1
|
Rajicic A, Giannini LAA, Gerrits E, van Buuren R, Melhem S, Slotman JA, Rozemuller AJM, Eggen BJL, van Swieten JC, Seelaar H. WDR49-Positive Astrocytes Mark Severity of Neurodegeneration in Frontotemporal Lobar Degeneration and Alzheimer's Disease. Glia 2025; 73:948-968. [PMID: 39705191 PMCID: PMC11920684 DOI: 10.1002/glia.24663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/22/2024]
Abstract
A subpopulation of astrocytes expressing WD Repeat Domain 49 (WDR49) was recently identified in frontotemporal lobar degeneration (FTLD) with GRN pathogenic variants. This is the first study to investigate their expression and relation to pathology in other FTLD subtypes and Alzheimer's disease (AD). In a postmortem cohort of TDP-43 proteinopathies (12 GRN, 11 C9orf72, 9 sporadic TDP-43), tauopathies (13 MAPT, 8 sporadic tau), 10 AD, and four controls, immunohistochemistry and immunofluorescence were performed for WDR49 and pathological inclusions on frontal, temporal, and occipital cortical sections. WDR49-positive cell counts (adjusted per mm2) were examined and related to digitally quantified percentage areas of TDP-43/tau pathology and semiquantitative scores of neurodegeneration. Quantitative colocalization analysis of WDR49 and pathological inclusions was done. WDR49-positive astrocytes were present across FTLD subtypes and AD in the brain parenchyma and (peri-)vascular space, with distinct morphological patterns, and were particularly enriched in gray matter. In controls, sporadic WDR49-positive cells were found enveloping vessels. WDR49-positive astrocytes were most abundant in the frontal cortex (FC) of GRN cases and temporal cortex in GRN, AD, and sporadic primary tauopathy. In the occipital cortex, only a few cells were found across groups. WDR49-positive astrocyte counts positively correlated with the severity of neurodegeneration and TDP-43 pathology but not tauopathy. Furthermore, in frontotemporal cortices, WDR49 partly colocalized with TDP-43 (14%-21%) and tau (31%-45%). In conclusion, WDR49 is a marker for a subset of astrocytes with different morphologies across FTLD and AD, reflecting the severity of neurodegeneration. These astrocytes may become activated in neurodegeneration in response to pathological damage and migrate from the vessel wall to the parenchyma.
Collapse
Affiliation(s)
- Ana Rajicic
- Department of Neurology and Alzheimer Centre Erasmus MC, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Lucia A A Giannini
- Department of Neurology and Alzheimer Centre Erasmus MC, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Emma Gerrits
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Renee van Buuren
- Department of Neurology and Alzheimer Centre Erasmus MC, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Shamiram Melhem
- Department of Neurology and Alzheimer Centre Erasmus MC, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Johan A Slotman
- Department of Pathology and Erasmus Optical Imaging Center, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, Section of Molecular Neurobiology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - John C van Swieten
- Department of Neurology and Alzheimer Centre Erasmus MC, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer Centre Erasmus MC, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Shen T, Vogel JW, Van Deerlin VM, Suh E, Dratch L, Phillips JS, Massimo L, Lee EB, Irwin DJ, McMillan CT. Disparate and shared transcriptomic signatures associated with cortical atrophy in genetic behavioral variant frontotemporal degeneration. Mol Neurodegener 2025; 20:17. [PMID: 39920674 PMCID: PMC11806866 DOI: 10.1186/s13024-025-00806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Cortical atrophy is a common manifestation in behavioral variant frontotemporal degeneration (bvFTD), exhibiting spatial heterogeneity across various genetic subgroups, which may be driven by distinct biological mechanisms. METHODS We employed an integrative imaging transcriptomics approach to identify both disparate and shared transcriptomic signatures associated with cortical thickness in bvFTD with C9orf72 repeat expansions or pathogenic variants in GRN or MAPT. Functional enrichment analyses were conducted on each gene list significantly associated with cortical thickness. Additionally, we mapped neurotransmitter receptor/transporter density maps to the cortical