signals are generally recorded using multiple channels, and channel selection is therefore a significant means in studying iEEG-based seizure prediction. For n channels, [Formula: see text] channel cases can be generated for selection. However, by this means, an increase in n can cause an exponential increase in computational consumption, which may result in a failure of channel selection when n is too large. Hence, it is necessary to explore reasonable channel selection strategies under the premise of controlling computational consumption and ensuring high classification accuracy. Given this, we propose a novel method of channel reordering strategy combined with dual CNN-LSTM for effectively predicting seizures. METHOD First, for each patient with n channels, interictal and preictal iEEG samples from each single channel are input into the CNN-LSTM model for classification. Then, the F1-score of each single channel is calculated, and the channels are reordered in descending order according to the size of F1-scores (channel reordering strategy). Next, iEEG signals with an increasing number of channels are successively fed into the CNN-LSTM model for classification again. Finally, according to the classification results from n channel cases, the channel case with the highest classification rate is selected. RESULTS Our method is evaluated on the three iEEG datasets: the Freiburg, the SWEC-ETHZ and the American Epilepsy Society Seizure Prediction Challenge (AES-SPC). At the event-based level, the sensitivities of 100%, 100% and 90.5%, and the false prediction rates (FPRs) of 0.10/h, 0/h and 0.47/h, are achieved for the three datasets, respectively. Moreover, compared to an unspecific random predictor, our method also shows a better performance for all patients and dogs from the three datasets. At the segment-based level, the sensitivities-specificities-accuracies-AUCs of 88.1%-94.0%-93.5%-0.9101, 99.1%-99.7%-99.6%-0.9935, and 69.2%-79.9%-78.2%-0.7373, are attained for the three datasets, respectively. CONCLUSION Our method can effectively predict seizures and address the challenge of an excessive number of channels during channel selection.
Collapse
|
6
|
Shang S, Shi Y, Zhang Y, Liu M, Zhang H, Wang P, Zhuang L. Artificial intelligence for brain disease diagnosis using electroencephalogram signals. J Zhejiang Univ Sci B 2024; 25:914-940. [PMID: 39420525 PMCID: PMC11494159 DOI: 10.1631/jzus.b2400103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024]
Abstract
Brain signals refer to electrical signals or metabolic changes that occur as a consequence of brain cell activity. Among the various non-invasive measurement methods, electroencephalogram (EEG) stands out as a widely employed technique, providing valuable insights into brain patterns. The deviations observed in EEG reading serve as indicators of abnormal brain activity, which is associated with neurological diseases. Brain‒computer interface (BCI) systems enable the direct extraction and transmission of information from the human brain, facilitating interaction with external devices. Notably, the emergence of artificial intelligence (AI) has had a profound impact on the enhancement of precision and accuracy in BCI technology, thereby broadening the scope of research in this field. AI techniques, encompassing machine learning (ML) and deep learning (DL) models, have demonstrated remarkable success in classifying and predicting various brain diseases. This comprehensive review investigates the application of AI in EEG-based brain disease diagnosis, highlighting advancements in AI algorithms.
Collapse
Affiliation(s)
- Shunuo Shang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- The MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Yingqian Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yajie Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mengxue Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hong Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
- The MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China.
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China.
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
7
|
Nasseri M, Grzeskowiak C, Brinkmann BH, Dümpelmann M. Editorial: Seizure forecasting tools, biomarkers and devices. Front Neurosci 2024; 18:1470640. [PMID: 39263238 PMCID: PMC11387221 DOI: 10.3389/fnins.2024.1470640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Affiliation(s)
- Mona Nasseri
- School of Engineering, University of North Florida, Jacksonville, FL, United States
- Neurology Department, Mayo Clinic, Rochester, MN, United States
| | - Caitlin Grzeskowiak
- Research and Innovation Department, Epilepsy Foundation, Landover, MD, United States
| | | | - Matthias Dümpelmann
- Epilepsy Center, Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Stirling RE, Nurse ES, Payne D, Naim-Feil J, Coleman H, Freestone DR, Richarson MP, Brinkmann BH, D'Souza WJ, Grayden DB, Cook MJ, Karoly PJ. User experience of a seizure risk forecasting app: A mixed methods investigation. Epilepsy Behav 2024; 157:109876. [PMID: 38851123 DOI: 10.1016/j.yebeh.2024.109876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVE Over recent years, there has been a growing interest in exploring the utility of seizure risk forecasting, particularly how it could improve quality of life for people living with epilepsy. This study reports on user experiences and perspectives of a seizure risk forecaster app, as well as the potential impact on mood and adjustment to epilepsy. METHODS Active app users were asked to complete a survey (baseline and 3-month follow-up) to assess perspectives on the forecast feature as well as mood and adjustment. Post-hoc, nine neutral forecast users (neither agreed nor disagreed it was useful) completed semi-structured interviews, to gain further insight into their perspectives of epilepsy management and seizure forecasting. Non-parametric statistical tests and inductive thematic analyses were used to analyse the quantitative and qualitative data, respectively. RESULTS Surveys were completed by 111 users. Responders consisted of "app users" (n = 58), and "app and forecast users" (n = 53). Of the "app and forecast users", 40 % believed the forecast was accurate enough to be useful in monitoring for seizure risk, and 60 % adopted it for purposes like scheduling activities and helping mental state. Feeling more in control was the most common response to both high and low risk forecasted states. In-depth interviews revealed five broad themes, of which 'frustrations with lack of direction' (regarding their current epilepsy management approach), 'benefits of increased self-knowledge' and 'current and anticipated usefulness of forecasting' were the most common. SIGNIFICANCE Preliminary results suggest that seizure risk forecasting can be a useful tool for people with epilepsy to make lifestyle changes, such as scheduling daily events, and experience greater feelings of control. These improvements may be attributed, at least partly, to the improvements in self-knowledge experienced through forecast use.
Collapse
Affiliation(s)
- Rachel E Stirling
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia; Graeme Clark Institute of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Ewan S Nurse
- Graeme Clark Institute of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia; Seer Medical, Melbourne, Victoria, Australia; Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Australia.
| | | | - Jodie Naim-Feil
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia; Graeme Clark Institute of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Honor Coleman
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia; Epilepsy Research Centre, Department of Medicine (Austin Health), University of Melbourne, Victoria, Melbourne, Australia; Department of Neuroscience, Faculty of Medicine, Nursing & Health Science, Monash University, Melbourne, Australia.
| | | | | | | | - Wendyl J D'Souza
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Australia.
| | - David B Grayden
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia; Graeme Clark Institute of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia; Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Australia.
| | - Mark J Cook
- Graeme Clark Institute of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia; Seer Medical, Melbourne, Victoria, Australia; Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Australia.
| | - Philippa J Karoly
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia; Graeme Clark Institute of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Lehnertz K. Time-series-analysis-based detection of critical transitions in real-world non-autonomous systems. CHAOS (WOODBURY, N.Y.) 2024; 34:072102. [PMID: 38985967 DOI: 10.1063/5.0214733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
Real-world non-autonomous systems are open, out-of-equilibrium systems that evolve in and are driven by temporally varying environments. Such systems can show multiple timescale and transient dynamics together with transitions to very different and, at times, even disastrous dynamical regimes. Since such critical transitions disrupt the systems' intended or desired functionality, it is crucial to understand the underlying mechanisms, to identify precursors of such transitions, and to reliably detect them in time series of suitable system observables to enable forecasts. This review critically assesses the various steps of investigation involved in time-series-analysis-based detection of critical transitions in real-world non-autonomous systems: from the data recording to evaluating the reliability of offline and online detections. It will highlight pros and cons to stimulate further developments, which would be necessary to advance understanding and forecasting nonlinear behavior such as critical transitions in complex systems.
Collapse
|
10
|
Georgis-Yap Z, Popovic MR, Khan SS. Supervised and Unsupervised Deep Learning Approaches for EEG Seizure Prediction. JOURNAL OF HEALTHCARE INFORMATICS RESEARCH 2024; 8:286-312. [PMID: 38681760 PMCID: PMC11052752 DOI: 10.1007/s41666-024-00160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 05/01/2024]
Abstract
Epilepsy affects more than 50 million people worldwide, making it one of the world's most prevalent neurological diseases. The main symptom of epilepsy is seizures, which occur abruptly and can cause serious injury or death. The ability to predict the occurrence of an epileptic seizure could alleviate many risks and stresses people with epilepsy face. We formulate the problem of detecting preictal (or pre-seizure) with reference to normal EEG as a precursor to incoming seizure. To this end, we developed several supervised deep learning approaches model to identify preictal EEG from normal EEG. We further develop novel unsupervised deep learning approaches to train the models on only normal EEG, and detecting pre-seizure EEG as an anomalous event. These deep learning models were trained and evaluated on two large EEG seizure datasets in a person-specific manner. We found that both supervised and unsupervised approaches are feasible; however, their performance varies depending on the patient, approach and architecture. This new line of research has the potential to develop therapeutic interventions and save human lives.
Collapse
Affiliation(s)
- Zakary Georgis-Yap
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 550, University Avenue, Toronto, M5G 2A2 Ontario Canada
- Institute of Biomedical Engineering, University of Toronto, 64 College St., Toronto, M5S 3G9 Ontario Canada
| | - Milos R. Popovic
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 550, University Avenue, Toronto, M5G 2A2 Ontario Canada
- Institute of Biomedical Engineering, University of Toronto, 64 College St., Toronto, M5S 3G9 Ontario Canada
| | - Shehroz S. Khan
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 550, University Avenue, Toronto, M5G 2A2 Ontario Canada
- Institute of Biomedical Engineering, University of Toronto, 64 College St., Toronto, M5S 3G9 Ontario Canada
| |
Collapse
|
11
|
Lucas A, Revell A, Davis KA. Artificial intelligence in epilepsy - applications and pathways to the clinic. Nat Rev Neurol 2024; 20:319-336. [PMID: 38720105 DOI: 10.1038/s41582-024-00965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 06/06/2024]
Abstract
Artificial intelligence (AI) is rapidly transforming health care, and its applications in epilepsy have increased exponentially over the past decade. Integration of AI into epilepsy management promises to revolutionize the diagnosis and treatment of this complex disorder. However, translation of AI into neurology clinical practice has not yet been successful, emphasizing the need to consider progress to date and assess challenges and limitations of AI. In this Review, we provide an overview of AI applications that have been developed in epilepsy using a variety of data modalities: neuroimaging, electroencephalography, electronic health records, medical devices and multimodal data integration. For each, we consider potential applications, including seizure detection and prediction, seizure lateralization, localization of the seizure-onset zone and assessment for surgical or neurostimulation interventions, and review the performance of AI tools developed to date. We also discuss methodological considerations and challenges that must be addressed to successfully integrate AI into clinical practice. Our goal is to provide an overview of the current state of the field and provide guidance for leveraging AI in future to improve management of epilepsy.
