1
|
Morelli L, Serra L, Ricciardiello F, Gligora I, Donadio V, Caprini M, Liguori R, Giannoccaro MP. The role of antibodies in small fiber neuropathy: a review of currently available evidence. Rev Neurosci 2024; 35:877-893. [PMID: 38865989 DOI: 10.1515/revneuro-2024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024]
Abstract
Small fiber neuropathy (SFN) is a peripheral nerve condition affecting thin myelinated Aδ and unmyelinated C-fibers, characterized by severe neuropathic pain and other sensory and autonomic symptoms. A variety of medical disorders can cause SFN; however, more than 50% of cases are idiopathic (iSFN). Some investigations suggest an autoimmune etiology, backed by evidence of the efficacy of IVIG and plasma exchange. Several studies suggest that autoantibodies directed against nervous system antigens may play a role in the development of neuropathic pain. For instance, patients with CASPR2 and LGI1 antibodies often complain of pain, and in vitro and in vivo studies support their pathogenicity. Other antibodies have been associated with SFN, including those against TS-HDS, FGFR3, and Plexin-D1, and new potential targets have been proposed. Finally, a few studies reported the onset of SFN after COVID-19 infection and vaccination, investigating the presence of potential antibody targets. Despite these overall findings, the pathogenic role has been demonstrated only for some autoantibodies, and the association with specific clinical phenotypes or response to immunotherapy remains to be clarified. The purpose of this review is to summarise known autoantibody targets involved in neuropathic pain, putative attractive autoantibody targets in iSFN patients, their potential as biomarkers of response to immunotherapy and their role in the development of iSFN.
Collapse
Affiliation(s)
- Luana Morelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 - 40139, Bologna, Italy
| | - Lucrezia Serra
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 - 40139, Bologna, Italy
| | - Fortuna Ricciardiello
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 - 40139, Bologna, Italy
| | - Ilaria Gligora
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 - 40139, Bologna, Italy
| | - Vincenzo Donadio
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 - 40139, Bologna, Italy
| | - Marco Caprini
- Department of Pharmacy and Biotechnology (FaBiT), Laboratory of Human and General Physiology, University of Bologna, Via San Donato, 19/2 - 40126, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 - 40139, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Altura, 3 - 40139, Bologna, Italy
| | - Maria Pia Giannoccaro
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 - 40139, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Altura, 3 - 40139, Bologna, Italy
| |
Collapse
|
2
|
Patel A, Williams M, Hawkins K, Gallo L, Grillo M, Akanda N, Guo X, Lambert S, Hickman JJ. Establishment of a Serum-Free Human iPSC-Derived Model of Peripheral Myelination. ACS Biomater Sci Eng 2024; 10:7132-7143. [PMID: 39437333 PMCID: PMC11558563 DOI: 10.1021/acsbiomaterials.4c01431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Myelination and the formation of nodes of Ranvier are essential for the rapid conduction of nerve impulses along axons in the peripheral nervous system (PNS). While many animal-based and serum-containing models of peripheral myelination have been developed, these have limited ability when it comes to studying genetic disorders affecting peripheral myelination. We report a fully induced pluripotent stem cell (iPSC)-derived human model of peripheral myelination using Schwann cells (SCs) and motoneurons, cultured in a serum-free medium on patterned and nonpatterned surfaces. Results demonstrated iPSC-derived SC-expressed early growth response protein 2 (Egr2), a key transcription factor for myelination, and after ∼30 days in coculture, hallmark features of myelination, including myelin segment and node of Ranvier formation, were observed. Myelin segments were stained for the myelin basic protein, which surrounded neurofilament-stained motoneuron axons. Clusters of voltage-gated sodium channels flanked by paranodal protein contactin-associated protein 1, indicating node of Ranvier formation, were also observed. High-resolution confocal microscopy allowed for 3D reconstruction and measurement of myelin g-ratios of myelin segments, with an average g-ratio of 0.67, consistent with reported values in the literature, indicating mature myelin segment formation. This iPSC-based model of peripheral myelination provides a platform to investigate numerous PNS diseases, including Charcot-Marie Tooth disorder, Guillian-Barre syndrome, chronic inflammatory demyelinating polyneuropathy, and antimyelin-associated glycoprotein peripheral neuropathy, with the potential for greater translatability to humans for improving the applicability for drug-screening programs.
Collapse
Affiliation(s)
- Aakash Patel
- NanoScience
Technology Center, University of Central
Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Marnie Williams
- NanoScience
Technology Center, University of Central
Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Kenneth Hawkins
- NanoScience
Technology Center, University of Central
Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Leandro Gallo
- NanoScience
Technology Center, University of Central
Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Marcella Grillo
- NanoScience
Technology Center, University of Central
Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Nesar Akanda
- NanoScience
Technology Center, University of Central
Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Xiufang Guo
- NanoScience
Technology Center, University of Central
Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Stephen Lambert
- College
of Medicine, University of Central Florida, 6850 Lake Nona Blvd, Orlando, Florida 32827, United States
| | - James J. Hickman
- NanoScience
Technology Center, University of Central
Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
- Hesperos
Inc., 12501 Research
Parkway, Suite 100, Orlando, Florida 32826, United States
| |
Collapse
|
3
|
Zebochin I, Denk F, Nochi Z. Modeling neuropathic pain in a dish. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:233-278. [PMID: 39580214 DOI: 10.1016/bs.irn.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
The study of pain mechanisms has advanced significantly with the development of innovative in vitro models. This chapter explores those already used in or potentially useful for neuropathic pain research, emphasizing the complementary roles of animal and human cellular models to enhance translational success. Traditional animal models have provided foundational insights into the neurobiology of pain and remain invaluable for understanding complex pain pathways. However, integrating human cellular models addresses the need for better replication of human nociceptors. The chapter details methodologies for culturing rodent and human primary sensory neurons, including isolation and culture techniques, advantages, and limitations. It highlights the application of these models in neuropathic pain research, such as identifying pain-associated receptors and ion channels. Recent advancements in using induced pluripotent stem cell (iPSC)-derived sensory neurons are also discussed. Finally, the chapter explores advanced in vitro models, including 2D co-cultures and 3D organoids, and their implications for studying neuropathic pain. These models offer significant advantages for drug screening and ethical research practices, providing a more accurate representation of human pain pathways and paving the way for innovative therapeutic strategies. Despite challenges such as limited access to viable human tissue and variability between samples, these in vitro models, alongside traditional animal models, are indispensable for advancing our understanding of neuropathic pain and developing effective treatments.
Collapse
Affiliation(s)
- Irene Zebochin
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London
| | - Franziska Denk
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London
| | - Zahra Nochi
- Danish Pain Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
4
|
Schottmann NM, Grüner J, Bär F, Karl-Schöller F, Oerter S, Üçeyler N. Human sensory-like neuron cultivation-An optimized protocol. Front Neurosci 2024; 18:1429694. [PMID: 39420988 PMCID: PMC11484056 DOI: 10.3389/fnins.2024.1429694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Reprogramming of human-induced pluripotent stem cells (iPSCs) and their differentiation into specific cell types, such as induced sensory-like neurons (iSNs), are critical for disease modeling and drug testing. However, the variability of cell populations challenges reliability and reproducibility. While various protocols for iSN differentiation exist, the development of non-iSN cells in these cultures remains an issue. Therefore, standardization of protocols is essential. This study aimed to improve iSN culture conditions by reducing the number of non-iSN cells while preserving the survival and quality of iSNs. Methods iSNs were differentiated from a healthy control iPSC line using an established protocol. Interventions for protocol optimization included floxuridine (FdU) or 1-β-D-arabinofuranosyl-cytosine hydrochloride (AraC) treatment, magnetic-activated cell sorting (MACS), early cell passaging, and replating. Cell viability and iSN-to-total-cell-count ratio were assessed using a luminescent assay and immunocytochemistry, respectively. Results Passaging of cells during differentiation did not increase the iSN-to-total-cell-count ratio, and MACS of immature iSNs led to neuronal blebbing and reduced the iSN-to-total-cell-count ratio. Treatment with high concentrations and prolonged incubation of FdU or AraC resulted in excessive cell death. However, treatment with 10 μM FdU for 24 h post-differentiation showed the most selective targeting of non-iSN cells, leading to an increase in the iSN-to-total-cell count ratio without compromising the viability or functionality of the iSN population. Replating of iSNs shortly after seeding also helped to reduce non-iSN cells. Conclusion In direct comparison with other methods, treatment with 10 μM FdU for 24 h after differentiation shows promise for improving iSN culture purity, which could benefit downstream applications in disease modeling and drug discovery. However, further investigations involving multiple iPSC lines and optimization of protocol parameters are warranted to fully exploit the potential of this method and enhance its reproducibility and applicability. Overall, this study provides valuable insights into optimizing culture conditions for iSN differentiation and highlights the importance of standardized protocols in iPSC-based research.
Collapse
Affiliation(s)
| | - Julia Grüner
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Frederik Bär
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | | | - Sabrina Oerter
- Institute of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
LeBlang CJ, Pazyra-Murphy MF, Silagi ES, Dasgupta S, Tsolias M, Miller T, Petrova V, Zhen S, Jovanovic V, Castellano D, Gerrish K, Ormanoglu P, Tristan C, Singeç I, Woolf CJ, Tasdemir-Yilmaz O, Segal RA. Satellite glial contact enhances differentiation and maturation of human iPSC-derived sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604966. [PMID: 39211268 PMCID: PMC11361066 DOI: 10.1101/2024.07.24.604966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sensory neurons generated from induced pluripotent stem cells (iSNs) are used to model human peripheral neuropathies, however current differentiation protocols produce sensory neurons with an embryonic phenotype. Peripheral glial cells contact sensory neurons early in development and contribute to formation of the canonical pseudounipolar morphology, but these signals are not encompassed in current iSN differentiation protocols. Here, we show that terminal differentiation of iSNs in co-culture with rodent Dorsal Root Ganglion satellite glia (rSG) advances their differentiation and maturation. Co-cultured iSNs develop a pseudounipolar morphology through contact with rSGs. This transition depends on semaphorin-plexin guidance cues and on glial gap junction signaling. In addition to morphological changes, iSNs terminally differentiated in co-culture exhibit enhanced spontaneous action potential firing, more mature gene expression, and increased susceptibility to paclitaxel induced axonal degeneration. Thus, iSNs differentiated in coculture with rSGs provide a better model for investigating human peripheral neuropathies.
Collapse
|
6
|
Van Lent J, Prior R, Pérez Siles G, Cutrupi AN, Kennerson ML, Vangansewinkel T, Wolfs E, Mukherjee-Clavin B, Nevin Z, Judge L, Conklin B, Tyynismaa H, Clark AJ, Bennett DL, Van Den Bosch L, Saporta M, Timmerman V. Advances and challenges in modeling inherited peripheral neuropathies using iPSCs. Exp Mol Med 2024; 56:1348-1364. [PMID: 38825644 PMCID: PMC11263568 DOI: 10.1038/s12276-024-01250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 06/04/2024] Open
Abstract
Inherited peripheral neuropathies (IPNs) are a group of diseases associated with mutations in various genes with fundamental roles in the development and function of peripheral nerves. Over the past 10 years, significant advances in identifying molecular disease mechanisms underlying axonal and myelin degeneration, acquired from cellular biology studies and transgenic fly and rodent models, have facilitated the development of promising treatment strategies. However, no clinical treatment has emerged to date. This lack of treatment highlights the urgent need for more biologically and clinically relevant models recapitulating IPNs. For both neurodevelopmental and neurodegenerative diseases, patient-specific induced pluripotent stem cells (iPSCs) are a particularly powerful platform for disease modeling and preclinical studies. In this review, we provide an update on different in vitro human cellular IPN models, including traditional two-dimensional monoculture iPSC derivatives, and recent advances in more complex human iPSC-based systems using microfluidic chips, organoids, and assembloids.
Collapse
Grants
- R01 NS119678 NINDS NIH HHS
- U01 ES032673 NIEHS NIH HHS
- Wellcome Trust
- R01 AG072052 NIA NIH HHS
- DOC-PRO4 Universiteit Antwerpen (University of Antwerp)
- RF1 AG072052 NIA NIH HHS
- This work was supported in part by the University of Antwerp (DOC-PRO4 PhD fellowship to J.V.L. and TOP-BOF research grant no. 38694 to V.T.), the Association Française contre les Myopathies (AFM research grant no. 24063 to V.T.), Association Belge contre les Maladies Neuromusculaires (ABMM research grant no. 1 to J.V.L and V.T), the interuniversity research fund (iBOF project to. L.V.D.B, E.W. and V.T.). V.T. is part of the μNEURO Research Centre of Excellence of the University of Antwerp and is an active member of the European Network for Stem Cell Core Facilities (CorEUStem, COST Action CA20140). Work in the M.L.K group was supported by the NHMRC Ideas Grant (APP1186867), CMT Australia Grant awarded to M.L.K and G.P.-S and the Australian Medical Research Future Fund (MRFF) Genomics Health Futures Mission Grant 2007681. B.M.C. is supported by the American Academy of Neurology and the Passano Foundation. L.M.J. and B.R.C. are supported by the Charcot-Marie-Tooth Association, NINDS R01 NS119678, NIEHS U01 ES032673. H.T. is supported by Academy of Finland Centre of Excellence in Stem Cell Metabolism and Sigrid Juselius Foundation. Work in the D.L.B. group is supported by a Wellcome Investigator Grant (223149/Z/21/Z), the MRC (MR/T020113/1), and with funding from the MRC and Versus Arthritis to the PAINSTORM consortium as part of the Advanced Pain Discovery Platform (MR/W002388/1).
- Australian Medical Association (Australian Medical Association Limited)
- Universiteit Hasselt (UHasselt)
- American Academy of Neurology (AAN)
- Gladstone Institutes (J. David Gladstone Institutes)
- Academy of Finland (Suomen Akatemia)
- Academy of Medical Royal Colleges (AoMRC)
- Wellcome Trust (Wellcome)
- Oxford University Hospitals NHS Trust (Oxford University Hospitals National Health Service Trust)
- KU Leuven (Katholieke Universiteit Leuven)
- Vlaams Instituut voor Biotechnologie (Flanders Institute for Biotechnology)
- Miami University | Leonard M. Miller School of Medicine (Miller School of Medicine)
Collapse
Affiliation(s)
- Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, 2610, Antwerp, Belgium
- Institute of Oncology Research (IOR), BIOS+, 6500, Bellinzona, Switzerland
- Università della Svizzera Italiana, 6900, Lugano, Switzerland
| | - Robert Prior
- Universitätsklinikum Bonn (UKB), University of Bonn, Bonn, Germany
| | - Gonzalo Pérez Siles
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Anthony N Cutrupi
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Sydney, NSW, Australia
| | - Tim Vangansewinkel
- UHasselt - Hasselt University, BIOMED, Laboratory for Functional Imaging and Research on Stem Cells (FIERCE Lab), Agoralaan, 3590, Diepenbeek, Belgium
- VIB-Center for Brain and Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
| | - Esther Wolfs
- UHasselt - Hasselt University, BIOMED, Laboratory for Functional Imaging and Research on Stem Cells (FIERCE Lab), Agoralaan, 3590, Diepenbeek, Belgium
| | | | | | - Luke Judge
- Gladstone Institutes, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Conklin
- Gladstone Institutes, San Francisco, CA, USA
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Alex J Clark
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - Ludo Van Den Bosch
- VIB-Center for Brain and Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven-University of Leuven, 3000, Leuven, Belgium
| | - Mario Saporta
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium.
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, 2610, Antwerp, Belgium.
| |
Collapse
|
7
|
Lin WW, Ou GY, Dai HF, Zhao WJ. Neuregulin 4 (Nrg4) cooperates with melatonin to regulate the PRL expression via ErbB4/Erk signaling pathway as a potential prolactin (PRL) regulator. J Cell Biochem 2024; 125:e30551. [PMID: 38465779 DOI: 10.1002/jcb.30551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Neuregulin-4 (Nrg4) and melatonin play vital roles in endocrine diseases. However, there is little discussion about the function and potential mechanism of Nrg4 and melatonin in prolactin (PRL) regulation. The human normal pituitary data from Gene Expression Profiling Interactive Analysis (GEPIA) database was used to explore the correlation between NRG4 and PRL. The expression and correlation of NRG4 and PRL were determined by Immunofluorescence staining (IF) and human normal pituitary tissue microarray. Western Blot (WB) was used to detect the expression of PRL, p-ErbB2/3/4, ErbB2/3/4, p-Erk1/2, Erk1/2, p-Akt and Akt in PRL-secreting pituitary GH3 and RC-4B/C cells treated by Nrg4, Nrg4-small interfering RNA, Erk1/2 inhibitor FR180204 and melatonin. The expression of NRG4 was significantly positively correlated with that of PRL in the GEPIA database and normal human pituitary tissues. Nrg4 significantly increased the expression and secretion of PRL and p-Erk1/2 expression in GH3 cells and RC-4B/C cells. Inhibition of Nrg4 significantly inhibited PRL expression. The increased levels of p-Erk1/2 and PRL induced by Nrg4 were abolished significantly in response to FR180204 in GH3 and RC-4B/C cells. Additionally, Melatonin promotes the expression of Nrg4, p-ErbB4, p-Erk1/2, and PRL and can further promote the expression of p-Erk1/2 and PRL in combination with Nrg4. Further investigation into the function of Nrg4 and melatonin on PRL expression and secretion may provide new clues to advance the clinical control of prolactinomas and hyperprolactinemia.
Collapse
Affiliation(s)
- Wen-Wen Lin
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Guan-Yong Ou
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hui-Fang Dai
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Wei-Jiang Zhao
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Moodley K, Patel VB, Moodley AA, Bill PLA, Kajee A, Mgbachi V, Fehmi J, Rinaldi S. Nodal-paranodal antibodies in HIV-immune mediated radiculo-neuropathies: Clinical phenotypes and relevance. J Peripher Nerv Syst 2023; 28:578-585. [PMID: 37676746 DOI: 10.1111/jns.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND The frequency of nodal-paranodal antibodies in HIV-infected patients with chronic immune-mediated radiculo-neuropathies (IMRN) has not been previously described. METHODS HIV-infected patients who met the inclusion criteria for chronic IMRN were screened for immunoglobulin G (IgG) antibodies directed against nodal (neurofascin (NF)186) and paranodal (NF155, contactin-1 (CNTN1) and contactin-associated protein(Caspr1)) cell adhesion molecules, using a live, cell-based assay. To explore potential pathogenicity, binding of human IgG to myelinated co-cultures was assessed by incubation with patients' sera positive for nodal or paranodal antibodies. Normal human serum was added as a source of complement to assess for complement activation as a mechanism for myelin injury. RESULTS Twenty-four HIV-infected patients with IMRN were included in the study, 15 with chronic inflammatory demyelinating polyneuropathy (CIDP), 4 with ventral root radiculopathies (VRR), and 5 with dorsal root ganglionopathies (DRG). Five patients with CIDP had combined central and peripheral demyelination (CCPD). Three patients (12.7%) tested positive for neurofascin IgG1 antibodies in the following categories: 1 patient with VRR was NF186 positive, and 2 patients were NF155 positive with DRG and mixed sensory-motor demyelinating neuropathy with optic neuritis, respectively. CONCLUSION The frequency of nodal-paranodal antibodies is similar among IMRN regardless of HIV status. Interpretation of the results in the context of HIV is challenging as there is uncertainty regarding pathogenicity of the antibodies, especially at low titres. Larger prospective immune studies are required to delineate pathogenicity in the context of HIV, and to establish a panel of antibodies to predict for a particular clinical phenotype.