thickness maps, to uncover different correlation patterns for each genetic form. Furthermore, we examined whether the identified genes were enriched for pathology-related genes by using previously identified genes linked to TDP-43 positive neurons and genes associated with tau pathology. RESULTS For each genetic form of bvFTD, we identified cortical thickness signatures and gene sets associated with them. The cortical thickness associated genes for GRN-bvFTD were significantly involved in neurotransmitter system and circadian entrainment. The different patterns of spatial correlations between synaptic density and cortical thinning, further confirmed the critical role of neurotransmission and synaptic signaling in shaping brain structure, especially in the GRN-bvFTD group. Furthermore, we observed significant overlap between genes linked to TDP-43 pathology and the gene sets associated with cortical thickness in C9orf72-bvFTD and GRN-bvFTD but not the MAPT-bvFTD group providing specificity for our associations. C9orf72-bvFTD and GRN-bvFTD also shared genes displaying consistent directionality, with those exhibiting either positive or negative correlations with cortical thickness in C9orf72-bvFTD showing the same direction (positive or negative) in GRN-bvFTD. MAPT-bvFTD displayed more pronounced differences in transcriptomic signatures compared to the other two genetic forms. The genes that exhibited significantly positive or negative correlations with cortical thickness in MAPT-bvFTD showed opposing directionality in C9orf72-bvFTD and GRN-bvFTD. CONCLUSIONS Overall, this integrative transcriptomic approach identified several new shared and disparate genes associated with regional vulnerability with increased biological interpretation including overlap with synaptic density maps and pathologically-specific gene expression. These findings illuminated the intricate molecular underpinnings contributing to the heterogeneous nature of disease distribution in bvFTD with distinct genetic backgrounds.
Collapse
Affiliation(s)
- Ting Shen
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Richards 606B, Philadelphia, PA, 19104, USA
| | - Jacob W Vogel
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Vivianna M Van Deerlin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - EunRan Suh
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laynie Dratch
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Richards 606B, Philadelphia, PA, 19104, USA
| | - Jeffrey S Phillips
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Richards 606B, Philadelphia, PA, 19104, USA
| | - Lauren Massimo
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Richards 606B, Philadelphia, PA, 19104, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Richards 606B, Philadelphia, PA, 19104, USA
| | - Corey T McMillan
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Richards 606B, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Cappa SF. Hemispheric asymmetry in neurodegenerative diseases. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:101-112. [PMID: 40074390 DOI: 10.1016/b978-0-443-15646-5.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Hemispheric asymmetry in pathologic involvement is frequently observed in neurodegenerative disorders (NDD) and is responsible for differences in cognitive and motor clinical manifestations in individual patients. While asymmetry is modest in typical Alzheimer disease (AD), atypical AD presentations with prominent language impairment [logopenic/phonologic variant of primary progressive aphasia (L/Phv-PPA)] are associated with prevalent involvement of the language-dominant hemisphere. Similarly, in the frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum, the semantic (Sv) and nonfluent/agrammatic (Nf/Av) variants of PPA are due to asymmetric pathology involving the language-dominant hemisphere. A reversed (typically right-sided) pattern of asymmetry is often found in conditions associated with prominent disorders of behavior and social cognition (i.e., behavioral variant of frontotemporal degeneration-Bv FTD). Asymmetry is generally modest and less consistent in NDD with prevalent motor manifestations, such as Parkinson disease (PD). Overall, the pattern of hemispheric involvement reflects the network-specific selectivity of NDD and is compatible with the spreading of pathology along connection pathways.