Collapse
Affiliation(s)
- Alfredo Lucas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Revell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Yedurkar DP, Metkar SP, Stephan T. Multiresolution directed transfer function approach for segment-wise seizure classification of epileptic EEG signal. Cogn Neurodyn 2024; 18:301-315. [PMID: 38699601 PMCID: PMC11061070 DOI: 10.1007/s11571-021-09773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/10/2021] [Accepted: 12/13/2021] [Indexed: 11/03/2022] Open
Abstract
Currently, with the bloom in artificial intelligence (AI) algorithms, various human-centered smart systems can be utilized, especially in cognitive computing, for the detection of various chronic brain diseases such as epileptic seizure. The primary goal of this research article is to propose a novel human-centered cognitive computing (HCCC) method for segment-wise seizure classification by employing multiresolution extracted data with directed transfer function (DTF) features, termed as the multiresolution directed transfer function (MDTF) approach. Initially, the multiresolution information of the epileptic seizure signal is extracted using a multiresolution adaptive filtering (MRAF) method. These seizure details are passed to the DTF where the information flow of high frequency bands is computed. Thereafter, different measures of complexity such as approximate entropy (AEN) and sample entropy (SAEN) are computed from the extracted high frequency bands. Lastly, a k-nearest neighbor (k-NN) and support vector machine (SVM) are used for classifying the EEG signal into non-seizure and seizure data depending on the multiresolution based information flow characteristics. The MDTF approach is tested on a standard dataset and validated using a dataset from a local hospital. The proposed technique has obtained an average sensitivity of 98.31%, specificity of 96.13% and accuracy of 98.89% using SVM classifier. The average detection rate of the MDTF approach is 97.72% which is greater than the existing approaches. The proposed MDTF method will help neuro-specialists to locate seizure information drift which occurs within the consecutive segments and between two channels. The main advantage of the MDTF approach is its capability to locate the seizure activity contained by the EEG signal with accuracy. This will assist the neurologists with the precise localization of the epileptic seizure automatically and hence will reduce the burden of time-consuming epileptic seizure analysis.
Collapse
Affiliation(s)
- Dhanalekshmi P. Yedurkar
- Department of Electronics and Telecommunication Engineering, College of Engineering Pune, Pune, 411005 India
| | - Shilpa P. Metkar
- Department of Electronics and Telecommunication Engineering, College of Engineering Pune, Pune, 411005 India
| | - Thompson Stephan
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, M. S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054 India
| |
Collapse
|
13
|
Shi S, Liu W. B2-ViT Net: Broad Vision Transformer Network With Broad Attention for Seizure Prediction. IEEE Trans Neural Syst Rehabil Eng 2024; 32:178-188. [PMID: 38145523 DOI: 10.1109/tnsre.2023.3346955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Seizure prediction are necessary for epileptic patients. The global spatial interactions among channels, and long-range temporal dependencies play a crucial role in seizure onset prediction. In addition, it is necessary to search for seizure prediction features in a vast space to learn new generalized feature representations. Many previous deep learning algorithms have achieved some results in automatic seizure prediction. However, most of them do not consider global spatial interactions among channels and long-range temporal dependencies together, and only learn the feature representation in the deep space. To tackle these issues, in this study, an novel bi-level programming seizure prediction model, B2-ViT Net, is proposed for learning the new generalized spatio-temporal long-range correlation features, which can characterize the global interactions among channels in spatial, and long-range dependencies in temporal required for seizure prediction. In addition, the proposed model can comprehensively learn generalized seizure prediction features in a vast space due to its strong deep and broad feature search capabilities. Sufficient experiments are conducted on two public datasets, CHB-MIT and Kaggle datasets. Compared with other existing methods, our proposed model has shown promising results in automatic seizure prediction tasks, and provides a certain degree of interpretability.
Collapse
|
14
|
Baud MO, Proix T, Gregg NM, Brinkmann BH, Nurse ES, Cook MJ, Karoly PJ. Seizure forecasting: Bifurcations in the long and winding road. Epilepsia 2023; 64 Suppl 4:S78-S98. [PMID: 35604546 PMCID: PMC9681938 DOI: 10.1111/epi.17311] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022]
Abstract
To date, the unpredictability of seizures remains a source of suffering for people with epilepsy, motivating decades of research into methods to forecast seizures. Originally, only few scientists and neurologists ventured into this niche endeavor, which, given the difficulty of the task, soon turned into a long and winding road. Over the past decade, however, our narrow field has seen a major acceleration, with trials of chronic electroencephalographic devices and the subsequent discovery of cyclical patterns in the occurrence of seizures. Now, a burgeoning science of seizure timing is emerging, which in turn informs best forecasting strategies for upcoming clinical trials. Although the finish line might be in view, many challenges remain to make seizure forecasting a reality. This review covers the most recent scientific, technical, and medical developments, discusses methodology in detail, and sets a number of goals for future studies.
Collapse
Affiliation(s)
- Maxime O Baud
- Sleep-Wake-Epilepsy Center, Center for Experimental Neurology, NeuroTec, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland
- Wyss Center for Bio- and Neuro-Engineering, Geneva, Switzerland
| | - Timothée Proix
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicholas M Gregg
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Benjamin H Brinkmann
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ewan S Nurse
- Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark J Cook
- Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Philippa J Karoly
- Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Viana PF, Attia TP, Nasseri M, Duun-Henriksen J, Biondi A, Winston JS, Martins IP, Nurse ES, Dümpelmann M, Schulze-Bonhage A, Freestone DR, Kjaer TW, Richardson MP, Brinkmann BH. Seizure forecasting using minimally invasive, ultra-long-term subcutaneous electroencephalography: Individualized intrapatient models. Epilepsia 2023; 64 Suppl 4:S124-S133. [PMID: 35395101 PMCID: PMC9547037 DOI: 10.1111/epi.17252] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE One of the most disabling aspects of living with chronic epilepsy is the unpredictability of seizures. Cumulative research in the past decades has advanced our understanding of the dynamics of seizure risk. Technological advances have recently made it possible to record pertinent biological signals, including electroencephalogram (EEG), continuously. We aimed to assess whether patient-specific seizure forecasting is possible using remote, minimally invasive ultra-long-term subcutaneous EEG. METHODS We analyzed a two-center cohort of ultra-long-term subcutaneous EEG recordings, including six patients with drug-resistant focal epilepsy monitored for 46-230 days with median 18 h/day of recorded data, totaling >11 000 h of EEG. Total electrographic seizures identified by visual review ranged from 12 to 36 per patient. Three candidate subject-specific long short-term memory network deep learning classifiers were trained offline and pseudoprospectively on preictal (1 h before) and interictal (>1 day from seizures) EEG segments. Performance was assessed relative to a random predictor. Periodicity of the final forecasts was also investigated with autocorrelation. RESULTS Depending on each architecture, significant forecasting performance was achieved in three to five of six patients, with overall mean area under the receiver operating characteristic curve of .65-.74. Significant forecasts showed sensitivity ranging from 64% to 80% and time in warning from 10.9% to 44.4%. Overall, the output of the forecasts closely followed patient-specific circadian patterns of seizure occurrence. SIGNIFICANCE This study demonstrates proof-of-principle for the possibility of subject-specific seizure forecasting using a minimally invasive subcutaneous EEG device capable of ultra-long-term at-home recordings. These results are encouraging for the development of a prospective seizure forecasting trial with minimally invasive EEG.
Collapse
Affiliation(s)
- Pedro F. Viana
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Centre for Epilepsy, King’s College Hospital National Health Service Foundation Trust, London, UK
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Tal Pal Attia
- Bioelectronics Neurology and Engineering Laboratory, Department of Neurology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Mona Nasseri
- Bioelectronics Neurology and Engineering Laboratory, Department of Neurology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- School of Engineering, University of North Florida, Jacksonville, Florida, USA
| | | | - Andrea Biondi
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Centre for Epilepsy, King’s College Hospital National Health Service Foundation Trust, London, UK
| | - Joel S. Winston
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Centre for Epilepsy, King’s College Hospital National Health Service Foundation Trust, London, UK
| | | | - Ewan S. Nurse
- Seer Medical, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Matthias Dümpelmann
- Epilepsy Center, Department for Neurosurgery, University Medical Center Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Department for Neurosurgery, University Medical Center Freiburg, Freiburg, Germany
| | - Dean R. Freestone
- Seer Medical, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Troels W. Kjaer
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mark P. Richardson
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Centre for Epilepsy, King’s College Hospital National Health Service Foundation Trust, London, UK
- National Institute for Health Research Biomedical Research Centre at South London and Maudsley National Health Service Foundation Trust, London, UK
| | - Benjamin H. Brinkmann
- Bioelectronics Neurology and Engineering Laboratory, Department of Neurology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Leguia MG, Rao VR, Tcheng TK, Duun-Henriksen J, Kjaer TW, Proix T, Baud MO. Learning to generalize seizure forecasts. Epilepsia 2023; 64 Suppl 4:S99-S113. [PMID: 36073237 DOI: 10.1111/epi.17406] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Epilepsy is characterized by spontaneous seizures that recur at unexpected times. Nonetheless, using years-long electroencephalographic (EEG) recordings, we previously found that patient-reported seizures consistently occur when interictal epileptiform activity (IEA) cyclically builds up over days. This multidien (multiday) interictal-ictal relationship, which is shared across patients, may bear phasic information for forecasting seizures, even if individual patterns of seizure timing are unknown. To test this rigorously in a large retrospective dataset, we pretrained algorithms on data recorded from a group of patients, and forecasted seizures in other, previously unseen patients. METHODS We used retrospective long-term data from participants (N = 159) in the RNS System clinical trials, including intracranial EEG recordings (icEEG), and from two participants in the UNEEG Medical clinical trial of a subscalp EEG system (sqEEG). Based on IEA detections, we extracted instantaneous multidien phases and trained generalized linear models (GLMs) and recurrent neural networks (RNNs) to forecast the probability of seizure occurrence at a 24-h horizon. RESULTS With GLMs and RNNs, seizures could be forecasted above chance in 79% and 81% of previously unseen subjects with a median discrimination of area under the curve (AUC) = .70 and .69 and median Brier skill score (BSS) = .07 and .08. In direct comparison, individualized models had similar median performance (AUC = .67, BSS = .08), but for fewer subjects (60%). Moreover, calibration of pretrained models could be maintained to accommodate different seizure rates across subjects. SIGNIFICANCE Our findings suggest that seizure forecasting based on multidien cycles of IEA can generalize across patients, and may drastically reduce the amount of data needed to issue forecasts for individuals who recently started collecting chronic EEG data. In addition, we show that this generalization is independent of the method used to record seizures (patient-reported vs. electrographic) or IEA (icEEG vs. sqEEG).
