1
|
Wang Z, Gallegos J, Tippett D, Onyike CU, Desmond JE, Hillis AE, Frangakis CE, Caffo B, Tsapkini K. Baseline functional connectivity predicts who will benefit from neuromodulation: evidence from primary progressive aphasia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.19.24305354. [PMID: 38699365 PMCID: PMC11065007 DOI: 10.1101/2024.04.19.24305354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background Identifying the characteristics of individuals who demonstrate response to an intervention allows us to predict who is most likely to benefit from certain interventions. Prediction is challenging in rare and heterogeneous diseases, such as primary progressive aphasia (PPA), that have varying clinical manifestations. We aimed to determine the characteristics of those who will benefit most from transcranial direct current stimulation (tDCS) of the left inferior frontal gyrus (IFG) using a novel heterogeneity and group identification analysis. Methods We compared the predictive ability of demographic and clinical patient characteristics (e.g., PPA variant and disease progression, baseline language performance) vs. functional connectivity alone (from resting-state fMRI) in the same cohort. Results Functional connectivity alone had the highest predictive value for outcomes, explaining 62% and 75% of tDCS effect of variance in generalization (semantic fluency) and in the trained outcome of the clinical trial (written naming), contrasted with <15% predicted by clinical characteristics, including baseline language performance. Patients with higher baseline functional connectivity between the left IFG (opercularis and triangularis), and between the middle temporal pole and posterior superior temporal gyrus, were most likely to benefit from tDCS. Conclusions We show the importance of a baseline 7-minute functional connectivity scan in predicting tDCS outcomes, and point towards a precision medicine approach in neuromodulation studies. The study has important implications for clinical trials and practice, providing a statistical method that addresses heterogeneity in patient populations and allowing accurate prediction and enrollment of those who will most likely benefit from specific interventions.
Collapse
Affiliation(s)
- Zeyi Wang
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Jessica Gallegos
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Donna Tippett
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Physical Medicine & Rehabilitation, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine, Baltimore, MD, USA
| | - John E Desmond
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Cognitive Science, Johns Hopkins Medicine, Baltimore, MD, USA
- Neuroscience Program, Johns Hopkins University, Baltimore, MD, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Physical Medicine & Rehabilitation, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Cognitive Science, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Constantine E Frangakis
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Cognitive Science, Johns Hopkins Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Kudo K, Ranasinghe KG, Morise H, Syed F, Sekihara K, Rankin KP, Miller BL, Kramer JH, Rabinovici GD, Vossel K, Kirsch HE, Nagarajan SS. Neurophysiological trajectories in Alzheimer's disease progression. eLife 2024; 12:RP91044. [PMID: 38546337 PMCID: PMC10977971 DOI: 10.7554/elife.91044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.
Collapse
Affiliation(s)
- Kiwamu Kudo
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
- Medical Imaging Business Center, Ricoh Company LtdKanazawaJapan
| | - Kamalini G Ranasinghe
- Memory and Aging Center,UCSF Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Hirofumi Morise
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
- Medical Imaging Business Center, Ricoh Company LtdKanazawaJapan
| | - Faatimah Syed
- Memory and Aging Center,UCSF Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| | | | - Katherine P Rankin
- Memory and Aging Center,UCSF Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Bruce L Miller
- Memory and Aging Center,UCSF Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Joel H Kramer
- Memory and Aging Center,UCSF Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Gil D Rabinovici
- Memory and Aging Center,UCSF Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - Keith Vossel
- Memory and Aging Center,UCSF Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
- Mary S. Easton Center for Alzheimer’s Research and Care, Department of Neurology, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Heidi E Kirsch
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - Srikantan S Nagarajan
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
3
|
Kudo K, Ranasinghe KG, Morise H, Syed F, Sekihara K, Rankin KP, Miller BL, Kramer JH, Rabinovici GD, Vossel K, Kirsch HE, Nagarajan SS. Neurophysiological trajectories in Alzheimer's disease progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.18.541379. [PMID: 37293044 PMCID: PMC10245777 DOI: 10.1101/2023.05.18.541379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.
Collapse
Affiliation(s)
- Kiwamu Kudo
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA
- Medical Imaging Business Center, Ricoh Company, Ltd., Kanazawa, 920-0177, Japan
| | - Kamalini G Ranasinghe
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Hirofumi Morise
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA
- Medical Imaging Business Center, Ricoh Company, Ltd., Kanazawa, 920-0177, Japan
| | - Faatimah Syed
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | | | - Katherine P Rankin
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Bruce L Miller
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Joel H Kramer
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Gil D Rabinovici
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA
| | - Keith Vossel
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
- Mary S. Easton Center for Alzheimer’s Research and Care, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Heidi E Kirsch
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA
| | - Srikantan S Nagarajan
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
4
|
Cecchetti G, Basaia S, Canu E, Cividini C, Cursi M, Caso F, Santangelo R, Fanelli GF, Magnani G, Agosta F, Filippi M. EEG Correlates in the 3 Variants of Primary Progressive Aphasia. Neurology 2024; 102:e207993. [PMID: 38165298 DOI: 10.1212/wnl.0000000000207993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The 3 clinical presentations of primary progressive aphasia (PPA) reflect heterogenous neuropathology, which is difficult to be recognized in vivo. Resting-state (RS) EEG is promising for the investigation of brain electrical substrates in neurodegenerative conditions. In this study, we aim to explore EEG cortical sources in the characterization of the 3 variants of PPA. METHODS This is a cross-sectional, single-center, memory center-based cohort study. Patients with PPA and healthy controls were consecutively recruited at the Neurology Unit, IRCCS San Raffaele Scientific Institute (Milan, Italy). Each participant underwent an RS 19-channel EEG. Using standardized low-resolution brain electromagnetic tomography, EEG current source densities were estimated at voxel level and compared among study groups. Using an RS functional MRI-driven model of source reconstruction, linear lagged connectivity (LLC) values within language and extra-language brain networks were obtained and analyzed among groups. RESULTS Eighteen patients with logopenic PPA variant (lvPPA; mean age = 72.7 ± 6.6; % female = 52.4), 21 patients with nonfluent/agrammatic PPA variant (nfvPPA; mean age = 71.7 ± 8.1; % female = 66.6), and 9 patients with semantic PPA variant (svPPA; mean age = 65.0 ± 6.9; % female = 44.4) were enrolled in the study, together with 21 matched healthy controls (mean age = 69.2 ± 6.5; % female = 57.1). Patients with lvPPA showed a higher delta density than healthy controls (p < 0.01) and patients with nfvPPA (p < 0.05) and svPPA (p < 0.05). Patients with lvPPA also displayed a greater theta density over the left posterior hemisphere (p < 0.01) and lower alpha2 values (p < 0.05) over the left frontotemporal regions than controls. Patients with nfvPPA showed a diffuse greater theta density than controls (p < 0.05). LLC was altered in all patients relative to controls (p < 0.05); the alteration was greater at slow frequency bands and within language networks than extra-language networks. Patients with lvPPA also showed greater LLC values at theta band than patients with nfvPPA (p < 0.05). DISCUSSION EEG findings in patients with PPA suggest that lvPPA-related pathology is associated with a characteristic disruption of the cortical electrical activity, which might help in the differential diagnosis from svPPA and nfvPPA. EEG connectivity was disrupted in all PPA variants, with distinct findings in disease-specific PPA groups. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that EEG analysis can distinguish PPA due to probable Alzheimer disease from PPA due to probable FTD from normal aging.
Collapse
Affiliation(s)
- Giordano Cecchetti
- From the Neurology Unit (G.C., F.C., R.S., G.M., F.A., M.F.), Neurophysiology Service (G.C., M.C., R.S., G.F.F., M.F.), and Neuroimaging Research Unit (G.C., S.B., E.C., C.C., F.A., M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (G.C., F.A., M.F.); and Neurorehabilitation Unit (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Basaia
- From the Neurology Unit (G.C., F.C., R.S., G.M., F.A., M.F.), Neurophysiology Service (G.C., M.C., R.S., G.F.F., M.F.), and Neuroimaging Research Unit (G.C., S.B., E.C., C.C., F.A., M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (G.C., F.A., M.F.); and Neurorehabilitation Unit (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- From the Neurology Unit (G.C., F.C., R.S., G.M., F.A., M.F.), Neurophysiology Service (G.C., M.C., R.S., G.F.F., M.F.), and Neuroimaging Research Unit (G.C., S.B., E.C., C.C., F.A., M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (G.C., F.A., M.F.); and Neurorehabilitation Unit (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Cividini
- From the Neurology Unit (G.C., F.C., R.S., G.M., F.A., M.F.), Neurophysiology Service (G.C., M.C., R.S., G.F.F., M.F.), and Neuroimaging Research Unit (G.C., S.B., E.C., C.C., F.A., M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (G.C., F.A., M.F.); and Neurorehabilitation Unit (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Cursi
- From the Neurology Unit (G.C., F.C., R.S., G.M., F.A., M.F.), Neurophysiology Service (G.C., M.C., R.S., G.F.F., M.F.), and Neuroimaging Research Unit (G.C., S.B., E.C., C.C., F.A., M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (G.C., F.A., M.F.); and Neurorehabilitation Unit (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Caso
- From the Neurology Unit (G.C., F.C., R.S., G.M., F.A., M.F.), Neurophysiology Service (G.C., M.C., R.S., G.F.F., M.F.), and Neuroimaging Research Unit (G.C., S.B., E.C., C.C., F.A., M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (G.C., F.A., M.F.); and Neurorehabilitation Unit (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Santangelo
- From the Neurology Unit (G.C., F.C., R.S., G.M., F.A., M.F.), Neurophysiology Service (G.C., M.C., R.S., G.F.F., M.F.), and Neuroimaging Research Unit (G.C., S.B., E.C., C.C., F.A., M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (G.C., F.A., M.F.); and Neurorehabilitation Unit (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanna F Fanelli
- From the Neurology Unit (G.C., F.C., R.S., G.M., F.A., M.F.), Neurophysiology Service (G.C., M.C., R.S., G.F.F., M.F.), and Neuroimaging Research Unit (G.C., S.B., E.C., C.C., F.A., M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (G.C., F.A., M.F.); and Neurorehabilitation Unit (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Magnani
- From the Neurology Unit (G.C., F.C., R.S., G.M., F.A., M.F.), Neurophysiology Service (G.C., M.C., R.S., G.F.F., M.F.), and Neuroimaging Research Unit (G.C., S.B., E.C., C.C., F.A., M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (G.C., F.A., M.F.); and Neurorehabilitation Unit (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- From the Neurology Unit (G.C., F.C., R.S., G.M., F.A., M.F.), Neurophysiology Service (G.C., M.C., R.S., G.F.F., M.F.), and Neuroimaging Research Unit (G.C., S.B., E.C., C.C., F.A., M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (G.C., F.A., M.F.); and Neurorehabilitation Unit (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- From the Neurology Unit (G.C., F.C., R.S., G.M., F.A., M.F.), Neurophysiology Service (G.C., M.C., R.S., G.F.F., M.F.), and Neuroimaging Research Unit (G.C., S.B., E.C., C.C., F.A., M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (G.C., F.A., M.F.); and Neurorehabilitation Unit (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
5
|
Demopoulos C, Jesson X, Gerdes MR, Jurigova BG, Hinkley LB, Ranasinghe KG, Desai S, Honma S, Mizuiri D, Findlay A, Nagarajan SS, Marco EJ. Global MEG Resting State Functional Connectivity in Children with Autism and Sensory Processing Dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577499. [PMID: 38352614 PMCID: PMC10862722 DOI: 10.1101/2024.01.26.577499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Sensory processing dysfunction not only affects most individuals with autism spectrum disorder (ASD), but at least 5% of children without ASD also experience dysfunctional sensory processing. Our understanding of the relationship between sensory dysfunction and resting state brain activity is still emerging. This study compared long-range resting state functional connectivity of neural oscillatory behavior in children aged 8-12 years with autism spectrum disorder (ASD; N=18), those with sensory processing dysfunction (SPD; N=18) who do not meet ASD criteria, and typically developing control participants (TDC; N=24) using magnetoencephalography (MEG). Functional connectivity analyses were performed in the alpha and beta frequency bands, which are known to be implicated in sensory information processing. Group differences in functional connectivity and associations between sensory abilities and functional connectivity were examined. Distinct patterns of functional connectivity differences between ASD and SPD groups were found only in the beta band, but not in the alpha band. In both alpha and beta bands, ASD and SPD cohorts differed from the TDC cohort. Somatosensory cortical beta-band functional connectivity was associated with tactile processing abilities, while higher-order auditory cortical alpha-band functional connectivity was associated with auditory processing abilities. These findings demonstrate distinct long-range neural synchrony alterations in SPD and ASD that are associated with sensory processing abilities. Neural synchrony measures could serve as potential sensitive biomarkers for ASD and SPD.