Collapse
Affiliation(s)
- Stefano F Cappa
- University School for Advanced Studies (IUSS-Pavia), Pavia, Italy; Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
4
|
Sejourne C, Barker MS, Heath MR, Gazes Y, Fremont R, Perez YG, Hearne LJ, Wassermann EM, Tierney MC, Manoochehri M, Huey ED, Grafman J. Neuropsychiatric and behavioral symptom clusters in frontotemporal dementia. J Alzheimers Dis Rep 2025; 9:25424823251324391. [PMID: 40034531 PMCID: PMC11873855 DOI: 10.1177/25424823251324391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
Background Non-Alzheimer's disease dementias, including frontotemporal dementia (FTD) can be difficult to characterize due to the predominance of distinct behavioral and neuropsychiatric symptoms. Widely used measurement tools lack structure and objectivity. Objective The purpose of this study was to use systematic direct observation of neuropsychiatric and behavioral symptoms, via the Neurobehavioral Rating Scale (NBRS), to characterize clusters of behavioral and neuropsychiatric symptoms in FTD and examine how selected symptom clusters correlate with structural neuroimaging. Methods We performed a factor analysis on the NBRS data from 172 patients with FTD and examined the neural correlates of the selected symptom clusters in a subsample of 67 patients. Results Six factors accounted for 56% of total variance across NBRS item scores: Apathy/Blunting, Agitation/Disinhibition, Cognitive/Language, Planning/Insight, Anxiety/Lability, and Psychosis. Symptom clusters showed significant associations with specific regions of cortical thinning: Agitation/Disinhibition with bilateral frontal regions, and Cognition/Language with the left bank of the superior temporal sulcus and supramarginal regions. Conclusions The selected symptom clusters associated with known regions of atrophy in FTD. The NBRS is an effective observational measure that may extend characterization and understanding of FTD.
Collapse
Affiliation(s)
- Corinne Sejourne
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Megan S Barker
- Memory and Aging Program, Butler Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Madison R Heath
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yunglin Gazes
- Design, Acquisition & Neuromodulation Laboratories, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Rachel Fremont
- Department of Psychiatry, Icahn Mount Sinai School of Medicine, New York, NY, USA
| | - Yedili Genao Perez
- Memory and Aging Program, Butler Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Luke J Hearne
- Memory and Aging Program, Butler Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Eric M Wassermann
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Michael C Tierney
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Masood Manoochehri
- Memory and Aging Program, Butler Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Edward D Huey
- Memory and Aging Program, Butler Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Jordan Grafman
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Brain Injury Research Program, Shirley Ryan Ability Lab, Chicago, IL, USA
| |
Collapse
|
5
|
Shen T, Vogel JW, Van Deerlin VM, Suh E, Dratch L, Phillips JS, Massimo L, Lee EB, Irwin DJ, McMillan CT. Disparate and shared transcriptomic signatures associated with cortical atrophy in genetic bvFTD. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.25.24310894. [PMID: 39211858 PMCID: PMC11361203 DOI: 10.1101/2024.07.25.24310894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cortical atrophy in behavioral variant frontotemporal degeneration (bvFTD) exhibits spatial heterogeneity across genetic subgroups, potentially driven by distinct biological mechanisms. Using an integrative imaging-transcriptomics approach, we identified disparate and shared transcriptomic signatures associated with cortical thickness in C9orf72 , GRN or MAPT -related bvFTD. Genes associated with cortical thinning in GRN -bvFTD were implicated in neurotransmission, further supported by mapping synaptic density maps to cortical thickness maps. Previously identified genes linked to TDP-43 positive neurons were significantly overlapped with genes associated with C9orf72 -bvFTD and GRN -bvFTD, but not MAPT -bvFTD providing specificity for our associations. C9orf72 -bvFTD and GRN -bvFTD shared genes displaying consistent directionality of correlations with cortical thickness, while MAPT -bvFTD displayed more pronounced differences in transcriptomic signatures with opposing directionality. Overall, we identified disparate and shared genes tied to regional vulnerability with increased biological interpretation including overlap with synaptic density maps and pathologically-specific gene expression, illuminating intricate molecular underpinnings contributing to heterogeneities in bvFTD.