Collapse
Affiliation(s)
- K Moodley
- Department of Neurology, University of KwaZulu-Natal, Durban, South Africa
| | - V B Patel
- Department of Neurology, University of KwaZulu-Natal, Durban, South Africa
| | - A A Moodley
- Department of Neurology, University of KwaZulu-Natal, Durban, South Africa
| | - P L A Bill
- Department of Neurology, University of KwaZulu-Natal, Durban, South Africa
| | - A Kajee
- Department of Neurology, University of KwaZulu-Natal, Durban, South Africa
| | - V Mgbachi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - J Fehmi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - S Rinaldi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Keddie S, Smyth D, Keh RYS, Chou MKL, Grant D, Surana S, Heslegrave A, Zetterberg H, Wieske L, Michael M, Eftimov F, Bellanti R, Rinaldi S, Hart MS, Petzold A, Lunn MP. Peripherin is a biomarker of axonal damage in peripheral nervous system disease. Brain 2023; 146:4562-4573. [PMID: 37435933 PMCID: PMC10629771 DOI: 10.1093/brain/awad234] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 07/13/2023] Open
Abstract
Valid, responsive blood biomarkers specific to peripheral nerve damage would improve management of peripheral nervous system (PNS) diseases. Neurofilament light chain (NfL) is sensitive for detecting axonal pathology but is not specific to PNS damage, as it is expressed throughout the PNS and CNS. Peripherin, another intermediate filament protein, is almost exclusively expressed in peripheral nerve axons. We postulated that peripherin would be a promising blood biomarker of PNS axonal damage. We demonstrated that peripherin is distributed in sciatic nerve, and to a lesser extent spinal cord tissue lysates, but not in brain or extra-neural tissues. In the spinal cord, anti-peripherin antibody bound only to the primary cells of the periphery (anterior horn cells, motor axons and primary afferent sensory axons). In vitro models of antibody-mediated axonal and demyelinating nerve injury showed marked elevation of peripherin levels only in axonal damage and only a minimal rise in demyelination. We developed an immunoassay using single molecule array technology for the detection of serum peripherin as a biomarker for PNS axonal damage. We examined longitudinal serum peripherin and NfL concentrations in individuals with Guillain-Barré syndrome (GBS, n = 45, 179 time points), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP, n = 35, 70 time points), multiple sclerosis (n = 30), dementia (as non-inflammatory CNS controls, n = 30) and healthy individuals (n = 24). Peak peripherin levels were higher in GBS than all other groups (median 18.75 pg/ml versus < 6.98 pg/ml, P < 0.0001). Peak NfL was highest in GBS (median 220.8 pg/ml) and lowest in healthy controls (median 5.6 pg/ml), but NfL did not distinguish between CIDP (17.3 pg/ml), multiple sclerosis (21.5 pg/ml) and dementia (29.9 pg/ml). While peak NfL levels were higher with older age (rho = +0.39, P < 0.0001), peak peripherin levels did not vary with age. In GBS, local regression analysis of serial peripherin in the majority of individuals with three or more time points of data (16/25) displayed a rise-and-fall pattern with the highest value within the first week of initial assessment. Similar analysis of serial NfL concentrations showed a later peak at 16 days. Group analysis of serum peripherin and NfL levels in GBS and CIDP patients were not significantly associated with clinical data, but in some individuals with GBS, peripherin levels appeared to better reflect clinical outcome measure improvement. Serum peripherin is a promising new, dynamic and specific biomarker of acute PNS axonal damage.
Collapse
Affiliation(s)
- Stephen Keddie
- Department of Neuromuscular Diseases, Barts Health NHS Trust, London E1 1BB, UK
- Department of Neuromuscular Diseases, University College London, London WC1N 3BG, UK
- Centre for Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Duncan Smyth
- Department of Neuromuscular Diseases, University College London, London WC1N 3BG, UK
- Centre for Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Ryan Y S Keh
- Department of Neuromuscular Diseases, University College London, London WC1N 3BG, UK
- Centre for Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Michael K L Chou
- Department of Neuromuscular Diseases, University College London, London WC1N 3BG, UK
- NHS Neuroimmunology and CSF Laboratory, Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Donna Grant
- NHS Neuroimmunology and CSF Laboratory, Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Neuroinflammation, University College London, London WC1N 3BG, UK
| | - Sunaina Surana
- Department of Neuromuscular Diseases, University College London, London WC1N 3BG, UK
| | - Amanda Heslegrave
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 41, Sweden
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Milou Michael
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Roberto Bellanti
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Simon Rinaldi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Melanie S Hart
- NHS Neuroimmunology and CSF Laboratory, Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Neuroinflammation, University College London, London WC1N 3BG, UK
| | - Axel Petzold
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands
- UCL Clinical and Movement Neurosciences Department, National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, London WC1E 6BT, UK
| | - Michael P Lunn
- Department of Neuromuscular Diseases, University College London, London WC1N 3BG, UK
- Centre for Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- NHS Neuroimmunology and CSF Laboratory, Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
10
|
Oliveira JT, Yanick C, Wein N, Gomez Limia CE. Neuron-Schwann cell interactions in peripheral nervous system homeostasis, disease, and preclinical treatment. Front Cell Neurosci 2023; 17:1248922. [PMID: 37900588 PMCID: PMC10600466 DOI: 10.3389/fncel.2023.1248922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
Schwann cells (SCs) have a critical role in the peripheral nervous system. These cells are able to support axons during homeostasis and after injury. However, mutations in genes associated with the SCs repair program or myelination result in dysfunctional SCs. Several neuropathies such as Charcot-Marie-Tooth (CMT) disease, diabetic neuropathy and Guillain-Barré syndrome show abnormal SC functions and an impaired regeneration process. Thus, understanding SCs-axon interaction and the nerve environment in the context of homeostasis as well as post-injury and disease onset is necessary. Several neurotrophic factors, cytokines, and regulators of signaling pathways associated with proliferation, survival and regeneration are involved in this process. Preclinical studies have focused on the discovery of therapeutic targets for peripheral neuropathies and injuries. To study the effect of new therapeutic targets, modeling neuropathies and peripheral nerve injuries (PNIs) in vitro and in vivo are useful tools. Furthermore, several in vitro protocols have been designed using SCs and neuron cell lines to evaluate these targets in the regeneration process. SCs lines have been used to generate effective myelinating SCs without success. Alternative options have been investigated using direct conversion from somatic cells to SCs or SCs derived from pluripotent stem cells to generate functional SCs. This review will go over the advantages of these systems and the problems associated with them. In addition, there have been challenges in establishing adequate and reproducible protocols in vitro to recapitulate repair SC-neuron interactions observed in vivo. So, we also discuss the mechanisms of repair SCs-axon interactions in the context of peripheral neuropathies and nerve injury (PNI) in vitro and in vivo. Finally, we summarize current preclinical studies evaluating transgenes, drug, and novel compounds with translational potential into clinical studies.
Collapse
Affiliation(s)
| | | | - Nicolas Wein
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
11
|
Perez-Sanchez J, Middleton SJ, Pattison LA, Hilton H, Awadelkareem MA, Zuberi SR, Renke MB, Hu H, Yang X, Clark AJ, Smith ESJ, Bennett DL. A humanized chemogenetic system inhibits murine pain-related behavior and hyperactivity in human sensory neurons. Sci Transl Med 2023; 15:eadh3839. [PMID: 37792955 PMCID: PMC7615191 DOI: 10.1126/scitranslmed.adh3839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Hyperexcitability in sensory neurons is known to underlie many of the maladaptive changes associated with persistent pain. Chemogenetics has shown promise as a means to suppress such excitability, yet chemogenetic approaches suitable for human applications are needed. PSAM4-GlyR is a modular system based on the human α7 nicotinic acetylcholine and glycine receptors, which responds to inert chemical ligands and the clinically approved drug varenicline. Here, we demonstrated the efficacy of this channel in silencing both mouse and human sensory neurons by the activation of large shunting conductances after agonist administration. Virally mediated expression of PSAM4-GlyR in mouse sensory neurons produced behavioral hyposensitivity upon agonist administration, which was recovered upon agonist washout. Stable expression of the channel led to similar reversible suppression of pain-related behavior even after 10 months of viral delivery. Mechanical and spontaneous pain readouts were also ameliorated by PSAM4-GlyR activation in acute and joint pain inflammation mouse models. Furthermore, suppression of mechanical hypersensitivity generated by a spared nerve injury model of neuropathic pain was also observed upon activation of the channel. Effective silencing of behavioral hypersensitivity was reproduced in a human model of hyperexcitability and clinical pain: PSAM4-GlyR activation decreased the excitability of human-induced pluripotent stem cell-derived sensory neurons and spontaneous activity due to a gain-of-function NaV1.7 mutation causing inherited erythromelalgia. Our results demonstrate the contribution of sensory neuron hyperexcitability to neuropathic pain and the translational potential of an effective, stable, and reversible humanized chemogenetic system for the treatment of pain.
Collapse
Affiliation(s)
- Jimena Perez-Sanchez
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford OX3 9DU, UK
| | - Steven J. Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford OX3 9DU, UK
| | - Luke A. Pattison
- Department of Pharmacology, University of Cambridge; Cambridge CB2 1PD, UK
| | - Helen Hilton
- Department of Pharmacology, University of Cambridge; Cambridge CB2 1PD, UK
| | | | - Sana R. Zuberi
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford OX3 9DU, UK
| | - Maria B. Renke
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford OX3 9DU, UK
| | - Huimin Hu
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford OX3 9DU, UK
| | - Xun Yang
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford OX3 9DU, UK
| | - Alex J. Clark
- Blizard Institute, Barts and the London School of Medicine and Dentistry; London E1 2AT, UK
| | | | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford OX3 9DU, UK
| |
Collapse
|
12
|
Collet R, Caballero-Ávila M, Querol L. Clinical and pathophysiological implications of autoantibodies in autoimmune neuropathies. Rev Neurol (Paris) 2023; 179:831-843. [PMID: 36907709 DOI: 10.1016/j.neurol.2023.02.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 03/13/2023]
Abstract
Autoimmune neuropathies are a heterogeneous group of rare and disabling diseases in which the immune system targets peripheral nervous system antigens and that respond to immune therapies. This review focuses on Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, multifocal motor neuropathy, polyneuropathy associated with IgM monoclonal gammopathy, and autoimmune nodopathies. Autoantibodies targeting gangliosides, proteins in the node of Ranvier, and myelin-associated glycoprotein have been described in these disorders, defining subgroups of patients with similar clinical features and response to therapy. This topical review describes the role of these autoantibodies in the pathogenesis of autoimmune neuropathies and their clinical and therapeutic importance.
Collapse
Affiliation(s)
- R Collet
- Department of Neurology, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - M Caballero-Ávila
- Department of Neurology, Hospital Santa Creu i Sant Pau, Barcelona, Spain; Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - L Querol
- Department of Neurology, Hospital Santa Creu i Sant Pau, Barcelona, Spain; Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
13
|
Mutschler C, Fazal SV, Schumacher N, Loreto A, Coleman MP, Arthur-Farraj P. Schwann cells are axo-protective after injury irrespective of myelination status in mouse Schwann cell-neuron cocultures. J Cell Sci 2023; 136:jcs261557. [PMID: 37642648 PMCID: PMC10546878 DOI: 10.1242/jcs.261557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Myelinating Schwann cell (SC)-dorsal root ganglion (DRG) neuron cocultures are an important technique for understanding cell-cell signalling and interactions during peripheral nervous system (PNS) myelination, injury, and regeneration. Although methods using rat SCs and neurons or mouse DRG explants are commonplace, there are no established protocols for compartmentalised myelinating cocultures with dissociated mouse cells. There consequently is a need for a coculture protocol that allows separate genetic manipulation of mouse SCs or neurons, or use of cells from different transgenic animals to complement in vivo mouse experiments. However, inducing myelination of dissociated mouse SCs in culture is challenging. Here, we describe a new method to coculture dissociated mouse SCs and DRG neurons in microfluidic chambers and induce robust myelination. Cocultures can be axotomised to study injury and used for drug treatments, and cells can be lentivirally transduced for live imaging. We used this model to investigate axon degeneration after traumatic axotomy and find that SCs, irrespective of myelination status, are axo-protective. At later timepoints after injury, live imaging of cocultures shows that SCs break up, ingest and clear axonal debris.
Collapse
Affiliation(s)
- Clara Mutschler
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Shaline V. Fazal
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Nathalie Schumacher
- Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège, 4000 Liège, Belgium
| | - Andrea Loreto
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Michael P. Coleman
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| |
Collapse
|
14
|
Van Lent J, Vendredy L, Adriaenssens E, Da Silva Authier T, Asselbergh B, Kaji M, Weckhuysen S, Van Den Bosch L, Baets J, Timmerman V. Downregulation of PMP22 ameliorates myelin defects in iPSC-derived human organoid cultures of CMT1A. Brain 2023; 146:2885-2896. [PMID: 36511878 PMCID: PMC10316758 DOI: 10.1093/brain/awac475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 10/11/2023] Open
Abstract
Charcot-Marie-Tooth disease is the most common inherited disorder of the PNS. CMT1A accounts for 40-50% of all cases and is caused by a duplication of the PMP22 gene on chromosome 17, leading to dysmyelination in the PNS. Patient-derived models to study such myelination defects are lacking as the in vitro generation of human myelinating Schwann cells has proved to be particularly challenging. Here, we present an induced pluripotent stem cell-derived organoid culture, containing various cell types of the PNS, including myelinating human Schwann cells, which mimics the human PNS. Single-cell analysis confirmed the PNS-like cellular composition and provides insight into the developmental trajectory. We used this organoid model to study disease signatures of CMT1A, revealing early ultrastructural myelin alterations, including increased myelin periodic line distance and hypermyelination of small axons. Furthermore, we observed the presence of onion-bulb-like formations in a later developmental stage. These hallmarks were not present in the CMT1A-corrected isogenic line or in a CMT2A iPSC line, supporting the notion that these alterations are specific to CMT1A. Downregulation of PMP22 expression using short-hairpin RNAs or a combinatorial drug consisting of baclofen, naltrexone hydrochloride and D-sorbitol was able to ameliorate the myelin defects in CMT1A-organoids. In summary, this self-organizing organoid model can capture biologically meaningful features of the disease and capture the physiological complexity, forms an excellent model for studying demyelinating diseases and supports the therapeutic approach of reducing PMP22 expression.
Collapse
Affiliation(s)
- Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
| | - Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
| | - Elias Adriaenssens
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
| | - Tatiana Da Silva Authier
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
| | - Bob Asselbergh
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
| | - Marcus Kaji
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, University of Antwerp, Antwerp 2610, Belgium
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, University of Antwerp, Antwerp 2610, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp 2610, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp 2610, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, Leuven Brain Institute, KU Leuven—University of Leuven, Leuven 3000, Belgium
- VIB-Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven 3000, Belgium
| | - Jonathan Baets
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp 2610, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
| |
Collapse
|
15
|
Fehmi J, Davies AJ, Antonelou M, Keddie S, Pikkupeura S, Querol L, Delmont E, Cortese A, Franciotta D, Persson S, Barratt J, Pepper R, Farinha F, Rahman A, Canetti D, Gilbertson JA, Rendell NB, Radunovic A, Minton T, Fuller G, Murphy SM, Carr AS, Reilly MR, Eftimov F, Wieske L, Teunissen CE, Roberts ISD, Ashman N, Salama AD, Rinaldi S. Contactin-1 links autoimmune neuropathy and membranous glomerulonephritis. PLoS One 2023; 18:e0281156. [PMID: 36893151 PMCID: PMC9997925 DOI: 10.1371/journal.pone.0281156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/11/2023] [Indexed: 03/10/2023] Open
Abstract
Membranous glomerulonephritis (MGN) is a common cause of nephrotic syndrome in adults, mediated by glomerular antibody deposition to an increasing number of newly recognised antigens. Previous case reports have suggested an association between patients with anti-contactin-1 (CNTN1)-mediated neuropathies and MGN. In an observational study we investigated the pathobiology and extent of this potential cause of MGN by examining the association of antibodies against CNTN1 with the clinical features of a cohort of 468 patients with suspected immune-mediated neuropathies, 295 with idiopathic MGN, and 256 controls. Neuronal and glomerular binding of patient IgG, serum CNTN1 antibody and protein levels, as well as immune-complex deposition were determined. We identified 15 patients with immune-mediated neuropathy and concurrent nephrotic syndrome (biopsy proven MGN in 12/12), and 4 patients with isolated MGN from an idiopathic MGN cohort, all seropositive for IgG4 CNTN1 antibodies. CNTN1-containing immune complexes were found in the renal glomeruli of patients with CNTN1 antibodies, but not in control kidneys. CNTN1 peptides were identified in glomeruli by mass spectroscopy. CNTN1 seropositive patients were largely resistant to first-line neuropathy treatments but achieved a good outcome with escalation therapies. Neurological and renal function improved in parallel with suppressed antibody titres. The reason for isolated MGN without clinical neuropathy is unclear. We show that CNTN1, found in peripheral nerves and kidney glomeruli, is a common target for autoantibody-mediated pathology and may account for between 1 and 2% of idiopathic MGN cases. Greater awareness of this cross-system syndrome should facilitate earlier diagnosis and more timely use of effective treatment.
Collapse
Affiliation(s)
- Janev Fehmi
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alexander J. Davies
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Marilina Antonelou
- University College London Department of Renal Medicine, Royal Free Hospital, London, United Kingdom
| | - Stephen Keddie
- Centre for Neuromuscular Disease, National Hospital of Neurology and Neurosurgery and Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Sonja Pikkupeura
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Luis Querol
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Emilien Delmont
- Referral Centre for ALS and Neuromuscular Diseases, Hospital La Timone, Marseille, France
| | - Andrea Cortese
- Centre for Neuromuscular Disease, National Hospital of Neurology and Neurosurgery and Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, United Kingdom
- Department of Brain and Behaviour sciences, University of Pavia, Pavia, Italy
| | | | - Staffan Persson
- Faculty of Medicine, Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Ruth Pepper
- University College London Department of Renal Medicine, Royal Free Hospital, London, United Kingdom
| | - Filipa Farinha
- Centre for Rheumatology and Bloomsbury Rheumatology Unit, Division of Medicine, University College London, London, United Kingdom
| | - Anisur Rahman
- Centre for Rheumatology and Bloomsbury Rheumatology Unit, Division of Medicine, University College London, London, United Kingdom
| | - Diana Canetti
- Wolfson Drug Discovery Unit and National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, United Kingdom
| | - Janet A. Gilbertson
- Wolfson Drug Discovery Unit and National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, United Kingdom
| | - Nigel B. Rendell
- Wolfson Drug Discovery Unit and National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, United Kingdom
| | - Aleksandar Radunovic
- Barts Neuromuscular Diseases Centre, Royal London Hospital, London, United Kingdom
| | - Thomas Minton
- Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| | - Geraint Fuller
- Department of Neurology, Gloucestershire Royal Hospital, Gloucester, United Kingdom
| | - Sinead M. Murphy
- Department of Neurology, Tallaght University Hospital & Academic Unit of Neurology, Trinity College, Dublin, Ireland
| | - Aisling S. Carr
- Centre for Neuromuscular Disease, National Hospital of Neurology and Neurosurgery and Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Mary R. Reilly
- Centre for Neuromuscular Disease, National Hospital of Neurology and Neurosurgery and Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Charlotte E. Teunissen
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Ian S. D. Roberts
- Department of Cellular Pathology, John Radcliffe Hospital, Oxford, United Kingdom
| | - Neil Ashman
- Barts Renal Unit, The Royal London Hospital, London, United Kingdom
| | - Alan D. Salama
- University College London Department of Renal Medicine, Royal Free Hospital, London, United Kingdom
| | - Simon Rinaldi
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
16
|
Wu Y, Tang Z, Zhang J, Wang Y, Liu S. Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Front Cell Neurosci 2022; 16:1077441. [PMID: 36523818 PMCID: PMC9744968 DOI: 10.3389/fncel.2022.1077441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 09/26/2023] Open
Abstract
Spinal cord injury (SCI) disrupts neurological pathways and impacts sensory, motor, and autonomic nerve function. There is no effective treatment for SCI currently. Numerous endogenous cells, including astrocytes, macrophages/microglia, and oligodendrocyte, are involved in the histological healing process following SCI. By interfering with cells during the SCI repair process, some advancements in the therapy of SCI have been realized. Nevertheless, the endogenous cell types engaged in SCI repair and the current difficulties these cells confront in the therapy of SCI are poorly defined, and the mechanisms underlying them are little understood. In order to better understand SCI and create new therapeutic strategies and enhance the clinical translation of SCI repair, we have comprehensively listed the endogenous cells involved in SCI repair and summarized the six most common mechanisms involved in SCI repair, including limiting the inflammatory response, protecting the spared spinal cord, enhancing myelination, facilitating neovascularization, producing neurotrophic factors, and differentiating into neural/colloidal cell lines.