Collapse
Affiliation(s)
- Marc G Leguia
- Wyss Center Fellow, Sleep-Wake-Epilepsy Center, Center for Experimental Neurology, NeuroTec, Department of Neurology, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| | - Vikram R Rao
- Department of Neurology and Weill Institute for Neurosciences, University of California, University of California, San Francisco, California, USA
| | | | | | - Troels W Kjaer
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Timothée Proix
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Maxime O Baud
- Sleep-Wake-Epilepsy Center and Center for Experimental Neurology, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| |
Collapse
|
17
|
Knight A, Gschwind T, Galer P, Worrell GA, Litt B, Soltesz I, Beniczky S. Artificial intelligence in epilepsy phenotyping. Epilepsia 2023:10.1111/epi.17833. [PMID: 37983589 PMCID: PMC11102939 DOI: 10.1111/epi.17833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Artificial intelligence (AI) allows data analysis and integration at an unprecedented granularity and scale. Here we review the technological advances, challenges, and future perspectives of using AI for electro-clinical phenotyping of animal models and patients with epilepsy. In translational research, AI models accurately identify behavioral states in animal models of epilepsy, allowing identification of correlations between neural activity and interictal and ictal behavior. Clinical applications of AI-based automated and semi-automated analysis of audio and video recordings of people with epilepsy, allow significant data reduction and reliable detection and classification of major motor seizures. AI models can accurately identify electrographic biomarkers of epilepsy, such as spikes, high-frequency oscillations, and seizure patterns. Integrating AI analysis of electroencephalographic, clinical, and behavioral data will contribute to optimizing therapy for patients with epilepsy.
Collapse
Affiliation(s)
| | - Tilo Gschwind
- Department of Neurosurgery, Stanford University, Stanford, USA
| | - Peter Galer
- Center for Neuroengineering and Therapeutics; Department of Bioengineering; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, USA
| | | | - Brian Litt
- Center for Neuroengineering and Therapeutics; Department of Bioengineering; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, USA
| | - Sándor Beniczky
- Danish Epilepsy Centre Filadelfia, Dianalund, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Saboo KV, Cao Y, Kremen V, Sladky V, Gregg NM, Arnold PM, Karoly PJ, Freestone DR, Cook MJ, Worrell GA, Iyer RK. Individualized Seizure Cluster Prediction Using Machine Learning and Chronic Ambulatory Intracranial EEG. IEEE Trans Nanobioscience 2023; 22:818-827. [PMID: 37163411 PMCID: PMC10702269 DOI: 10.1109/tnb.2023.3275037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Epilepsy patients often experience acute repetitive seizures, known as seizure clusters, which can progress to prolonged seizures or status epilepticus if left untreated. Predicting the onset of seizure clusters is crucial to enable patients to receive preventative treatments. Additionally, studying the patterns of seizure clusters can help predict the seizure type (isolated or cluster) after observing a just occurred seizure. This paper presents machine learning models that use bivariate intracranial EEG (iEEG) features to predict seizure clustering. Specifically, we utilized relative entropy (REN) as a bivariate feature to capture potential differences in brain region interactions underlying isolated and cluster seizures. We analyzed a large ambulatory iEEG dataset collected from 15 patients and spanned up to 2 years of recordings for each patient, consisting of 3341 cluster seizures (from 427 clusters) and 369 isolated seizures. The dataset's substantial number of seizures per patient enabled individualized analyses and predictions. We observed that REN was significantly different between isolated and cluster seizures in majority of the patients. Machine learning models based on REN: 1) predicted whether a seizure will occur soon after a given seizure with up to 69.5% Area under the ROC Curve (AUC), 2) predicted if a seizure is the first one in a cluster with up to 55.3% AUC, outperforming baseline techniques. Overall, our findings could be beneficial in addressing the clinical burden associated with seizure clusters, enabling patients to receive timely treatments and improving their quality of life.
Collapse
|
19
|
Schmidt R, Welzel B, Löscher W. Effects of season, daytime, sex, and stress on the incidence, latency, frequency, severity, and duration of neonatal seizures in a rat model of birth asphyxia. Epilepsy Behav 2023; 147:109415. [PMID: 37729684 DOI: 10.1016/j.yebeh.2023.109415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/22/2023]
Abstract
Neonatal seizures are common in newborn infants after birth asphyxia. They occur more frequently in male than female neonates, but it is not known whether sex also affects seizure severity or duration. Furthermore, although stress and diurnal, ultradian, circadian, or multidien cycles are known to affect epileptic seizures in adults, their potential impact on neonatal seizures is not understood. This prompted us to examine the effects of season, daytime, sex, and stress on neonatal seizures in a rat model of birth asphyxia. Seizures monitored in 176 rat pups exposed to asphyxia on 40 experimental days performed over 3 years were evaluated. All rat pups exhibited seizures when exposed to asphyxia at postnatal day 11 (P11), which in terms of cortical development corresponds to term human babies. A first examination of these data indicated a seasonal variation, with the highest seizure severity in the spring. Sex and daytime did not affect seizure characteristics. However, when rat pups were subdivided into animals that were exposed to acute (short-term) stress after asphyxia (restraint and i.p. injection of vehicle) and animals that were not exposed to this stress, the seizures in stress-exposed rats were more severe but less frequent. Acute stress induced an increase in hippocampal microglia density in sham-exposed rat pups, which may have an additive effect on microglia activation induced by asphyxia. When seasonal data were separately analyzed for stress-exposed vs. non-stress-exposed rat pups, no significant seasonal variation was observed. This study illustrates that without a detailed analysis of all factors, the data would have erroneously indicated significant seasonal variability in the severity of neonatal seizures. Instead, the study demonstrates that even mild, short-lasting postnatal stress has a profound effect on asphyxia-induced seizures, most likely by increasing the activity of the hypothalamic-pituitary-adrenal axis. It will be interesting to examine how postnatal stress affects the treatment and adverse outcomes of birth asphyxia and neonatal seizures in the rat model used here.
Collapse
Affiliation(s)
- Ricardo Schmidt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Björn Welzel
- Center for Systems Neuroscience Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany; Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
20
|
Mivalt F, Sladky V, Worrell S, Gregg NM, Balzekas I, Kim I, Chang SY, Montonye DR, Duque-Lopez A, Krakorova M, Pridalova T, Lepkova K, Brinkmann BH, Miller KJ, Van Gompel JJ, Denison T, Kaufmann TJ, Messina SA, St. Louis EK, Kremen V, Worrell GA. Automated sleep classification with chronic neural implants in freely behaving canines. J Neural Eng 2023; 20:10.1088/1741-2552/aced21. [PMID: 37536320 PMCID: PMC10480092 DOI: 10.1088/1741-2552/aced21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023]
Abstract
Objective.Long-term intracranial electroencephalography (iEEG) in freely behaving animals provides valuable electrophysiological information and when correlated with animal behavior is useful for investigating brain function.Approach.Here we develop and validate an automated iEEG-based sleep-wake classifier for canines using expert sleep labels derived from simultaneous video, accelerometry, scalp electroencephalography (EEG) and iEEG monitoring. The video, scalp EEG, and accelerometry recordings were manually scored by a board-certified sleep expert into sleep-wake state categories: awake, rapid-eye-movement (REM) sleep, and three non-REM sleep categories (NREM1, 2, 3). The expert labels were used to train, validate, and test a fully automated iEEG sleep-wake classifier in freely behaving canines.Main results. The iEEG-based classifier achieved an overall classification accuracy of 0.878 ± 0.055 and a Cohen's Kappa score of 0.786 ± 0.090. Subsequently, we used the automated iEEG-based classifier to investigate sleep over multiple weeks in freely behaving canines. The results show that the dogs spend a significant amount of the day sleeping, but the characteristics of daytime nap sleep differ from night-time sleep in three key characteristics: during the day, there are fewer NREM sleep cycles (10.81 ± 2.34 cycles per day vs. 22.39 ± 3.88 cycles per night;p< 0.001), shorter NREM cycle durations (13.83 ± 8.50 min per day vs. 15.09 ± 8.55 min per night;p< 0.001), and dogs spend a greater proportion of sleep time in NREM sleep and less time in REM sleep compared to night-time sleep (NREM 0.88 ± 0.09, REM 0.12 ± 0.09 per day vs. NREM 0.80 ± 0.08, REM 0.20 ± 0.08 per night;p< 0.001).Significance.These results support the feasibility and accuracy of automated iEEG sleep-wake classifiers for canine behavior investigations.