Collapse
Affiliation(s)
- Carly Demopoulos
- Department of Psychiatry, University of California San Francisco, 675 18 Street, San Francisco, CA 94107
- Department of Radiology & Biomedical Imaging, University of California-San Francisco, 513 Parnassus Avenue, S362, San Francisco, CA 94143
| | - Xuan Jesson
- Department of Psychology, Palo Alto University, 1791 Arastradero Road, Palo Alto, CA 94304
| | - Molly Rae Gerdes
- Cortica Healthcare, Department of Neurodevelopmental Medicine, 4000 Civic Center Drive, San Rafael, CA 94903
| | - Barbora G. Jurigova
- Cortica Healthcare, Department of Neurodevelopmental Medicine, 4000 Civic Center Drive, San Rafael, CA 94903
| | - Leighton B. Hinkley
- Department of Radiology & Biomedical Imaging, University of California-San Francisco, 513 Parnassus Avenue, S362, San Francisco, CA 94143
| | - Kamalini G. Ranasinghe
- University of California-San Francisco, Department of Neurology, 675 Nelson Rising Lane, San Francisco, CA 94143
| | - Shivani Desai
- University of California-San Francisco, Department of Neurology, 675 Nelson Rising Lane, San Francisco, CA 94143
| | - Susanne Honma
- Department of Radiology & Biomedical Imaging, University of California-San Francisco, 513 Parnassus Avenue, S362, San Francisco, CA 94143
| | - Danielle Mizuiri
- Department of Radiology & Biomedical Imaging, University of California-San Francisco, 513 Parnassus Avenue, S362, San Francisco, CA 94143
| | - Anne Findlay
- Department of Radiology & Biomedical Imaging, University of California-San Francisco, 513 Parnassus Avenue, S362, San Francisco, CA 94143
| | - Srikantan S. Nagarajan
- Department of Radiology & Biomedical Imaging, University of California-San Francisco, 513 Parnassus Avenue, S362, San Francisco, CA 94143
| | - Elysa J. Marco
- Cortica Healthcare, Department of Neurodevelopmental Medicine, 4000 Civic Center Drive, San Rafael, CA 94903
| |
Collapse
|
6
|
Quique YM, Gnanateja GN, Dickey MW, Evans WS, Chandrasekaran B. Examining cortical tracking of the speech envelope in post-stroke aphasia. Front Hum Neurosci 2023; 17:1122480. [PMID: 37780966 PMCID: PMC10538638 DOI: 10.3389/fnhum.2023.1122480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction People with aphasia have been shown to benefit from rhythmic elements for language production during aphasia rehabilitation. However, it is unknown whether rhythmic processing is associated with such benefits. Cortical tracking of the speech envelope (CTenv) may provide a measure of encoding of speech rhythmic properties and serve as a predictor of candidacy for rhythm-based aphasia interventions. Methods Electroencephalography was used to capture electrophysiological responses while Spanish speakers with aphasia (n = 9) listened to a continuous speech narrative (audiobook). The Temporal Response Function was used to estimate CTenv in the delta (associated with word- and phrase-level properties), theta (syllable-level properties), and alpha bands (attention-related properties). CTenv estimates were used to predict aphasia severity, performance in rhythmic perception and production tasks, and treatment response in a sentence-level rhythm-based intervention. Results CTenv in delta and theta, but not alpha, predicted aphasia severity. Neither CTenv in delta, alpha, or theta bands predicted performance in rhythmic perception or production tasks. Some evidence supported that CTenv in theta could predict sentence-level learning in aphasia, but alpha and delta did not. Conclusion CTenv of the syllable-level properties was relatively preserved in individuals with less language impairment. In contrast, higher encoding of word- and phrase-level properties was relatively impaired and was predictive of more severe language impairments. CTenv and treatment response to sentence-level rhythm-based interventions need to be further investigated.
Collapse
Affiliation(s)
- Yina M. Quique
- Center for Education in Health Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - G. Nike Gnanateja
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
| | - Michael Walsh Dickey
- VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
- Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Bharath Chandrasekaran
- Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, PA, United States
- Roxelyn and Richard Pepper Department of Communication Science and Disorders, School of Communication. Northwestern University, Evanston, IL, United States
| |
Collapse
|
7
|
Grossman M, Seeley WW, Boxer AL, Hillis AE, Knopman DS, Ljubenov PA, Miller B, Piguet O, Rademakers R, Whitwell JL, Zetterberg H, van Swieten JC. Frontotemporal lobar degeneration. Nat Rev Dis Primers 2023; 9:40. [PMID: 37563165 DOI: 10.1038/s41572-023-00447-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 08/12/2023]
Abstract
Frontotemporal lobar degeneration (FTLD) is one of the most common causes of early-onset dementia and presents with early social-emotional-behavioural and/or language changes that can be accompanied by a pyramidal or extrapyramidal motor disorder. About 20-25% of individuals with FTLD are estimated to carry a mutation associated with a specific FTLD pathology. The discovery of these mutations has led to important advances in potentially disease-modifying treatments that aim to slow progression or delay disease onset and has improved understanding of brain functioning. In both mutation carriers and those with sporadic disease, the most common underlying diagnoses are linked to neuronal and glial inclusions containing tau (FTLD-tau) or TDP-43 (FTLD-TDP), although 5-10% of patients may have inclusions containing proteins from the FUS-Ewing sarcoma-TAF15 family (FTLD-FET). Biomarkers definitively identifying specific pathological entities in sporadic disease have been elusive, which has impeded development of disease-modifying treatments. Nevertheless, disease-monitoring biofluid and imaging biomarkers are becoming increasingly sophisticated and are likely to serve as useful measures of treatment response during trials of disease-modifying treatments. Symptomatic trials using novel approaches such as transcranial direct current stimulation are also beginning to show promise.
Collapse
Affiliation(s)
- Murray Grossman
- Department of Neurology and Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - William W Seeley
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| | - Adam L Boxer
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Peter A Ljubenov
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Miller
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Olivier Piguet
- School of Psychology and Brain and Mind Center, University of Sydney, Sydney, New South Wales, Australia
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The University of Gothenburg, Mölndal, Sweden
- Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
8
|
Chen M, Burke S, Olm CA, Irwin DJ, Massimo L, Lee EB, Trojanowski JQ, Gee JC, Grossman M. Antemortem network analysis of spreading pathology in autopsy-confirmed frontotemporal degeneration. Brain Commun 2023; 5:fcad147. [PMID: 37223129 PMCID: PMC10202556 DOI: 10.1093/braincomms/fcad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/15/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Despite well-articulated hypotheses of spreading pathology in animal models of neurodegenerative disease, the basis for spreading neurodegenerative pathology in humans has been difficult to ascertain. In this study, we used graph theoretic analyses of structural networks in antemortem, multimodal MRI from autopsy-confirmed cases to examine spreading pathology in sporadic frontotemporal lobar degeneration. We defined phases of progressive cortical atrophy on T1-weighted MRI using a published algorithm in autopsied frontotemporal lobar degeneration with tau inclusions or with transactional DNA binding protein of ∼43 kDa inclusions. We studied global and local indices of structural networks in each of these phases, focusing on the integrity of grey matter hubs and white matter edges projecting between hubs. We found that global network measures are compromised to an equal degree in patients with frontotemporal lobar degeneration with tau inclusions and frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions compared to healthy controls. While measures of local network integrity were compromised in both frontotemporal lobar degeneration with tau inclusions and frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions, we discovered several important characteristics that distinguished between these groups. Hubs identified in controls were degraded in both patient groups, but degraded hubs were associated with the earliest phase of cortical atrophy (i.e. epicentres) only in frontotemporal lobar degeneration with tau inclusions. Degraded edges were significantly more plentiful in frontotemporal lobar degeneration with tau inclusions than in frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions, suggesting that the spread of tau pathology involves more significant white matter degeneration. Weakened edges were associated with degraded hubs in frontotemporal lobar degeneration with tau inclusions more than in frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions, particularly in the earlier phases of the disease, and phase-to-phase transitions in frontotemporal lobar degeneration with tau inclusions were characterized by weakened edges in earlier phases projecting to diseased hubs in subsequent phases of the disease. When we examined the spread of pathology from a region diseased in an earlier phase to physically adjacent regions in subsequent phases, we found greater evidence of disease spreading to adjacent regions in frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions than in frontotemporal lobar degeneration with tau inclusions. We associated evidence of degraded grey matter hubs and weakened white matter edges with quantitative measures of digitized pathology from direct observations of patients' brain samples. We conclude from these observations that the spread of pathology from diseased regions to distant regions via weakened long-range edges may contribute to spreading disease in frontotemporal dementia-tau, while spread of pathology to physically adjacent regions via local neuronal connectivity may play a more prominent role in spreading disease in frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions.
Collapse
Affiliation(s)
- Min Chen
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Burke
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher A Olm
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David J Irwin
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren Massimo
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James C Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Murray Grossman
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Maldjian JA, Lee R, Jordan J, Davenport EM, Proskovec AL, Wintermark M, Stufflebeam S, Anderson J, Mukherjee P, Nagarajan SS, Ferrari P, Gaetz W, Schwartz E, Roberts TPL. ACR White Paper on Magnetoencephalography and Magnetic Source Imaging: A Report from the ACR Commission on Neuroradiology. AJNR Am J Neuroradiol 2022; 43:E46-E53. [PMID: 36456085 DOI: 10.3174/ajnr.a7714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 12/04/2022]
Abstract
Magnetoencephalography, the extracranial detection of tiny magnetic fields emanating from intracranial electrical activity of neurons, and its source modeling relation, magnetic source imaging, represent a powerful functional neuroimaging technique, able to detect and localize both spontaneous and evoked activity of the brain in health and disease. Recent years have seen an increased utilization of this technique for both clinical practice and research, in the United States and worldwide. This report summarizes current thinking, presents recommendations for clinical implementation, and offers an outlook for emerging new clinical indications.