Collapse
Affiliation(s)
| | | | | | | | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Campbell CI, McGonigal R, Barrie JA, Delaere J, Bracke L, Cunningham ME, Yao D, Delahaye T, Van de Walle I, Willison HJ. Complement inhibition prevents glial nodal membrane injury in a GM1 antibody-mediated mouse model. Brain Commun 2022; 4:fcac306. [PMID: 36523267 PMCID: PMC9746686 DOI: 10.1093/braincomms/fcac306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/09/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The involvement of the complement pathway in Guillain-Barré syndrome pathogenesis has been demonstrated in both patient biosamples and animal models. One proposed mechanism is that anti-ganglioside antibodies mediate neural membrane injury through the activation of complement and the formation of membrane attack complex pores, thereby allowing the uncontrolled influx of ions, including calcium, intracellularly. Calcium influx activates the calcium-dependent protease calpain, leading to the cleavage of neural cytoskeletal and transmembrane proteins and contributing to subsequent functional failure. Complement inhibition has been demonstrated to provide effective protection from injury in anti-ganglioside antibody-mediated mouse models of axonal variants of Guillain-Barré syndrome; however, the role of complement in the pathogenesis of demyelinating variants has yet to be established. Thus, it is currently unknown whether complement inhibition would be an effective therapeutic for Guillain-Barré syndrome patients with injuries to the Schwann cell membrane. To address this, we recently developed a mouse model whereby the Schwann cell membrane was selectively targeted with an anti-GM1 antibody resulting in significant disruption to the axo-glial junction and cytoplasmic paranodal loops, presenting as conduction block. Herein, we utilize this Schwann cell nodal membrane injury model to determine the relevance of inhibiting complement activation. We addressed the early complement component C2 as the therapeutic target within the complement cascade by using the anti-C2 humanized monoclonal antibody, ARGX-117. This anti-C2 antibody blocks the formation of C3 convertase, specifically inhibiting the classical and lectin complement pathways and preventing the production of downstream harmful anaphylatoxins (C3a and C5a) and membrane attack complexes. Here, we demonstrate that C2 inhibition significantly attenuates injury to paranodal proteins at the node of Ranvier and improves respiratory function in ex vivo and in vivo Schwann cell nodal membrane injury models. In parallel studies, C2 inhibition also protects axonal integrity in our well-established model of acute motor axonal neuropathy mediated by both mouse and human anti-GM1 antibodies. These data demonstrate that complement inhibition prevents injury in a Schwann cell nodal membrane injury model, which is representative of neuropathies associated with anti-GM1 antibodies, including Guillain-Barré syndrome and multifocal motor neuropathy. This outcome suggests that both the motor axonal and demyelinating variants of Guillain-Barré syndrome should be included in future complement inhibition clinical trials.
Collapse
Affiliation(s)
- Clare I Campbell
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Rhona McGonigal
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Jennifer A Barrie
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | | | | | - Madeleine E Cunningham
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Denggao Yao
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | | | | | - Hugh J Willison
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
18
|
Davies AJ, Lleixà C, Siles AM, Gourlay DS, Berridge G, Dejnirattisai W, Ramírez-Santana C, Anaya JM, Falconar AK, Romero-Vivas CM, Osorio L, Parra B, Screaton GR, Mongkolsapaya J, Fischer R, Pardo CA, Halstead SK, Willison HJ, Querol L, Rinaldi S. Guillain-Barré Syndrome Following Zika Virus Infection Is Associated With a Diverse Spectrum of Peripheral Nerve Reactive Antibodies. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 10:10/1/e200047. [PMID: 36411078 PMCID: PMC9679884 DOI: 10.1212/nxi.0000000000200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Recent outbreaks of Zika virus (ZIKV) in South and Central America have highlighted significant neurologic side effects. Concurrence with the inflammatory neuropathy Guillain-Barré syndrome (GBS) is observed in 1:4,000 ZIKV cases. Whether the neurologic symptoms of ZIKV infection are immune mediated is unclear. We used rodent and human live cellular models to screen for anti-peripheral nerve reactive IgG and IgM autoantibodies in the sera of patients with ZIKV with and without GBS. METHODS In this study, 52 patients with ZIKV-GBS were compared with 134 ZIKV-infected patients without GBS and 91 non-ZIKV controls. Positive sera were taken forward for target identification by immunoprecipitation and mass spectrometry, and candidate antigens were validated by ELISA and cell-based assays. Autoantibody reactions against glycolipid antigens were also screened on an array. RESULTS Overall, IgG antibody reactivities to rat Schwann cells (SCs) (6.5%) and myelinated cocultures (9.6%) were significantly higher, albeit infrequent, in the ZIKV-GBS group compared with all controls. IgM antibody immunoreactivity to dorsal root ganglia neurones (32.3%) and SCs (19.4%) was more frequently observed in the ZIKV-GBS group compared with other controls, whereas IgM reactivity to cocultures was as common in ZIKV and non-ZIKV sera. Strong axonal-binding ZIKV-GBS serum IgG antibodies from 1 patient were confirmed to react with neurofascin 155 and 186. Serum from a ZIKV-infected patient without GBS displayed strong myelin-binding and putative antilipid antigen reaction characteristics. There was, however, no significant association of ZIKV-GBS with any known antiglycolipid antibodies. DISCUSSION Autoantibody responses in ZIKV-GBS target heterogeneous peripheral nerve antigens suggesting heterogeneity of the humoral immune response despite a common prodromal infection.
Collapse
Affiliation(s)
- Alexander J Davies
- From the Nuffield Department of Clinical Neurosciences (A.J.D., S.R.), University of Oxford, John Radcliffe Hospital, UK; Neuromuscular Diseases Unit (C.L., A.M.S., L.Q.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro para la Investigación Biomédica en red en Enfermedades Raras-(CIBERER) Madrid (C.L., A.M.S., L.Q.), Spain; Institute of Infection (D.S.G., S.K.H., H.J.W.), Immunity & Inflammation, University of Glasgow, University Place, UK; Target Discovery Institute (G.B., R.F.), NDM Research Building, University of Oxford, Old Road Campus, UK; Wellcome Centre for Human Genetics (W.D., G.R.S., J.M.), Nuffield Department of Medicine, University of Oxford, UK; Center for Autoimmune Diseases Research (CREA) (C.R.-S., J.-M.A.), Universidad del Rosario, Bogotá, Colombia; Departamento de Medicina (A.K.F., C.M.R.-V.), Universidad del Norte, Barranquilla, Colombia; Grupo de Epidemiología y Salud Poblacional (GESP) (L.O.,), School of Public Health, Universidad del Valle, Cali, Colombia; Department of Microbiology (B.P.), School of Basic Sciences, Universidad del Valle, Cali, Colombia; Dengue Hemorrhagic Fever Research Unit (J.M.), Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol Univeristy, Bangkok, Thailand; Department of Neurology (C.A.P.), Johns Hopkins University School of Medicine, Baltimore, MD; and LifeFactors (J.-M.A.), Rionegro, Colombia; Division of Emerging Infectious Disease (W.D.), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Cinta Lleixà
- From the Nuffield Department of Clinical Neurosciences (A.J.D., S.R.), University of Oxford, John Radcliffe Hospital, UK; Neuromuscular Diseases Unit (C.L., A.M.S., L.Q.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro para la Investigación Biomédica en red en Enfermedades Raras-(CIBERER) Madrid (C.L., A.M.S., L.Q.), Spain; Institute of Infection (D.S.G., S.K.H., H.J.W.), Immunity & Inflammation, University of Glasgow, University Place, UK; Target Discovery Institute (G.B., R.F.), NDM Research Building, University of Oxford, Old Road Campus, UK; Wellcome Centre for Human Genetics (W.D., G.R.S., J.M.), Nuffield Department of Medicine, University of Oxford, UK; Center for Autoimmune Diseases Research (CREA) (C.R.-S., J.-M.A.), Universidad del Rosario, Bogotá, Colombia; Departamento de Medicina (A.K.F., C.M.R.-V.), Universidad del Norte, Barranquilla, Colombia; Grupo de Epidemiología y Salud Poblacional (GESP) (L.O.,), School of Public Health, Universidad del Valle, Cali, Colombia; Department of Microbiology (B.P.), School of Basic Sciences, Universidad del Valle, Cali, Colombia; Dengue Hemorrhagic Fever Research Unit (J.M.), Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol Univeristy, Bangkok, Thailand; Department of Neurology (C.A.P.), Johns Hopkins University School of Medicine, Baltimore, MD; and LifeFactors (J.-M.A.), Rionegro, Colombia; Division of Emerging Infectious Disease (W.D.), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ana M Siles
- From the Nuffield Department of Clinical Neurosciences (A.J.D., S.R.), University of Oxford, John Radcliffe Hospital, UK; Neuromuscular Diseases Unit (C.L., A.M.S., L.Q.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro para la Investigación Biomédica en red en Enfermedades Raras-(CIBERER) Madrid (C.L., A.M.S., L.Q.), Spain; Institute of Infection (D.S.G., S.K.H., H.J.W.), Immunity & Inflammation, University of Glasgow, University Place, UK; Target Discovery Institute (G.B., R.F.), NDM Research Building, University of Oxford, Old Road Campus, UK; Wellcome Centre for Human Genetics (W.D., G.R.S., J.M.), Nuffield Department of Medicine, University of Oxford, UK; Center for Autoimmune Diseases Research (CREA) (C.R.-S., J.-M.A.), Universidad del Rosario, Bogotá, Colombia; Departamento de Medicina (A.K.F., C.M.R.-V.), Universidad del Norte, Barranquilla, Colombia; Grupo de Epidemiología y Salud Poblacional (GESP) (L.O.,), School of Public Health, Universidad del Valle, Cali, Colombia; Department of Microbiology (B.P.), School of Basic Sciences, Universidad del Valle, Cali, Colombia; Dengue Hemorrhagic Fever Research Unit (J.M.), Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol Univeristy, Bangkok, Thailand; Department of Neurology (C.A.P.), Johns Hopkins University School of Medicine, Baltimore, MD; and LifeFactors (J.-M.A.), Rionegro, Colombia; Division of Emerging Infectious Disease (W.D.), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Dawn S Gourlay
- From the Nuffield Department of Clinical Neurosciences (A.J.D., S.R.), University of Oxford, John Radcliffe Hospital, UK; Neuromuscular Diseases Unit (C.L., A.M.S., L.Q.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro para la Investigación Biomédica en red en Enfermedades Raras-(CIBERER) Madrid (C.L., A.M.S., L.Q.), Spain; Institute of Infection (D.S.G., S.K.H., H.J.W.), Immunity & Inflammation, University of Glasgow, University Place, UK; Target Discovery Institute (G.B., R.F.), NDM Research Building, University of Oxford, Old Road Campus, UK; Wellcome Centre for Human Genetics (W.D., G.R.S., J.M.), Nuffield Department of Medicine, University of Oxford, UK; Center for Autoimmune Diseases Research (CREA) (C.R.-S., J.-M.A.), Universidad del Rosario, Bogotá, Colombia; Departamento de Medicina (A.K.F., C.M.R.-V.), Universidad del Norte, Barranquilla, Colombia; Grupo de Epidemiología y Salud Poblacional (GESP) (L.O.,), School of Public Health, Universidad del Valle, Cali, Colombia; Department of Microbiology (B.P.), School of Basic Sciences, Universidad del Valle, Cali, Colombia; Dengue Hemorrhagic Fever Research Unit (J.M.), Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol Univeristy, Bangkok, Thailand; Department of Neurology (C.A.P.), Johns Hopkins University School of Medicine, Baltimore, MD; and LifeFactors (J.-M.A.), Rionegro, Colombia; Division of Emerging Infectious Disease (W.D.), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Georgina Berridge
- From the Nuffield Department of Clinical Neurosciences (A.J.D., S.R.), University of Oxford, John Radcliffe Hospital, UK; Neuromuscular Diseases Unit (C.L., A.M.S., L.Q.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro para la Investigación Biomédica en red en Enfermedades Raras-(CIBERER) Madrid (C.L., A.M.S., L.Q.), Spain; Institute of Infection (D.S.G., S.K.H., H.J.W.), Immunity & Inflammation, University of Glasgow, University Place, UK; Target Discovery Institute (G.B., R.F.), NDM Research Building, University of Oxford, Old Road Campus, UK; Wellcome Centre for Human Genetics (W.D., G.R.S., J.M.), Nuffield Department of Medicine, University of Oxford, UK; Center for Autoimmune Diseases Research (CREA) (C.R.-S., J.-M.A.), Universidad del Rosario, Bogotá, Colombia; Departamento de Medicina (A.K.F., C.M.R.-V.), Universidad del Norte, Barranquilla, Colombia; Grupo de Epidemiología y Salud Poblacional (GESP) (L.O.,), School of Public Health, Universidad del Valle, Cali, Colombia; Department of Microbiology (B.P.), School of Basic Sciences, Universidad del Valle, Cali, Colombia; Dengue Hemorrhagic Fever Research Unit (J.M.), Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol Univeristy, Bangkok, Thailand; Department of Neurology (C.A.P.), Johns Hopkins University School of Medicine, Baltimore, MD; and LifeFactors (J.-M.A.), Rionegro, Colombia; Division of Emerging Infectious Disease (W.D.), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanwisa Dejnirattisai
- From the Nuffield Department of Clinical Neurosciences (A.J.D., S.R.), University of Oxford, John Radcliffe Hospital, UK; Neuromuscular Diseases Unit (C.L., A.M.S., L.Q.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro para la Investigación Biomédica en red en Enfermedades Raras-(CIBERER) Madrid (C.L., A.M.S., L.Q.), Spain; Institute of Infection (D.S.G., S.K.H., H.J.W.), Immunity & Inflammation, University of Glasgow, University Place, UK; Target Discovery Institute (G.B., R.F.), NDM Research Building, University of Oxford, Old Road Campus, UK; Wellcome Centre for Human Genetics (W.D., G.R.S., J.M.), Nuffield Department of Medicine, University of Oxford, UK; Center for Autoimmune Diseases Research (CREA) (C.R.-S., J.-M.A.), Universidad del Rosario, Bogotá, Colombia; Departamento de Medicina (A.K.F., C.M.R.-V.), Universidad del Norte, Barranquilla, Colombia; Grupo de Epidemiología y Salud Poblacional (GESP) (L.O.,), School of Public Health, Universidad del Valle, Cali, Colombia; Department of Microbiology (B.P.), School of Basic Sciences, Universidad del Valle, Cali, Colombia; Dengue Hemorrhagic Fever Research Unit (J.M.), Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol Univeristy, Bangkok, Thailand; Department of Neurology (C.A.P.), Johns Hopkins University School of Medicine, Baltimore, MD; and LifeFactors (J.-M.A.), Rionegro, Colombia; Division of Emerging Infectious Disease (W.D.), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Carolina Ramírez-Santana
- From the Nuffield Department of Clinical Neurosciences (A.J.D., S.R.), University of Oxford, John Radcliffe Hospital, UK; Neuromuscular Diseases Unit (C.L., A.M.S., L.Q.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro para la Investigación Biomédica en red en Enfermedades Raras-(CIBERER) Madrid (C.L., A.M.S., L.Q.), Spain; Institute of Infection (D.S.G., S.K.H., H.J.W.), Immunity & Inflammation, University of Glasgow, University Place, UK; Target Discovery Institute (G.B., R.F.), NDM Research Building, University of Oxford, Old Road Campus, UK; Wellcome Centre for Human Genetics (W.D., G.R.S., J.M.), Nuffield Department of Medicine, University of Oxford, UK; Center for Autoimmune Diseases Research (CREA) (C.R.-S., J.-M.A.), Universidad del Rosario, Bogotá, Colombia; Departamento de Medicina (A.K.F., C.M.R.-V.), Universidad del Norte, Barranquilla, Colombia; Grupo de Epidemiología y Salud Poblacional (GESP) (L.O.,), School of Public Health, Universidad del Valle, Cali, Colombia; Department of Microbiology (B.P.), School of Basic Sciences, Universidad del Valle, Cali, Colombia; Dengue Hemorrhagic Fever Research Unit (J.M.), Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol Univeristy, Bangkok, Thailand; Department of Neurology (C.A.P.), Johns Hopkins University School of Medicine, Baltimore, MD; and LifeFactors (J.-M.A.), Rionegro, Colombia; Division of Emerging Infectious Disease (W.D.), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Juan-Manuel Anaya
- From the Nuffield Department of Clinical Neurosciences (A.J.D., S.R.), University of Oxford, John Radcliffe Hospital, UK; Neuromuscular Diseases Unit (C.L., A.M.S., L.Q.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro para la Investigación Biomédica en red en Enfermedades Raras-(CIBERER) Madrid (C.L., A.M.S., L.Q.), Spain; Institute of Infection (D.S.G., S.K.H., H.J.W.), Immunity & Inflammation, University of Glasgow, University Place, UK; Target Discovery Institute (G.B., R.F.), NDM Research Building, University of Oxford, Old Road Campus, UK; Wellcome Centre for Human Genetics (W.D., G.R.S., J.M.), Nuffield Department of Medicine, University of Oxford, UK; Center for Autoimmune Diseases Research (CREA) (C.R.-S., J.-M.A.), Universidad del Rosario, Bogotá, Colombia; Departamento de Medicina (A.K.F., C.M.R.-V.), Universidad del Norte, Barranquilla, Colombia; Grupo de Epidemiología y Salud Poblacional (GESP) (L.O.,), School of Public Health, Universidad del Valle, Cali, Colombia; Department of Microbiology (B.P.), School of Basic Sciences, Universidad del Valle, Cali, Colombia; Dengue Hemorrhagic Fever Research Unit (J.M.), Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol Univeristy, Bangkok, Thailand; Department of Neurology (C.A.P.), Johns Hopkins University School of Medicine, Baltimore, MD; and LifeFactors (J.-M.A.), Rionegro, Colombia; Division of Emerging Infectious Disease (W.D.), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Andrew K Falconar
- From the Nuffield Department of Clinical Neurosciences (A.J.D., S.R.), University of Oxford, John Radcliffe Hospital, UK; Neuromuscular Diseases Unit (C.L., A.M.S., L.Q.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro para la Investigación Biomédica en red en Enfermedades Raras-(CIBERER) Madrid (C.L., A.M.S., L.Q.), Spain; Institute of Infection (D.S.G., S.K.H., H.J.W.), Immunity & Inflammation, University of Glasgow, University Place, UK; Target Discovery Institute (G.B., R.F.), NDM Research Building, University of Oxford, Old Road Campus, UK; Wellcome Centre for Human Genetics (W.D., G.R.S., J.M.), Nuffield Department of Medicine, University of Oxford, UK; Center for Autoimmune Diseases Research (CREA) (C.R.-S., J.-M.A.), Universidad del Rosario, Bogotá, Colombia; Departamento de Medicina (A.K.F., C.M.R.-V.), Universidad del Norte, Barranquilla, Colombia; Grupo de Epidemiología y Salud Poblacional (GESP) (L.O.,), School of Public Health, Universidad del Valle, Cali, Colombia; Department of Microbiology (B.P.), School of Basic Sciences, Universidad del Valle, Cali, Colombia; Dengue Hemorrhagic Fever Research Unit (J.M.), Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol Univeristy, Bangkok, Thailand; Department of Neurology (C.A.P.), Johns Hopkins University School of Medicine, Baltimore, MD; and LifeFactors (J.-M.A.), Rionegro, Colombia; Division of Emerging Infectious Disease (W.D.), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Claudia M Romero-Vivas
- From the Nuffield Department of Clinical Neurosciences (A.J.D., S.R.), University of Oxford, John Radcliffe Hospital, UK; Neuromuscular Diseases Unit (C.L., A.M.S., L.Q.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro para la Investigación Biomédica en red en Enfermedades Raras-(CIBERER) Madrid (C.L., A.M.S., L.Q.), Spain; Institute of Infection (D.S.G., S.K.H., H.J.W.), Immunity & Inflammation, University of Glasgow, University Place, UK; Target Discovery Institute (G.B., R.F.), NDM Research Building, University of Oxford, Old Road Campus, UK; Wellcome Centre for Human Genetics (W.D., G.R.S., J.M.), Nuffield Department of Medicine, University of Oxford, UK; Center for Autoimmune Diseases Research (CREA) (C.R.-S., J.-M.A.), Universidad del Rosario, Bogotá, Colombia; Departamento de Medicina (A.K.F., C.M.R.-V.), Universidad del Norte, Barranquilla, Colombia; Grupo de Epidemiología y Salud Poblacional (GESP) (L.O.,), School of Public Health, Universidad del Valle, Cali, Colombia; Department of Microbiology (B.P.), School of Basic Sciences, Universidad del Valle, Cali, Colombia; Dengue Hemorrhagic Fever Research Unit (J.M.), Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol Univeristy, Bangkok, Thailand; Department of Neurology (C.A.P.), Johns Hopkins University School of Medicine, Baltimore, MD; and LifeFactors (J.-M.A.), Rionegro, Colombia; Division of Emerging Infectious Disease (W.D.), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Lyda Osorio