Collapse
Affiliation(s)
- Filip Mivalt
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Vladimir Sladky
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Samuel Worrell
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Nicholas M. Gregg
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Irena Balzekas
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
- Mayo Clinic School of Medicine and the Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States of America
- Biomedical Engineering and Physiology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States of America
| | - Inyong Kim
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Su-youne Chang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Daniel R. Montonye
- Department of Comparative Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Andrea Duque-Lopez
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Martina Krakorova
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Tereza Pridalova
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Kamila Lepkova
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Benjamin H. Brinkmann
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Kai J. Miller
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States of America
| | - Jamie J. Van Gompel
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States of America
| | - Timothy Denison
- Department of Engineering Science, Oxford University, Oxford, United Kingdom
| | - Timothy J. Kaufmann
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States of America
| | - Steven A. Messina
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States of America
| | - Erik K St. Louis
- Center for Sleep Medicine, Departments of Neurology and Medicine, Divisions of Sleep Neurology & Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - Vaclav Kremen
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic
| | - Gregory A. Worrell
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
21
|
Cui J, Balzekas I, Nurse E, Viana P, Gregg N, Karoly P, Worrell G, Richardson MP, Freestone DR, Brinkmann BH. Perceived seizure risk in epilepsy â€" Chronic electronic surveys with and without concurrent EEG. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.23.23287561. [PMID: 37034596 PMCID: PMC10081426 DOI: 10.1101/2023.03.23.23287561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Objective Previous studies suggested that patients with epilepsy might be able to fore-cast their own seizures. We sought to assess the relationships of premonitory symptoms and perceived seizure risk with future and recent self-reported and EEG-confirmed seizures in the subjects living with epilepsy in their natural home environments. Methods We collected long-term e-surveys from ambulatory patients with and without concurrent EEG recordings. Information obtained from the e-surveys included medication compliance, sleep quality, mood, stress, perceived seizure risk and seizure occurrences preceding the survey. EEG seizures were identified. Univariate and multivariate generalized linear mixed-effect regression models were used to estimate odds ratios (ORs) for the assessment of the relationships. Results were compared with device seizure forecasting literature using a mathematical formula converting OR to equivalent area under the curve (AUC). Results Sixty-nine subjects returned 12,590 e-survey entries, with four subjects acquiring concurrent EEG recordings. Univariate analysis revealed increased stress (OR = 2.52, 95% CI = [1.52, 4.14], p < 0.001) and decreased mood (0.32, [0.13, 0.82], 0.02) were associated with increased relative odds of future self-reported seizures. On multivariate analysis, previous self-reported seizures (4.24, [2.69, 6.68], < 0.001) were most strongly associated with future self-reported seizures, and high perceived seizure risk (3.30, [1.97, 5.52], < 0.001) remained significant when prior self-reported seizures were added to the model. No significant association was found between e-survey responses and subsequent EEG seizures. Significance It appears that patients may tend to self-forecast seizures that occur in sequential groupings. Our results suggest that low mood and increased stress may be the result of previous seizures rather than independent premonitory symptoms. Patients in the small cohort with concurrent EEG showed no ability to self-predict EEG seizures. The conversion from OR to AUC values facilitates direct comparison of performance between survey and device studies involving survey premonition and forecasting. Key points Long-term e-surveys data and concurrent EEG signals were collected across three study sites to assess the ability of the patients to self-forecast their seizures.Patients may tend to self-forecast self-reported seizures that occur in sequential groupings.Factors, such as mood and stress, may not be independent premonitory symptoms but may be the consequence of recent seizures.No ability to self-forecast EEG confirmed seizures was observed in a small cohort with concurrent EEG validation.A mathematic relation between OR and AUC provides a means to compare forecasting performance between survey and device studies.
Collapse
Affiliation(s)
- Jie Cui
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Irena Balzekas
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ewan Nurse
- Seer Medical, Melbourne, Australia
- Department of Medicine, St. Vincent’s Hospital Melbourne, University of Melbourne, Melbourne, Australia
| | - Pedro Viana
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
- Faculty of Medicine, University of Lisbon, Portugal
| | - Nicholas Gregg
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Philippa Karoly
- Department of Medicine, St. Vincent’s Hospital Melbourne, University of Melbourne, Melbourne, Australia
| | - Gregory Worrell
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark P Richardson
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | | | - Benjamin H. Brinkmann
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
22
|
Peh WY, Thangavel P, Yao Y, Thomas J, Tan YL, Dauwels J. Six-Center Assessment of CNN-Transformer with Belief Matching Loss for Patient-Independent Seizure Detection in EEG. Int J Neural Syst 2023; 33:2350012. [PMID: 36809996 DOI: 10.1142/s0129065723500120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurologists typically identify epileptic seizures from electroencephalograms (EEGs) by visual inspection. This process is often time-consuming, especially for EEG recordings that last hours or days. To expedite the process, a reliable, automated, and patient-independent seizure detector is essential. However, developing a patient-independent seizure detector is challenging as seizures exhibit diverse characteristics across patients and recording devices. In this study, we propose a patient-independent seizure detector to automatically detect seizures in both scalp EEG and intracranial EEG (iEEG). First, we deploy a convolutional neural network with transformers and belief matching loss to detect seizures in single-channel EEG segments. Next, we extract regional features from the channel-level outputs to detect seizures in multi-channel EEG segments. At last, we apply post-processing filters to the segment-level outputs to determine seizures' start and end points in multi-channel EEGs. Finally, we introduce the minimum overlap evaluation scoring as an evaluation metric that accounts for minimum overlap between the detection and seizure, improving upon existing assessment metrics. We trained the seizure detector on the Temple University Hospital Seizure (TUH-SZ) dataset and evaluated it on five independent EEG datasets. We evaluate the systems with the following metrics: sensitivity (SEN), precision (PRE), and average and median false positive rate per hour (aFPR/h and mFPR/h). Across four adult scalp EEG and iEEG datasets, we obtained SEN of 0.617-1.00, PRE of 0.534-1.00, aFPR/h of 0.425-2.002, and mFPR/h of 0-1.003. The proposed seizure detector can detect seizures in adult EEGs and takes less than 15[Formula: see text]s for a 30[Formula: see text]min EEG. Hence, this system could aid clinicians in reliably identifying seizures expeditiously, allocating more time for devising proper treatment.
Collapse
Affiliation(s)
- Wei Yan Peh
- Interdisciplinary Graduate School (IGS), Nanyang Technological University, Singapore 639798, Singapore
| | - Prasanth Thangavel
- Interdisciplinary Graduate School (IGS), Nanyang Technological University, Singapore 639798, Singapore
| | - Yuanyuan Yao
- Katholieke Universiteit Leuven, Oude Markt 13, 3000 Leuven, Belgium
| | - John Thomas
- Montreal Neurological Institute, McGill University, Montreal QC H3A 2B4, Canada
| | - Yee-Leng Tan
- National Neuroscience Institute, Singapore 308433, Singapore
| | - Justin Dauwels
- Department of Microelectronics, Delft, University of Technology, 2628 CD Delft, Netherlands
| |
Collapse
|
23
|
Patient-specific method for predicting epileptic seizures based on DRSN-GRU. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
24
|
Wong S, Simmons A, Rivera-Villicana J, Barnett S, Sivathamboo S, Perucca P, Ge Z, Kwan P, Kuhlmann L, Vasa R, Mouzakis K, O'Brien TJ. EEG datasets for seizure detection and prediction- A review. Epilepsia Open 2023. [PMID: 36740244 DOI: 10.1002/epi4.12704] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/28/2023] [Indexed: 02/07/2023] Open
Abstract
Electroencephalogram (EEG) datasets from epilepsy patients have been used to develop seizure detection and prediction algorithms using machine learning (ML) techniques with the aim of implementing the learned model in a device. However, the format and structure of publicly available datasets are different from each other, and there is a lack of guidelines on the use of these datasets. This impacts the generatability, generalizability, and reproducibility of the results and findings produced by the studies. In this narrative review, we compiled and compared the different characteristics of the publicly available EEG datasets that are commonly used to develop seizure detection and prediction algorithms. We investigated the advantages and limitations of the characteristics of the EEG datasets. Based on our study, we identified 17 characteristics that make the EEG datasets unique from each other. We also briefly looked into how certain characteristics of the publicly available datasets affect the performance and outcome of a study, as well as the influences it has on the choice of ML techniques and preprocessing steps required to develop seizure detection and prediction algorithms. In conclusion, this study provides a guideline on the choice of publicly available EEG datasets to both clinicians and scientists working to develop a reproducible, generalizable, and effective seizure detection and prediction algorithm.
Collapse
Affiliation(s)
- Sheng Wong
- Applied Artificial Intelligence Institute, Deakin University, Burwood, Victoria, Australia
| | - Anj Simmons
- Applied Artificial Intelligence Institute, Deakin University, Burwood, Victoria, Australia
| | | | - Scott Barnett
- Applied Artificial Intelligence Institute, Deakin University, Burwood, Victoria, Australia
| | - Shobi Sivathamboo
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.,Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Piero Perucca
- Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.,Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia.,Comprehensive Epilepsy Program, Austin Health, Heidelberg, Victoria, Australia
| | - Zongyuan Ge
- Monash eResearch Centre, Monash University, Clayton, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Levin Kuhlmann
- Department of Data Science and AI, Faculty of IT, Monash University, Clayton, Victoria, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rajesh Vasa
- Applied Artificial Intelligence Institute, Deakin University, Burwood, Victoria, Australia
| | - Kon Mouzakis
- Applied Artificial Intelligence Institute, Deakin University, Burwood, Victoria, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.,Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Lai N, Li Z, Xu C, Wang Y, Chen Z. Diverse nature of interictal oscillations: EEG-based biomarkers in epilepsy. Neurobiol Dis 2023; 177:105999. [PMID: 36638892 DOI: 10.1016/j.nbd.2023.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
Interictal electroencephalogram (EEG) patterns, including high-frequency oscillations (HFOs), interictal spikes (ISs), and slow wave activities (SWAs), are defined as specific oscillations between seizure events. These interictal oscillations reflect specific dynamic changes in network excitability and play various roles in epilepsy. In this review, we briefly describe the electrographic characteristics of HFOs, ISs, and SWAs in the interictal state, and discuss the underlying cellular and network mechanisms. We also summarize representative evidence from experimental and clinical epilepsy to address their critical roles in ictogenesis and epileptogenesis, indicating their potential as electrophysiological biomarkers of epilepsy. Importantly, we put forwards some perspectives for further research in the field.
Collapse
Affiliation(s)
- Nanxi Lai
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhisheng Li
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
26
|
Wang ET, Chiang S, Cleboski S, Rao VR, Vannucci M, Haneef Z. Seizure count forecasting to aid diagnostic testing in epilepsy. Epilepsia 2022; 63:3156-3167. [PMID: 36149301 PMCID: PMC11025604 DOI: 10.1111/epi.17415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Epilepsy monitoring unit (EMU) admissions are critical for presurgical evaluation of drug-resistant epilepsy but may be nondiagnostic if an insufficient number of seizures are recorded. Seizure forecasting algorithms have shown promise for estimating the likelihood of seizures as a binary event in individual patients, but methods to predict how many seizures will occur remain elusive. Such methods could increase the diagnostic yield of EMU admissions and help patients mitigate seizure-related morbidity. Here, we evaluated the performance of a state-space method that uses prior seizure count data to predict future counts. METHODS A Bayesian negative-binomial dynamic linear model (DLM) was developed to forecast daily electrographic seizure counts in 19 patients implanted with a responsive neurostimulation (RNS) device. Holdout validation was used to evaluate performance in predicting the number of electrographic seizures for forecast horizons ranging 1-7 days ahead. RESULTS One-day-ahead prediction of the number of electrographic seizures using a negative-binomial DLM resulted in improvement over chance in 73.1% of time segments compared to a random chance forecaster and remained >50% for forecast horizons of up to 7 days. Superior performance (mean error = .99) was obtained in predicting the number of electrographic seizures in the next day compared to three traditional methods for count forecasting (integer-valued generalized autoregressive conditional heteroskedasticity model or INGARCH, 1.10; Croston, 1.06; generalized linear autoregressive moving average model or GLARMA, 2.00). Number of electrographic seizures in the preceding day and laterality of electrographic pattern detections had highest predictive value, with greater number of electrographic seizures and RNS magnet swipes in the preceding day associated with a higher number of electrographic seizures the next day. SIGNIFICANCE This study demonstrates that DLMs can predict the number of electrographic seizures a patient will experience days in advance with above chance accuracy. This study represents an important step toward the translation of seizure forecasting methods into the optimization of EMU admissions.