Collapse
Affiliation(s)
- J A Maldjian
- From the Advanced Neuroscience Imaging Research Laboratory (J.A.M., E.M.D., A.L.P.) .,MEG Center of Excellence (J.A.M., E.M.D., A.L.P.).,Department of Radiology (J.A.M., E.M.D., A.L.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - R Lee
- Department of Neuroradiology (R.L.), University of California San Diego, San Diego, California
| | - J Jordan
- ACR Commission on Neuroradiology (J.J.), American College of Radiology, Reston, Virginia.,Stanford University School of Medicine (J.J.), Stanford, California
| | - E M Davenport
- From the Advanced Neuroscience Imaging Research Laboratory (J.A.M., E.M.D., A.L.P.).,MEG Center of Excellence (J.A.M., E.M.D., A.L.P.).,Department of Radiology (J.A.M., E.M.D., A.L.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - A L Proskovec
- From the Advanced Neuroscience Imaging Research Laboratory (J.A.M., E.M.D., A.L.P.).,MEG Center of Excellence (J.A.M., E.M.D., A.L.P.).,Department of Radiology (J.A.M., E.M.D., A.L.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - M Wintermark
- Department of Neuroradiology (M.W.), University of Texas MD Anderson Center, Houston, Texas
| | - S Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging (S.S.), Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - J Anderson
- Department of Radiology and Imaging Sciences (J.A.), University of Utah School of Medicine, Salt Lake City, Utah
| | - P Mukherjee
- Department of Radiology and Biomedical Imaging (P.M., S.S.N.), University of California, San Francisco, San Francisco, California
| | - S S Nagarajan
- Department of Radiology and Biomedical Imaging (P.M., S.S.N.), University of California, San Francisco, San Francisco, California
| | - P Ferrari
- Pediatric Neurosciences (P.F.), Helen DeVos Children's Hospital, Grand Rapids, Michigan.,Department of Pediatrics and Human Development (P.F.), College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - W Gaetz
- Department of Radiology (W.G., E.S., T.P.L.R.), Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - E Schwartz
- Department of Radiology (W.G., E.S., T.P.L.R.), Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - T P L Roberts
- Department of Radiology (W.G., E.S., T.P.L.R.), Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Characterization of the logopenic variant of Primary Progressive Aphasia: A systematic review and meta-analysis. Ageing Res Rev 2022; 82:101760. [PMID: 36244629 DOI: 10.1016/j.arr.2022.101760] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/11/2022] [Indexed: 01/31/2023]
Abstract
The linguistic and anatomical variability of the logopenic variant of Primary Progressive Aphasia (lv-PPA) as defined by current diagnostic criteria has been the topic of an intense debate. The present review and meta-analysis aims at characterizing the profile of lv-PPA, by a comprehensive analysis of the available literature on the neuropsychological, neuroimaging, electrophysiological, pathological, and genetic features of lv-PPA. We conducted a systematic bibliographic search, leading to the inclusion of 207 papers. Of them, 12 were used for the Anatomical Likelihood Estimation meta-analysis on grey matter revealed by magnetic resonance imaging data. The results suggest that the current guidelines outline a relatively consistent syndrome, characterized by a core set of linguistic and, to a lesser extent, non-linguistic deficits, mirroring the involvement of left temporal and parietal regions typically affected by Alzheimer Disease pathology. Variations of the lv-PPA profile are discussed in terms of heterogeneity of the neuropsychological instruments and the diagnostic criteria adopted.
Collapse
|
11
|
Tao Y, Tsapkini K, Rapp B. Inter-hemispheric synchronicity and symmetry: The functional connectivity consequences of stroke and neurodegenerative disease. NEUROIMAGE: CLINICAL 2022; 36:103263. [PMID: 36451366 PMCID: PMC9668669 DOI: 10.1016/j.nicl.2022.103263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Stroke and neurodegenerative diseases differ along several dimensions, including their temporal trajectories -abrupt onset versus slow disease progression. Despite these differences, they can give rise to very similar cognitive impairments, such as specific forms of aphasia. What has been scarcely investigated, however, is the extent to which the underlying functional neuroplastic consequences are similar or different for these diseases. Here, for the first time, we directly compare changes in the brain's functional network connectivity, measured with resting-state fMRI, in stroke and progressive neurological disease. Specifically, we examined two groups of individuals with chronic post-stroke aphasia or non-fluent primary progressive aphasia, matched for their behavioral profiles and distribution of left-hemisphere damage. Using previous proposals regarding the neural functional connectivity (FC) phenotype of stroke as a starting point, we compared the two diseases in terms of homotopic FC, intra-hemispheric FC changes and also the symmetry of the FC patterns between the two hemispheres. We found, first, that progressive disease showed significantly higher levels of homotopic connectivity than neurotypical controls and, further, that stroke showed the reverse pattern. For both groups these effects were found to be behaviorally relevant. In addition, within the directly impacted left hemisphere, FC changes for the two diseases were significantly correlated. In contrast, in the right hemisphere, the FC changes differed markedly between the two groups, with the progressive disease group exhibiting rather symmetrical FC changes across the hemispheres whereas the post-stroke group showed asymmetrical FC changes across the hemispheres. These findings constitute novel evidence that the functional connectivity consequences of stroke and neurodegenerative disease can be very different despite similar behavioral outcomes and damage foci. Specifically, stroke may lead to greater independence of hemispheric responses, while neurodegenerative disease may produce more symmetrical changes across the hemispheres and more synchronized activity between the two hemispheres.
Collapse
Affiliation(s)
- Yuan Tao
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD 21218, USA,Corresponding author.
| | - Kyrana Tsapkini
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD 21218, USA,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21217, USA
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD 21218, USA,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|
12
|
Roytman M, Chiang GC, Gordon ML, Franceschi AM. Multimodality Imaging in Primary Progressive Aphasia. AJNR Am J Neuroradiol 2022; 43:1230-1243. [PMID: 36007947 PMCID: PMC9451618 DOI: 10.3174/ajnr.a7613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/30/2021] [Indexed: 01/26/2023]
Abstract
Primary progressive aphasia is a clinically and neuropathologically heterogeneous group of progressive neurodegenerative disorders, characterized by language-predominant impairment and commonly associated with atrophy of the dominant language hemisphere. While this clinical entity has been recognized dating back to the 19th century, important advances have been made in defining our current understanding of primary progressive aphasia, with 3 recognized subtypes to date: logopenic variant, semantic variant, and nonfluent/agrammatic variant. Given the ongoing progress in our understanding of the neurobiology and genomics of these rare neurodegenerative conditions, accurate imaging diagnoses are of the utmost importance and carry implications for future therapeutic triaging. This review covers the diverse spectrum of primary progressive aphasia and its multimodal imaging features, including structural, functional, and molecular neuroimaging findings; it also highlights currently recognized diagnostic criteria, clinical presentations, histopathologic biomarkers, and treatment options of these 3 primary progressive aphasia subtypes.
Collapse
Affiliation(s)
- M Roytman
- From the Neuroradiology Division (M.R., G.C.C.), Department of Radiology, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York
| | - G C Chiang
- From the Neuroradiology Division (M.R., G.C.C.), Department of Radiology, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York
| | - M L Gordon
- Departments of Neurology and Psychiatry (M.L.G.), Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, The Litwin-Zucker Research Center, Feinstein Institutes for Medical Research, Manhasset, New York
| | - A M Franceschi
- Neuroradiology Division (A.M.F.), Department of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, New York
| |
Collapse
|
13
|
Jiang F, Jin H, Gao Y, Xie X, Cummings J, Raj A, Nagarajan S. Time-varying dynamic network model for dynamic resting state functional connectivity in fMRI and MEG imaging. Neuroimage 2022; 254:119131. [PMID: 35337963 PMCID: PMC9942947 DOI: 10.1016/j.neuroimage.2022.119131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/04/2022] [Accepted: 03/21/2022] [Indexed: 01/26/2023] Open
Abstract
Dynamic resting state functional connectivity (RSFC) characterizes fluctuations that occur over time in functional brain networks. Existing methods to extract dynamic RSFCs, such as sliding-window and clustering methods that are inherently non-adaptive, have various limitations such as high-dimensionality, an inability to reconstruct brain signals, insufficiency of data for reliable estimation, insensitivity to rapid changes in dynamics, and a lack of generalizability across multiply functional imaging modalities. To overcome these deficiencies, we develop a novel and unifying time-varying dynamic network (TVDN) framework for examining dynamic resting state functional connectivity. TVDN includes a generative model that describes the relation between a low-dimensional dynamic RSFC and the brain signals, and an inference algorithm that automatically and adaptively learns the low-dimensional manifold of dynamic RSFC and detects dynamic state transitions in data. TVDN is applicable to multiple modalities of functional neuroimaging such as fMRI and MEG/EEG. The estimated low-dimensional dynamic RSFCs manifold directly links to the frequency content of brain signals. Hence we can evaluate TVDN performance by examining whether learnt features can reconstruct observed brain signals. We conduct comprehensive simulations to evaluate TVDN under hypothetical settings. We then demonstrate the application of TVDN with real fMRI and MEG data, and compare the results with existing benchmarks. Results demonstrate that TVDN is able to correctly capture the dynamics of brain activity and more robustly detect brain state switching both in resting state fMRI and MEG data.
Collapse
Affiliation(s)
- Fei Jiang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94158, USA.
| | - Huaqing Jin
- Department of Statistics and Actuarial Science, the University of Hong Kong, CN, Hong Kong
| | - Yijing Gao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA
| | - Xihe Xie
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA
| | - Jennifer Cummings
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA.
| | - Srikantan Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
14
|
Matchin W, den Ouden DB, Hickok G, Hillis AE, Bonilha L, Fridriksson J. The Wernicke conundrum revisited: evidence from connectome-based lesion-symptom mapping. Brain 2022; 145:3916-3930. [PMID: 35727949 DOI: 10.1093/brain/awac219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Wernicke's area has been assumed since the 1800s to be the primary region supporting word and sentence comprehension. However, in 2015 and 2019, Mesulam and colleagues raised what they termed the 'Wernicke conundrum', noting widespread variability in the anatomical definition of this area and presenting data from primary progressive aphasia that challenged this classical assumption. To resolve the conundrum, they posited a 'double disconnection' hypothesis: that word and sentence comprehension deficits in stroke-based aphasia result from disconnection of anterior temporal and inferior frontal regions from other parts of the brain due to white matter damage, rather than dysfunction of Wernicke's area itself. To test this hypothesis, we performed lesion-deficit correlations, including connectome-based lesion-symptom mapping, in four large, partially overlapping groups of English-speaking chronic left hemisphere stroke survivors. After removing variance due to object recognition and associative semantic processing, the same middle and posterior temporal lobe regions were implicated in both word comprehension deficits and complex noncanonical sentence comprehension deficits. Connectome lesion-symptom mapping revealed similar temporal-occipital white matter disconnections for impaired word and noncanonical sentence comprehension, including the temporal pole. We found an additional significant temporal-parietal disconnection for noncanonical sentence comprehension deficits, which may indicate a role for phonological working memory in processing complex syntax, but no significant frontal disconnections. Moreover, damage to these middle-posterior temporal lobe regions was associated with both word and noncanonical sentence comprehension deficits even when accounting for variance due to the strongest anterior temporal and inferior frontal white matter disconnections, respectively. Our results largely agree with the classical notion that Wernicke's area, defined here as middle superior temporal gyrus and middle-posterior superior temporal sulcus, supports both word and sentence comprehension, suggest a supporting role for temporal pole in both word and sentence comprehension, and speak against the hypothesis that comprehension deficits in Wernicke's aphasia result from double disconnection.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Dirk Bart den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Department of Language Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA.,Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA.,Department of Cognitive Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Leonardo Bonilha
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
15
|
Chen Y, Zeng Q, Wang Y, Luo X, Sun Y, Zhang L, Liu X, Li K, Zhang M, Peng G. Characterizing Differences in Functional Connectivity Between Posterior Cortical Atrophy and Semantic Dementia by Seed-Based Approach. Front Aging Neurosci 2022; 14:850977. [PMID: 35572133 PMCID: PMC9099291 DOI: 10.3389/fnagi.2022.850977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/31/2022] [Indexed: 11/21/2022] Open
Abstract
Background Posterior cortical atrophy (PCA) and semantic dementia (SD) are focal syndromes involving different cerebral regions. This study aimed to demonstrate the existence of abnormal functional connectivity (FC) with an affected network in PCA and SD. Methods A total of 10 patients with PCA, 12 patients with SD, and 11 controls were recruited to undergo a detailed clinical history interview and physical examination, neuropsychological assessments, and PET/MRI scan. Seed-based FC analyses were conducted to construct FC in language network, visual network, and salience network. The two-sample t-test was performed to reveal distinct FC patterns in PCA and SD, and we further related the FC difference to cognition. Meanwhile, the uptake value of fluorodeoxyglucose in regions with FC alteration was also extracted for comparison. Results We found a global cognitive impairment in patients with PCA and SD. The results of FC analyses showed that patients with PCA present decreased FC in left precentral gyrus to left V1 and increased FC in right inferior frontal gyrus to right V1 in the visual network, right medial frontal gyrus and left fusiform to left anterior temporal lobe and post-superior temporal gyrus in the language network, and left superior temporal gyrus to left anterior insula in the salience network, which were related to cognitive function. Patients with SD had decreased FC from right superior frontal gyrus, right middle frontal gyrus and right superior frontal gyrus to left anterior temporal lobe, or post-superior temporal gyrus in the language network, as well as left superior frontal gyrus to right anterior insula in the salience network, positively relating to cognitive function, but increased FC in the right superior temporal gyrus to left anterior temporal lobe in the language network, and right insula and left anterior cingulum to right anterior insula in the salience network, negatively relating to cognitive function. Most of the regions with FC change in patients with PCA and SD had abnormal metabolism simultaneously. Conclusion Abnormal connectivity spread over the cortex involving language and salience networks was common in patients with PCA and SD, whereas FC change involving the visual network was unique to patients with PCA. The FC changes were matched for cognitive deficits.