- From the Nuffield Department of Clinical Neurosciences (A.J.D., S.R.), University of Oxford, John Radcliffe Hospital, UK; Neuromuscular Diseases Unit (C.L., A.M.S., L.Q.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro para la Investigación Biomédica en red en Enfermedades Raras-(CIBERER) Madrid (C.L., A.M.S., L.Q.), Spain; Institute of Infection (D.S.G., S.K.H., H.J.W.), Immunity & Inflammation, University of Glasgow, University Place, UK; Target Discovery Institute (G.B., R.F.), NDM Research Building, University of Oxford, Old Road Campus, UK; Wellcome Centre for Human Genetics (W.D., G.R.S., J.M.), Nuffield Department of Medicine, University of Oxford, UK; Center for Autoimmune Diseases Research (CREA) (C.R.-S., J.-M.A.), Universidad del Rosario, Bogotá, Colombia; Departamento de Medicina (A.K.F., C.M.R.-V.), Universidad del Norte, Barranquilla, Colombia; Grupo de Epidemiología y Salud Poblacional (GESP) (L.O.,), School of Public Health, Universidad del Valle, Cali, Colombia; Department of Microbiology (B.P.), School of Basic Sciences, Universidad del Valle, Cali, Colombia; Dengue Hemorrhagic Fever Research Unit (J.M.), Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol Univeristy, Bangkok, Thailand; Department of Neurology (C.A.P.), Johns Hopkins University School of Medicine, Baltimore, MD; and LifeFactors (J.-M.A.), Rionegro, Colombia; Division of Emerging Infectious Disease (W.D.), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Beatriz Parra
- From the Nuffield Department of Clinical Neurosciences (A.J.D., S.R.), University of Oxford, John Radcliffe Hospital, UK; Neuromuscular Diseases Unit (C.L., A.M.S., L.Q.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro para la Investigación Biomédica en red en Enfermedades Raras-(CIBERER) Madrid (C.L., A.M.S., L.Q.), Spain; Institute of Infection (D.S.G., S.K.H., H.J.W.), Immunity & Inflammation, University of Glasgow, University Place, UK; Target Discovery Institute (G.B., R.F.), NDM Research Building, University of Oxford, Old Road Campus, UK; Wellcome Centre for Human Genetics (W.D., G.R.S., J.M.), Nuffield Department of Medicine, University of Oxford, UK; Center for Autoimmune Diseases Research (CREA) (C.R.-S., J.-M.A.), Universidad del Rosario, Bogotá, Colombia; Departamento de Medicina (A.K.F., C.M.R.-V.), Universidad del Norte, Barranquilla, Colombia; Grupo de Epidemiología y Salud Poblacional (GESP) (L.O.,), School of Public Health, Universidad del Valle, Cali, Colombia; Department of Microbiology (B.P.), School of Basic Sciences, Universidad del Valle, Cali, Colombia; Dengue Hemorrhagic Fever Research Unit (J.M.), Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol Univeristy, Bangkok, Thailand; Department of Neurology (C.A.P.), Johns Hopkins University School of Medicine, Baltimore, MD; and LifeFactors (J.-M.A.), Rionegro, Colombia; Division of Emerging Infectious Disease (W.D.), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Gavin R Screaton
- From the Nuffield Department of Clinical Neurosciences (A.J.D., S.R.), University of Oxford, John Radcliffe Hospital, UK; Neuromuscular Diseases Unit (C.L., A.M.S., L.Q.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro para la Investigación Biomédica en red en Enfermedades Raras-(CIBERER) Madrid (C.L., A.M.S., L.Q.), Spain; Institute of Infection (D.S.G., S.K.H., H.J.W.), Immunity & Inflammation, University of Glasgow, University Place, UK; Target Discovery Institute (G.B., R.F.), NDM Research Building, University of Oxford, Old Road Campus, UK; Wellcome Centre for Human Genetics (W.D., G.R.S., J.M.), Nuffield Department of Medicine, University of Oxford, UK; Center for Autoimmune Diseases Research (CREA) (C.R.-S., J.-M.A.), Universidad del Rosario, Bogotá, Colombia; Departamento de Medicina (A.K.F., C.M.R.-V.), Universidad del Norte, Barranquilla, Colombia; Grupo de Epidemiología y Salud Poblacional (GESP) (L.O.,), School of Public Health, Universidad del Valle, Cali, Colombia; Department of Microbiology (B.P.), School of Basic Sciences, Universidad del Valle, Cali, Colombia; Dengue Hemorrhagic Fever Research Unit (J.M.), Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol Univeristy, Bangkok, Thailand; Department of Neurology (C.A.P.), Johns Hopkins University School of Medicine, Baltimore, MD; and LifeFactors (J.-M.A.), Rionegro, Colombia; Division of Emerging Infectious Disease (W.D.), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Juthathip Mongkolsapaya
- From the Nuffield Department of Clinical Neurosciences (A.J.D., S.R.), University of Oxford, John Radcliffe Hospital, UK; Neuromuscular Diseases Unit (C.L., A.M.S., L.Q.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro para la Investigación Biomédica en red en Enfermedades Raras-(CIBERER) Madrid (C.L., A.M.S., L.Q.), Spain; Institute of Infection (D.S.G., S.K.H., H.J.W.), Immunity & Inflammation, University of Glasgow, University Place, UK; Target Discovery Institute (G.B., R.F.), NDM Research Building, University of Oxford, Old Road Campus, UK; Wellcome Centre for Human Genetics (W.D., G.R.S., J.M.), Nuffield Department of Medicine, University of Oxford, UK; Center for Autoimmune Diseases Research (CREA) (C.R.-S., J.-M.A.), Universidad del Rosario, Bogotá, Colombia; Departamento de Medicina (A.K.F., C.M.R.-V.), Universidad del Norte, Barranquilla, Colombia; Grupo de Epidemiología y Salud Poblacional (GESP) (L.O.,), School of Public Health, Universidad del Valle, Cali, Colombia; Department of Microbiology (B.P.), School of Basic Sciences, Universidad del Valle, Cali, Colombia; Dengue Hemorrhagic Fever Research Unit (J.M.), Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol Univeristy, Bangkok, Thailand; Department of Neurology (C.A.P.), Johns Hopkins University School of Medicine, Baltimore, MD; and LifeFactors (J.-M.A.), Rionegro, Colombia; Division of Emerging Infectious Disease (W.D.), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Roman Fischer
- From the Nuffield Department of Clinical Neurosciences (A.J.D., S.R.), University of Oxford, John Radcliffe Hospital, UK; Neuromuscular Diseases Unit (C.L., A.M.S., L.Q.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro para la Investigación Biomédica en red en Enfermedades Raras-(CIBERER) Madrid (C.L., A.M.S., L.Q.), Spain; Institute of Infection (D.S.G., S.K.H., H.J.W.), Immunity & Inflammation, University of Glasgow, University Place, UK; Target Discovery Institute (G.B., R.F.), NDM Research Building, University of Oxford, Old Road Campus, UK; Wellcome Centre for Human Genetics (W.D., G.R.S., J.M.), Nuffield Department of Medicine, University of Oxford, UK; Center for Autoimmune Diseases Research (CREA) (C.R.-S., J.-M.A.), Universidad del Rosario, Bogotá, Colombia; Departamento de Medicina (A.K.F., C.M.R.-V.), Universidad del Norte, Barranquilla, Colombia; Grupo de Epidemiología y Salud Poblacional (GESP) (L.O.,), School of Public Health, Universidad del Valle, Cali, Colombia; Department of Microbiology (B.P.), School of Basic Sciences, Universidad del Valle, Cali, Colombia; Dengue Hemorrhagic Fever Research Unit (J.M.), Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol Univeristy, Bangkok, Thailand; Department of Neurology (C.A.P.), Johns Hopkins University School of Medicine, Baltimore, MD; and LifeFactors (J.-M.A.), Rionegro, Colombia; Division of Emerging Infectious Disease (W.D.), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Carlos A Pardo
- From the Nuffield Department of Clinical Neurosciences (A.J.D., S.R.), University of Oxford, John Radcliffe Hospital, UK; Neuromuscular Diseases Unit (C.L., A.M.S., L.Q.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro para la Investigación Biomédica en red en Enfermedades Raras-(CIBERER) Madrid (C.L., A.M.S., L.Q.), Spain; Institute of Infection (D.S.G., S.K.H., H.J.W.), Immunity & Inflammation, University of Glasgow, University Place, UK; Target Discovery Institute (G.B., R.F.), NDM Research Building, University of Oxford, Old Road Campus, UK; Wellcome Centre for Human Genetics (W.D., G.R.S., J.M.), Nuffield Department of Medicine, University of Oxford, UK; Center for Autoimmune Diseases Research (CREA) (C.R.-S., J.-M.A.), Universidad del Rosario, Bogotá, Colombia; Departamento de Medicina (A.K.F., C.M.R.-V.), Universidad del Norte, Barranquilla, Colombia; Grupo de Epidemiología y Salud Poblacional (GESP) (L.O.,), School of Public Health, Universidad del Valle, Cali, Colombia; Department of Microbiology (B.P.), School of Basic Sciences, Universidad del Valle, Cali, Colombia; Dengue Hemorrhagic Fever Research Unit (J.M.), Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol Univeristy, Bangkok, Thailand; Department of Neurology (C.A.P.), Johns Hopkins University School of Medicine, Baltimore, MD; and LifeFactors (J.-M.A.), Rionegro, Colombia; Division of Emerging Infectious Disease (W.D.), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Susan K Halstead
- From the Nuffield Department of Clinical Neurosciences (A.J.D., S.R.), University of Oxford, John Radcliffe Hospital, UK; Neuromuscular Diseases Unit (C.L., A.M.S., L.Q.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro para la Investigación Biomédica en red en Enfermedades Raras-(CIBERER) Madrid (C.L., A.M.S., L.Q.), Spain; Institute of Infection (D.S.G., S.K.H., H.J.W.), Immunity & Inflammation, University of Glasgow, University Place, UK; Target Discovery Institute (G.B., R.F.), NDM Research Building, University of Oxford, Old Road Campus, UK; Wellcome Centre for Human Genetics (W.D., G.R.S., J.M.), Nuffield Department of Medicine, University of Oxford, UK; Center for Autoimmune Diseases Research (CREA) (C.R.-S., J.-M.A.), Universidad del Rosario, Bogotá, Colombia; Departamento de Medicina (A.K.F., C.M.R.-V.), Universidad del Norte, Barranquilla, Colombia; Grupo de Epidemiología y Salud Poblacional (GESP) (L.O.,), School of Public Health, Universidad del Valle, Cali, Colombia; Department of Microbiology (B.P.), School of Basic Sciences, Universidad del Valle, Cali, Colombia; Dengue Hemorrhagic Fever Research Unit (J.M.), Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol Univeristy, Bangkok, Thailand; Department of Neurology (C.A.P.), Johns Hopkins University School of Medicine, Baltimore, MD; and LifeFactors (J.-M.A.), Rionegro, Colombia; Division of Emerging Infectious Disease (W.D.), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Hugh J Willison
- From the Nuffield Department of Clinical Neurosciences (A.J.D., S.R.), University of Oxford, John Radcliffe Hospital, UK; Neuromuscular Diseases Unit (C.L., A.M.S., L.Q.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro para la Investigación Biomédica en red en Enfermedades Raras-(CIBERER) Madrid (C.L., A.M.S., L.Q.), Spain; Institute of Infection (D.S.G., S.K.H., H.J.W.), Immunity & Inflammation, University of Glasgow, University Place, UK; Target Discovery Institute (G.B., R.F.), NDM Research Building, University of Oxford, Old Road Campus, UK; Wellcome Centre for Human Genetics (W.D., G.R.S., J.M.), Nuffield Department of Medicine, University of Oxford, UK; Center for Autoimmune Diseases Research (CREA) (C.R.-S., J.-M.A.), Universidad del Rosario, Bogotá, Colombia; Departamento de Medicina (A.K.F., C.M.R.-V.), Universidad del Norte, Barranquilla, Colombia; Grupo de Epidemiología y Salud Poblacional (GESP) (L.O.,), School of Public Health, Universidad del Valle, Cali, Colombia; Department of Microbiology (B.P.), School of Basic Sciences, Universidad del Valle, Cali, Colombia; Dengue Hemorrhagic Fever Research Unit (J.M.), Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol Univeristy, Bangkok, Thailand; Department of Neurology (C.A.P.), Johns Hopkins University School of Medicine, Baltimore, MD; and LifeFactors (J.-M.A.), Rionegro, Colombia; Division of Emerging Infectious Disease (W.D.), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Luis Querol
- From the Nuffield Department of Clinical Neurosciences (A.J.D., S.R.), University of Oxford, John Radcliffe Hospital, UK; Neuromuscular Diseases Unit (C.L., A.M.S., L.Q.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro para la Investigación Biomédica en red en Enfermedades Raras-(CIBERER) Madrid (C.L., A.M.S., L.Q.), Spain; Institute of Infection (D.S.G., S.K.H., H.J.W.), Immunity & Inflammation, University of Glasgow, University Place, UK; Target Discovery Institute (G.B., R.F.), NDM Research Building, University of Oxford, Old Road Campus, UK; Wellcome Centre for Human Genetics (W.D., G.R.S., J.M.), Nuffield Department of Medicine, University of Oxford, UK; Center for Autoimmune Diseases Research (CREA) (C.R.-S., J.-M.A.), Universidad del Rosario, Bogotá, Colombia; Departamento de Medicina (A.K.F., C.M.R.-V.), Universidad del Norte, Barranquilla, Colombia; Grupo de Epidemiología y Salud Poblacional (GESP) (L.O.,), School of Public Health, Universidad del Valle, Cali, Colombia; Department of Microbiology (B.P.), School of Basic Sciences, Universidad del Valle, Cali, Colombia; Dengue Hemorrhagic Fever Research Unit (J.M.), Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol Univeristy, Bangkok, Thailand; Department of Neurology (C.A.P.), Johns Hopkins University School of Medicine, Baltimore, MD; and LifeFactors (J.-M.A.), Rionegro, Colombia; Division of Emerging Infectious Disease (W.D.), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Simon Rinaldi
- From the Nuffield Department of Clinical Neurosciences (A.J.D., S.R.), University of Oxford, John Radcliffe Hospital, UK; Neuromuscular Diseases Unit (C.L., A.M.S., L.Q.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro para la Investigación Biomédica en red en Enfermedades Raras-(CIBERER) Madrid (C.L., A.M.S., L.Q.), Spain; Institute of Infection (D.S.G., S.K.H., H.J.W.), Immunity & Inflammation, University of Glasgow, University Place, UK; Target Discovery Institute (G.B., R.F.), NDM Research Building, University of Oxford, Old Road Campus, UK; Wellcome Centre for Human Genetics (W.D., G.R.S., J.M.), Nuffield Department of Medicine, University of Oxford, UK; Center for Autoimmune Diseases Research (CREA) (C.R.-S., J.-M.A.), Universidad del Rosario, Bogotá, Colombia; Departamento de Medicina (A.K.F., C.M.R.-V.), Universidad del Norte, Barranquilla, Colombia; Grupo de Epidemiología y Salud Poblacional (GESP) (L.O.,), School of Public Health, Universidad del Valle, Cali, Colombia; Department of Microbiology (B.P.), School of Basic Sciences, Universidad del Valle, Cali, Colombia; Dengue Hemorrhagic Fever Research Unit (J.M.), Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol Univeristy, Bangkok, Thailand; Department of Neurology (C.A.P.), Johns Hopkins University School of Medicine, Baltimore, MD; and LifeFactors (J.-M.A.), Rionegro, Colombia; Division of Emerging Infectious Disease (W.D.), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
19
|
Negro S, Pirazzini M, Rigoni M. Models and methods to study Schwann cells. J Anat 2022; 241:1235-1258. [PMID: 34988978 PMCID: PMC9558160 DOI: 10.1111/joa.13606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Schwann cells (SCs) are fundamental components of the peripheral nervous system (PNS) of all vertebrates and play essential roles in development, maintenance, function, and regeneration of peripheral nerves. There are distinct populations of SCs including: (1) myelinating SCs that ensheath axons by a specialized plasma membrane, called myelin, which enhances the conduction of electric impulses; (2) non-myelinating SCs, including Remak SCs, which wrap bundles of multiple axons of small caliber, and perysinaptic SCs (PSCs), associated with motor axon terminals at the neuromuscular junction (NMJ). All types of SCs contribute to PNS regeneration through striking morphological and functional changes in response to nerve injury, are affected in peripheral neuropathies and show abnormalities and a diminished plasticity during aging. Therefore, methodological approaches to study and manipulate SCs in physiological and pathophysiological conditions are crucial to expand the present knowledge on SC biology and to devise new therapeutic strategies to counteract neurodegenerative conditions and age-derived denervation. We present here an updated overview of traditional and emerging methodologies for the study of SCs for scientists approaching this research field.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
| | - Marco Pirazzini
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| | - Michela Rigoni
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| |
Collapse
|
20
|
Labau JIR, Andelic M, Faber CG, Waxman SG, Lauria G, Dib-Hajj SD. Recent advances for using human induced-pluripotent stem cells as pain-in-a-dish models of neuropathic pain. Exp Neurol 2022; 358:114223. [PMID: 36100046 DOI: 10.1016/j.expneurol.2022.114223] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022]
Abstract
Neuropathic pain is amongst the most common non-communicable disorders and the poor effectiveness of current treatment is an unmet need. Although pain is a universal experience, there are significant inter-individual phenotypic differences. Developing models that can accurately recapitulate the clinical pain features is crucial to better understand underlying pathophysiological mechanisms and find innovative treatments. Current data from heterologous expression systems that investigate properties of specific molecules involved in pain signaling, and from animal models, show limited success with their translation into the development of novel treatments for pain. This is in part because they do not recapitulate the native environment in which a particular molecule functions, and due to species-specific differences in the properties of several key molecules that are involved in pain signaling. The limited availability of post-mortem tissue, in particular dorsal root ganglia (DRG), has hampered research using human cells in pre-clinical studies. Human induced-pluripotent stem cells (iPSCs) have emerged as an exciting alternative platform to study patient-specific diseases. Sensory neurons that are derived from iPSCs (iPSC-SNs) have provided new avenues towards elucidating peripheral pathophysiological mechanisms, the potential for development of personalized treatments, and as a cell-based system for high-throughput screening for discovering novel analgesics. Nevertheless, reprogramming and differentiation protocols to obtain nociceptors have mostly yielded immature homogenous cell populations that do not recapitulate the heterogeneity of native sensory neurons. To close the gap between native human tissue and iPSCs, alternative strategies have been developed. We will review here recent developments in differentiating iPSC-SNs and their use in pre-clinical translational studies. Direct conversion of stem cells into the cells of interest has provided a more cost- and time-saving method to improve reproducibility and diversity of sensory cell types. Furthermore, multi-cellular strategies that mimic in vivo microenvironments for cell maturation, by improving cell contact and communication (co-cultures), reproducing the organ complexity and architecture (three-dimensional organoid), and providing iPSCs with the full spatiotemporal context and nutrients needed for acquiring a mature phenotype (xenotransplantation), have led to functional sensory neuron-like systems. Finally, this review touches on novel prospective strategies, including fluorescent-tracking to select the differentiated neurons of relevance, and dynamic clamp, an electrophysiological method that allows direct manipulation of ionic conductances that are missing in iPSC-SNs.
Collapse
Affiliation(s)
- Julie I R Labau
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA; Department of Toxicogenomics, Clinical Genomics, Maastricht University Medical Centre+, Maastricht, the Netherlands; School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Mirna Andelic
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurology, Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Catharina G Faber
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
| | - Giuseppe Lauria
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy.
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA.
| |
Collapse
|
21
|
Zeidler M, Kummer KK, Kress M. Towards bridging the translational gap by improved modeling of human nociception in health and disease. Pflugers Arch 2022; 474:965-978. [PMID: 35655042 PMCID: PMC9393146 DOI: 10.1007/s00424-022-02707-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/18/2022] [Indexed: 11/09/2022]
Abstract
Despite numerous studies which have explored the pathogenesis of pain disorders in preclinical models, there is a pronounced translational gap, which is at least partially caused by differences between the human and rodent nociceptive system. An elegant way to bridge this divide is the exploitation of human-induced pluripotent stem cell (iPSC) reprogramming into human iPSC-derived nociceptors (iDNs). Several protocols were developed and optimized to model nociceptive processes in health and disease. Here we provide an overview of the different approaches and summarize the knowledge obtained from such models on pain pathologies associated with monogenetic sensory disorders so far. In addition, novel perspectives offered by increasing the complexity of the model systems further to better reflect the natural environment of nociceptive neurons by involving other cell types in 3D model systems are described.