Collapse
|
6
|
Pasternak M, Mirza SS, Luciw N, Mutsaerts HJMM, Petr J, Thomas D, Cash D, Bocchetta M, Tartaglia MC, Mitchell SB, Black SE, Freedman M, Tang‐Wai D, Rogaeva E, Russell LL, Bouzigues A, van Swieten JC, Jiskoot LC, Seelaar H, Laforce R, Tiraboschi P, Borroni B, Galimberti D, Rowe JB, Graff C, Finger E, Sorbi S, de Mendonça A, Butler C, Gerhard A, Sanchez‐Valle R, Moreno F, Synofzik M, Vandenberghe R, Ducharme S, Levin J, Otto M, Santana I, Strafella AP, MacIntosh BJ, Rohrer JD, Masellis M. Longitudinal cerebral perfusion in presymptomatic genetic frontotemporal dementia: GENFI results. Alzheimers Dement 2024; 20:3525-3542. [PMID: 38623902 PMCID: PMC11095434 DOI: 10.1002/alz.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Effective longitudinal biomarkers that track disease progression are needed to characterize the presymptomatic phase of genetic frontotemporal dementia (FTD). We investigate the utility of cerebral perfusion as one such biomarker in presymptomatic FTD mutation carriers. METHODS We investigated longitudinal profiles of cerebral perfusion using arterial spin labeling magnetic resonance imaging in 42 C9orf72, 70 GRN, and 31 MAPT presymptomatic carriers and 158 non-carrier controls. Linear mixed effects models assessed perfusion up to 5 years after baseline assessment. RESULTS Perfusion decline was evident in all three presymptomatic groups in global gray matter. Each group also featured its own regional pattern of hypoperfusion over time, with the left thalamus common to all groups. Frontal lobe regions featured lower perfusion in those who symptomatically converted versus asymptomatic carriers past their expected age of disease onset. DISCUSSION Cerebral perfusion is a potential biomarker for assessing genetic FTD and its genetic subgroups prior to symptom onset. HIGHLIGHTS Gray matter perfusion declines in at-risk genetic frontotemporal dementia (FTD). Regional perfusion decline differs between at-risk genetic FTD subgroups . Hypoperfusion in the left thalamus is common across all presymptomatic groups. Converters exhibit greater right frontal hypoperfusion than non-converters past their expected conversion date. Cerebral hypoperfusion is a potential early biomarker of genetic FTD.
Collapse
|
7
|
Kawles A, Keszycki R, Minogue G, Zouridakis A, Ayala I, Gill N, Macomber A, Lubbat V, Coventry C, Rogalski E, Weintraub S, Mao Q, Flanagan ME, Zhang H, Castellani R, Bigio EH, Mesulam MM, Geula C, Gefen T. Phenotypically concordant distribution of pick bodies in aphasic versus behavioral dementias. Acta Neuropathol Commun 2024; 12:31. [PMID: 38389095 PMCID: PMC10885488 DOI: 10.1186/s40478-024-01738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Pick's disease (PiD) is a subtype of the tauopathy form of frontotemporal lobar degeneration (FTLD-tau) characterized by intraneuronal 3R-tau inclusions. PiD can underly various dementia syndromes, including primary progressive aphasia (PPA), characterized by an isolated and progressive impairment of language and left-predominant atrophy, and behavioral variant frontotemporal dementia (bvFTD), characterized by progressive dysfunction in personality and bilateral frontotemporal atrophy. In this study, we investigated the neocortical and hippocampal distributions of Pick bodies in bvFTD and PPA to establish clinicopathologic concordance between PiD and the salience of the aphasic versus behavioral phenotype. Eighteen right-handed cases with PiD as the primary pathologic diagnosis were identified from the Northwestern University Alzheimer's Disease Research Center brain bank (bvFTD, N = 9; PPA, N = 9). Paraffin-embedded sections were stained immunohistochemically with AT8 to visualize Pick bodies, and unbiased stereological analysis was performed in up to six regions bilaterally [middle frontal gyrus (MFG), superior temporal gyrus (STG), inferior parietal lobule (IPL), anterior temporal lobe (ATL), dentate gyrus (DG) and CA1 of the hippocampus], and unilateral occipital cortex (OCC). In bvFTD, peak neocortical densities of Pick bodies were in the MFG, while the ATL was the most affected in PPA. Both the IPL and STG had greater leftward pathology in