Collapse
Affiliation(s)
- Yi Chen
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunyun Wang
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurology, Shengzhou People’s Hospital, Shengzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Sun
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lumi Zhang
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyan Liu
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Meier EL. The role of disrupted functional connectivity in aphasia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:99-119. [PMID: 35078613 DOI: 10.1016/b978-0-12-823384-9.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Language is one of the most complex and specialized higher cognitive processes. Brain damage to the distributed, primarily left-lateralized language network can result in aphasia, a neurologic disorder characterized by receptive and/or expressive deficits in spoken and/or written language. Most often, aphasia is the consequence of stroke-termed poststroke aphasia (PSA)-yet, aphasia can also manifest due to neurodegenerative disease, specifically, a disorder called primary progressive aphasia (PPA). In recent years, functional connectivity neuroimaging studies have provided emerging evidence supporting theories regarding the relationships between language impairments, structural brain damage, and functional network properties in these two disorders. This chapter reviews the current evidence for the "network phenotype of stroke injury" hypothesis (Siegel et al., 2016) as it pertains to PSA and the "network degeneration hypothesis" (Seeley et al., 2009) as it pertains to PPA. Methodologic considerations for functional connectivity studies, limitations of the current functional connectivity literature in aphasia, and future directions are also discussed.
Collapse
Affiliation(s)
- Erin L Meier
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, United States.
| |
Collapse
|
17
|
Borghesani V, DeLeon J, Gorno-Tempini ML. Frontotemporal dementia: A unique window on the functional role of the temporal lobes. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:429-448. [PMID: 35964986 PMCID: PMC9793689 DOI: 10.1016/b978-0-12-823493-8.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Frontotemporal dementia (FTD) is an umbrella term covering a plethora of progressive changes in executive functions, motor abilities, behavior, and/or language. Different clinical syndromes have been described in relation to localized atrophy, informing on the functional networks that underlie these specific cognitive, emotional, and behavioral processes. These functional declines are linked with the underlying neurodegeneration of frontal and/or temporal lobes due to diverse molecular pathologies. Initially, the accumulation of misfolded proteins targets specifically susceptible cell assemblies, leading to relatively focal neurodegeneration that later spreads throughout large-scale cortical networks. Here, we discuss the most recent clinical, neuropathological, imaging, and genetics findings in FTD-spectrum syndromes affecting the temporal lobe. We focus on the semantic variant of primary progressive aphasia and its mirror image, the right temporal variant of FTD. Incipient focal atrophy of the left anterior temporal lobe (ATL) manifests with predominant naming, word comprehension, reading, and object semantic deficits, while cases of predominantly right ATL atrophy present with impairments of socioemotional, nonverbal semantic, and person-specific knowledge. Overall, the observations in FTD allow for crucial clinical-anatomic inferences, shedding light on the role of the temporal lobes in both cognition and complex behaviors. The concerted activity of both ATLs is critical to ensure that percepts are translated into concepts, yet important hemispheric differences should be acknowledged. On one hand, the left ATL attributes meaning to linguistic, external stimuli, thus supporting goal-oriented, action-related behaviors (e.g., integrating sounds and letters into words). On the other hand, the right ATL assigns meaning to emotional, visceral stimuli, thus guiding socially relevant behaviors (e.g., integrating body sensations into feelings of familiarity).
Collapse
Affiliation(s)
- Valentina Borghesani
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, QC, Canada; Department of Psychology, Université de Montréal, Montréal, QC, Canada.
| | - Jessica DeLeon
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States; Department of Neurology, Dyslexia Center, University of California, San Francisco, CA, United States
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States; Department of Neurology, Dyslexia Center, University of California, San Francisco, CA, United States
| |
Collapse
|
18
|
Wolthuis N, Satoer D, Veenstra W, Smits M, Wagemakers M, Vincent A, Bastiaanse R, Cherian PJ, Bosma I. Resting-State Electroencephalography Functional Connectivity Networks Relate to Pre- and Postoperative Language Functioning in Low-Grade Glioma and Meningioma Patients. Front Neurosci 2021; 15:785969. [PMID: 34955732 PMCID: PMC8693574 DOI: 10.3389/fnins.2021.785969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Preservation of language functioning in patients undergoing brain tumor surgery is essential because language impairments negatively impact the quality of life. Brain tumor patients have alterations in functional connectivity (FC), the extent to which brain areas functionally interact. We studied FC networks in relation to language functioning in glioma and meningioma patients. Method: Patients with a low-grade glioma (N = 15) or meningioma (N = 10) infiltrating into/pressing on the language-dominant hemisphere underwent extensive language testing before and 1 year after surgery. Resting-state EEG was registered preoperatively, postoperatively (glioma patients only), and once in healthy individuals. After analyzing FC in theta and alpha frequency bands, weighted networks and Minimum Spanning Trees were quantified by various network measures. Results: Pre-operative FC network characteristics did not differ between glioma patients and healthy individuals. However, hub presence and higher local and global FC are associated with poorer language functioning before surgery in glioma patients and predict worse language performance at 1 year after surgery. For meningioma patients, a greater small worldness was related to worse language performance and hub presence; better average clustering and global integration were predictive of worse outcome on language function 1 year after surgery. The average eccentricity, diameter and tree hierarchy seem to be the network metrics with the more pronounced relation to language performance. Discussion: In this exploratory study, we demonstrated that preoperative FC networks are informative for pre- and postoperative language functioning in glioma patients and to a lesser extent in meningioma patients.
Collapse
Affiliation(s)
- Nienke Wolthuis
- Center for Language and Cognition Groningen, University of Groningen, Groningen, Netherlands
| | - Djaina Satoer
- Department of Neurosurgery, Erasmus MC - University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wencke Veenstra
- Department of Rehabilitation Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC - University Medical Center Rotterdam, Rotterdam, Netherlands.,Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Michiel Wagemakers
- Department of Neurosurgery, University Medical Center Groningen, Groningen, Netherlands
| | - Arnaud Vincent
- Department of Neurosurgery, Erasmus MC - University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Roelien Bastiaanse
- Center for Language and Cognition Groningen, University of Groningen, Groningen, Netherlands.,National Research University Higher School of Economics, Moscow, Russia
| | - Perumpillichira J Cherian
- Department of Neurology, University Medical Center Rotterdam, Rotterdam, Netherlands.,Division of Neurology, Department of Medicine, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Ingeborg Bosma
- Department of Neurology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
19
|
Nigro S, Tafuri B, Urso D, De Blasi R, Cedola A, Gigli G, Logroscino G. Altered structural brain networks in linguistic variants of frontotemporal dementia. Brain Imaging Behav 2021; 16:1113-1122. [PMID: 34755293 PMCID: PMC9107413 DOI: 10.1007/s11682-021-00560-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 12/31/2022]
Abstract
Semantic (svPPA) and nonfluent (nfvPPA) variants of primary progressive aphasia (PPA) have recently been associated with distinct patterns of white matter and functional network alterations in left frontoinsular and anterior temporal regions, respectively. Little information exists, however, about the topological characteristics of gray matter covariance networks in these two PPA variants. In the present study, we used a graph theory approach to describe the structural covariance network organization in 34 patients with svPPA, 34 patients with nfvPPA and 110 healthy controls. All participants underwent a 3 T structural MRI. Next, we used cortical thickness values and subcortical volumes to define subject-specific connectivity networks. Patients with svPPA and nfvPPA were characterized by higher values of normalized characteristic path length compared with controls. Moreover, svPPA patients had lower values of normalized clustering coefficient relative to healthy controls. At a regional level, patients with svPPA showed a reduced connectivity and impaired information processing in temporal and limbic brain areas relative to controls and nfvPPA patients. By contrast, local network changes in patients with nfvPPA were focused on frontal brain regions such as the pars opercularis and the middle frontal cortex. Of note, a predominance of local metric changes was observed in the left hemisphere in both nfvPPA and svPPA brain networks. Taken together, these findings provide new evidences of a suboptimal topological organization of the structural covariance networks in svPPA and nfvPPA patients. Moreover, we further confirm that distinct patterns of structural network alterations are related to neurodegenerative mechanisms underlying each PPA variant.
Collapse
Affiliation(s)
- Salvatore Nigro
- Institute of Nanotechnology (NANOTEC), National Research Council, Lecce, Italy.,Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari Aldo Moro, Pia Fondazione Cardinale G. Panico, Tricase, Lecce, Italy
| | - Benedetta Tafuri
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari Aldo Moro, Pia Fondazione Cardinale G. Panico, Tricase, Lecce, Italy.,Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Daniele Urso
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari Aldo Moro, Pia Fondazione Cardinale G. Panico, Tricase, Lecce, Italy.,Department of Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Roberto De Blasi
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari Aldo Moro, Pia Fondazione Cardinale G. Panico, Tricase, Lecce, Italy.,Department of Radiology, Pia Fondazione Cardinale G. Panico, Tricase, Lecce, Italy
| | - Alessia Cedola
- Institute of Nanotechnology (NANOTEC), National Research Council, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology (NANOTEC), National Research Council, Lecce, Italy.,Department of Mathematics and Physics Ennio De Giorgi, University of Salento, Campus Ecotekne, Lecce, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari Aldo Moro, Pia Fondazione Cardinale G. Panico, Tricase, Lecce, Italy. .,Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy.
| | | |
Collapse
|
20
|
Soni N, Ora M, Bathla G, Nagaraj C, Boles Ponto LL, Graham MM, Saini J, Menda Y. Multiparametric magnetic resonance imaging and positron emission tomography findings in neurodegenerative diseases: Current status and future directions. Neuroradiol J 2021; 34:263-288. [PMID: 33666110 PMCID: PMC8447818 DOI: 10.1177/1971400921998968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by progressive neuronal loss, leading to dementia and movement disorders. NDDs broadly include Alzheimer's disease, frontotemporal lobar degeneration, parkinsonian syndromes, and prion diseases. There is an ever-increasing prevalence of mild cognitive impairment and dementia, with an accompanying immense economic impact, prompting efforts aimed at early identification and effective interventions. Neuroimaging is an essential tool for the early diagnosis of NDDs in both clinical and research settings. Structural, functional, and metabolic imaging modalities, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are widely available. They show encouraging results for diagnosis, monitoring, and treatment response evaluation. The current review focuses on the complementary role of various imaging modalities in relation to NDDs, the qualitative and quantitative utility of newer MRI techniques, novel radiopharmaceuticals, and integrated PET/MRI in the setting of NDDs.