Collapse
Affiliation(s)
- Maximilian Zeidler
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai K Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
22
|
Peillet C, Adams D, Attarian S, Bouhour F, Cauquil C, Cassereau J, Chanson JB, Cintas P, Creange A, Delmont E, Fargeot G, Genestet S, Gueguen A, Kaminsky AL, Kuntzer T, Labeyrie C, Michaud M, Pereon Y, Puma A, Viala K, Chretien P, Adam C, Echaniz-Laguna A. Anti-disialosyl-IgM chronic autoimmune neuropathies: a nationwide multicenter retrospective study. Eur J Neurol 2022; 29:3547-3555. [PMID: 35969369 DOI: 10.1111/ene.15523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND & PURPOSE In this retrospective study involving 14 University Hospitals from France and Switzerland, we aimed at defining the clinicopathologic features of chronic neuropathies with anti-disialosyl ganglioside IgM antibodies (CNDA). RESULTS Fifty-five patients with a polyneuropathy evolving for more than 2 months and with at least one anti-disialosyl ganglioside IgM antibody, i.e., anti-GD1b, -GT1b, -GQ1b, -GT1a, -GD2 and -GD3 were identified. Seventy-eight percent of patients were male, mean age at disease onset was 55 years (30-76), and disease onset was progressive (82%) or acute (18%). Patients presented with limb sensory symptoms (94% of cases), sensory ataxia (85%), oculomotor weakness (36%), limb motor symptoms (31%), and bulbar muscles weakness (18%). Sixty-five percent of patients had a demyelinating polyradiculoneuropathy electrodiagnostic profile, and 24% a sensory neuronopathy profile. Anti-GD1b antibodies were found in 78% of cases, while other anti-disialosyl antibodies were each observed in less than 51% of patients. Other features included nerve biopsy demyelination (100% of cases), increased cerebrospinal fluid protein content (75%), IgM paraprotein (50%), and malignant hemopathy (8%). Eighty six percent of CNDA patients were intravenous immunoglobulins (IVIg)-responsive, and rituximab was successfully used as second-line treatment in 50% of cases. Fifteen percent of patients had mild symptoms and were not treated. CNDA course was progressive (55%) or relapsing (45%), and 93% of patients still walked after a mean disease duration of 11 years. CONCLUSION CNDA have a recognizable phenotype, are mostly IgIV-responsive, and present with a good outcome in a majority of cases.
Collapse
Affiliation(s)
- Claire Peillet
- Neurology Department, APHP, CHU de Bicêtre, Le Kremlin-Bicêtre, France.,French National Reference Center for Rare Neuropathies (NNERF), Le Kremlin-Bicêtre, 94276, France
| | - David Adams
- Neurology Department, APHP, CHU de Bicêtre, Le Kremlin-Bicêtre, France.,French National Reference Center for Rare Neuropathies (NNERF), Le Kremlin-Bicêtre, 94276, France.,INSERM U1195, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Shahram Attarian
- Neurology Department, CHU Timone, 264 Rue Saint Pierre, 13005, Marseille, France
| | - Françoise Bouhour
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 69500, Bron, France
| | - Cécile Cauquil
- Neurology Department, APHP, CHU de Bicêtre, Le Kremlin-Bicêtre, France.,French National Reference Center for Rare Neuropathies (NNERF), Le Kremlin-Bicêtre, 94276, France.,INSERM U1195, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Julien Cassereau
- Reference Centre for Neuromuscular Disorders, Department of Neurology, Angers University Hospital, 49933 Angers, France, Service de Neurologie, CHU Angers, Angers, France
| | - Jean-Baptiste Chanson
- Department of Neurology, Reference Center for Neuromuscular Disorders NEIDF, University Hospital of Strasbourg, France
| | | | - Alain Creange
- Service de Neurologie, CHU Henri Mondor, APHP, UPEC, Créteil, France
| | - Emilien Delmont
- Neurology Department, CHU Timone, 264 Rue Saint Pierre, 13005, Marseille, France
| | - Guillaume Fargeot
- Department of Clinical Neurophysiology, APHP, CHU Pitié-Salpêtrière, Paris, France
| | - Steeve Genestet
- Department of Clinical Neurophysiology, University Hospital Brest, France
| | - Antoine Gueguen
- Department of Neurology, Fondation Ophtalmologique A. de Rothschild, Paris, France
| | - Anne Laure Kaminsky
- Department of Neurology, Reference Center for Neuromuscular Disorders NEIDF, University Hospital of Nancy, France
| | - Thierry Kuntzer
- Nerve-muscle unit, Department of clinical neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland, Switzerland
| | - Céline Labeyrie
- Neurology Department, APHP, CHU de Bicêtre, Le Kremlin-Bicêtre, France.,French National Reference Center for Rare Neuropathies (NNERF), Le Kremlin-Bicêtre, 94276, France.,INSERM U1195, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Maud Michaud
- Department of Neurology, Reference Center for Neuromuscular Disorders NEIDF, University Hospital of Nancy, France
| | - Yann Pereon
- Reference Centre for Neuromuscular Disorders AOC Filnemus, Euro-NMD, Hôtel-Dieu, Nantes University Hospital, Nantes, France
| | - Angela Puma
- Peripheral Nervous System and Muscle Department, Côte d'Azur University, Nice University Hospital, Nice, France
| | - Karine Viala
- Department of Clinical Neurophysiology, APHP, CHU Pitié-Salpêtrière, Paris, France
| | - Pascale Chretien
- Clinical Immunology Laboratory, APHP, CHU Bicêtre, 94276, France.,Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Clovis Adam
- Pathology Department, APHP, CHU de Bicêtre, Le Kremlin-Bicêtre, France
| | - Andoni Echaniz-Laguna
- Neurology Department, APHP, CHU de Bicêtre, Le Kremlin-Bicêtre, France.,French National Reference Center for Rare Neuropathies (NNERF), Le Kremlin-Bicêtre, 94276, France.,INSERM U1195, Paris-Saclay University, Le Kremlin-Bicêtre, France
| |
Collapse
|
23
|
Malheiro A, Seijas-Gamardo A, Harichandan A, Mota C, Wieringa P, Moroni L. Development of an In Vitro Biomimetic Peripheral Neurovascular Platform. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31567-31585. [PMID: 35815638 PMCID: PMC9305708 DOI: 10.1021/acsami.2c03861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nerves and blood vessels are present in most organs and are indispensable for their function and homeostasis. Within these organs, neurovascular (NV) tissue forms congruent patterns and establishes vital interactions. Several human pathologies, including diabetes type II, produce NV disruptions with serious consequences that are complicated to study using animal models. Complex in vitro organ platforms, with neural and vascular supply, allow the investigation of such interactions, whether in a normal or pathological context, in an affordable, simple, and direct manner. To date, a few in vitro models contain NV tissue, and most strategies report models with nonbiomimetic representations of the native environment. To this end, we have established here an NV platform that contains mature vasculature and neural tissue, composed of human microvascular endothelial cells (HMVECs), induced pluripotent stem cell (iPSCs)-derived sensory neurons, and primary rat Schwann cells (SCs) within a fibrin-embedded polymeric scaffold. First, we show that SCs can induce the formation of and stabilize vascular networks to the same degree as the traditional and more thoroughly studied human dermal fibroblasts (HDFs). We also show that through SC prepatterning, we are able to control vessel orientation. Using our NV platform, we demonstrate the concomitant formation of three-dimensional neural and vascular tissue, and the influence of different medium formulations and cell types on the NV tissue outcome. Finally, we propose a protocol to form mature NV tissue, via the integration of independent neural and vascular constituents. The platform described here provides a versatile and advanced model for in vitro research of the NV axis.
Collapse
Affiliation(s)
- Afonso Malheiro
- Complex Tissue Regeneration
Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ET Maastricht, The Netherlands
| | - Adrián Seijas-Gamardo
- Complex Tissue Regeneration
Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ET Maastricht, The Netherlands
| | - Abhishek Harichandan
- Complex Tissue Regeneration
Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ET Maastricht, The Netherlands
| | - Carlos Mota
- Complex Tissue Regeneration
Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ET Maastricht, The Netherlands
| | - Paul Wieringa
- Complex Tissue Regeneration
Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ET Maastricht, The Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration
Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ET Maastricht, The Netherlands
| |
Collapse
|
24
|
Chase R, de la Peña JB, Smith PR, Lawson J, Lou TF, Stanowick AD, Black BJ, Campbell ZT. Global analyses of mRNA expression in human sensory neurons reveal eIF5A as a conserved target for inflammatory pain. FASEB J 2022; 36:e22422. [PMID: 35747924 DOI: 10.1096/fj.202101933rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 11/11/2022]
Abstract
Nociceptors are a type of sensory neuron that are integral to most forms of pain. Targeted disruption of nociceptor sensitization affords unique opportunities to prevent pain. An emerging model for nociceptors are sensory neurons derived from human stem cells. Here, we subjected five groups to high-throughput sequencing: human induced pluripotent stem cells (hiPSCs) prior to differentiation, mature hiPSC-derived sensory neurons, mature co-cultures containing hiPSC-derived astrocytes and sensory neurons, mouse dorsal root ganglion (DRG) tissues, and mouse DRG cultures. Co-culture of nociceptors and astrocytes promotes expression of transcripts enriched in DRG tissues. Comparisons of the hiPSC models to tissue samples reveal that many key transcripts linked to pain are present. Markers indicative of a range of neuronal subtypes present in the DRG were detected in mature hiPSCs. Intriguingly, translation factors were maintained at consistently high expression levels across species and culture systems. As a proof of concept for the utility of this resource, we validated expression of eukaryotic initiation factor 5A (eIF5A) in DRG tissues and hiPSC samples. eIF5A is subject to a unique posttranslational hypusine modification required for its activity. Inhibition of hypusine biosynthesis prevented hyperalgesic priming by inflammatory mediators in vivo and diminished hiPSC activity in vitro. Collectively, our results illuminate the transcriptomes of hiPSC sensory neuron models. We provide a demonstration for this resource through our investigation of eIF5A. Our findings reveal hypusine as a potential target for inflammation associated pain in males.
Collapse
Affiliation(s)
- Rebecca Chase
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - June Bryan de la Peña
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Patrick R Smith
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Jennifer Lawson
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Tzu-Fang Lou
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Alexander D Stanowick
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Bryan J Black
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA.,Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
25
|
Lischka A, Lassuthova P, Çakar A, Record CJ, Van Lent J, Baets J, Dohrn MF, Senderek J, Lampert A, Bennett DL, Wood JN, Timmerman V, Hornemann T, Auer-Grumbach M, Parman Y, Hübner CA, Elbracht M, Eggermann K, Geoffrey Woods C, Cox JJ, Reilly MM, Kurth I. Genetic pain loss disorders. Nat Rev Dis Primers 2022; 8:41. [PMID: 35710757 DOI: 10.1038/s41572-022-00365-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Abstract
Genetic pain loss includes congenital insensitivity to pain (CIP), hereditary sensory neuropathies and, if autonomic nerves are involved, hereditary sensory and autonomic neuropathy (HSAN). This heterogeneous group of disorders highlights the essential role of nociception in protecting against tissue damage. Patients with genetic pain loss have recurrent injuries, burns and poorly healing wounds as disease hallmarks. CIP and HSAN are caused by pathogenic genetic variants in >20 genes that lead to developmental defects, neurodegeneration or altered neuronal excitability of peripheral damage-sensing neurons. These genetic variants lead to hyperactivity of sodium channels, disturbed haem metabolism, altered clathrin-mediated transport and impaired gene regulatory mechanisms affecting epigenetic marks, long non-coding RNAs and repetitive elements. Therapies for pain loss disorders are mainly symptomatic but the first targeted therapies are being tested. Conversely, chronic pain remains one of the greatest unresolved medical challenges, and the genes and mechanisms associated with pain loss offer new targets for analgesics. Given the progress that has been made, the coming years are promising both in terms of targeted treatments for pain loss disorders and the development of innovative pain medicines based on knowledge of these genetic diseases.
Collapse
Affiliation(s)
- Annette Lischka
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Petra Lassuthova
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Arman Çakar
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Christopher J Record
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
| | - Jonathan Baets
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Maike F Dohrn
- Department of Neurology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jan Senderek
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
| | - Thorsten Hornemann
- Department of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michaela Auer-Grumbach
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Yesim Parman
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Katja Eggermann
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - C Geoffrey Woods
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
26
|
Uncini A, Mathis S, Vallat JM. New classification of autoimmune neuropathies based on target antigens and involved domains of myelinated fibres. J Neurol Neurosurg Psychiatry 2022; 93:57-67. [PMID: 34373238 DOI: 10.1136/jnnp-2021-326889] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/09/2021] [Indexed: 01/23/2023]
Abstract
Autoimmune neuropathies are named by eponyms, by descriptive terminology or because of the presence of specific antibodies and are traditionally classified, on the basis of pathology and electrophysiology, as primary demyelinating or axonal. However, autoimmune disorders targeting specific molecules of the nodal region, although not showing pathological evidence of demyelination, can exhibit all the electrophysiological changes considered characteristic of a demyelinating neuropathy and acute neuropathies with antiganglioside antibodies, classified as axonal and due to nodal dysfunction, can present with reversible conduction failure and prompt recovery that appear contradictory with the common view of an axonal neuropathy. These observations bring into question the concepts of demyelinating and axonal nerve conduction changes and the groundwork of the classical dichotomous classification.We propose a classification of autoimmune neuropathies based on the involved domains of the myelinated fibre and, when known, on the antigen. This classification, in our opinion, helps to better systematise autoimmune neuropathies because points to the site and molecular target of the autoimmune attack, reconciles some contrasting pathological and electrophysiological findings, circumvents the apparent paradox that neuropathies labelled as axonal may be promptly reversible and finally avoids taxonomic confusion and possible misdiagnosis.
Collapse
Affiliation(s)
- Antonino Uncini
- Neuroscience and Imaging, Gabriele d'Annunzio University of Chieti and Pescara, Chieti, Italy
| | - Stephane Mathis
- Department of Neurology, National Reference Center for Neuromuscular Disorders, ALS Center, CHU Bordeaux (Pellegrin Hospital), Bordeaux, France
| | - Jean-Michel Vallat
- National Reference Center for Rare Peripheral Neuropathies and Department of Neurology, CHU Limoges (Dupuytren Hospital), Limoges, France
| |
Collapse
|
27
|
Abstract
Induced pluripotent stem cells (iPS-cells) have significantly expanded our experimental possibilities, by creating new strategies for the molecular study of human disease and drug development. Treatment of pain has not seen much improvement over the past decade, likely due to species differences in preclinical models. Thus, iPS-cell derived sensory neurons offer a highly welcome translational approach for research and drug development. Although central neuronal differentiation is relatively straightforward, the successful and reliable generation of peripheral neurons requires more complex measures. Here, we describe a small molecule-based protocol for the differentiation of human sensory neurons from iPS-cells which renders functional nociceptor-like cells within several weeks.
Collapse
Affiliation(s)
- Anika Neureiter
- Institute of Physiology, Uniklinik RWTH Aachen, Aachen, Germany
| | - Esther Eberhardt
- Department of Anesthesiology, Uniklinik RWTH Aachen, Aachen, Germany
| | - Angelika Lampert
- Institute of Physiology, Uniklinik RWTH Aachen, Aachen, Germany.
| |
Collapse
|
28
|
Malheiro A, Harichandan A, Bernardi J, Seijas-Gamardo A, Konings GF, Volders PGA, Romano A, Mota C, Wieringa P, Moroni L. 3D culture platform of human iPSCs-derived nociceptors for peripheral nerve modelling and tissue innervation. Biofabrication 2021; 14. [PMID: 34736244 DOI: 10.1088/1758-5090/ac36bf] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/04/2021] [Indexed: 11/11/2022]
Abstract
Functional humanized in vitro nerve models are coveted as an alternative to animal models due to their ease of access, lower cost, clinical relevance and no need for recurrent animal sacrifice. To this end, we developed a sensory nerve model using induced pluripotent stem cells (iPSCs)-derived nociceptors that are electrically active and exhibit a functional response to noxious stimuli. The differentiated neurons were co-cultured with primary Schwann cells on an aligned microfibrous scaffold to produce biomimetic peripheral nerve tissue. Compared to glass coverslips, our scaffold enhances tissue development and stabilization. Using this model, we demonstrate that myelin damage can be induced from hyperglycemia exposure (glucose at 45 mM) and mitigated by epalrestat (1µM) supplementation. Through fibrin embedding of the platform, we were able to create 3D anisotropic myelinated tissue, reaching over 6.5 mm in length. Finally, as a proof-of-concept, we incorporated pancreatic pseudoislets and endometrial organoids into our nerve platform, to demonstrate the potential in generating nociceptor innervation models. In summary, we propose here an improved tool for neurobiology research with potential applications in pathology modelling, drug screening and target tissue innervation.
Collapse
Affiliation(s)
- Afonso Malheiro
- Complex Tissue Regeneration department, Maastricht University, Universiteitssingel 40, Maastricht, 6200 MD, NETHERLANDS
| | - Abhishek Harichandan
- Complex Tissue Regeneration department, Maastricht University, Universiteitssingel, 40, Maastricht, 6200 MD, NETHERLANDS
| | - Joyce Bernardi
- Department of Cardiology, Maastricht University, Universiteitssingel 50, Maastricht, 6200 MD, NETHERLANDS
| | - Adrián Seijas-Gamardo
- Complex Tissue Regeneration department, Maastricht University, Universiteitssingel 40, Maastricht, 6200 MD, NETHERLANDS
| | - Gonda F Konings
- Department of Gynaecology, Maastricht University, Universiteitssingel 50, Maastricht, 6200 MD, NETHERLANDS
| | - Paul G A Volders
- Department of Cardiology, Maastricht University, Universiteitssingel 50, Maastricht, 6200 MD, NETHERLANDS
| | - Andrea Romano
- Department of Gynaecology, Maastricht University, Universiteitssingel 50, Maastricht, 6200 MD, NETHERLANDS
| | - Carlos Mota
- Department of Complex Tissue Regeneration (CTR), Maastricht University, Universiteitssingel, 40, office 3.541A, Maastricht, 6229 ER, NETHERLANDS
| | - Paul Wieringa
- Complex Tissue Regeneration, Maastricht University MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229ER, NETHERLANDS
| | - Lorenzo Moroni
- Complex Tissue Regeneration, Maastricht University, Universiteitsingel, 40, Maastricht, 6200 MD, NETHERLANDS
| |
Collapse
|
29
|
Studying Independent Kcna6 Knock-out Mice Reveals Toxicity of Exogenous LacZ to Central Nociceptor Terminals and Differential Effects of Kv1.6 on Acute and Neuropathic Pain Sensation. J Neurosci 2021; 41:9141-9162. [PMID: 34544832 DOI: 10.1523/jneurosci.0187-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Abstract
The potassium channel Kv1.6 has recently been implicated as a major modulatory channel subunit expressed in primary nociceptors. Furthermore, its expression at juxtaparanodes of myelinated primary afferents is induced following traumatic nerve injury as part of an endogenous mechanism to reduce hyperexcitability and pain-related hypersensitivity. In this study, we compared two mouse models of constitutive Kv1.6 knock-out (KO) achieved by different methods: traditional gene trap via homologous recombination and CRISPR-mediated excision. Both Kv1.6 KO mouse lines exhibited an unexpected reduction in sensitivity to noxious heat stimuli, to differing extents: the Kv1.6 mice produced via gene trap had a far more significant hyposensitivity. These mice (Kcna6lacZ ) expressed the bacterial reporter enzyme LacZ in place of Kv1.6 as a result of the gene trap mechanism, and we found that their central primary afferent presynaptic terminals developed a striking neurodegenerative phenotype involving accumulation of lipid species, development of "meganeurites," and impaired transmission to dorsal horn wide dynamic range neurons. The anatomic defects were absent in CRISPR-mediated Kv1.6 KO mice (Kcna6 -/-) but were present in a third mouse model expressing exogenous LacZ in nociceptors under the control of a Nav1.8-promoted Cre recombinase. LacZ reporter enzymes are thus intrinsically neurotoxic to sensory neurons and may induce pathologic defects in transgenic mice, which has confounding implications for the interpretation of gene KOs using lacZ Nonetheless, in Kcna6 -/- mice not affected by LacZ, we demonstrated a significant role for Kv1.6 regulating acute noxious thermal sensitivity, and both mechanical and thermal pain-related hypersensitivity after nerve injury.SIGNIFICANCE STATEMENT In recent decades, the expansion of technologies to experimentally manipulate the rodent genome has contributed significantly to the field of neuroscience. While introduction of enzymatic or fluorescent reporter proteins to label neuronal populations is now commonplace, often potential toxicity effects are not fully considered. We show a role of Kv1.6 in acute and neuropathic pain states through analysis of two mouse models lacking Kv1.6 potassium channels: one with additional expression of LacZ and one without. We show that LacZ reporter enzymes induce unintended defects in sensory neurons, with an impact on behavioral data outcomes. To summarize we highlight the importance of Kv1.6 in recovery of normal sensory function following nerve injury, and careful interpretation of data from LacZ reporter models.