PPA, with the latter reaching significance (p < 0.01). In bvFTD, Pick body densities were significantly right-asymmetric in the STG (p < 0.05). Hippocampal burden was not clinicopathologically concordant, as both bvFTD and PPA cases demonstrated significant hippocampal pathology compared to neocortical densities (p < 0.0001). Inclusion-to-neuron analyses in a subset of PPA cases confirmed that neurons in the DG are disproportionately burdened with inclusions compared to neocortical areas. Overall, stereological quantitation suggests that the distribution of neocortical Pick body pathology is concordant with salient clinical features unique to PPA vs. bvFTD while raising intriguing questions about the selective vulnerability of the hippocampus to 3R-tauopathies.
Collapse
Affiliation(s)
- Allegra Kawles
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rachel Keszycki
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Grace Minogue
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Antonia Zouridakis
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ivan Ayala
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nathan Gill
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alyssa Macomber
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vivienne Lubbat
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christina Coventry
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily Rogalski
- Department of Neurology, University of Chicago School of Medicine, Chicago, IL, USA
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qinwen Mao
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Margaret E Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hui Zhang
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rudolph Castellani
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eileen H Bigio
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
8
|
Cousins KAQ, Irwin DJ, Tropea TF, Rhodes E, Phillips J, Chen-Plotkin AS, Brumm MC, Coffey CS, Kang JH, Simuni T, Foroud TM, Toga AW, Tanner CM, Kieburtz KD, Mollenhauer B, Galasko D, Hutten S, Weintraub D, Siderowf AD, Marek K, Poston KL, Shaw LM. Evaluation of ATN PD Framework and Biofluid Markers to Predict Cognitive Decline in Early Parkinson Disease. Neurology 2024; 102:e208033. [PMID: 38306599 PMCID: PMC11383879 DOI: 10.1212/wnl.0000000000208033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/13/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND AND OBJECTIVES In Parkinson disease (PD), Alzheimer disease (AD) copathology is common and clinically relevant. However, the longitudinal progression of AD CSF biomarkers-β-amyloid 1-42 (Aβ42), phosphorylated tau 181 (p-tau181), and total tau (t-tau)-in PD is poorly understood and may be distinct from clinical AD. Moreover, it is unclear whether CSF p-tau181 and serum neurofilament light (NfL) have added prognostic utility in PD, when combined with CSF Aβ42. First, we describe longitudinal trajectories of biofluid markers in PD. Second, we modified the AD β-amyloid/tau/neurodegeneration (ATN) framework for application in PD (ATNPD) using CSF Aβ42 (A), p-tau181 (T), and serum NfL (N) and tested ATNPD prediction of longitudinal cognitive decline in PD. METHODS Participants were selected from the Parkinson's Progression Markers Initiative cohort, clinically diagnosed with sporadic PD or as controls, and followed up annually for 5 years. Linear mixed-effects models (LMEMs) tested the interaction of diagnosis with longitudinal trajectories of analytes (log transformed, false discovery rate [FDR] corrected). In patients with PD, LMEMs tested how baseline ATNPD status (AD [A+T+N±] vs not) predicted clinical outcomes, including Montreal Cognitive Assessment (MoCA; rank transformed, FDR corrected). RESULTS Participants were 364 patients with PD and 168 controls, with comparable baseline mean (±SD) age (patients with PD = 62 ± 10 years; controls = 61 ± 11 years]; Mann-Whitney Wilcoxon: p = 0.4) and sex distribution (patients with PD = 231 male individuals [63%]; controls = 107 male individuals [64%]; χ2: p = 1). Patients with PD had overall lower CSF p-tau181 (β = -0.16, 95% CI -0.23 to -0.092, p = 2.2e-05) and t-tau