Collapse
Affiliation(s)
- Neetu Soni
- University of Iowa Hospitals and Clinics, USA
| | - Manish Ora
- Department of Nuclear Medicine, SGPGIMS, India
| | - Girish Bathla
- Neuroradiology Department, University of Iowa Hospitals and
Clinics, USA
| | - Chandana Nagaraj
- Department of Neuro Imaging and Interventional Radiology,
NIMHANS, India
| | | | - Michael M Graham
- Division of Nuclear Medicine, University of Iowa Hospitals and
Clinics, USA
| | - Jitender Saini
- Department of Neuro Imaging and Interventional Radiology,
NIMHANS, India
| | - Yusuf Menda
- University of Iowa Hospitals and Clinics, USA
| |
Collapse
|
21
|
Lu J, Huang L, Lv Y, Peng S, Xu Q, Li L, Ge J, Zhang H, Guan Y, Zhao Q, Guo Q, Chen K, Wu P, Ma Y, Zuo C. A disease-specific metabolic imaging marker for diagnosis and progression evaluation of semantic variant primary progressive aphasia. Eur J Neurol 2021; 28:2927-2939. [PMID: 34110063 DOI: 10.1111/ene.14919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE The diagnosis and monitoring of semantic variant primary progressive aphasia (sv-PPA) are clinically challenging. We aimed to establish a distinctive metabolic pattern in sv-PPA for diagnosis and severity evaluation. METHODS Fifteen sv-PPA patients and 15 controls were enrolled to identify sv-PPA-related pattern (sv-PPARP) by principal component analysis of 18 F-fluorodeoxyglucose positron emission tomography. Eighteen Alzheimer disease dementia (AD) and 14 behavioral variant frontotemporal dementia (bv-FTD) patients were enrolled to test the discriminatory power. Correspondingly, regional metabolic activities extracted from the voxelwise analysis were evaluated for the discriminatory power. RESULTS The sv-PPARP was characterized as decreased metabolic activity mainly in the bilateral temporal lobe (left predominance), middle orbitofrontal gyrus, left hippocampus/parahippocampus gyrus, fusiform gyrus, insula, inferior orbitofrontal gyrus, and striatum, with increased activity in the bilateral lingual gyrus, cuneus, calcarine gyrus, and right precentral and postcentral gyrus. The pattern expression had significant discriminatory power (area under the curve [AUC] = 0.98, sensitivity = 100%, specificity = 94.4%) in distinguishing sv-PPA from AD, and the asymmetry index offered complementary discriminatory power (AUC = 0.91, sensitivity = 86.7%, specificity = 92.9%) in distinguishing sv-PPA from bv-FTD. In sv-PPA patients, the pattern expression correlated with Boston Naming Test scores at baseline and showed significant increase in the subset of patients with follow-up. The voxelwise analysis showed similar topography, and the regional metabolic activities had equivalent or better discriminatory power and clinical correlations with Boston Naming Test scores. The ability to reflect disease progression in longitudinal follow-up seemed to be inferior to the pattern expression. CONCLUSIONS The sv-PPARP might serve as an objective biomarker for diagnosis and progression evaluation.
Collapse
Affiliation(s)
- Jiaying Lu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lin Huang
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yingru Lv
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shichun Peng
- Center for Neurosciences, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Qian Xu
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ling Li
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjie Ge
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Huiwei Zhang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qianhua Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Keliang Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Wu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yilong Ma
- Center for Neurosciences, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medicine Imaging, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Borghesani V, Dale CL, Lukic S, Hinkley LBN, Lauricella M, Shwe W, Mizuiri D, Honma S, Miller Z, Miller B, Houde JF, Gorno-Tempini ML, Nagarajan SS. Neural dynamics of semantic categorization in semantic variant of primary progressive aphasia. eLife 2021; 10:e63905. [PMID: 34155973 PMCID: PMC8241439 DOI: 10.7554/elife.63905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
Semantic representations are processed along a posterior-to-anterior gradient reflecting a shift from perceptual (e.g., it has eight legs) to conceptual (e.g., venomous spiders are rare) information. One critical region is the anterior temporal lobe (ATL): patients with semantic variant primary progressive aphasia (svPPA), a clinical syndrome associated with ATL neurodegeneration, manifest a deep loss of semantic knowledge. We test the hypothesis that svPPA patients perform semantic tasks by over-recruiting areas implicated in perceptual processing. We compared MEG recordings of svPPA patients and healthy controls during a categorization task. While behavioral performance did not differ, svPPA patients showed indications of greater activation over bilateral occipital cortices and superior temporal gyrus, and inconsistent engagement of frontal regions. These findings suggest a pervasive reorganization of brain networks in response to ATL neurodegeneration: the loss of this critical hub leads to a dysregulated (semantic) control system, and defective semantic representations are seemingly compensated via enhanced perceptual processing.
Collapse
Affiliation(s)
- V Borghesani
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - CL Dale
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - S Lukic
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - LBN Hinkley
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - M Lauricella
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - W Shwe
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - D Mizuiri
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - S Honma
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - Z Miller
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - B Miller
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - JF Houde
- Department of Otolaryngology, University of California, San FranciscoSan FranciscoUnited States
| | - ML Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Department of Neurology, Dyslexia Center University of California, San FranciscoSan FranciscoUnited States
| | - SS Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
- Department of Otolaryngology, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
23
|
Ingram RU, Halai AD, Pobric G, Sajjadi S, Patterson K, Lambon Ralph MA. Graded, multidimensional intra- and intergroup variations in primary progressive aphasia and post-stroke aphasia. Brain 2021; 143:3121-3135. [PMID: 32940648 PMCID: PMC7586084 DOI: 10.1093/brain/awaa245] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/30/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Language impairments caused by stroke (post-stroke aphasia, PSA) and neurodegeneration (primary progressive aphasia, PPA) have overlapping symptomatology, nomenclature and are classically divided into categorical subtypes. Surprisingly, PPA and PSA have rarely been directly compared in detail. Rather, previous studies have compared certain subtypes (e.g. semantic variants) or have focused on a specific cognitive/linguistic task (e.g. reading). This study assessed a large range of linguistic and cognitive tasks across the full spectra of PSA and PPA. We applied varimax-rotated principal component analysis to explore the underlying structure of the variance in the assessment scores. Similar phonological, semantic and fluency-related components were found for PSA and PPA. A combined principal component analysis across the two aetiologies revealed graded intra- and intergroup variations on all four extracted components. Classification analysis was used to test, formally, whether there were any categorical boundaries for any subtypes of PPA or PSA. Semantic dementia formed a true diagnostic category (i.e. within group homogeneity and distinct between-group differences), whereas there was considerable overlap and graded variations within and between other subtypes of PPA and PSA. These results suggest that (i) a multidimensional rather than categorical classification system may be a better conceptualization of aphasia from both causes; and (ii) despite the very different types of pathology, these broad classes of aphasia have considerable features in common.
Collapse
Affiliation(s)
- Ruth U Ingram
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, UK
| | - Ajay D Halai
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Gorana Pobric
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, UK
| | - Seyed Sajjadi
- Department of Neurology, University of California, Irvine, Irvine, USA
| | - Karalyn Patterson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
24
|
Sanches C, Stengel C, Godard J, Mertz J, Teichmann M, Migliaccio R, Valero-Cabré A. Past, Present, and Future of Non-invasive Brain Stimulation Approaches to Treat Cognitive Impairment in Neurodegenerative Diseases: Time for a Comprehensive Critical Review. Front Aging Neurosci 2021; 12:578339. [PMID: 33551785 PMCID: PMC7854576 DOI: 10.3389/fnagi.2020.578339] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Low birth rates and increasing life expectancy experienced by developed societies have placed an unprecedented pressure on governments and the health system to deal effectively with the human, social and financial burden associated to aging-related diseases. At present, ∼24 million people worldwide suffer from cognitive neurodegenerative diseases, a prevalence that doubles every five years. Pharmacological therapies and cognitive training/rehabilitation have generated temporary hope and, occasionally, proof of mild relief. Nonetheless, these approaches are yet to demonstrate a meaningful therapeutic impact and changes in prognosis. We here review evidence gathered for nearly a decade on non-invasive brain stimulation (NIBS), a less known therapeutic strategy aiming to limit cognitive decline associated with neurodegenerative conditions. Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation, two of the most popular NIBS technologies, use electrical fields generated non-invasively in the brain to long-lastingly enhance the excitability/activity of key brain regions contributing to relevant cognitive processes. The current comprehensive critical review presents proof-of-concept evidence and meaningful cognitive outcomes of NIBS in eight of the most prevalent neurodegenerative pathologies affecting cognition: Alzheimer's Disease, Parkinson's Disease, Dementia with Lewy Bodies, Primary Progressive Aphasias (PPA), behavioral variant of Frontotemporal Dementia, Corticobasal Syndrome, Progressive Supranuclear Palsy, and Posterior Cortical Atrophy. We analyzed a total of 70 internationally published studies: 33 focusing on Alzheimer's disease, 19 on PPA and 18 on the remaining neurodegenerative pathologies. The therapeutic benefit and clinical significance of NIBS remains inconclusive, in particular given the lack of a sufficient number of double-blind placebo-controlled randomized clinical trials using multiday stimulation regimes, the heterogeneity of the protocols, and adequate behavioral and neuroimaging response biomarkers, able to show lasting effects and an impact on prognosis. The field remains promising but, to make further progress, research efforts need to take in account the latest evidence of the anatomical and neurophysiological features underlying cognitive deficits in these patient populations. Moreover, as the development of in vivo biomarkers are ongoing, allowing for an early diagnosis of these neuro-cognitive conditions, one could consider a scenario in which NIBS treatment will be personalized and made part of a cognitive rehabilitation program, or useful as a potential adjunct to drug therapies since the earliest stages of suh diseases. Research should also integrate novel knowledge on the mechanisms and constraints guiding the impact of electrical and magnetic fields on cerebral tissues and brain activity, and incorporate the principles of information-based neurostimulation.
Collapse
Affiliation(s)
- Clara Sanches
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Chloé Stengel
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Juliette Godard
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Justine Mertz
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Marc Teichmann
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- National Reference Center for Rare or Early Onset Dementias, Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - Raffaella Migliaccio
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- National Reference Center for Rare or Early Onset Dementias, Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- Laboratory for Cerebral Dynamics Plasticity & Rehabilitation, Boston University School of Medicine, Boston, MA, United States
- Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia, Barcelona, Spain
| |
Collapse
|
25
|
Dial HR, Gnanateja GN, Tessmer RS, Gorno-Tempini ML, Chandrasekaran B, Henry ML. Cortical Tracking of the Speech Envelope in Logopenic Variant Primary Progressive Aphasia. Front Hum Neurosci 2021; 14:597694. [PMID: 33488371 PMCID: PMC7815818 DOI: 10.3389/fnhum.2020.597694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Logopenic variant primary progressive aphasia (lvPPA) is a neurodegenerative language disorder primarily characterized by impaired phonological processing. Sentence repetition and comprehension deficits are observed in lvPPA and linked to impaired phonological working memory, but recent evidence also implicates impaired speech perception. Currently, neural encoding of the speech envelope, which forms the scaffolding for perception, is not clearly understood in lvPPA. We leveraged recent analytical advances in electrophysiology to examine speech envelope encoding in lvPPA. We assessed cortical tracking of the speech envelope and in-task comprehension of two spoken narratives in individuals with lvPPA (n = 10) and age-matched (n = 10) controls. Despite markedly reduced narrative comprehension relative to controls, individuals with lvPPA had increased cortical tracking of the speech envelope in theta oscillations, which track low-level features (e.g., syllables), but not delta oscillations, which track speech units that unfold across a longer time scale (e.g., words, phrases, prosody). This neural signature was highly correlated across narratives. Results indicate an increased reliance on acoustic cues during speech encoding. This may reflect inefficient encoding of bottom-up speech cues, likely as a consequence of dysfunctional temporoparietal cortex.