Collapse
Affiliation(s)
- Emily T. Wang
- Department of Statistics, Rice University, Houston, Texas, USA
| | - Sharon Chiang
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | | | - Vikram R. Rao
- Department of Statistics, Rice University, Houston, Texas, USA
| | - Marina Vannucci
- Department of Statistics, Rice University, Houston, Texas, USA
| | - Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey VA Medical Center, Houston, Texas, United States
| |
Collapse
|
27
|
Litt B. Engineers drive new directions in translational epilepsy research. Brain 2022; 145:3725-3726. [DOI: 10.1093/brain/awac375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Lu L, Zhang F, Wu Y, Ma S, Zhang X, Ni G. A multi-frame network model for predicting seizure based on sEEG and iEEG data. Front Comput Neurosci 2022; 16:1059565. [DOI: 10.3389/fncom.2022.1059565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/20/2022] [Indexed: 11/15/2022] Open
Abstract
IntroductionAnalysis and prediction of seizures by processing the EEG signals could assist doctors in accurate diagnosis and improve the quality of the patient's life with epilepsy. Nowadays, seizure prediction models based on deep learning have become one of the most popular topics in seizure studies, and many models have been presented. However, the prediction results are strongly related to the various complicated pre-processing strategies of models, and cannot be directly applied to raw data in real-time applications. Moreover, due to the inherent deficiencies in single-frame models and the non-stationary nature of EEG signals, the generalization ability of the existing model frameworks is generally poor.MethodsTherefore, we proposed an end-to-end seizure prediction model in this paper, where we designed a multi-frame network for automatic feature extraction and classification. Instance and sequence-based frames are proposed in our approach, which can help us simultaneously extract features of different modes for further classification. Moreover, complicated pre-processing steps are not included in our model, and the novel frames can be directly applied to the raw data. It should be noted that the approaches proposed in the paper can be easily used as the general model which has been validated and compared with existing model frames.ResultsThe experimental results showed that the multi-frame network proposed in this paper was superior to the existing model frame in accuracy, sensitivity, specificity, F1-score, and AUC in the classification performance of EEG signals.DiscussionOur results provided a new research idea for this field. Researchers can further integrate the idea of the multi-frame network into the state-of-the-art single-frame seizure prediction models and then achieve better results.
Collapse
|
29
|
Löscher W, Worrell GA. Novel subscalp and intracranial devices to wirelessly record and analyze continuous EEG in unsedated, behaving dogs in their natural environments: A new paradigm in canine epilepsy research. Front Vet Sci 2022; 9:1014269. [PMID: 36337210 PMCID: PMC9631025 DOI: 10.3389/fvets.2022.1014269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Epilepsy is characterized by unprovoked, recurrent seizures and is a common neurologic disorder in dogs and humans. Roughly 1/3 of canines and humans with epilepsy prove to be drug-resistant and continue to have sporadic seizures despite taking daily anti-seizure medications. The optimization of pharmacologic therapy is often limited by inaccurate seizure diaries and medication side effects. Electroencephalography (EEG) has long been a cornerstone of diagnosis and classification in human epilepsy, but because of several technical challenges has played a smaller clinical role in canine epilepsy. The interictal (between seizures) and ictal (seizure) EEG recorded from the epileptic mammalian brain shows characteristic electrophysiologic biomarkers that are very useful for clinical management. A fundamental engineering gap for both humans and canines with epilepsy has been the challenge of obtaining continuous long-term EEG in the patients' natural environment. We are now on the cusp of a revolution where continuous long-term EEG from behaving canines and humans will be available to guide clinicians in the diagnosis and optimal treatment of their patients. Here we review some of the devices that have recently emerged for obtaining long-term EEG in ambulatory subjects living in their natural environments.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hanover, Germany
- Center for Systems Neuroscience, Hanover, Germany
- *Correspondence: Wolfgang Löscher
| | - Gregory A. Worrell
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
30
|
Wu X, Zhang T, Zhang L, Qiao L. Epileptic seizure prediction using successive variational mode decomposition and transformers deep learning network. Front Neurosci 2022; 16:982541. [PMID: 36225738 PMCID: PMC9548615 DOI: 10.3389/fnins.2022.982541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/24/2022] [Indexed: 12/01/2022] Open
Abstract
As one of the most common neurological disorders, epilepsy causes great physical and psychological damage to the patients. The long-term recurrent and unprovoked seizures make the prediction necessary. In this paper, a novel approach for epileptic seizure prediction based on successive variational mode decomposition (SVMD) and transformers is proposed. SVMD is extended to multidimensional form for time-frequency analysis of multi-channel signals. It could adaptively extract common band-limited intrinsic modes among all channels on different time scales by solving a variational optimization problem. In the proposed seizure prediction method, data are first decomposed into multiple modes on different time scales by multivariate SVMD, and then, irrelevant modes are removed for preprocessing. Finally, power spectrum of denoised data is input to a pre-trained bidirectional encoder representations from transformers (BERTs) for prediction. The BERT could identify the mode information related to epileptic seizures in time-frequency domain. It shows fair prediction performance on an intracranial EEG dataset with the average sensitivity of 0.86 and FPR of 0.18/h.
Collapse
Affiliation(s)
- Xiao Wu
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Tinglin Zhang
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Limei Zhang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
| | - Lishan Qiao
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| |
Collapse
|
31
|
Schucht P, Mathis AM, Murek M, Zubak I, Goldberg J, Falk S, Raabe A. Exploring Novel Innovation Strategies to Close a Technology Gap in Neurosurgery: The HORAO Crowdsourcing Campaign (Preprint). J Med Internet Res 2022; 25:e42723. [PMID: 37115612 PMCID: PMC10182462 DOI: 10.2196/42723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/14/2023] [Accepted: 03/12/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Scientific research is typically performed by expert individuals or groups who investigate potential solutions in a sequential manner. Given the current worldwide exponential increase in technical innovations, potential solutions for any new problem might already exist, even though they were developed to solve a different problem. Therefore, in crowdsourcing ideation, a research question is explained to a much larger group of individuals beyond the specialist community to obtain a multitude of diverse, outside-the-box solutions. These are then assessed in parallel by a group of experts for their capacity to solve the new problem. The 2 key problems in brain tumor surgery are the difficulty of discerning the exact border between a tumor and the surrounding brain, and the difficulty of identifying the function of a specific area of the brain. Both problems could be solved by a method that visualizes the highly organized fiber tracts within the brain; the absence of fibers would reveal the tumor, whereas the spatial orientation of the tracts would reveal the area's function. To raise awareness about our challenge of developing a means of intraoperative, real-time, noninvasive identification of fiber tracts and tumor borders to improve neurosurgical oncology, we turned to the crowd with a crowdsourcing ideation challenge. OBJECTIVE Our objective was to evaluate the feasibility of a crowdsourcing ideation campaign for finding novel solutions to challenges in neuroscience. The purpose of this paper is to introduce our chosen crowdsourcing method and discuss it in the context of the current literature. METHODS We ran a prize-based crowdsourcing ideation competition called HORAO on the commercial platform HeroX. Prize money previously collected through a crowdfunding campaign was offered as an incentive. Using a multistage approach, an expert jury first selected promising technical solutions based on broad, predefined criteria, coached the respective solvers in the second stage, and finally selected the winners in a conference setting. We performed a postchallenge web-based survey among the solvers crowd to find out about their backgrounds and demographics. RESULTS Our web-based campaign reached more than 20,000 people (views). We received 45 proposals from 32 individuals and 7 teams, working in 26 countries on 4 continents. The postchallenge survey revealed that most of the submissions came from single solvers or teams working in engineering or the natural sciences, with additional submissions from other nonmedical fields. We engaged in further exchanges with 3 out of the 5 finalists and finally initiated a successful scientific collaboration with the winner of the challenge. CONCLUSIONS This open innovation competition is the first of its kind in medical technology research. A prize-based crowdsourcing ideation campaign is a promising strategy for raising awareness about a specific problem, finding innovative solutions, and establishing new scientific collaborations beyond strictly disciplinary domains.
Collapse
Affiliation(s)
- Philippe Schucht
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrea Maria Mathis
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Murek
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Irena Zubak
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Johannes Goldberg
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephanie Falk
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Pang TD, Nearing BD, Verrier RL, Schachter SC. Response to letter to the editor by Dr. Guilherme Loureiro Fialho and Dr. Katia Lin: "T-wave heterogeneity in epilepsy: Could we kill two (or three) birds with one stone?". Epilepsy Behav 2022; 134:108806. [PMID: 35753899 DOI: 10.1016/j.yebeh.2022.108806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Trudy D Pang
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| | - Bruce D Nearing
- Harvard Medical School, Boston, MA, United States; Department of Medicine, Beth Israel Deaconess Medical Center, Boston MA, United States.
| | - Richard L Verrier
- Harvard Medical School, Boston, MA, United States; Department of Medicine, Beth Israel Deaconess Medical Center, Boston MA, United States.
| | - Steven C Schachter
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Massachusetts General Hospital, Boston, MA, United States; Consortia for Improving Medicine with Innovation & Technology (CIMIT), Boston, MA, United States.
| |
Collapse
|
33
|
Covelo A, Badoual A, Denizot A. Reinforcing Interdisciplinary Collaborations to Unravel the Astrocyte "Calcium Code". J Mol Neurosci 2022; 72:1443-1455. [PMID: 35543801 PMCID: PMC9293817 DOI: 10.1007/s12031-022-02006-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/01/2022] [Indexed: 11/19/2022]
Abstract
In this review article, we present the major insights from and challenges faced in the acquisition, analysis and modeling of astrocyte calcium activity, aiming at bridging the gap between those fields to crack the complex astrocyte "Calcium Code". We then propose strategies to reinforce interdisciplinary collaborative projects to unravel astrocyte function in health and disease.