Collapse
|
30
|
Chang CY, Ting HC, Liu CA, Su HL, Chiou TW, Harn HJ, Lin SZ, Ho TJ. Differentiation of Human Pluripotent Stem Cells Into Specific Neural Lineages. Cell Transplant 2021; 30:9636897211017829. [PMID: 34665040 PMCID: PMC8529300 DOI: 10.1177/09636897211017829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are sources of several somatic cell
types for human developmental studies, in vitro disease modeling, and
cell transplantation therapy. Improving strategies of derivation of
high-purity specific neural and glial lineages from hPSCs is critical
for application to the study and therapy of the nervous system. Here,
we will focus on the principles behind establishment of neuron and
glia differentiation methods according to developmental studies. We
will also highlight the limitations and challenges associated with the
differentiation of several “difficult” neural lineages and delay in
neuronal maturation and functional integration. To overcome these
challenges, we will introduce strategies and novel technologies aimed
at improving the differentiation of various neural lineages to expand
the application potential of hPSCs to the study of the nervous
system.
Collapse
Affiliation(s)
- Chia-Yu Chang
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Medical Research, Hualien Tzu Chi Hospital, Hualien, Taiwan.,Neuroscience Center, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Hsiao-Chien Ting
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ching-Ann Liu
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Medical Research, Hualien Tzu Chi Hospital, Hualien, Taiwan.,Neuroscience Center, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science, National Dong Hwa University, Hualien, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Pathology, Hualien Tzu Chi Hospital and Tzu Chi University, Hualien, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan.,Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
31
|
Fehmi J, Davies AJ, Walters J, Lavin T, Keh R, Rossor AM, Munteanu T, Delanty N, Roberts R, Bäumer D, Lennox G, Rinaldi S. IgG 1 pan-neurofascin antibodies identify a severe yet treatable neuropathy with a high mortality. J Neurol Neurosurg Psychiatry 2021; 92:1089-1095. [PMID: 34400540 PMCID: PMC8458075 DOI: 10.1136/jnnp-2021-326343] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES We aimed to define the clinical and serological characteristics of pan-neurofascin antibody-positive patients. METHODS We tested serum from patients with suspected immune-mediated neuropathies for antibodies directed against nodal/paranodal protein antigens using a live cell-based assay and solid-phase platform. The clinical and serological characteristics of antibody-positive and seronegative patients were then compared. Sera positive for pan-neurofascin were also tested against live myelinated human stem cell-derived sensory neurons for antibody binding. RESULTS Eight patients with IgG1-subclass antibodies directed against both isoforms of the nodal/paranodal cell adhesion molecule neurofascin were identified. All developed rapidly progressive tetraplegia. Cranial nerve deficits (100% vs 26%), autonomic dysfunction (75% vs 13%) and respiratory involvement (88% vs 14%) were more common than in seronegative patients. Four patients died despite treatment with one or more modalities of standard immunotherapy (intravenous immunoglobulin, steroids and/or plasmapheresis), whereas the four patients who later went on to receive the B cell-depleting therapy rituximab then began to show progressive functional improvements within weeks, became seronegative and ultimately became functionally independent. CONCLUSIONS IgG1 pan-neurofascin antibodies define a very severe autoimmune neuropathy. We urgently recommend trials of targeted immunotherapy for this serologically classified patient group.
Collapse
Affiliation(s)
- Janev Fehmi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alexander J Davies
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jon Walters
- Department of Neurology, Morriston Hospital, Swansea, UK
| | - Timothy Lavin
- Manchester Centre for Clinical Neuroscience, Salford Royal NHS Foundation Trust, Salford, UK
| | - Ryan Keh
- Manchester Centre for Clinical Neuroscience, Salford Royal NHS Foundation Trust, Salford, UK
| | - Alexander M Rossor
- MRC Centre for Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, London, UK
| | - Tudor Munteanu
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Norman Delanty
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Rhys Roberts
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, Cambridge, UK
| | - Dirk Bäumer
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, Cambridge, UK
| | - Graham Lennox
- Department of Neurology, Great Western Hospital, Swindon, UK
| | - Simon Rinaldi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK .,Department of Neurology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
32
|
Chesnut M, Paschoud H, Repond C, Smirnova L, Hartung T, Zurich MG, Hogberg HT, Pamies D. Human IPSC-Derived Model to Study Myelin Disruption. Int J Mol Sci 2021; 22:9473. [PMID: 34502381 PMCID: PMC8430601 DOI: 10.3390/ijms22179473] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/15/2022] Open
Abstract
Myelin is of vital importance to the central nervous system and its disruption is related to a large number of both neurodevelopmental and neurodegenerative diseases. The differences observed between human and rodent oligodendrocytes make animals inadequate for modeling these diseases. Although developing human in vitro models for oligodendrocytes and myelinated axons has been a great challenge, 3D cell cultures derived from iPSC are now available and able to partially reproduce the myelination process. We have previously developed a human iPSC-derived 3D brain organoid model (also called BrainSpheres) that contains a high percentage of myelinated axons and is highly reproducible. Here, we have further refined this technology by applying multiple readouts to study myelination disruption. Myelin was assessed by quantifying immunostaining/confocal microscopy of co-localized myelin basic protein (MBP) with neurofilament proteins as well as proteolipid protein 1 (PLP1). Levels of PLP1 were also assessed by Western blot. We identified compounds capable of inducing developmental neurotoxicity by disrupting myelin in a systematic review to evaluate the relevance of our BrainSphere model for the study of the myelination/demyelination processes. Results demonstrated that the positive reference compound (cuprizone) and two of the three potential myelin disruptors tested (Bisphenol A, Tris(1,3-dichloro-2-propyl) phosphate, but not methyl mercury) decreased myelination, while ibuprofen (negative control) had no effect. Here, we define a methodology that allows quantification of myelin disruption and provides reference compounds for chemical-induced myelin disruption.
Collapse
Affiliation(s)
- Megan Chesnut
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD 21205, USA; (M.C.); (L.S.); (T.H.)
| | - Hélène Paschoud
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland; (H.P.); (C.R.); (M.-G.Z.)
| | - Cendrine Repond
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland; (H.P.); (C.R.); (M.-G.Z.)
| | - Lena Smirnova
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD 21205, USA; (M.C.); (L.S.); (T.H.)
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD 21205, USA; (M.C.); (L.S.); (T.H.)
- Center for Alternative to Animla Testing Europe, University of Konstanz, 78464 Konstanz, Germany
| | - Marie-Gabrielle Zurich
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland; (H.P.); (C.R.); (M.-G.Z.)
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland
| | - Helena T. Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD 21205, USA; (M.C.); (L.S.); (T.H.)
| | - David Pamies
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD 21205, USA; (M.C.); (L.S.); (T.H.)
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland; (H.P.); (C.R.); (M.-G.Z.)
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland
| |
Collapse
|
33
|
Ramanathan S, Tseng M, Davies AJ, Uy CE, Paneva S, Mgbachi VC, Michael S, Varley JA, Binks S, Themistocleous AC, Fehmi J, Anziska Y, Soni A, Hofer M, Waters P, Brilot F, Dale RC, Dawes J, Rinaldi S, Bennett DL, Irani SR. Leucine-Rich Glioma-Inactivated 1 versus Contactin-Associated Protein-like 2 Antibody Neuropathic Pain: Clinical and Biological Comparisons. Ann Neurol 2021; 90:683-690. [PMID: 34370313 PMCID: PMC8581990 DOI: 10.1002/ana.26189] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/04/2021] [Accepted: 08/01/2021] [Indexed: 01/14/2023]
Abstract
Pain is a under‐recognized association of leucine‐rich glioma‐inactivated 1 (LGI1) and contactin‐associated protein‐like 2 (CASPR2) antibodies. Of 147 patients with these autoantibodies, pain was experienced by 17 of 33 (52%) with CASPR2‐ versus 20 of 108 (19%) with LGI1 antibodies (p = 0.0005), and identified as neuropathic in 89% versus 58% of these, respectively. Typically, in both cohorts, normal nerve conduction studies and reduced intraepidermal nerve fiber densities were observed in the sampled patient subsets. In LGI1 antibody patients, pain responded to immunotherapy (p = 0.008), often rapidly, with greater residual patient‐rated impairment observed in CASPR2 antibody patients (p = 0.019). Serum CASPR2 antibodies, but not LGI1 antibodies, bound in vitro to unmyelinated human sensory neurons and rodent dorsal root ganglia, suggesting pathophysiological differences that may underlie our clinical observations. ANN NEUROL 2021;90:683–690
Collapse
Affiliation(s)
- Sudarshini Ramanathan
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.,Neuroimmunology and Brain Autoimmunity Groups, Kids Neuroscience Centre, Children's Hospital at Westmead; Brain and Mind Centre and Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Department of Neurology, Concord Hospital, Sydney, New South Wales, Australia
| | - Mandy Tseng
- Neural Injury Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Alexander J Davies
- Inflammatory Neuropathy Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Christopher E Uy
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.,Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sofija Paneva
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Victor C Mgbachi
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Sophia Michael
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - James A Varley
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Sophie Binks
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Andreas C Themistocleous
- Neural Injury Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Janev Fehmi
- Inflammatory Neuropathy Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Yaacov Anziska
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Anushka Soni
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Monika Hofer
- Department of Neuropathology, Oxford University Hospital, National Health Service Foundation Trust, Oxford, UK
| | - Patrick Waters
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Fabienne Brilot
- Neuroimmunology and Brain Autoimmunity Groups, Kids Neuroscience Centre, Children's Hospital at Westmead; Brain and Mind Centre and Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Russell C Dale
- Neuroimmunology and Brain Autoimmunity Groups, Kids Neuroscience Centre, Children's Hospital at Westmead; Brain and Mind Centre and Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,T. Y. Nelson Department of Paediatric Neurology, Children's Hospital Westmead, Sydney, New South Wales, Australia
| | - John Dawes
- Neural Injury Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Simon Rinaldi
- Inflammatory Neuropathy Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - David L Bennett
- Neural Injury Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Chrysostomidou L, Cooper AH, Weir GA. Cellular models of pain: New technologies and their potential to progress preclinical research. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100063. [PMID: 34977426 PMCID: PMC8683679 DOI: 10.1016/j.ynpai.2021.100063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 01/16/2023]
Abstract
Human sensory neurons can reduce the translational gap in analgesic development. Access to dorsal root ganglion (hDRG) neurons is increasing. Diverse sensory neuron subtypes can now be generated via stem cell technology. Advances of these technologies will improve our understanding of human nociception.
In vitro models fill a vital niche in preclinical pain research, allowing detailed study of molecular pathways, and in the case of humanised systems, providing a translational bridge between in vivo animal models and human patients. Significant advances in cellular technology available to basic pain researchers have occurred in the last decade, including developing protocols to differentiate sensory neuron-like cells from stem cells and greater access to human dorsal root ganglion tissue. In this review, we discuss the use of both models in preclinical pain research: What can a human sensory neuron in a dish tell us that rodent in vivo models cannot? How similar are these models to their endogenous counterparts, and how should we judge them? What limitations do we need to consider? How can we leverage cell models to improve translational success? In vitro human sensory neuron models equip pain researchers with a valuable tool to investigate human nociception. With continual development, consideration for their advantages and limitations, and effective integration with other experimental strategies, they could become a driving force for the pain field's advancement.
Collapse
Affiliation(s)
- Lina Chrysostomidou
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Andrew H Cooper
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Greg A Weir
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
35
|
Jinmaitong ameliorates diabetic peripheral neuropathy in streptozotocin-induced diabetic rats by modulating gut microbiota and neuregulin 1. Aging (Albany NY) 2021; 12:17436-17458. [PMID: 32920546 PMCID: PMC7521543 DOI: 10.18632/aging.103750] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Jinmaitong (JMT), a compound prescription of traditional Chinese medicine, has long been used as a therapy for diabetic peripheral neuropathy (DPN). However, the neuroprotective mechanisms of JMT and its effect on gut microbiota remained unknown. Here, we examined the effects of JMT on behavior, pathomorphology and gut microbiota in streptozotocin (STZ)-induced DPN rats. Compared to distilled water administration, JMT reversed decreases in mechanical withdraw threshold and intraepidermal nerve fiber density, improved neurological morphology of sciatic nerves, increased serum neuregulin 1 (NRG1) level and contactin-associated protein (Caspr)-positive paranodes, and decreased amyloid precursor protein (APP) accumulation in DPN rats. More importantly, JMT enriched nine species of the gut microbiota of DPN rats, helping to prevent dysbiosis. Among these species, p_Actinobacteria, p_Proteobacteria and c_Actinobacteria were negatively correlated with DPN phenotypes and positively correlated with serum NRG1 level. These results indicate that JMT may exert a neuroprotective effect by modulating phenotype-associated gut microbiota and increasing serum NRG1 level in STZ-induced DPN rats. JMT may therefore be an effective complementary and alternative anti-DPN therapy.
Collapse
|
36
|
Clark AJ, Kugathasan U, Baskozos G, Priestman DA, Fugger N, Lone MA, Othman A, Chu KH, Blesneac I, Wilson ER, Laurà M, Kalmar B, Greensmith L, Hornemann T, Platt FM, Reilly MM, Bennett DL. An iPSC model of hereditary sensory neuropathy-1 reveals L-serine-responsive deficits in neuronal ganglioside composition and axoglial interactions. Cell Rep Med 2021; 2:100345. [PMID: 34337561 PMCID: PMC8324498 DOI: 10.1016/j.xcrm.2021.100345] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 04/23/2021] [Accepted: 06/15/2021] [Indexed: 01/05/2023]
Abstract
Hereditary sensory neuropathy type 1 (HSN1) is caused by mutations in the SPTLC1 or SPTLC2 sub-units of the enzyme serine palmitoyltransferase, resulting in the production of toxic 1-deoxysphingolipid bases (DSBs). We used induced pluripotent stem cells (iPSCs) from patients with HSN1 to determine whether endogenous DSBs are neurotoxic, patho-mechanisms of toxicity and response to therapy. HSN1 iPSC-derived sensory neurons (iPSCdSNs) endogenously produce neurotoxic DSBs. Complex gangliosides, which are essential for membrane micro-domains and signaling, are reduced, and neurotrophin signaling is impaired, resulting in reduced neurite outgrowth. In HSN1 myelinating cocultures, we find a major disruption of nodal complex proteins after 8 weeks, which leads to complete myelin breakdown after 6 months. HSN1 iPSC models have, therefore, revealed that SPTLC1 mutation alters lipid metabolism, impairs the formation of complex gangliosides, and reduces axon and myelin stability. Many of these changes are prevented by l-serine supplementation, supporting its use as a rational therapy.
Collapse
Affiliation(s)
- Alex J. Clark
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Umaiyal Kugathasan
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Georgios Baskozos
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - David A. Priestman
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Nadine Fugger
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Museer A. Lone
- Institute of Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Alaa Othman
- Institute of Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ka Hing Chu
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Iulia Blesneac
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Emma R. Wilson
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Matilde Laurà
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Bernadett Kalmar
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Linda Greensmith
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Mary M. Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - David L. Bennett
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
37
|
Harschnitz O, Studer L. Human stem cell models to study host-virus interactions in the central nervous system. Nat Rev Immunol 2021; 21:441-453. [PMID: 33398129 PMCID: PMC9653304 DOI: 10.1038/s41577-020-00474-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 01/30/2023]
Abstract
Advancements in human pluripotent stem cell technology offer a unique opportunity for the neuroimmunology field to study host-virus interactions directly in disease-relevant cells of the human central nervous system (CNS). Viral encephalitis is most commonly caused by herpesviruses, arboviruses and enteroviruses targeting distinct CNS cell types and often leading to severe neurological damage with poor clinical outcomes. Furthermore, different neurotropic viruses will affect the CNS at distinct developmental stages, from early prenatal brain development to the aged brain. With the unique flexibility and scalability of human pluripotent stem cell technology, it is now possible to examine the molecular mechanisms underlying acute infection and latency, determine which CNS subpopulations are specifically infected, study temporal aspects of viral susceptibility, perform high-throughput chemical or genetic screens for viral restriction factors and explore complex cell-non-autonomous disease mechanisms. Therefore, human pluripotent stem cell technology has the potential to address key unanswered questions about antiviral immunity in the CNS, including emerging questions on the potential CNS tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Oliver Harschnitz
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York (NY), USA,The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York (NY), USA,
| | - Lorenz Studer
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York (NY), USA,The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York (NY), USA
| |
Collapse
|
38
|
Middleton SJ, Barry AM, Comini M, Li Y, Ray PR, Shiers S, Themistocleous AC, Uhelski ML, Yang X, Dougherty PM, Price TJ, Bennett DL. Studying human nociceptors: from fundamentals to clinic. Brain 2021; 144:1312-1335. [PMID: 34128530 PMCID: PMC8219361 DOI: 10.1093/brain/awab048] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic pain affects one in five of the general population and is the third most important cause of disability-adjusted life-years globally. Unfortunately, treatment remains inadequate due to poor efficacy and tolerability. There has been a failure in translating promising preclinical drug targets into clinic use. This reflects challenges across the whole drug development pathway, from preclinical models to trial design. Nociceptors remain an attractive therapeutic target: their sensitization makes an important contribution to many chronic pain states, they are located outside the blood-brain barrier, and they are relatively specific. The past decade has seen significant advances in the techniques available to study human nociceptors, including: the use of corneal confocal microscopy and biopsy samples to observe nociceptor morphology, the culture of human nociceptors (either from surgical or post-mortem tissue or using human induced pluripotent stem cell derived nociceptors), the application of high throughput technologies such as transcriptomics, the in vitro and in vivo electrophysiological characterization through microneurography, and the correlation with pain percepts provided by quantitative sensory testing. Genome editing in human induced pluripotent stem cell-derived nociceptors enables the interrogation of the causal role of genes in the regulation of nociceptor function. Both human and rodent nociceptors are more heterogeneous at a molecular level than previously appreciated, and while we find that there are broad similarities between human and rodent nociceptors there are also important differences involving ion channel function, expression, and cellular excitability. These technological advances have emphasized the maladaptive plastic changes occurring in human nociceptors following injury that contribute to chronic pain. Studying human nociceptors has revealed new therapeutic targets for the suppression of chronic pain and enhanced repair. Cellular models of human nociceptors have enabled the screening of small molecule and gene therapy approaches on nociceptor function, and in some cases have enabled correlation with clinical outcomes. Undoubtedly, challenges remain. Many of these techniques are difficult to implement at scale, current induced pluripotent stem cell differentiation protocols do not generate the full diversity of nociceptor populations, and we still have a relatively poor understanding of inter-individual variation in nociceptors due to factors such as age, sex, or ethnicity. We hope our ability to directly investigate human nociceptors will not only aid our understanding of the fundamental neurobiology underlying acute and chronic pain but also help bridge the translational gap.
Collapse
Affiliation(s)
- Steven J Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Allison M Barry
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Maddalena Comini
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Yan Li
- Department of Anesthesia and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pradipta R Ray
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Andreas C Themistocleous
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.,Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Megan L Uhelski
- Department of Anesthesia and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xun Yang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Patrick M Dougherty
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
39
|
Peron C, Maresca A, Cavaliere A, Iannielli A, Broccoli V, Carelli V, Di Meo I, Tiranti V. Exploiting hiPSCs in Leber's Hereditary Optic Neuropathy (LHON): Present Achievements and Future Perspectives. Front Neurol 2021; 12:648916. [PMID: 34168607 PMCID: PMC8217617 DOI: 10.3389/fneur.2021.648916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/26/2021] [Indexed: 01/19/2023] Open
Abstract
More than 30 years after discovering Leber's hereditary optic neuropathy (LHON) as the first maternally inherited disease associated with homoplasmic mtDNA mutations, we still struggle to achieve effective therapies. LHON is characterized by selective degeneration of retinal ganglion cells (RGCs) and is the most frequent mitochondrial disease, which leads young people to blindness, in particular males. Despite that causative mutations are present in all tissues, only a specific cell type is affected. Our deep understanding of the pathogenic mechanisms in LHON is hampered by the lack of appropriate models since investigations have been traditionally performed in non-neuronal cells. Effective in-vitro models of LHON are now emerging, casting promise to speed our understanding of pathophysiology and test therapeutic strategies to accelerate translation into clinic. We here review the potentials of these new models and their impact on the future of LHON patients.