Collapse
Affiliation(s)
- Heather R. Dial
- Aphasia Research and Treatment Lab, Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX, United States
| | - G. Nike Gnanateja
- SoundBrain Lab, Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rachel S. Tessmer
- Aphasia Research and Treatment Lab, Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX, United States
| | - Maria Luisa Gorno-Tempini
- Language Neurobiology Laboratory, Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Bharath Chandrasekaran
- SoundBrain Lab, Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Maya L. Henry
- Aphasia Research and Treatment Lab, Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX, United States
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
26
|
Tao Y, Ficek B, Rapp B, Tsapkini K. Different patterns of functional network reorganization across the variants of primary progressive aphasia: a graph-theoretic analysis. Neurobiol Aging 2020; 96:184-196. [PMID: 33031971 DOI: 10.1016/j.neurobiolaging.2020.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 01/17/2023]
Abstract
Primary progressive aphasia (PPA) is a neurodegenerative syndrome with three main variants (nonfluent, logopenic, semantic) that are identified primarily based on language deficit profiles and are associated with neurotopographically distinct atrophic patterns. We used a graph-theoretic analytic approach to examine changes in functional network properties measured with resting-state fMRI in all three PPA variants compared with age-matched healthy controls. All three variants showed a more segregated network organization than controls. To better understand the changes underlying the increased segregation, we examined the distribution of functional "hubs". We found that while all variants lost hubs in the left superior frontal and parietal regions, new hubs were recruited in different areas across the variants. In particular, both logopenic and semantic variants recruited significant numbers of hubs in the right hemisphere. Importantly, these functional characteristics could not be fully explained by local volume changes. These findings indicate that patterns of functional connectivity can serve as further evidence to distinguish the PPA variants, and provide a basis for longitudinal studies and for investigating treatment effects. This study also highlights the utility of graph-theoretic approaches in understanding the brain's functional reorganization in response to neurodegenerative disease.
Collapse
Affiliation(s)
- Yuan Tao
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA.
| | - Bronte Ficek
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Borghesani V, Hinkley LBN, Ranasinghe KG, Thompson MMC, Shwe W, Mizuiri D, Lauricella M, Europa E, Honma S, Miller Z, Miller B, Vossel K, Henry MML, Houde JF, Gorno-Tempini ML, Nagarajan SS. Taking the sublexical route: brain dynamics of reading in the semantic variant of primary progressive aphasia. Brain 2020; 143:2545-2560. [PMID: 32789455 PMCID: PMC7447517 DOI: 10.1093/brain/awaa212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/05/2020] [Accepted: 05/21/2020] [Indexed: 01/29/2023] Open
Abstract
Reading aloud requires mapping an orthographic form to a phonological one. The mapping process relies on sublexical statistical regularities (e.g. 'oo' to |uː|) or on learned lexical associations between a specific visual form and a series of sounds (e.g. yacht to/jɑt/). Computational, neuroimaging, and neuropsychological evidence suggest that sublexical, phonological and lexico-semantic processes rely on partially distinct neural substrates: a dorsal (occipito-parietal) and a ventral (occipito-temporal) route, respectively. Here, we investigated the spatiotemporal features of orthography-to-phonology mapping, capitalizing on the time resolution of magnetoencephalography and the unique clinical model offered by patients with semantic variant of primary progressive aphasia (svPPA). Behaviourally, patients with svPPA manifest marked lexico-semantic impairments including difficulties in reading words with exceptional orthographic to phonological correspondence (irregular words). Moreover, they present with focal neurodegeneration in the anterior temporal lobe, affecting primarily the ventral, occipito-temporal, lexical route. Therefore, this clinical population allows for testing of specific hypotheses on the neural implementation of the dual-route model for reading, such as whether damage to one route can be compensated by over-reliance on the other. To this end, we reconstructed and analysed time-resolved whole-brain activity in 12 svPPA patients and 12 healthy age-matched control subjects while reading irregular words (e.g. yacht) and pseudowords (e.g. pook). Consistent with previous findings that the dorsal route is involved in sublexical, phonological processes, in control participants we observed enhanced neural activity over dorsal occipito-parietal cortices for pseudowords, when compared to irregular words. This activation was manifested in the beta-band (12-30 Hz), ramping up slowly over 500 ms after stimulus onset and peaking at ∼800 ms, around response selection and production. Consistent with our prediction, svPPA patients did not exhibit this temporal pattern of neural activity observed in controls this contrast. Furthermore, a direct comparison of neural activity between patients and controls revealed a dorsal spatiotemporal cluster during irregular word reading. These findings suggest that the sublexical/phonological route is involved in processing both irregular and pseudowords in svPPA. Together these results provide further evidence supporting a dual-route model for reading aloud mediated by the interplay between lexico-semantic and sublexical/phonological neurocognitive systems. When the ventral route is damaged, as in the case of neurodegeneration affecting the anterior temporal lobe, partial compensation appears to be possible by over-recruitment of the slower, serial attention-dependent, dorsal one.
Collapse
Affiliation(s)
- Valentina Borghesani
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Leighton B N Hinkley
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA
| | - Kamalini G Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Megan M C Thompson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, San Francisco, USA
| | - Wendy Shwe
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA
| | - Michael Lauricella
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Eduardo Europa
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Susanna Honma
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA
| | - Zachary Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Bruce Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Keith Vossel
- Department of Neurology, University of Minnesota, Minneapolis, USA
| | - Maya M L Henry
- Department of Communication Sciences and Disorders, University of Texas at Austin, USA
| | - John F Houde
- Department of Otolaryngology, University of California San Francisco, USA
| | - Maria L Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
- Department of Neurology, Dyslexia Center, University of California, San Francisco, CA, USA
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA
- Department of Otolaryngology, University of California San Francisco, USA
| |
Collapse
|
28
|
DeMarco AT, Turkeltaub PE. Functional anomaly mapping reveals local and distant dysfunction caused by brain lesions. Neuroimage 2020; 215:116806. [PMID: 32278896 DOI: 10.1016/j.neuroimage.2020.116806] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 01/28/2023] Open
Abstract
The lesion method has been important for understanding brain-behavior relationships in humans, but has previously used maps based on structural damage. Lesion measurement based on structural damage may label partly damaged but functional tissue as abnormal, and moreover, ignores distant dysfunction in structurally intact tissue caused by deafferentation, diaschisis, and other processes. A reliable method to map functional integrity of tissue throughout the brain would provide a valuable new approach to measuring lesions. Here, we use machine learning on four dimensional resting state fMRI data obtained from left-hemisphere stroke survivors in the chronic period of recovery and control subjects to generate graded maps of functional anomaly throughout the brain in individual patients. These functional anomaly maps identify areas of obvious structural lesions and are stable across multiple measurements taken months and even years apart. Moreover, the maps identify functionally anomalous regions in structurally intact tissue, providing a direct measure of remote effects of lesions on the function of distant brain structures. Multivariate lesion-behavior mapping using functional anomaly maps replicates classic behavioral localization, identifying inferior frontal regions related to speech fluency, lateral temporal regions related to auditory comprehension, parietal regions related to phonology, and the hand area of motor cortex and descending corticospinal pathways for hand motor function. Further, this approach identifies relationships between tissue function and behavior distant from the structural lesions, including right premotor dysfunction related to ipsilateral hand movement, and right cerebellar regions known to contribute to speech fluency. Brain-wide maps of the functional effects of focal lesions could have wide implications for lesion-behavior association studies and studies of recovery after brain injury.
Collapse
Affiliation(s)
- Andrew T DeMarco
- Department of Neurology, Georgetown University, Washington, DC, 20057, United States.
| | - Peter E Turkeltaub
- Department of Neurology, Georgetown University, Washington, DC, 20057, United States; MedStar National Rehabilitation Hospital, Washington, DC, 20010, United States
| |
Collapse
|
29
|
Demopoulos C, Duong X, Hinkley LB, Ranasinghe KG, Mizuiri D, Garrett C, Honma S, Henderson-Sabes J, Findlay A, Racine-Belkoura C, Cheung SW, Nagarajan SS. Global resting-state functional connectivity of neural oscillations in tinnitus with and without hearing loss. Hum Brain Mapp 2020; 41:2846-2861. [PMID: 32243040 PMCID: PMC7294064 DOI: 10.1002/hbm.24981] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/04/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
This study examined global resting-state functional connectivity of neural oscillations in individuals with chronic tinnitus and normal and impaired hearing. We tested the hypothesis that distinct neural oscillatory networks are engaged in tinnitus with and without hearing loss. In both tinnitus groups, with and without hearing loss, we identified multiple frequency band-dependent regions of increased and decreased global functional connectivity. We also found that the auditory domain of tinnitus severity, assayed by the Tinnitus Functional Index, was associated with global functional connectivity in both auditory and nonauditory regions. These findings provide candidate biomarkers to target and monitor treatments for tinnitus with and without hearing loss.
Collapse
Affiliation(s)
- Carly Demopoulos
- Department of Psychiatry, University of California San Francisco, San Francisco, California.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Xuan Duong
- Department of Psychology, Palo Alto University, Palo Alto, California
| | - Leighton B Hinkley
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Kamalini G Ranasinghe
- Department of Neurology, University of California San Francisco, San Francisco, California
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Coleman Garrett
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Susanne Honma
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Jennifer Henderson-Sabes
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Anne Findlay
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Caroline Racine-Belkoura
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Steven W Cheung
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|
30
|
Ranasinghe KG, Cha J, Iaccarino L, Hinkley LB, Beagle AJ, Pham J, Jagust WJ, Miller BL, Rankin KP, Rabinovici GD, Vossel KA, Nagarajan SS. Neurophysiological signatures in Alzheimer's disease are distinctly associated with TAU, amyloid-β accumulation, and cognitive decline. Sci Transl Med 2020; 12:eaaz4069. [PMID: 32161102 PMCID: PMC7138514 DOI: 10.1126/scitranslmed.aaz4069] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/03/2020] [Indexed: 12/31/2022]
Abstract
Neural synchrony is intricately balanced in the normal resting brain but becomes altered in Alzheimer's disease (AD). To determine the neurophysiological manifestations associated with molecular biomarkers of AD neuropathology, in patients with AD, we used magnetoencephalographic imaging (MEGI) and positron emission tomography with amyloid-beta (Aβ) and TAU tracers. We found that alpha oscillations (8 to 12 Hz) were hyposynchronous in occipital and posterior temporoparietal cortices, whereas delta-theta oscillations (2 to 8 Hz) were hypersynchronous in frontal and anterior temporoparietal cortices, in patients with AD compared to age-matched controls. Regional patterns of alpha hyposynchrony were unique in each neurobehavioral phenotype of AD, whereas the regional patterns of delta-theta hypersynchrony were similar across the phenotypes. Alpha hyposynchrony strongly colocalized with TAU deposition and was modulated by the degree of TAU tracer uptake. In contrast, delta-theta hypersynchrony colocalized with both TAU and Aβ depositions and was modulated by both TAU and Aβ tracer uptake. Furthermore, alpha hyposynchrony but not delta-theta hypersynchrony was correlated with the degree of global cognitive dysfunction in patients with AD. The current study demonstrates frequency-specific neurophysiological signatures of AD pathophysiology and suggests that neurophysiological measures from MEGI are sensitive indices of network disruptions mediated by TAU and Aβ and associated cognitive decline. These findings facilitate the pursuit of novel therapeutic approaches toward normalizing network synchrony in AD.