Collapse
Affiliation(s)
- Ana Covelo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215, NeuroCentre Magendie, 33077, Bordeaux, France
- University of Bordeaux, Bordeaux, 33077, France
| | - Anaïs Badoual
- SERPICO Project-Team, Inria Centre Rennes-Bretagne Atlantique, Rennes Cedex, 35042, France
- SERPICO/STED Team, UMR144 CNRS Institut Curie, PSL Research University, Sorbonne Universités, Paris, 75005, France
| | - Audrey Denizot
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna, 904-0495, Japan.
| |
Collapse
|
34
|
Zhang Y, Savaria Y, Zhao S, Mordido G, Sawan M, Leduc-Primeau F. Tiny CNN for Seizure Prediction in Wearable Biomedical Devices. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1306-1309. [PMID: 36086510 DOI: 10.1109/embc48229.2022.9872006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Epilepsy is a life-threatening disease affecting millions of people all over the world. Artificial intelligence epileptic predictors offer excellent potential to improve epilepsy therapy. Particularly, deep learning models such as convolutional neural networks (CNN) can be used to accurately detect ictogenesis through deep structured learning representations. In this work, a tiny one-dimensional stacked convolutional neural network (1DSCNN) is proposed based on short-time Fourier transform (STFT) to predict epileptic seizure. The results demonstrate that the proposed method obtains better performance compared to recent state-of-the-art methods, achieving an average sensitivity of 94.44%, average false prediction rate (FPR) of 0.011/h and average area under the curve (AUC) of 0.979 on the test set of the American Epilepsy Society Seizure Prediction Challenge dataset, while featuring a model size of only 21.32kB. Furthermore, after adapting the model to 4-bit quantization, its size is significantly decreased by 7.08x with only 0.51% AUC score precision loss, which shows excellent potential for hardware-friendly wearable implementation.
Collapse
|
35
|
Hussein R, Lee S, Ward R. Multi-Channel Vision Transformer for Epileptic Seizure Prediction. Biomedicines 2022; 10:1551. [PMID: 35884859 PMCID: PMC9312955 DOI: 10.3390/biomedicines10071551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Epilepsy is a neurological disorder that causes recurrent seizures and sometimes loss of awareness. Around 30% of epileptic patients continue to have seizures despite taking anti-seizure medication. The ability to predict the future occurrence of seizures would enable the patients to take precautions against probable injuries and administer timely treatment to abort or control impending seizures. In this study, we introduce a Transformer-based approach called Multi-channel Vision Transformer (MViT) for automated and simultaneous learning of the spatio-temporal-spectral features in multi-channel EEG data. Continuous wavelet transform, a simple yet efficient pre-processing approach, is first used for turning the time-series EEG signals into image-like time-frequency representations named Scalograms. Each scalogram is split into a sequence of fixed-size non-overlapping patches, which are then fed as inputs to the MViT for EEG classification. Extensive experiments on three benchmark EEG datasets demonstrate the superiority of the proposed MViT algorithm over the state-of-the-art seizure prediction methods, achieving an average prediction sensitivity of 99.80% for surface EEG and 90.28-91.15% for invasive EEG data.
Collapse
Affiliation(s)
- Ramy Hussein
- Center for Advanced Functional Neuroimaging, Stanford University, Stanford, CA 94305, USA
| | - Soojin Lee
- Pacific Parkinson’s Research Centre, University of British Columbia, Vancouver, BC V6T 2B5, Canada;
| | - Rabab Ward
- Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
36
|
Abstract
Epilepsy is a common neurological disease in both humans and domestic dogs, making dogs an ideal translational model of epilepsy. In both species, epilepsy is a complex brain disease characterized by an enduring predisposition to generate spontaneous recurrent epileptic seizures. Furthermore, as in humans, status epilepticus is one of the more common neurological emergencies in dogs with epilepsy. In both species, epilepsy is not a single disease but a group of disorders characterized by a broad array of clinical signs, age of onset, and underlying causes. Brain imaging suggests that the limbic system, including the hippocampus and cingulate gyrus, is often affected in canine epilepsy, which could explain the high incidence of comorbid behavioral problems such as anxiety and cognitive alterations. Resistance to antiseizure medications is a significant problem in both canine and human epilepsy, so dogs can be used to study mechanisms of drug resistance and develop novel therapeutic strategies to benefit both species. Importantly, dogs are large enough to accommodate intracranial EEG and responsive neurostimulation devices designed for humans. Studies in epileptic dogs with such devices have reported ictal and interictal events that are remarkably similar to those occurring in human epilepsy. Continuous (24/7) EEG recordings in a select group of epileptic dogs for >1 year have provided a rich dataset of unprecedented length for studying seizure periodicities and developing new methods for seizure forecasting. The data presented in this review substantiate that canine epilepsy is an excellent translational model for several facets of epilepsy research. Furthermore, several techniques of inducing seizures in laboratory dogs are discussed as related to therapeutic advances. Importantly, the development of vagus nerve stimulation as a novel therapy for drug-resistant epilepsy in people was based on a series of studies in dogs with induced seizures. Dogs with naturally occurring or induced seizures provide excellent large-animal models to bridge the translational gap between rodents and humans in the development of novel therapies. Furthermore, because the dog is not only a preclinical species for human medicine but also a potential patient and pet, research on this species serves both veterinary and human medicine.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
37
|
Nowakowska M, Üçal M, Charalambous M, Bhatti SFM, Denison T, Meller S, Worrell GA, Potschka H, Volk HA. Neurostimulation as a Method of Treatment and a Preventive Measure in Canine Drug-Resistant Epilepsy: Current State and Future Prospects. Front Vet Sci 2022; 9:889561. [PMID: 35782557 PMCID: PMC9244381 DOI: 10.3389/fvets.2022.889561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022] Open
Abstract
Modulation of neuronal activity for seizure control using various methods of neurostimulation is a rapidly developing field in epileptology, especially in treatment of refractory epilepsy. Promising results in human clinical practice, such as diminished seizure burden, reduced incidence of sudden unexplained death in epilepsy, and improved quality of life has brought neurostimulation into the focus of veterinary medicine as a therapeutic option. This article provides a comprehensive review of available neurostimulation methods for seizure management in drug-resistant epilepsy in canine patients. Recent progress in non-invasive modalities, such as repetitive transcranial magnetic stimulation and transcutaneous vagus nerve stimulation is highlighted. We further discuss potential future advances and their plausible application as means for preventing epileptogenesis in dogs.
Collapse
Affiliation(s)
- Marta Nowakowska
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Muammer Üçal
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Marios Charalambous
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Sofie F. M. Bhatti
- Small Animal Department, Faculty of Veterinary Medicine, Small Animal Teaching Hospital, Ghent University, Merelbeke, Belgium
| | - Timothy Denison
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | | | - Heidrun Potschka
- Faculty of Veterinary Medicine, Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
38
|
Zhao Y, Li C, Liu X, Qian R, Song R, Chen X. Patient-Specific Seizure Prediction via Adder Network and Supervised Contrastive Learning. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1536-1547. [PMID: 35657835 DOI: 10.1109/tnsre.2022.3180155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Deep learning (DL) methods have been widely used in the field of seizure prediction from electroencephalogram (EEG) in recent years. However, DL methods usually have numerous multiplication operations resulting in high computational complexity. In addtion, most of the current approaches in this field focus on designing models with special architectures to learn representations, ignoring the use of intrinsic patterns in the data. In this study, we propose a simple and effective end-to-end adder network and supervised contrastive learning (AddNet-SCL). The method uses addition instead of the massive multiplication in the convolution process to reduce the computational cost. Besides, contrastive learning is employed to effectively use label information, points of the same class are clustered together in the projection space, and points of different class are pushed apart at the same time. Moreover, the proposed model is trained by combining the supervised contrastive loss from the projection layer and the cross-entropy loss from the classification layer. Since the adder networks uses the ℓ1-norm distance as the similarity measure between the input feature and the filters, the gradient function of the network changes, an adaptive learning rate strategy is employed to ensure the convergence of AddNet-CL. Experimental results show that the proposed method achieves 94.9% sensitivity, an area under curve (AUC) of 94.2%, and a false positive rate of (FPR) 0.077/h on 19 patients in the CHB-MIT database and 89.1% sensitivity, an AUC of 83.1%, and an FPR of 0.120/h in the Kaggle database. Competitive results show that this method has broad prospects in clinical practice.
Collapse
|
39
|
Yin R, Zhai X, Han H, Tong X, Li Y, Deng K. Characterizing the landscape of cervical squamous cell carcinoma immune microenvironment by integrating the single-cell transcriptomics and RNA-Seq. Immun Inflamm Dis 2022; 10:e608. [PMID: 35634956 PMCID: PMC9091987 DOI: 10.1002/iid3.608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/21/2022] Open
Abstract
Background Cervical squamous cell carcinoma (CSCC), caused by the infection of high‐risk human papillomavirus, is one of the most common malignancies in women worldwide. Methods RNA expression data, including those from the Cancer Genome Atlas, Gene Expression Omnibus, and Genotype‐Tissue Expression databases, were used to identify the expression of RNAs in normal and tumor tissue. Correlation analysis was performed to identify the immune‐related long noncoding RNAs (IRLs) and hypoxia‐related genes (IRHs) that can influence the activity of the immune system. Prognosis models of immune‐related RNAs (IRRs) were used to construct a coexpression network of the immune system. We identified the role of IRRs in immunotherapy by correlation analysis with immune checkpoint genes (ICGs). We then validated the expression data by integrating two single‐cell sequencing data sets of CSCC to identify the key immune features. Results In total, six immune‐related gene (IRG), four IRL, and five IRH signatures that can significantly influence the characteristics of the tumor immune microenvironment (TIME) were selected using machine learning methods. The expression level of ICGs was significantly upregulated in GZMB+CD8+ T‐cells and tumor‐associated macrophages (TAMs) in tumor tissues. TGFBI+ TAMs are a kind of blood‐derived monocyte‐derived M0‐like TAM linked to hypoxia and a poor prognosis. IFI30+ M1‐like TAMs participate in the process of immune‐regulation and showed a role in the promotion of CD8+ T‐cells and Type 1 T helper (Th1)/Th2 cells in the coexpression network, together with several IRLs, IRGs, and ICGs. Conclusions CD16+ monocyte‐derived IFI30+ TAMs participated in our coexpression network to regulate the TIME, showing the potential to be a novel immunotherapy target. The enrichment of M0‐like TAMs was associated with a worse prognosis in the high‐risk score group with IRH signatures. Remarkably, M0‐like TAMs in tumor tissues overexpressed TGFBI and were associated with several well‐known tumor‐proliferation pathways.