Collapse
Affiliation(s)
- Camille Peron
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Andrea Cavaliere
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Angelo Iannielli
- San Raffaele Scientific Institute, Milan, Italy.,National Research Council (CNR), Institute of Neuroscience, Milan, Italy
| | - Vania Broccoli
- San Raffaele Scientific Institute, Milan, Italy.,National Research Council (CNR), Institute of Neuroscience, Milan, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences-DIBINEM, University of Bologna, Bologna, Italy
| | - Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
40
|
Peters SB. Co-culture methods to study neuronal function and disease. Neural Regen Res 2021; 16:972-973. [PMID: 33229738 PMCID: PMC8178766 DOI: 10.4103/1673-5374.297066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/11/2020] [Accepted: 06/16/2020] [Indexed: 11/20/2022] Open
Affiliation(s)
- Sarah B. Peters
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
41
|
Olmsted ZT, Paluh JL. Stem Cell Neurodevelopmental Solutions for Restorative Treatments of the Human Trunk and Spine. Front Cell Neurosci 2021; 15:667590. [PMID: 33981202 PMCID: PMC8107236 DOI: 10.3389/fncel.2021.667590] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
The ability to reliably repair spinal cord injuries (SCI) will be one of the greatest human achievements realized in regenerative medicine. Until recently, the cellular path to this goal has been challenging. However, as detailed developmental principles are revealed in mouse and human models, their application in the stem cell community brings trunk and spine embryology into efforts to advance human regenerative medicine. New models of posterior embryo development identify neuromesodermal progenitors (NMPs) as a major bifurcation point in generating the spinal cord and somites and is leading to production of cell types with the full range of axial identities critical for repair of trunk and spine disorders. This is coupled with organoid technologies including assembloids, circuitoids, and gastruloids. We describe a paradigm for applying developmental principles towards the goal of cell-based restorative therapies to enable reproducible and effective near-term clinical interventions.
Collapse
|
42
|
Clark AJ. Establishing Myelinating Cocultures Using Human iPSC-Derived Sensory Neurons to Investigate Axonal Degeneration and Demyelination. Methods Mol Biol 2021; 2143:111-129. [PMID: 32524476 DOI: 10.1007/978-1-0716-0585-1_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Complex signaling between Schwann cells and axons are vital for peripheral neuron development, myelination, and repair. The interaction between these two cell types can be modeled in vitro by coculturing rodent Schwann cells and neurons together. These have in the past been used with great success to help unravel the bidirectional signaling mechanisms that lead to Schwann cell proliferation and myelination. To provide more translatable potential, we have developed myelinating cocultures using human, induced pluripotent stem cell (iPSC)-derived neurons. Under the right conditions, the human neurons are efficiently myelinated by rat Schwann cells, demonstrating successful cross-species signaling. This chapter describes all the necessary steps to generate these myelinating cocultures and methods to investigate and quantify various aspects of myelination. The myelinating cocultures can be maintained in excellent health for over 1 year, facilitating their use to study developmental or chronic disease processes. With this in mind, we have used the cocultures to model a sensory neuropathy which displays clinically with both axonal and demyelinating features. In the cocultures, we found evidence of extensive axonal degeneration and demyelination demonstrated by axonal swelling and fragmentation, and myelin disintegration. The myelinating cocultures can therefore be used to study complex, human disease processes that result in both axonal and myelin-associated degenerative processes.
Collapse
Affiliation(s)
- Alex J Clark
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
43
|
Baskozos G, Sandy-Hindmarch O, Clark AJ, Windsor K, Karlsson P, Weir GA, McDermott LA, Burchall J, Wiberg A, Furniss D, Bennett DLH, Schmid AB. Molecular and cellular correlates of human nerve regeneration: ADCYAP1/PACAP enhance nerve outgrowth. Brain 2020; 143:2009-2026. [PMID: 32651949 PMCID: PMC7462094 DOI: 10.1093/brain/awaa163] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022] Open
Abstract
We only have a rudimentary understanding of the molecular and cellular determinants of nerve regeneration and neuropathic pain in humans. This cohort study uses the most common entrapment neuropathy (carpal tunnel syndrome) as a human model system to prospectively evaluate the cellular and molecular correlates of neural regeneration and its relationship with clinical recovery. In 60 patients undergoing carpal tunnel surgery [36 female, mean age 62.5 (standard deviation 12.2) years], we used quantitative sensory testing and nerve conduction studies to evaluate the function of large and small fibres before and 6 months after surgery. Clinical recovery was assessed with the global rating of change scale and Boston Carpal Tunnel Questionnaire. Twenty healthy participants provided normative data [14 female, mean age 58.0 (standard deviation 12.9) years]. At 6 months post-surgery, we noted significant recovery of median nerve neurophysiological parameters (P < 0.0001) and improvements in quantitative sensory testing measures of both small and large nerve fibre function (P < 0.002). Serial biopsies revealed a partial recovery of intraepidermal nerve fibre density [fibres/mm epidermis pre: 4.20 (2.83), post: 5.35 (3.34), P = 0.001], whose extent correlated with symptom improvement (r = 0.389, P = 0.001). In myelinated afferents, nodal length increased postoperatively [pre: 2.03 (0.82), post: 3.03 (1.23), P < 0.0001] suggesting that this is an adaptive phenomenon. Transcriptional profiling of the skin revealed 31 differentially expressed genes following decompression, with ADCYAP1 (encoding pituitary adenylate cyclase activating peptide, PACAP) being the most strongly upregulated (log2 fold-change 1.87, P = 0.0001) and its expression was associated with recovery of intraepidermal nerve fibres. We found that human induced pluripotent stem cell-derived sensory neurons expressed the receptor for PACAP and that this peptide could significantly enhance axon outgrowth in a dose-dependent manner in vitro [neurite length PACAP 1065.0 µm (285.5), vehicle 570.9 μm (181.8), P = 0.003]. In conclusion, carpal tunnel release is associated with significant cutaneous reinnervation, which correlates with the degree of functional improvement and is associated with a transcriptional programme relating to morphogenesis and inflammatory processes. The most highly dysregulated gene ADCYAP1 (encoding PACAP) was associated with reinnervation and, given that this peptide signals through G-protein coupled receptors, this signalling pathway provides an interesting therapeutic target for human sensory nerve regeneration.
Collapse
Affiliation(s)
- Georgios Baskozos
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
| | | | - Alex J Clark
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
| | - Katherine Windsor
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
| | - Pall Karlsson
- Department of Clinical Medicine, The Danish Pain Research Center, Aarhus, Denmark
| | - Greg A Weir
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, UK.,Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Lucy A McDermott
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
| | - Joanna Burchall
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Akira Wiberg
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Dominic Furniss
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - David L H Bennett
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
| | - Annina B Schmid
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
| |
Collapse
|
44
|
Hulme AJ, McArthur JR, Maksour S, Miellet S, Ooi L, Adams DJ, Finol-Urdaneta RK, Dottori M. Molecular and Functional Characterization of Neurogenin-2 Induced Human Sensory Neurons. Front Cell Neurosci 2020; 14:600895. [PMID: 33362470 PMCID: PMC7761588 DOI: 10.3389/fncel.2020.600895] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 01/15/2023] Open
Abstract
Sensory perception is fundamental to everyday life, yet understanding of human sensory physiology at the molecular level is hindered due to constraints on tissue availability. Emerging strategies to study and characterize peripheral neuropathies in vitro involve the use of human pluripotent stem cells (hPSCs) differentiated into dorsal root ganglion (DRG) sensory neurons. However, neuronal functionality and maturity are limited and underexplored. A recent and promising approach for directing hPSC differentiation towards functionally mature neurons involves the exogenous expression of Neurogenin-2 (NGN2). The optimized protocol described here generates sensory neurons from hPSC-derived neural crest (NC) progenitors through virally induced NGN2 expression. NC cells were derived from hPSCs via a small molecule inhibitor approach and enriched for migrating NC cells (66% SOX10+ cells). At the protein and transcript level, the resulting NGN2 induced sensory neurons (NGN2iSNs) express sensory neuron markers such as BRN3A (82% BRN3A+ cells), ISLET1 (91% ISLET1+ cells), TRKA, TRKB, and TRKC. Importantly, NGN2iSNs repetitively fire action potentials (APs) supported by voltage-gated sodium, potassium, and calcium conductances. In-depth analysis of the molecular basis of NGN2iSN excitability revealed functional expression of ion channels associated with the excitability of primary afferent neurons, such as Nav1.7, Nav1.8, Kv1.2, Kv2.1, BK, Cav2.1, Cav2.2, Cav3.2, ASICs and HCN among other ion channels, for which we provide functional and transcriptional evidence. Our characterization of stem cell-derived sensory neurons sheds light on the molecular basis of human sensory physiology and highlights the suitability of using hPSC-derived sensory neurons for modeling human DRG development and their potential in the study of human peripheral neuropathies and drug therapies.
Collapse
Affiliation(s)
- Amy J Hulme
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Simon Maksour
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Sara Miellet
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
45
|
Xiong C, Chua KC, Stage TB, Priotti J, Kim J, Altman-Merino A, Chan D, Saraf K, Canato Ferracini A, Fattahi F, Kroetz DL. Human Induced Pluripotent Stem Cell Derived Sensory Neurons are Sensitive to the Neurotoxic Effects of Paclitaxel. Clin Transl Sci 2020; 14:568-581. [PMID: 33340242 PMCID: PMC7993321 DOI: 10.1111/cts.12912] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy‐induced peripheral neuropathy (CIPN) is a dose‐limiting adverse event associated with treatment with paclitaxel and other chemotherapeutic agents. The prevention and treatment of CIPN are limited by a lack of understanding of the molecular mechanisms underlying this toxicity. In the current study, a human induced pluripotent stem cell–derived sensory neuron (iPSC‐SN) model was developed for the study of chemotherapy‐induced neurotoxicity. The iPSC‐SNs express proteins characteristic of nociceptor, mechanoreceptor, and proprioceptor sensory neurons and show Ca2+ influx in response to capsaicin, α,β‐meATP, and glutamate. The iPSC‐SNs are relatively resistant to the cytotoxic effects of paclitaxel, with half‐maximal inhibitory concentration (IC50) values of 38.1 µM (95% confidence interval (CI) 22.9–70.9 µM) for 48‐hour exposure and 9.3 µM (95% CI 5.7–16.5 µM) for 72‐hour treatment. Paclitaxel causes dose‐dependent and time‐dependent changes in neurite network complexity detected by βIII‐tubulin staining and high content imaging. The IC50 for paclitaxel reduction of neurite area was 1.4 µM (95% CI 0.3–16.9 µM) for 48‐hour exposure and 0.6 µM (95% CI 0.09–9.9 µM) for 72‐hour exposure. Decreased mitochondrial membrane potential, slower movement of mitochondria down the neurites, and changes in glutamate‐induced neuronal excitability were also observed with paclitaxel exposure. The iPSC‐SNs were also sensitive to docetaxel, vincristine, and bortezomib. Collectively, these data support the use of iPSC‐SNs for detailed mechanistic investigations of genes and pathways implicated in chemotherapy‐induced neurotoxicity and the identification of novel therapeutic approaches for its prevention and treatment.
Collapse
Affiliation(s)
- Chenling Xiong
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Katherina C Chua
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Tore B Stage
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA.,Department of Public Health, Clinical Pharmacology and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Josefina Priotti
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey Kim
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Anne Altman-Merino
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Daniel Chan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Krishna Saraf
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Amanda Canato Ferracini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA.,Faculty of Medical Sciences, University of Campinas, Sao Paulo, Brazil
| | - Faranak Fattahi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
46
|
Rinaldi S, Davies A, Fehmi J, Beadnall HN, Wang J, Hardy TA, Barnett MH, Broadley SA, Waters P, Reddel SW, Irani SR, Brilot F, Dale RC, Ramanathan S. Overlapping central and peripheral nervous system syndromes in MOG antibody-associated disorders. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 8:8/1/e924. [PMID: 33272955 PMCID: PMC7803332 DOI: 10.1212/nxi.0000000000000924] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/16/2020] [Indexed: 11/21/2022]
Abstract
Objective Antibodies to myelin oligodendrocyte glycoprotein (MOG) are associated with
CNS demyelination inclusive of optic neuritis (ON) and transverse myelitis
(TM). To examine whether peripheral nervous system (PNS) involvement is
associated with MOG antibody–associated disorders (MOGAD), we
performed detailed characterization of an Australasian MOGAD cohort. Methods Using a live cell–based assay, we diagnosed 271 adults with MOGAD
(2013–2018) and performed detailed clinical and immunologic
characterization on those with likely PNS involvement. Results We identified 19 adults with MOGAD and PNS involvement without prior TM. All
patients had CNS involvement including ON (bilateral [n = 3],
unilateral [n = 3], and recurrent [n = 7]), a cortical lesion (n
= 1), meningoencephalitis (n = 1), and subsequent TM (n = 4).
Clinical phenotyping and neurophysiology were consistent with acute
inflammatory demyelinating polyneuropathy (n = 1), myeloradiculitis (n
= 3), multifocal motor neuropathy (n = 1), brachial neuritis (n
= 2), migrant sensory neuritis (n = 3), and paresthesia and/or
radicular limb pain (n = 10). Onset MRI spine was consistent with
myeloradiculitis with nerve root enhancement in 3/19 and normal in 16/19.
Immunotherapy resulted in partial/complete PNS symptom resolution in 12/15
(80%) (steroids and/or IV immunoglobulin n = 9, rituximab n = 2,
and plasmapheresis n = 1). We identified serum antibodies targeting
neurofascin 155, contactin-associated protein 2, or GM1 in 4/16 patients
with MOGAD PNS compared with 0/30 controls (p = 0.01).
There was no binding to novel cell surface antigens using an in vitro
myelinating sensory neuronal coculture model. Conclusions Myeloradiculitis, combined central and peripheral demyelination syndromes,
and inflammatory neuropathies may be associated with MOGAD and may be
immunotherapy responsive. We identified a subgroup who may have pathology
mediated by coexistent autoantibodies.