Collapse
Affiliation(s)
- Kamalini G Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Jungho Cha
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Leighton B Hinkley
- Department Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander J Beagle
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Julie Pham
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Keith A Vossel
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- N. Bud Grossman Center for Memory Research and Care, Institute for Translational Neuroscience, and Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Srikantan S Nagarajan
- Department Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
31
|
Sanches C, Levy R, Benisty S, Volpe-Gillot L, Habert MO, Kas A, Ströer S, Pyatigorskaya N, Kaglik A, Bourbon A, Dubois B, Migliaccio R, Valero-Cabré A, Teichmann M. Testing the therapeutic effects of transcranial direct current stimulation (tDCS) in semantic dementia: a double blind, sham controlled, randomized clinical trial. Trials 2019; 20:632. [PMID: 31747967 PMCID: PMC6868701 DOI: 10.1186/s13063-019-3613-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/23/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Semantic dementia is a neurodegenerative disease that primarily affects the left anterior temporal lobe, resulting in a gradual loss of conceptual knowledge. There is currently no validated treatment. Transcranial stimulation has provided evidence for long-lasting language effects presumably linked to stimulation-induced neuroplasticity in post-stroke aphasia. However, studies evaluating its effects in neurodegenerative diseases such as semantic dementia are still rare and evidence from double-blind, prospective, therapeutic trials is required. OBJECTIVE The primary objective of the present clinical trial (STIM-SD) is to evaluate the therapeutic efficacy of a multiday transcranial direct current stimulation (tDCS) regime on language impairment in patients with semantic dementia. The study also explores the time course of potential tDCS-driven improvements and uses imaging biomarkers that could reflect stimulation-induced neuroplasticity. METHODS This is a double-blind, sham-controlled, randomized study using transcranial Direct Current Stimulation (tDCS) applied daily for 10 days, and language/semantic and imaging assessments at four time points: baseline, 3 days, 2 weeks and 4 months after 10 stimulation sessions. Language/semantic assessments will be carried out at these same 4 time points. Fluorodeoxyglucose positron emission tomography (FDG-PET), resting-state functional magnetic resonance imaging (rs-fMRI), T1-weighted images and white matter diffusion tensor imaging (DTI) will be applied at baseline and at the 2-week time point. According to the principle of inter-hemispheric inhibition between left (language-related) and right homotopic regions we will use two stimulation modalities - left-anodal and right-cathodal tDCS over the anterior temporal lobes. Accordingly, the patient population (n = 60) will be subdivided into three subgroups: left-anodal tDCS (n = 20), right-cathodal tDCS (n = 20) and sham tDCS (n = 20). The stimulation will be sustained for 20 min at an intensity of 1.59 mA. It will be delivered through 25cm2-round stimulation electrodes (current density of 0.06 mA/cm2) placed over the left and right anterior temporal lobes for anodal and cathodal stimulation, respectively. A group of healthy participants (n = 20) matched by age, gender and education will also be recruited and tested to provide normative values for the language/semantic tasks and imaging measures. DISCUSSION The aim of this study is to assess the efficacy of tDCS for language/semantic disorders in semantic dementia. A potential treatment would be easily applicable, inexpensive, and renewable when therapeutic effects disappear due to disease progression. TRIAL REGISTRATION ClinicalTrials.gov NCT03481933. Registered on March 2018.
Collapse
Affiliation(s)
- Clara Sanches
- Institut du Cerveau et de la Moelle Epinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Frontlab team, Paris, France.,Groupe de Dynamiques Cérébrales, Plasticité et Rééducation, FrontLab team, Institut du Cerveau et de la Moelle Epinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Richard Levy
- Institut du Cerveau et de la Moelle Epinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Frontlab team, Paris, France.,Department of Neurology, National Reference Center for « Rare or Early Onset Dementias », Pitié Salpêtrière Hospital, AP-HP, 47-83 Boulevard de l'Hôpital, 75013, Paris, France
| | | | | | - Marie-Odile Habert
- Department of Nuclear Medicine, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France.,CATI Multicenter Neuroimaging Platform, Paris, France.,Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Inserm U1146, CNRS UMR, Paris, France
| | - Aurelie Kas
- Department of Nuclear Medicine, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France.,Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Inserm U1146, CNRS UMR, Paris, France
| | - Sébastian Ströer
- Department of Neuroradiology, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
| | - Nadya Pyatigorskaya
- Department of Neuroradiology, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Center for NeuroImaging Research - CENIR, Paris, France
| | - Anna Kaglik
- Institut du Cerveau et de la Moelle Epinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Frontlab team, Paris, France.,Groupe de Dynamiques Cérébrales, Plasticité et Rééducation, FrontLab team, Institut du Cerveau et de la Moelle Epinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France.,Unité de Recherche Clinique (URC) Pitié-Salpêtrière, Charles Foix, AP-HP, Paris, France
| | - Angelina Bourbon
- Institut du Cerveau et de la Moelle Epinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Frontlab team, Paris, France.,Groupe de Dynamiques Cérébrales, Plasticité et Rééducation, FrontLab team, Institut du Cerveau et de la Moelle Epinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Bruno Dubois
- Institut du Cerveau et de la Moelle Epinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Frontlab team, Paris, France.,Department of Neurology, National Reference Center for « Rare or Early Onset Dementias », Pitié Salpêtrière Hospital, AP-HP, 47-83 Boulevard de l'Hôpital, 75013, Paris, France
| | - Raffaella Migliaccio
- Institut du Cerveau et de la Moelle Epinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Frontlab team, Paris, France.,Department of Neurology, National Reference Center for « Rare or Early Onset Dementias », Pitié Salpêtrière Hospital, AP-HP, 47-83 Boulevard de l'Hôpital, 75013, Paris, France
| | - Antoni Valero-Cabré
- Institut du Cerveau et de la Moelle Epinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Frontlab team, Paris, France. .,Groupe de Dynamiques Cérébrales, Plasticité et Rééducation, FrontLab team, Institut du Cerveau et de la Moelle Epinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France. .,Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, Boston, MA, USA. .,Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain.
| | - Marc Teichmann
- Institut du Cerveau et de la Moelle Epinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Frontlab team, Paris, France. .,Department of Neurology, National Reference Center for « Rare or Early Onset Dementias », Pitié Salpêtrière Hospital, AP-HP, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
32
|
Lagarde J, Hahn V, Sarazin M. Afasia primaria progressiva. Neurologia 2019. [DOI: 10.1016/s1634-7072(19)42020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Slowing is slowing: Delayed neural responses to words are linked to abnormally slow resting state activity in primary progressive aphasia. Neuropsychologia 2019; 129:331-347. [PMID: 31029594 DOI: 10.1016/j.neuropsychologia.2019.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 11/22/2022]
Abstract
Neurodegenerative disorders are often characterized by neuronal "slowing," which may be assessed in different ways. In the present study, we examined the latency of neural responses to linguistic stimuli in participants diagnosed with primary progressive aphasia (PPA), as well as changes in the power spectra of resting state activity, both measured with MEG. Compared to both age-matched and younger controls, patients with PPA showed a delayed latency of 8-30 Hz event-related desynchronization (ERD) in response to semantic anomalies. In addition, resting-state MEG revealed increased power in the lower frequency delta and theta bands, but decreased activity in the higher alpha and beta bands. The task-induced and spontaneous measures of neural dynamics were related, such that increased peak latencies in response to words were correlated with a shift of spontaneous oscillatory dynamics towards lower frequencies. In contrast, older controls showed similar task related ERD latencies as younger controls, but also "speeding" of spontaneous activity, i.e. a shift towards faster frequencies. In PPA patients both increased peak latencies on task and increased slow oscillations at rest were associated with less accurate performance on the language task and poorer performance on offline cognitive measures, beyond variance accounted for by structural atrophy. A mediation analysis indicated that increased theta power accounted for the relationship between delayed electrophysiological responses and reduced accuracy in PPA patients. These results indicate that the neuropathological changes in PPA result in slowing of both task-related and spontaneous neuronal activity, linked to functional decline, whereas the speeding of spontaneous activity in healthy aging seems to have a protective or compensatory effect.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Knowledge on primary progressive aphasia (PPA) has expanded rapidly in the past few decades. Clinical characteristics, neuroimaging correlates, and neuropathological features of PPA are better delineated. This facilitates scientific studies on the disease pathophysiology and allows speech and language therapy to be more precisely targeted. This review article begins with a summary of the current understanding of PPA and discusses how PPA can serve as a model to promote scientific discovery in neurodegenerative diseases. RECENT FINDINGS Studies on the different variants of PPA have demonstrated the high compatibility between clinical presentations and neuroimaging features, and in turn, enhances the understanding of speech and language neuroanatomy. In addition to the traditional approach of lesion-based or voxel-based mapping, scientists have also adopted functional connectivity and network topology approaches that permits a more multidimensional understanding of neuroanatomy. As a result, pharmacological and cognitive therapeutic strategies can now be better targeted towards specific pathological/molecular and cognitive subtypes. SUMMARY Recent scientific advancement in PPA potentiates it to be an optimal model for studying brain network vulnerability, neurodevelopment influences and the effects of nonpharmacological intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Boon Lead Tee
- Global Brain Health Institute, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Department of Neurology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Maria Luisa Gorno-Tempini
- Department of Neurology, Memory and Aging Center, University of California at San Francisco, San Francisco, California, USA
- Dyslexia Center, University of California at San Francisco, San Francisco, California, USA
- Global Brain Health Institute, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| |
Collapse
|
35
|
Odolil A, Wright AE, Keator LM, Sheppard SM, Breining B, Tippett DC, Hillis AE. Leukoaraiosis Severity Predicts Rate of Decline in Primary Progressive Aphasia. APHASIOLOGY 2019; 34:365-375. [PMID: 32377026 PMCID: PMC7202552 DOI: 10.1080/02687038.2019.1594152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/07/2019] [Indexed: 06/11/2023]
Abstract
BACKGROUND The rate of decline in language in Primary Progressive Aphasia (PPA) is highly variable and difficult to predict at baseline. The severity of diffuse white matter disease (leukoaraiosis), a marker of overall brain health, may substantially influence the rate of decline. AIMS To test the hypothesis that leukoaraiosis is associated with a steeper decline in naming in PPA. METHODS AND PROCEDURES In this longitudinal, observational study, 29 individuals with PPA (all variants) were administered the Boston Naming Test (BNT) at baseline and 1 year later. Two raters evaluated leukoaraiosis on baseline MRI, using the Cardiovascular Health Study scale. We evaluated the effects of leukoaraiosis severity, age, education, and baseline BNT on decline measured by change in BNT accuracy with multivariable linear regression. We also evaluated the effects of these variables on the dichotomized outcome of faster decline in BNT (worst 50%) versus slower decline (best 50%) using logistic regression. RESULTS Together, leukoaraiosis, age, education, and baseline BNT score predicted change in BNT score (F(3, 25) = 8.12; p=0.0006). Change in BNT score was predicted by severity of leukoaraiosis (t =-3.81; p=0.001) and education (t= -2.45; p=0.022), independently of the other variables. When we dichotomized outcome into upper 50th percentile versus lower 50th percentile (faster decline), faster decline was predicted by all variables together (chi squared = 13.91; p = 0.008). However, only leukoaraiosis independently predicted outcome (OR=2.80; 95%CI: 1.11 to 7.03). For every 1 point increase on the CHS rating scale, there was 2.8 times higher chance of showing faster decline in naming. CONCLUSION Severity of leukoaraiosis is associated with steeper decline in naming in PPA. This imaging marker can aide in prognosis and planning by caregivers and stratification of participants in clinical trials.