Collapse
Affiliation(s)
- Ruiling Yin
- Department of Laboratory Medicine, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiuming Zhai
- Department of Laboratory Medicine, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Han
- Department of Laboratory Medicine, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuedong Tong
- Department of Laboratory Medicine, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Li
- Department of Laboratory Medicine, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kun Deng
- Department of Laboratory Medicine, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
40
|
Hellar J, Erfanian N, Aazhang B. Epileptic electroencephalography classification using Embedded Dynamic Mode Decomposition. J Neural Eng 2022; 19:036029. [PMID: 35605583 DOI: 10.1088/1741-2552/ac7256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Seizure prediction devices for drug-resistant epileptic patients could lead to improved quality of life and new treatment options, but current approaches to classification of electroencephalography (EEG) segments for early identification of the pre-seizure state typically require many features and complex classifiers. We therefore propose a novel spatio-temporal EEG feature set that significantly aids in separation and easy classification of the interictal and preictal states. APPROACH We derive key spectral features from the Embedded Dynamic Mode Decomposition (EmDMD) of the brain state system. This method linearizes the complex spatio-temporal dynamics of the system, describing the dynamics in terms of a spectral basis of modes and eigenvalues. The relative subband spectral power and mean phase locking values of these modes prove to be good indicators of the preictal state that precedes seizure onset. MAIN RESULTS We analyze the linear separability and classification of preictal and interictal states based on our proposed features using seizure data extracted from the CHB-MIT scalp EEG and Kaggle American Epilepsy Society Seizure Prediction Challenge intracranial EEG databases. With a light-weight support vector machine or random forest classifier trained on these features, we classify the preictal state with a sensitivity of up to 92% and specificity of up to 89%. SIGNIFICANCE The EmDMD-derived features separate the preictal and interictal states, improving classification accuracy and motivating further work to incorporate them into seizure prediction algorithms.
Collapse
Affiliation(s)
- Jennifer Hellar
- Electrical and Computer Engineering, Rice University, 6100 Main St., Houston, Texas, 77005-1892, UNITED STATES
| | - Negar Erfanian
- Electrical and Computer Engineering, Rice University George R Brown School of Engineering, 6100 Main St., Houston, Texas, 77005, UNITED STATES
| | - Behnaam Aazhang
- Department of Electrical and Computer Engineering, Rice University, George R. Brown School of Engineering, 6100 Main Street, Houston, TX 77005, USA, Houston, Texas, 77005-1892, UNITED STATES
| |
Collapse
|
41
|
Sladky V, Nejedly P, Mivalt F, Brinkmann BH, Kim I, St. Louis EK, Gregg NM, Lundstrom BN, Crowe CM, Attia TP, Crepeau D, Balzekas I, Marks VS, Wheeler LP, Cimbalnik J, Cook M, Janca R, Sturges BK, Leyde K, Miller KJ, Van Gompel JJ, Denison T, Worrell GA, Kremen V. Distributed brain co-processor for tracking spikes, seizures and behaviour during electrical brain stimulation. Brain Commun 2022; 4:fcac115. [PMID: 35755635 PMCID: PMC9217965 DOI: 10.1093/braincomms/fcac115] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/12/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Abstract
Early implantable epilepsy therapy devices provided open-loop electrical stimulation without brain sensing, computing, or an interface for synchronized behavioural inputs from patients. Recent epilepsy stimulation devices provide brain sensing but have not yet developed analytics for accurately tracking and quantifying behaviour and seizures. Here we describe a distributed brain co-processor providing an intuitive bi-directional interface between patient, implanted neural stimulation and sensing device, and local and distributed computing resources. Automated analysis of continuous streaming electrophysiology is synchronized with patient reports using a handheld device and integrated with distributed cloud computing resources for quantifying seizures, interictal epileptiform spikes and patient symptoms during therapeutic electrical brain stimulation. The classification algorithms for interictal epileptiform spikes and seizures were developed and parameterized using long-term ambulatory data from nine humans and eight canines with epilepsy, and then implemented prospectively in out-of-sample testing in two pet canines and four humans with drug-resistant epilepsy living in their natural environments. Accurate seizure diaries are needed as the primary clinical outcome measure of epilepsy therapy and to guide brain-stimulation optimization. The brain co-processor system described here enables tracking interictal epileptiform spikes, seizures and correlation with patient behavioural reports. In the future, correlation of spikes and seizures with behaviour will allow more detailed investigation of the clinical impact of spikes and seizures on patients.
Collapse
Affiliation(s)
- Vladimir Sladky
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, USA
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Petr Nejedly
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, USA
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
- The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic
| | - Filip Mivalt
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, USA
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Benjamin H Brinkmann
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Inyong Kim
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Erik K St. Louis
- Center for Sleep Medicine, Departments of Neurology and Medicine, Divisions of Sleep Neurology & Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nicholas M Gregg
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Brian N Lundstrom
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Chelsea M Crowe
- Department of Veterinary Clinical Sciences, University of California, Davis, CA, USA
| | - Tal Pal Attia
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Daniel Crepeau
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Irena Balzekas
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic School of Medicine and the Mayo Clinic Medical Scientist Training Program, Rochester, MN, USA
| | - Victoria S Marks
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Lydia P Wheeler
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jan Cimbalnik
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Mark Cook
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Australia
| | - Radek Janca
- Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
- Second Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
| | - Beverly K Sturges
- Department of Veterinary Clinical Sciences, University of California, Davis, CA, USA
| | | | - Kai J Miller
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Gregory A Worrell
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Vaclav Kremen
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, USA
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic
| |
Collapse
|
42
|
Domain adaptation for epileptic EEG classification using adversarial learning and Riemannian manifold. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
43
|
Liang D, Liu A, Li C, Liu J, Chen X. A novel consistency-based training strategy for seizure prediction. J Neurosci Methods 2022; 372:109557. [PMID: 35276242 DOI: 10.1016/j.jneumeth.2022.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Early prediction of epilepsy seizures can warn the patients to take precautions and improve their lives significantly. In recent years, deep learning has become increasingly predominant in seizure prediction for its outstanding performance. With the aim of predicting unseen seizures, it is essential to guarantee the generalization ability of the model, especially considering the non-stationary nature of EEG and the scarcity of seizure events in EEG recordings. Stability training against extra perturbations is an intuitive and effective way to improve the model's ability to generalize. Though a great number of deep learning methods have been developed for seizure prediction, their strategies to increase generalization performance focus on improving the model's architecture itself, and few of them pay attention to the stability of the model against small perturbations. NEW METHOD In this study, we propose a novel consistency-based training strategy to address this issue. The proposed strategy underlines that a robust model should maintain consistent results for the same input under extra perturbations. Specifically, during training, we use stochastic augmentations to make the input vary from iteration to iteration and consider the output as a stochastic variable. Then a consistency constraint is constructed to penalize the difference between the current output and previous outputs. In this way, the generalization ability of the model will be fully enhanced. RESULTS To better verify the effectiveness of our proposed strategy, we implement it in two state-of-the-art models with public-available codes, including STFT CNN and Multi-view CNN. Notably, we compare with the first baseline on a scalp EEG dataset and the other on an intracranial EEG dataset. The results show that our strategy could improve the performance significantly for both of them. COMPARISON WITH EXISTING METHODS Our strategy has increased the sensitivity by 7.1% and reduced the false prediction rate by 0.12/h on the first baseline while improving the AUC by 0.020 on the second baseline. CONCLUSIONS This study is easy to implement, providing a new solution to enhance the performance of seizure prediction.
Collapse
Affiliation(s)
- Deng Liang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Aiping Liu
- Epilepsy Center, Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Chang Li
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jun Liu
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Xun Chen
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China; Epilepsy Center, Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; USTC IAT-Huami Joint Laboratory for Brain-Machine Intelligence, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
44
|
Semisupervised Seizure Prediction in Scalp EEG Using Consistency Regularization. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1573076. [PMID: 35126902 PMCID: PMC8808146 DOI: 10.1155/2022/1573076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022]
Abstract
Early prediction of epilepsy seizures can warn the patients to take precautions and improve their lives significantly. In recent years, deep learning has become increasingly predominant in seizure prediction. However, existing deep learning-based approaches in this field require a great deal of labeled data to guarantee performance. At the same time, labeling EEG signals does require the expertise of an experienced pathologist and is incredibly time-consuming. To address this issue, we propose a novel Consistency-based Semisupervised Seizure Prediction Model (CSSPM), where only a fraction of training data is labeled. Our method is based on the principle of consistency regularization, which underlines that a robust model should maintain consistent results for the same input under extra perturbations. Specifically, by using stochastic augmentation and dropout, we consider the entire neural network as a stochastic model and apply a consistency constraint to penalize the difference between the current prediction and previous predictions. In this way, unlabeled data could be fully utilized to improve the decision boundary and enhance prediction performance. Compared with existing studies requiring all training data to be labeled, the proposed method only needs a small portion of data to be labeled while still achieving satisfactory results. Our method provides a promising solution to alleviate the labeling cost for real-world applications.
Collapse
|
45
|
Peng P, Song Y, Yang L, Wei H. Seizure Prediction in EEG Signals Using STFT and Domain Adaptation. Front Neurosci 2022; 15:825434. [PMID: 35115906 PMCID: PMC8805457 DOI: 10.3389/fnins.2021.825434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/04/2022] Open
Abstract
Epileptic seizure prediction is one of the most used therapeutic adjuvant strategies for drug-resistant epilepsy. Conventional approaches commonly collect training and testing samples from the same patient due to inter-individual variability. However, the challenging problem of domain shift between various subjects remains unsolved, resulting in a low conversion rate to the clinic. In this work, a domain adaptation (DA)-based model is proposed to circumvent this issue. The short-time Fourier transform (STFT) is employed to extract the time-frequency features from raw EEG data, and an autoencoder is developed to map these features into high-dimensional space. By minimizing the inter-domain distance in the embedding space, this model learns the domain-invariant information, such that the generalization ability is improved by distribution alignment. Besides, to increase the feasibility of its application, this work mimics the data distribution under the clinical sampling situation and tests the model under this condition, which is the first study that adopts the assessment strategy. Experimental results on both intracranial and scalp EEG databases demonstrate that this method can minimize the domain gap effectively compared with previous approaches.