Collapse
Affiliation(s)
- Simon Rinaldi
- From the Inflammatory Neuropathy Group (S. Rinaldi, A.D., J.F.), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital; University of Oxford; Department of Neurology (S. Rinaldi, S.R.I.), Oxford University Hospitals NHS Foundation Trust, UK; Department of Neurology (H.N.B., M.H.B.), Royal Prince Alfred Hospital, Sydney; Brain and Mind Centre (H.N.B., T.A.H., M.H.B., S.W.R., F.B., R.C.D.), University of Sydney; Department of Neurology (J.W.), St George Hospital, Sydney; Department of Neurology (T.A.H., S.W.R., S. Ramanathan), Concord Repatriation General Hospital, Sydney; Menzies Institute of Health Queensland (S.A.B.), Griffith University; Department of Neurology (S.A.B.), Gold Coast University Hospital, Australia; Autoimmune Neurology Group (P.W., S.R.I., S. Ramanathan), Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital; University of Oxford, UK; Brain Autoimmunity and Clinical Neuroimmunology Groups (F.B., R.C.D., S. Ramanathan), Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney; Faculty of Medicine and Health (F.B., R.C.D., S. Ramanathan), University of Sydney; School of Medical Sciences (F.B.), Discipline of Applied Medical Science, Faculty of Medicine and Health, University of Sydney, Australia; and TY Nelson Department of Paediatric Neurology (R.C.D.), Children's Hospital at Westmead, Sydney, Australia
| | - Alexander Davies
- From the Inflammatory Neuropathy Group (S. Rinaldi, A.D., J.F.), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital; University of Oxford; Department of Neurology (S. Rinaldi, S.R.I.), Oxford University Hospitals NHS Foundation Trust, UK; Department of Neurology (H.N.B., M.H.B.), Royal Prince Alfred Hospital, Sydney; Brain and Mind Centre (H.N.B., T.A.H., M.H.B., S.W.R., F.B., R.C.D.), University of Sydney; Department of Neurology (J.W.), St George Hospital, Sydney; Department of Neurology (T.A.H., S.W.R., S. Ramanathan), Concord Repatriation General Hospital, Sydney; Menzies Institute of Health Queensland (S.A.B.), Griffith University; Department of Neurology (S.A.B.), Gold Coast University Hospital, Australia; Autoimmune Neurology Group (P.W., S.R.I., S. Ramanathan), Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital; University of Oxford, UK; Brain Autoimmunity and Clinical Neuroimmunology Groups (F.B., R.C.D., S. Ramanathan), Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney; Faculty of Medicine and Health (F.B., R.C.D., S. Ramanathan), University of Sydney; School of Medical Sciences (F.B.), Discipline of Applied Medical Science, Faculty of Medicine and Health, University of Sydney, Australia; and TY Nelson Department of Paediatric Neurology (R.C.D.), Children's Hospital at Westmead, Sydney, Australia
| | - Janev Fehmi
- From the Inflammatory Neuropathy Group (S. Rinaldi, A.D., J.F.), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital; University of Oxford; Department of Neurology (S. Rinaldi, S.R.I.), Oxford University Hospitals NHS Foundation Trust, UK; Department of Neurology (H.N.B., M.H.B.), Royal Prince Alfred Hospital, Sydney; Brain and Mind Centre (H.N.B., T.A.H., M.H.B., S.W.R., F.B., R.C.D.), University of Sydney; Department of Neurology (J.W.), St George Hospital, Sydney; Department of Neurology (T.A.H., S.W.R., S. Ramanathan), Concord Repatriation General Hospital, Sydney; Menzies Institute of Health Queensland (S.A.B.), Griffith University; Department of Neurology (S.A.B.), Gold Coast University Hospital, Australia; Autoimmune Neurology Group (P.W., S.R.I., S. Ramanathan), Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital; University of Oxford, UK; Brain Autoimmunity and Clinical Neuroimmunology Groups (F.B., R.C.D., S. Ramanathan), Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney; Faculty of Medicine and Health (F.B., R.C.D., S. Ramanathan), University of Sydney; School of Medical Sciences (F.B.), Discipline of Applied Medical Science, Faculty of Medicine and Health, University of Sydney, Australia; and TY Nelson Department of Paediatric Neurology (R.C.D.), Children's Hospital at Westmead, Sydney, Australia
| | - Heidi N Beadnall
- From the Inflammatory Neuropathy Group (S. Rinaldi, A.D., J.F.), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital; University of Oxford; Department of Neurology (S. Rinaldi, S.R.I.), Oxford University Hospitals NHS Foundation Trust, UK; Department of Neurology (H.N.B., M.H.B.), Royal Prince Alfred Hospital, Sydney; Brain and Mind Centre (H.N.B., T.A.H., M.H.B., S.W.R., F.B., R.C.D.), University of Sydney; Department of Neurology (J.W.), St George Hospital, Sydney; Department of Neurology (T.A.H., S.W.R., S. Ramanathan), Concord Repatriation General Hospital, Sydney; Menzies Institute of Health Queensland (S.A.B.), Griffith University; Department of Neurology (S.A.B.), Gold Coast University Hospital, Australia; Autoimmune Neurology Group (P.W., S.R.I., S. Ramanathan), Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital; University of Oxford, UK; Brain Autoimmunity and Clinical Neuroimmunology Groups (F.B., R.C.D., S. Ramanathan), Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney; Faculty of Medicine and Health (F.B., R.C.D., S. Ramanathan), University of Sydney; School of Medical Sciences (F.B.), Discipline of Applied Medical Science, Faculty of Medicine and Health, University of Sydney, Australia; and TY Nelson Department of Paediatric Neurology (R.C.D.), Children's Hospital at Westmead, Sydney, Australia
| | - Justine Wang
- From the Inflammatory Neuropathy Group (S. Rinaldi, A.D., J.F.), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital; University of Oxford; Department of Neurology (S. Rinaldi, S.R.I.), Oxford University Hospitals NHS Foundation Trust, UK; Department of Neurology (H.N.B., M.H.B.), Royal Prince Alfred Hospital, Sydney; Brain and Mind Centre (H.N.B., T.A.H., M.H.B., S.W.R., F.B., R.C.D.), University of Sydney; Department of Neurology (J.W.), St George Hospital, Sydney; Department of Neurology (T.A.H., S.W.R., S. Ramanathan), Concord Repatriation General Hospital, Sydney; Menzies Institute of Health Queensland (S.A.B.), Griffith University; Department of Neurology (S.A.B.), Gold Coast University Hospital, Australia; Autoimmune Neurology Group (P.W., S.R.I., S. Ramanathan), Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital; University of Oxford, UK; Brain Autoimmunity and Clinical Neuroimmunology Groups (F.B., R.C.D., S. Ramanathan), Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney; Faculty of Medicine and Health (F.B., R.C.D., S. Ramanathan), University of Sydney; School of Medical Sciences (F.B.), Discipline of Applied Medical Science, Faculty of Medicine and Health, University of Sydney, Australia; and TY Nelson Department of Paediatric Neurology (R.C.D.), Children's Hospital at Westmead, Sydney, Australia
| | - Todd A Hardy
- From the Inflammatory Neuropathy Group (S. Rinaldi, A.D., J.F.), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital; University of Oxford; Department of Neurology (S. Rinaldi, S.R.I.), Oxford University Hospitals NHS Foundation Trust, UK; Department of Neurology (H.N.B., M.H.B.), Royal Prince Alfred Hospital, Sydney; Brain and Mind Centre (H.N.B., T.A.H., M.H.B., S.W.R., F.B., R.C.D.), University of Sydney; Department of Neurology (J.W.), St George Hospital, Sydney; Department of Neurology (T.A.H., S.W.R., S. Ramanathan), Concord Repatriation General Hospital, Sydney; Menzies Institute of Health Queensland (S.A.B.), Griffith University; Department of Neurology (S.A.B.), Gold Coast University Hospital, Australia; Autoimmune Neurology Group (P.W., S.R.I., S. Ramanathan), Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital; University of Oxford, UK; Brain Autoimmunity and Clinical Neuroimmunology Groups (F.B., R.C.D., S. Ramanathan), Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney; Faculty of Medicine and Health (F.B., R.C.D., S. Ramanathan), University of Sydney; School of Medical Sciences (F.B.), Discipline of Applied Medical Science, Faculty of Medicine and Health, University of Sydney, Australia; and TY Nelson Department of Paediatric Neurology (R.C.D.), Children's Hospital at Westmead, Sydney, Australia
| | - Michael H Barnett
- From the Inflammatory Neuropathy Group (S. Rinaldi, A.D., J.F.), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital; University of Oxford; Department of Neurology (S. Rinaldi, S.R.I.), Oxford University Hospitals NHS Foundation Trust, UK; Department of Neurology (H.N.B., M.H.B.), Royal Prince Alfred Hospital, Sydney; Brain and Mind Centre (H.N.B., T.A.H., M.H.B., S.W.R., F.B., R.C.D.), University of Sydney; Department of Neurology (J.W.), St George Hospital, Sydney; Department of Neurology (T.A.H., S.W.R., S. Ramanathan), Concord Repatriation General Hospital, Sydney; Menzies Institute of Health Queensland (S.A.B.), Griffith University; Department of Neurology (S.A.B.), Gold Coast University Hospital, Australia; Autoimmune Neurology Group (P.W., S.R.I., S. Ramanathan), Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital; University of Oxford, UK; Brain Autoimmunity and Clinical Neuroimmunology Groups (F.B., R.C.D., S. Ramanathan), Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney; Faculty of Medicine and Health (F.B., R.C.D., S. Ramanathan), University of Sydney; School of Medical Sciences (F.B.), Discipline of Applied Medical Science, Faculty of Medicine and Health, University of Sydney, Australia; and TY Nelson Department of Paediatric Neurology (R.C.D.), Children's Hospital at Westmead, Sydney, Australia
| | - Simon A Broadley
- From the Inflammatory Neuropathy Group (S. Rinaldi, A.D., J.F.), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital; University of Oxford; Department of Neurology (S. Rinaldi, S.R.I.), Oxford University Hospitals NHS Foundation Trust, UK; Department of Neurology (H.N.B., M.H.B.), Royal Prince Alfred Hospital, Sydney; Brain and Mind Centre (H.N.B., T.A.H., M.H.B., S.W.R., F.B., R.C.D.), University of Sydney; Department of Neurology (J.W.), St George Hospital, Sydney; Department of Neurology (T.A.H., S.W.R., S. Ramanathan), Concord Repatriation General Hospital, Sydney; Menzies Institute of Health Queensland (S.A.B.), Griffith University; Department of Neurology (S.A.B.), Gold Coast University Hospital, Australia; Autoimmune Neurology Group (P.W., S.R.I., S. Ramanathan), Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital; University of Oxford, UK; Brain Autoimmunity and Clinical Neuroimmunology Groups (F.B., R.C.D., S. Ramanathan), Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney; Faculty of Medicine and Health (F.B., R.C.D., S. Ramanathan), University of Sydney; School of Medical Sciences (F.B.), Discipline of Applied Medical Science, Faculty of Medicine and Health, University of Sydney, Australia; and TY Nelson Department of Paediatric Neurology (R.C.D.), Children's Hospital at Westmead, Sydney, Australia
| | - Patrick Waters
- From the Inflammatory Neuropathy Group (S. Rinaldi, A.D., J.F.), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital; University of Oxford; Department of Neurology (S. Rinaldi, S.R.I.), Oxford University Hospitals NHS Foundation Trust, UK; Department of Neurology (H.N.B., M.H.B.), Royal Prince Alfred Hospital, Sydney; Brain and Mind Centre (H.N.B., T.A.H., M.H.B., S.W.R., F.B., R.C.D.), University of Sydney; Department of Neurology (J.W.), St George Hospital, Sydney; Department of Neurology (T.A.H., S.W.R., S. Ramanathan), Concord Repatriation General Hospital, Sydney; Menzies Institute of Health Queensland (S.A.B.), Griffith University; Department of Neurology (S.A.B.), Gold Coast University Hospital, Australia; Autoimmune Neurology Group (P.W., S.R.I., S. Ramanathan), Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital; University of Oxford, UK; Brain Autoimmunity and Clinical Neuroimmunology Groups (F.B., R.C.D., S. Ramanathan), Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney; Faculty of Medicine and Health (F.B., R.C.D., S. Ramanathan), University of Sydney; School of Medical Sciences (F.B.), Discipline of Applied Medical Science, Faculty of Medicine and Health, University of Sydney, Australia; and TY Nelson Department of Paediatric Neurology (R.C.D.), Children's Hospital at Westmead, Sydney, Australia
| | - Stephen W Reddel
- From the Inflammatory Neuropathy Group (S. Rinaldi, A.D., J.F.), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital; University of Oxford; Department of Neurology (S. Rinaldi, S.R.I.), Oxford University Hospitals NHS Foundation Trust, UK; Department of Neurology (H.N.B., M.H.B.), Royal Prince Alfred Hospital, Sydney; Brain and Mind Centre (H.N.B., T.A.H., M.H.B., S.W.R., F.B., R.C.D.), University of Sydney; Department of Neurology (J.W.), St George Hospital, Sydney; Department of Neurology (T.A.H., S.W.R., S. Ramanathan), Concord Repatriation General Hospital, Sydney; Menzies Institute of Health Queensland (S.A.B.), Griffith University; Department of Neurology (S.A.B.), Gold Coast University Hospital, Australia; Autoimmune Neurology Group (P.W., S.R.I., S. Ramanathan), Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital; University of Oxford, UK; Brain Autoimmunity and Clinical Neuroimmunology Groups (F.B., R.C.D., S. Ramanathan), Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney; Faculty of Medicine and Health (F.B., R.C.D., S. Ramanathan), University of Sydney; School of Medical Sciences (F.B.), Discipline of Applied Medical Science, Faculty of Medicine and Health, University of Sydney, Australia; and TY Nelson Department of Paediatric Neurology (R.C.D.), Children's Hospital at Westmead, Sydney, Australia
| | - Sarosh R Irani
- From the Inflammatory Neuropathy Group (S. Rinaldi, A.D., J.F.), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital; University of Oxford; Department of Neurology (S. Rinaldi, S.R.I.), Oxford University Hospitals NHS Foundation Trust, UK; Department of Neurology (H.N.B., M.H.B.), Royal Prince Alfred Hospital, Sydney; Brain and Mind Centre (H.N.B., T.A.H., M.H.B., S.W.R., F.B., R.C.D.), University of Sydney; Department of Neurology (J.W.), St George Hospital, Sydney; Department of Neurology (T.A.H., S.W.R., S. Ramanathan), Concord Repatriation General Hospital, Sydney; Menzies Institute of Health Queensland (S.A.B.), Griffith University; Department of Neurology (S.A.B.), Gold Coast University Hospital, Australia; Autoimmune Neurology Group (P.W., S.R.I., S. Ramanathan), Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital; University of Oxford, UK; Brain Autoimmunity and Clinical Neuroimmunology Groups (F.B., R.C.D., S. Ramanathan), Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney; Faculty of Medicine and Health (F.B., R.C.D., S. Ramanathan), University of Sydney; School of Medical Sciences (F.B.), Discipline of Applied Medical Science, Faculty of Medicine and Health, University of Sydney, Australia; and TY Nelson Department of Paediatric Neurology (R.C.D.), Children's Hospital at Westmead, Sydney, Australia
| | - Fabienne Brilot
- From the Inflammatory Neuropathy Group (S. Rinaldi, A.D., J.F.), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital; University of Oxford; Department of Neurology (S. Rinaldi, S.R.I.), Oxford University Hospitals NHS Foundation Trust, UK; Department of Neurology (H.N.B., M.H.B.), Royal Prince Alfred Hospital, Sydney; Brain and Mind Centre (H.N.B., T.A.H., M.H.B., S.W.R., F.B., R.C.D.), University of Sydney; Department of Neurology (J.W.), St George Hospital, Sydney; Department of Neurology (T.A.H., S.W.R., S. Ramanathan), Concord Repatriation General Hospital, Sydney; Menzies Institute of Health Queensland (S.A.B.), Griffith University; Department of Neurology (S.A.B.), Gold Coast University Hospital, Australia; Autoimmune Neurology Group (P.W., S.R.I., S. Ramanathan), Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital; University of Oxford, UK; Brain Autoimmunity and Clinical Neuroimmunology Groups (F.B., R.C.D., S. Ramanathan), Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney; Faculty of Medicine and Health (F.B., R.C.D., S. Ramanathan), University of Sydney; School of Medical Sciences (F.B.), Discipline of Applied Medical Science, Faculty of Medicine and Health, University of Sydney, Australia; and TY Nelson Department of Paediatric Neurology (R.C.D.), Children's Hospital at Westmead, Sydney, Australia
| | - Russell C Dale
- From the Inflammatory Neuropathy Group (S. Rinaldi, A.D., J.F.), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital; University of Oxford; Department of Neurology (S. Rinaldi, S.R.I.), Oxford University Hospitals NHS Foundation Trust, UK; Department of Neurology (H.N.B., M.H.B.), Royal Prince Alfred Hospital, Sydney; Brain and Mind Centre (H.N.B., T.A.H., M.H.B., S.W.R., F.B., R.C.D.), University of Sydney; Department of Neurology (J.W.), St George Hospital, Sydney; Department of Neurology (T.A.H., S.W.R., S. Ramanathan), Concord Repatriation General Hospital, Sydney; Menzies Institute of Health Queensland (S.A.B.), Griffith University; Department of Neurology (S.A.B.), Gold Coast University Hospital, Australia; Autoimmune Neurology Group (P.W., S.R.I., S. Ramanathan), Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital; University of Oxford, UK; Brain Autoimmunity and Clinical Neuroimmunology Groups (F.B., R.C.D., S. Ramanathan), Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney; Faculty of Medicine and Health (F.B., R.C.D., S. Ramanathan), University of Sydney; School of Medical Sciences (F.B.), Discipline of Applied Medical Science, Faculty of Medicine and Health, University of Sydney, Australia; and TY Nelson Department of Paediatric Neurology (R.C.D.), Children's Hospital at Westmead, Sydney, Australia
| | - Sudarshini Ramanathan
- From the Inflammatory Neuropathy Group (S. Rinaldi, A.D., J.F.), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital; University of Oxford; Department of Neurology (S. Rinaldi, S.R.I.), Oxford University Hospitals NHS Foundation Trust, UK; Department of Neurology (H.N.B., M.H.B.), Royal Prince Alfred Hospital, Sydney; Brain and Mind Centre (H.N.B., T.A.H., M.H.B., S.W.R., F.B., R.C.D.), University of Sydney; Department of Neurology (J.W.), St George Hospital, Sydney; Department of Neurology (T.A.H., S.W.R., S. Ramanathan), Concord Repatriation General Hospital, Sydney; Menzies Institute of Health Queensland (S.A.B.), Griffith University; Department of Neurology (S.A.B.), Gold Coast University Hospital, Australia; Autoimmune Neurology Group (P.W., S.R.I., S. Ramanathan), Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital; University of Oxford, UK; Brain Autoimmunity and Clinical Neuroimmunology Groups (F.B., R.C.D., S. Ramanathan), Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney; Faculty of Medicine and Health (F.B., R.C.D., S. Ramanathan), University of Sydney; School of Medical Sciences (F.B.), Discipline of Applied Medical Science, Faculty of Medicine and Health, University of Sydney, Australia; and TY Nelson Department of Paediatric Neurology (R.C.D.), Children's Hospital at Westmead, Sydney, Australia.
| | | |
Collapse
|
47
|
Lampert A, Bennett DL, McDermott LA, Neureiter A, Eberhardt E, Winner B, Zenke M. Human sensory neurons derived from pluripotent stem cells for disease modelling and personalized medicine. NEUROBIOLOGY OF PAIN 2020; 8:100055. [PMID: 33364527 PMCID: PMC7750732 DOI: 10.1016/j.ynpai.2020.100055] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/26/2022]
Abstract
New techniques emerge to study peripheral sensory neurons in iPS-cell derived models. Genetic pain syndromes, e.g. gain- and loss-of-function mutations in Nav-channels are helpful. Individualized treatment for neuropathic pain can be identified with iPS-cell derived nociceptors.
In this concise Mini-Review we will summarize ongoing developments of new techniques to study physiology and pathophysiology of the peripheral sensory nervous system in human stem cell derived models. We will focus on recent developments of reprogramming somatic cells into induced pluripotent stem cells, neural differentiation towards neuronal progenitors and human sensory neurons. We will sum up the high potential of this new technique for disease modelling of human neuropathies with a focus on genetic pain syndromes, such as gain- and loss-of-function mutations in voltage-gated sodium channels. The stem cell derived human sensory neurons are used for drug testing and we will summarize their usefulness for individualized treatment identification in patients with neuropathic pain. The review will give an outlook on potential application of this technique as companion diagnostics and for personalized medicine.
Collapse
Affiliation(s)
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Lucy A McDermott
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,Wadham College, University of Oxford, UK
| | | | - Esther Eberhardt
- Department of Anesthesiology, FAU Erlangen-Nürnberg, Germany.,Department of Stem Cell Biology, FAU Erlangen-Nürnberg, Germany.,Department of Anesthesiology, RWTH Aachen University, Germany
| | - Beate Winner
- Department of Stem Cell Biology, FAU Erlangen-Nürnberg, Germany
| | | |
Collapse
|
48
|
Yang X, Xu X, Cai X, He J, Lu P, Guo Q, Wang G, Zhu H, Wang H, Xue C. Gene set enrichment analysis and protein-protein interaction network analysis after sciatic nerve injury. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:988. [PMID: 32953788 PMCID: PMC7475449 DOI: 10.21037/atm-20-4958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background Peripheral nerves are able to regenerate spontaneously after injury. An increasing number of studies have investigated the mechanism of peripheral nerve regeneration and attempted to find potential therapeutic targets. The various bioinformatics analysis tools available, gene set enrichment analysis (GSEA) and protein-protein interaction (PPI) networks can effectively screen the crucial targets of neuroregeneration. Methods GSEA and PPI networks were constructed through ingenuity pathway analysis and sequential gene expression validation ex vitro to investigate the molecular processes at 1, 4, 7, and 14 days following sciatic nerve transection in rats. Results Immune response and the activation of related canonical pathways were classified as crucial biological events. Additionally, neural precursor cell expressed developmentally downregulated 4-like (NEDD4L), neuregulin 1 (NRG1), nuclear factor of activated T cells 2 (NFATC2), midline 1 (MID1), GLI family zinc finger 2 (GLI2), and ventral anterior homeobox 1 (VAX1), which were jointly involved in both immune response and axonal regeneration, were screened and their mRNA and protein expressions following nerve injury were validated. Among them, the expression of VAX1 continuously increased following nerve injury, and it was considered to be a potential therapeutic target. Conclusions The combined use of GSEA and PPI networks serves as a valuable way to identify potential therapeutic targets for neuroregeneration.
Collapse
Affiliation(s)
- Xiaoming Yang
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xi Xu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaodong Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jin He
- School of Medicine, Nantong University, Nantong, China
| | - Panjian Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qi Guo
- Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Gang Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hui Zhu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chengbin Xue
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
49
|
Patel A, Rumsey JW, Lorance C, Long CJ, Lee B, Tetard L, Lambert S, Hickman JJ. Myelination and Node of Ranvier Formation in a Human Motoneuron-Schwann Cell Serum-Free Coculture. ACS Chem Neurosci 2020; 11:2615-2623. [PMID: 32786317 DOI: 10.1021/acschemneuro.0c00287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Myelination and node of Ranvier formation play an important role in the rapid conduction of nerve impulses, referred to as saltatory conduction, along axons in the peripheral nervous system. We report a human-human myelination model using human primary Schwann cells (SCs) and human-induced pluripotent stem-cell-derived motoneurons utilizing a serum-free medium supplemented with ascorbate to induce myelination, where 41.6% of SCs expressed the master transcription factor for myelination, early growth response protein 2. After 30 days in coculture, myelin segments were visualized using immunocytochemistry for myelin basic protein surrounding neurofilament-stained motor neuron axons, which was confirmed via 3D confocal Raman microscopy, a viable alternative for transmission electron microscopy analysis. The myelination efficiency was 65%, and clusters of voltage-gated sodium channels and the paranodal protein contactin-associated protein 1 indicated node of Ranvier formation. This model has applications to study remyelination and demyelinating diseases, including Charcot-Marie Tooth disorder, Guillian-Barre syndrome, and anti-myelin-associated glycoprotein peripheral neuropathy.
Collapse
Affiliation(s)
- Aakash Patel
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - John W. Rumsey
- Hesperos Inc., 12501 Research Parkway, Suite 100, Orlando, Florida 32826, United States
| | - Case Lorance
- Hesperos Inc., 12501 Research Parkway, Suite 100, Orlando, Florida 32826, United States
| | - Christopher J. Long
- Hesperos Inc., 12501 Research Parkway, Suite 100, Orlando, Florida 32826, United States
| | - Briana Lee
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Laurene Tetard
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Stephen Lambert
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - James J. Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
- Hesperos Inc., 12501 Research Parkway, Suite 100, Orlando, Florida 32826, United States
| |
Collapse
|
50
|
Schwann Cell Cultures: Biology, Technology and Therapeutics. Cells 2020; 9:cells9081848. [PMID: 32781699 PMCID: PMC7465416 DOI: 10.3390/cells9081848] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Schwann cell (SC) cultures from experimental animals and human donors can be prepared using nearly any type of nerve at any stage of maturation to render stage- and patient-specific populations. Methods to isolate, purify, expand in number, and differentiate SCs from adult, postnatal and embryonic sources are efficient and reproducible as these have resulted from accumulated refinements introduced over many decades of work. Albeit some exceptions, SCs can be passaged extensively while maintaining their normal proliferation and differentiation controls. Due to their lineage commitment and strong resistance to tumorigenic transformation, SCs are safe for use in therapeutic approaches in the peripheral and central nervous systems. This review summarizes the evolution of work that led to the robust technologies used today in SC culturing along with the main features of the primary and expanded SCs that make them irreplaceable models to understand SC biology in health and disease. Traditional and emerging approaches in SC culture are discussed in light of their prospective applications. Lastly, some basic assumptions in vitro SC models are identified in an attempt to uncover the combined value of old and new trends in culture protocols and the cellular products that are derived.
Collapse
|