Collapse
Affiliation(s)
- Adam Odolil
- Department of Neurology, Johns Hopkins University School of Medicine
| | - Amy E. Wright
- Department of Neurology, Johns Hopkins University School of Medicine
| | - Lynsey M. Keator
- Department of Neurology, Johns Hopkins University School of Medicine
| | | | - Bonnie Breining
- Department of Neurology, Johns Hopkins University School of Medicine
| | - Donna C. Tippett
- Department of Neurology, Johns Hopkins University School of Medicine
- Department of Physical Medicine & Rehabilitation, Johns Hopkins University School of Medicine
- Department of Otolaryngology & Head & Neck Surgery, Johns Hopkins University School of Medicine
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine
- Department of Physical Medicine & Rehabilitation, Johns Hopkins University School of Medicine
- Department of Cognitive Science, Johns Hopkins University
| |
Collapse
|
36
|
Optimization of Recurrence Quantification Analysis for Detecting the Presence of Multiple Sclerosis. J Med Biol Eng 2019. [DOI: 10.1007/s40846-019-00462-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Shah-Basak PP, Kielar A, Deschamps T, Verhoeff NP, Jokel R, Meltzer J. Spontaneous oscillatory markers of cognitive status in two forms of dementia. Hum Brain Mapp 2018; 40:1594-1607. [PMID: 30421472 DOI: 10.1002/hbm.24470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/09/2018] [Accepted: 11/01/2018] [Indexed: 01/23/2023] Open
Abstract
Abnormal oscillatory brain activity in dementia may indicate incipient neuronal/synaptic dysfunction, rather than frank structural atrophy. Leveraging a potential link between the degree of abnormal oscillatory activity and cognitive symptom severity, one could localize brain regions in a diseased but pre-atrophic state, which may be more amenable to interventions. In the current study, we evaluated the relationships among cognitive deficits, regional volumetric changes, and resting-state magnetoencephalography abnormalities in patients with mild cognitive impairment (MCI; N = 10; age: 75.9 ± 7.3) or primary progressive aphasia (PPA; N = 12; 69.7 ± 8.0), and compared them to normal aging [young (N = 18; 24.6 ± 3.5), older controls (N = 24; 67.2 ± 9.7]. Whole-brain source-level resting-state estimates of relative oscillatory power in the delta (1-4 Hz), theta (4-7 Hz), alpha (8-12 Hz), and beta (15-30 Hz) bands were combined with gray matter volumes and cognitive scores to examine between-group differences and brain-behavior correlations. Language and executive function (EF) abilities were impaired in patients with PPA, while episodic memory was impaired in MCI. Widespread oscillatory speeding and volumetric shrinkage was associated with normal aging, whereas the trajectory in PPA indicated widespread oscillatory slowing with additional volumetric reductions. Increases in delta and decreases in alpha power uniquely predicted group membership to PPA. Beyond volumetric reductions, more delta predicted poorer memory. In patients with MCI, no consistent group difference among oscillatory measures was found. The contributions of delta/alpha power on memory abilities were larger than volumetric differences. Spontaneous oscillatory abnormalities in association with cognitive symptom severity can serve as a marker of neuronal dysfunction in dementia, providing targets for promising treatments.
Collapse
Affiliation(s)
- Priyanka P Shah-Basak
- Rotman Research Institute, Baycrest Health Sciences Centre, Toronto, Ontario, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, Ontario, Canada
| | - Aneta Kielar
- Rotman Research Institute, Baycrest Health Sciences Centre, Toronto, Ontario, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, Ontario, Canada.,Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, Arizona
| | - Tiffany Deschamps
- Rotman Research Institute, Baycrest Health Sciences Centre, Toronto, Ontario, Canada
| | - Nicolaas Paul Verhoeff
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Baycrest Health Sciences, North York, Ontario, Canada
| | - Regina Jokel
- Rotman Research Institute, Baycrest Health Sciences Centre, Toronto, Ontario, Canada.,Department of Psychiatry, Baycrest Health Sciences, North York, Ontario, Canada.,Department of Speech-Language Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Jed Meltzer
- Rotman Research Institute, Baycrest Health Sciences Centre, Toronto, Ontario, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, Ontario, Canada.,Department of Speech-Language Pathology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
How do spatially distinct frequency specific MEG networks emerge from one underlying structural connectome? The role of the structural eigenmodes. Neuroimage 2018; 186:211-220. [PMID: 30399418 DOI: 10.1016/j.neuroimage.2018.10.079] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/06/2018] [Accepted: 10/29/2018] [Indexed: 01/14/2023] Open
Abstract
Functional networks obtained from magnetoencephalography (MEG) from different frequency bands show distinct spatial patterns. It remains to be elucidated how distinct spatial patterns in MEG networks emerge given a single underlying structural network. Recent work has suggested that the eigenmodes of the structural network might serve as a basis set for functional network patterns in the case of functional MRI. Here, we take this notion further in the context of frequency band specific MEG networks. We show that a selected set of eigenmodes of the structural network can predict different frequency band specific networks in the resting state, ranging from delta (1-4 Hz) to the high gamma band (40-70 Hz). These predictions outperform predictions based from surrogate data, suggesting a genuine relationship between eigenmodes of the structural network and frequency specific MEG networks. We then show that the relevant set of eigenmodes can be excited in a network of neural mass models using linear stability analysis only by including delays. Excitation of an eigenmode in this context refers to a dynamic instability of a network steady state to a spatial pattern with a corresponding coherent temporal oscillation. Simulations verify the results from linear stability analysis and suggest that theta, alpha and beta band networks emerge very near to the bifurcation. The delta and gamma bands in the resting state emerges further away from the bifurcation. These results show for the first time how delayed interactions can excite the relevant set of eigenmodes that give rise to frequency specific functional connectivity patterns.
Collapse
|
39
|
Steinacker P, Barschke P, Otto M. Biomarkers for diseases with TDP-43 pathology. Mol Cell Neurosci 2018; 97:43-59. [PMID: 30399416 DOI: 10.1016/j.mcn.2018.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 01/01/2023] Open
Abstract
The discovery that aggregated transactive response DNA-binding protein 43 kDa (TDP-43) is the major component of pathological ubiquitinated inclusions in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) caused seminal progress in the unveiling of the genetic bases and molecular characteristics of these now so-called TDP-43 proteinopathies. Substantial increase in the knowledge of clinic-pathological coherencies, especially for FTLD variants, could be made in the last decade, but also revealed a considerable complexity of TDP-43 pathology and often a poor correlation of clinical and molecular disease characteristics. To date, an underlying TDP-43 pathology can be predicted only for patients with mutations in the genes C9orf72 and GRN, but is dependent on neuropathological verification in patients without family history, which represent the majority of cases. As etiology-specific therapies for neurodegenerative proteinopathies are emerging, methods to forecast TDP-43 pathology at patients' lifetime are highly required. Here, we review the current status of research pursued to identify specific indicators to predict or exclude TDP-43 pathology in the ALS-FTLD spectrum disorders and findings on candidates for prognosis and monitoring of disease progression in TDP-43 proteinopathies with a focus on TDP-43 with its pathological forms, neurochemical and imaging biomarkers.
Collapse
Affiliation(s)
| | - Peggy Barschke
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.
| |
Collapse
|
40
|
Functional Connectivity Changes in Behavioral, Semantic, and Nonfluent Variants of Frontotemporal Dementia. Behav Neurol 2018; 2018:9684129. [PMID: 29808100 PMCID: PMC5902123 DOI: 10.1155/2018/9684129] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/02/2018] [Accepted: 02/12/2018] [Indexed: 02/04/2023] Open
Abstract
Frontotemporal dementia (FTD) affects behavior, language, and personality. This study aims to explore functional connectivity changes in three FTD variants: behavioral (bvFTD), semantic (svPPA), and nonfluent variant (nfvPPA). Seventy-six patients diagnosed with FTD by international criteria and thirty-two controls were investigated. Functional connectivity from resting functional magnetic resonance imaging (fMRI) was estimated for the whole brain. Two types of analysis were done: network basic statistic and topological measures by graph theory. Several hubs in the limbic system and basal ganglia were compromised in the behavioral variant apart from frontal networks. Nonfluent variants showed a major disconnection with respect to the behavioral variant in operculum and parietal inferior. The global efficiency had lower coefficients in nonfluent variants than behavioral variants and controls. Our results support an extensive disconnection among frontal, limbic, basal ganglia, and parietal hubs.
Collapse
|
41
|
Kielar A, Deschamps T, Jokel R, Meltzer JA. Abnormal language-related oscillatory responses in primary progressive aphasia. NEUROIMAGE-CLINICAL 2018; 18:560-574. [PMID: 29845004 PMCID: PMC5964832 DOI: 10.1016/j.nicl.2018.02.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 02/09/2018] [Accepted: 02/27/2018] [Indexed: 11/24/2022]
Abstract
Patients with Primary Progressive Aphasia (PPA) may react to linguistic stimuli differently than healthy controls, reflecting degeneration of language networks and engagement of compensatory mechanisms. We used magnetoencephalography (MEG) to evaluate oscillatory neural responses in sentence comprehension, in patients with PPA and age-matched controls. Participants viewed sentences containing semantically and syntactically anomalous words that evoke distinct oscillatory responses. For age-matched controls, semantic anomalies elicited left-lateralized 8–30 Hz power decreases distributed along ventral brain regions, whereas syntactic anomalies elicited bilateral power decreases in both ventral and dorsal regions. In comparison to controls, patients with PPA showed altered patterns of induced oscillations, characterized by delayed latencies and attenuated amplitude, which were correlated with linguistic impairment measured offline. The recruitment of right hemisphere temporo-parietal areas (also found in controls) was correlated with preserved semantic processing abilities, indicating that preserved neural activity in these regions was able to support successful semantic processing. In contrast, syntactic processing was more consistently impaired in PPA, regardless of neural activity patterns, suggesting that this domain of language is particularly vulnerable to the neuronal loss. In addition, we found that delayed peak latencies of oscillatory responses were associated with lower accuracy for detecting semantic anomalies, suggesting that language deficits observed in PPA may be linked to delayed or slowed information processing. Evaluated induced oscillations in patients with PPA using MEG. PPA patients showed delayed latencies and attenuated amplitude of responses. Preserved right hemisphere regions support semantic processing. Delayed latencies of oscillatory responses associated with impaired performance. Language deficits in PPA linked to delayed or slowed information processing.
Collapse
Affiliation(s)
- A Kielar
- Rotman Research Institute, Baycrest Health Sciences Toronto, Ontario, Canada; Canadian Partnership for Stroke Recovery, Ottawa, Ontario, Canada.
| | - T Deschamps
- Rotman Research Institute, Baycrest Health Sciences Toronto, Ontario, Canada
| | - R Jokel
- Rotman Research Institute, Baycrest Health Sciences Toronto, Ontario, Canada; Department of Speech-Language Pathology, University of Toronto, Toronto, Ontario, Canada
| | - J A Meltzer
- Rotman Research Institute, Baycrest Health Sciences Toronto, Ontario, Canada; Department of Psychology University of Toronto, Toronto, Ontario, Canada; Department of Speech-Language Pathology, University of Toronto, Toronto, Ontario, Canada; Canadian Partnership for Stroke Recovery, Ottawa, Ontario, Canada.
| |
Collapse
|
42
|
Cope TE, Sohoglu E, Sedley W, Patterson K, Jones PS, Wiggins J, Dawson C, Grube M, Carlyon RP, Griffiths TD, Davis MH, Rowe JB. Evidence for causal top-down frontal contributions to predictive processes in speech perception. Nat Commun 2017; 8:2154. [PMID: 29255275 PMCID: PMC5735133 DOI: 10.1038/s41467-017-01958-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/27/2017] [Indexed: 11/09/2022] Open
Abstract
Perception relies on the integration of sensory information and prior expectations. Here we show that selective neurodegeneration of human frontal speech regions results in delayed reconciliation of predictions in temporal cortex. These temporal regions were not atrophic, displayed normal evoked magnetic and electrical power, and preserved neural sensitivity to manipulations of sensory detail. Frontal neurodegeneration does not prevent the perceptual effects of contextual information; instead, prior expectations are applied inflexibly. The precision of predictions correlates with beta power, in line with theoretical models of the neural instantiation of predictive coding. Fronto-temporal interactions are enhanced while participants reconcile prior predictions with degraded sensory signals. Excessively precise predictions can explain several challenging phenomena in frontal aphasias, including agrammatism and subjective difficulties with speech perception. This work demonstrates that higher-level frontal mechanisms for cognitive and behavioural flexibility make a causal functional contribution to the hierarchical generative models underlying speech perception.
Collapse
Affiliation(s)
- Thomas E Cope
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK.
| | - E Sohoglu
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| | - W Sedley
- Institute of Neuroscience, Newcastle University, Newcastle, NE1 7RU, UK
| | - K Patterson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| | - P S Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - J Wiggins
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - C Dawson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - M Grube
- Institute of Neuroscience, Newcastle University, Newcastle, NE1 7RU, UK
| | - R P Carlyon
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| | - T D Griffiths
- Institute of Neuroscience, Newcastle University, Newcastle, NE1 7RU, UK
| | - Matthew H Davis
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| |
Collapse
|