Collapse
Affiliation(s)
- Peizhen Peng
- Key Laboratory of Measurement and Control of Control Science and Engineering (CSE), Ministry of Education, School of Automation, Southeast University, Nanjing, China
| | - Yang Song
- State Grid Nanjing Power Supply Company, Nanjing, China
| | - Lu Yang
- Epilepsy Center, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Haikun Wei
- Key Laboratory of Measurement and Control of Control Science and Engineering (CSE), Ministry of Education, School of Automation, Southeast University, Nanjing, China
- *Correspondence: Haikun Wei
| |
Collapse
|
46
|
Pang N, Liu Z, Lin Z, Chen X, Liu X, Pan M, Shi K, Xiao Y, Xu L. Fast identification and quantification of c-Fos protein using you-only-look-once-v5. Front Psychiatry 2022; 13:1011296. [PMID: 36213931 PMCID: PMC9537349 DOI: 10.3389/fpsyt.2022.1011296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
In neuroscience, protein activity characterizes neuronal excitability in response to a diverse array of external stimuli and represents the cell state throughout the development of brain diseases. Importantly, it is necessary to characterize the proteins involved in disease progression, nuclear function determination, stimulation method effect, and other aspects. Therefore, the quantification of protein activity is indispensable in neuroscience. Currently, ImageJ software and manual counting are two of the most commonly used methods to quantify proteins. To improve the efficiency of quantitative protein statistics, the you-only-look-once-v5 (YOLOv5) model was proposed. In this study, c-Fos immunofluorescence images data set as an example to verify the efficacy of the system using protein quantitative statistics. The results indicate that YOLOv5 was less time-consuming or obtained higher accuracy than other methods (time: ImageJ software: 80.12 ± 1.67 s, manual counting: 3.41 ± 0.25 s, YOLOv5: 0.0251 ± 0.0003 s, p < 0.0001, n = 83; simple linear regression equation: ImageJ software: Y = 1.013 × X + 0.776, R 2 = 0.837; manual counting: Y = 1.0*X + 0, R 2 = 1; YOLOv5: Y = 0.9730*X + 0.3821, R 2 = 0.933, n = 130). The findings suggest that the YOLOv5 algorithm provides feasible methods for quantitative statistical analysis of proteins and has good potential for application in detecting target proteins in neuroscience.
Collapse
Affiliation(s)
- Na Pang
- The College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.,Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zihao Liu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhengrong Lin
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoyan Chen
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiufang Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Min Pan
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Keke Shi
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yang Xiao
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Lisheng Xu
- The College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.,Key Laboratory of Medical Image Computing, Ministry of Education, Shenyang, China
| |
Collapse
|
47
|
Földi T, Lőrincz ML, Berényi A. Temporally Targeted Interactions With Pathologic Oscillations as Therapeutical Targets in Epilepsy and Beyond. Front Neural Circuits 2021; 15:784085. [PMID: 34955760 PMCID: PMC8693222 DOI: 10.3389/fncir.2021.784085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Self-organized neuronal oscillations rely on precisely orchestrated ensemble activity in reverberating neuronal networks. Chronic, non-malignant disorders of the brain are often coupled to pathological neuronal activity patterns. In addition to the characteristic behavioral symptoms, these disturbances are giving rise to both transient and persistent changes of various brain rhythms. Increasing evidence support the causal role of these "oscillopathies" in the phenotypic emergence of the disease symptoms, identifying neuronal network oscillations as potential therapeutic targets. While the kinetics of pharmacological therapy is not suitable to compensate the disease related fine-scale disturbances of network oscillations, external biophysical modalities (e.g., electrical stimulation) can alter spike timing in a temporally precise manner. These perturbations can warp rhythmic oscillatory patterns via resonance or entrainment. Properly timed phasic stimuli can even switch between the stable states of networks acting as multistable oscillators, substantially changing the emergent oscillatory patterns. Novel transcranial electric stimulation (TES) approaches offer more reliable neuronal control by allowing higher intensities with tolerable side-effect profiles. This precise temporal steerability combined with the non- or minimally invasive nature of these novel TES interventions make them promising therapeutic candidates for functional disorders of the brain. Here we review the key experimental findings and theoretical background concerning various pathological aspects of neuronal network activity leading to the generation of epileptic seizures. The conceptual and practical state of the art of temporally targeted brain stimulation is discussed focusing on the prevention and early termination of epileptic seizures.
Collapse
Affiliation(s)
- Tamás Földi
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary.,Neurocybernetics Excellence Center, University of Szeged, Szeged, Hungary.,HCEMM-USZ Magnetotherapeutics Research Group, University of Szeged, Szeged, Hungary.,Child and Adolescent Psychiatry, Department of the Child Health Center, University of Szeged, Szeged, Hungary
| | - Magor L Lőrincz
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary.,Neurocybernetics Excellence Center, University of Szeged, Szeged, Hungary.,Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, Szeged, Hungary.,Neuroscience Division, Cardiff University, Cardiff, United Kingdom
| | - Antal Berényi
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary.,Neurocybernetics Excellence Center, University of Szeged, Szeged, Hungary.,HCEMM-USZ Magnetotherapeutics Research Group, University of Szeged, Szeged, Hungary.,Neuroscience Institute, New York University, New York, NY, United States
| |
Collapse
|
48
|
Müller J, Yang H, Eberlein M, Leonhardt G, Uckermann O, Kuhlmann L, Tetzlaff R. Coherent false seizure prediction in epilepsy, coincidence or providence? Clin Neurophysiol 2021; 133:157-164. [PMID: 34844880 DOI: 10.1016/j.clinph.2021.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Seizure forecasting using machine learning is possible, but the performance is far from ideal, as indicated by many false predictions and low specificity. Here, we examine false and missing alarms of two algorithms on long-term datasets to show that the limitations are less related to classifiers or features, but rather to intrinsic changes in the data. METHODS We evaluated two algorithms on three datasets by computing the correlation of false predictions and estimating the information transfer between both classification methods. RESULTS For 9 out of 12 individuals both methods showed a performance better than chance. For all individuals we observed a positive correlation in predictions. For individuals with strong correlation in false predictions we were able to boost the performance of one method by excluding test samples based on the results of the second method. CONCLUSIONS Substantially different algorithms exhibit a highly consistent performance and a strong coherency in false and missing alarms. Hence, changing the underlying hypothesis of a preictal state of fixed time length prior to each seizure to a proictal state is more helpful than further optimizing classifiers. SIGNIFICANCE The outcome is significant for the evaluation of seizure prediction algorithms on continuous data.
Collapse
Affiliation(s)
- Jens Müller
- TU Dresden, Faculty of Electrical and Computer Engineering, Institute of Circuits and Systems, 01062 Dresden, Germany.
| | - Hongliu Yang
- TU Dresden, Faculty of Electrical and Computer Engineering, Institute of Circuits and Systems, 01062 Dresden, Germany
| | - Matthias Eberlein
- TU Dresden, Faculty of Electrical and Computer Engineering, Institute of Circuits and Systems, 01062 Dresden, Germany
| | - Georg Leonhardt
- TU Dresden, Neurosurgery of University Hospital Carl Gustav Carus, Fetscherstr. 74, 01307 Dresden, Germany
| | - Ortrud Uckermann
- TU Dresden, Neurosurgery of University Hospital Carl Gustav Carus, Fetscherstr. 74, 01307 Dresden, Germany
| | - Levin Kuhlmann
- Department of Medicine, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Ronald Tetzlaff
- TU Dresden, Faculty of Electrical and Computer Engineering, Institute of Circuits and Systems, 01062 Dresden, Germany
| |
Collapse
|
49
|
Maimaiti B, Meng H, Lv Y, Qiu J, Zhu Z, Xie Y, Li Y, Yu-Cheng, Zhao W, Liu J, Li M. An Overview of EEG-based Machine Learning Methods in Seizure Prediction and Opportunities for Neurologists in this Field. Neuroscience 2021; 481:197-218. [PMID: 34793938 DOI: 10.1016/j.neuroscience.2021.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
The unpredictability of epileptic seizures is one of the most problematic aspects of the field of epilepsy. Methods or devices capable of detecting seizures minutes before they occur may help prevent injury or even death and significantly improve the quality of life. Machine learning (ML) is an emerging technology that can markedly enhance algorithm performance by interpreting data. ML has gained increasing attention from medical researchers in recent years. Its epilepsy applications range from the localization of the epileptic region, predicting the medical or surgical outcome of epilepsy, and automated electroencephalography (EEG) analysis to seizure prediction. While ML has good prospects with regard to detecting epileptic seizures via EEG signals, many clinicians are still unfamiliar with this field. This work briefly summarizes the history and recent significant progress made in this field and clarifies the essential components of the automatic seizure detection system using ML methodologies for clinicians. This review also proposes how neurologists can actively contribute to ensure improvements in seizure prediction using EEG-based ML.
Collapse
Affiliation(s)
- Buajieerguli Maimaiti
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Hongmei Meng
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China.
| | - Yudan Lv
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Jiqing Qiu
- Department of Neurological Surgery, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhanpeng Zhu
- Department of Neurological Surgery, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yinyin Xie
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yue Li
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yu-Cheng
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Weixuan Zhao
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Jiayu Liu
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Mingyang Li
- Department of Communication Engineering, Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
50
|
Ambulatory seizure forecasting with a wrist-worn device using long-short term memory deep learning. Sci Rep 2021; 11:21935. [PMID: 34754043 PMCID: PMC8578354 DOI: 10.1038/s41598-021-01449-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
The ability to forecast seizures minutes to hours in advance of an event has been verified using invasive EEG devices, but has not been previously demonstrated using noninvasive wearable devices over long durations in an ambulatory setting. In this study we developed a seizure forecasting system with a long short-term memory (LSTM) recurrent neural network (RNN) algorithm, using a noninvasive wrist-worn research-grade physiological sensor device, and tested the system in patients with epilepsy in the field, with concurrent invasive EEG confirmation of seizures via an implanted recording device. The system achieved forecasting performance significantly better than a random predictor for 5 of 6 patients studied, with mean AUC-ROC of 0.80 (range 0.72–0.92). These results provide the first clear evidence that direct seizure forecasts are possible using wearable devices in the ambulatory setting for many patients with epilepsy.
Collapse
|