than controls (β = -0.13, 95% CI -0.19 to -0.065, p = 4e-04), but not Aβ42 (p = 0.061) or NfL (p = 0.32). Over time, patients with PD had greater increases in serum NfL than controls (β = 0.035, 95% CI 0.022 to 0.048, p = 9.8e-07); slopes of patients with PD did not differ from those of controls for CSF Aβ42 (p = 0.18), p-tau181 (p = 1), or t-tau (p = 0.96). Using ATNPD, PD classified as A+T+N± (n = 32; 9%) had worse cognitive decline on global MoCA (β = -73, 95% CI -110 to -37, p = 0.00077) than all other ATNPD statuses including A+ alone (A+T-N-; n = 75; 21%). DISCUSSION In patients with early PD, CSF p-tau181 and t-tau were low compared with those in controls and did not increase over 5 years of follow-up. Our study shows that classification using modified ATNPD (incorporating CSF Aβ42, CSF p-tau181, and serum NfL) can identify biologically relevant subgroups of PD to improve prediction of cognitive decline in early PD.
Collapse
Affiliation(s)
- Katheryn A Q Cousins
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - David J Irwin
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Thomas F Tropea
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Emma Rhodes
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Jeffrey Phillips
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Alice S Chen-Plotkin
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Michael C Brumm
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Christopher S Coffey
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Ju Hee Kang
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Tanya Simuni
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Tatiana M Foroud
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Arthur W Toga
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Caroline M Tanner
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Karl D Kieburtz
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Brit Mollenhauer
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Douglas Galasko
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Samantha Hutten
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Daniel Weintraub
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Andrew D Siderowf
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Kenneth Marek
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Kathleen L Poston
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Leslie M Shaw
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| |
Collapse
|
9
|
Kameyama H, Tagai K, Takasaki E, Kashibayashi T, Takahashi R, Kanemoto H, Ishii K, Ikeda M, Shigeta M, Shinagawa S, Kazui H. Examining Frontal Lobe Asymmetry and Its Potential Role in Aggressive Behaviors in Early Alzheimer's Disease. J Alzheimers Dis 2024; 98:539-547. [PMID: 38393911 DOI: 10.3233/jad-231306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Background Neuropsychiatric symptoms (NPS) in patients with dementia lead to caregiver burdens and worsen the patient's prognosis. Although many neuroimaging studies have been conducted, the etiology of NPS remains complex. We hypothesize that brain structural asymmetry could play a role in the appearance of NPS. Objective This study explores the relationship between NPS and brain asymmetry in patients with Alzheimer's disease (AD). Methods Demographic and MRI data for 121 mild AD cases were extracted from a multicenter Japanese database. Brain asymmetry was assessed by comparing the volumes of gray matter in the left and right brain regions. NPS was evaluated using the Neuropsychiatric Inventory (NPI). Subsequently, a comprehensive assessment of the correlation between brain asymmetry and NPS was conducted. Results Among each NPS, aggressive NPS showed a significant correlation with asymmetry in the frontal lobe, indicative of right-side atrophy (r = 0.235, p = 0.009). This correlation remained statistically significant even after adjustments for multiple comparisons (p < 0.01). Post-hoc analysis further confirmed this association (p < 0.05). In contrast, no significant correlations were found for other NPS subtypes, including affective and apathetic symptoms. Conclusions The study suggests frontal lobe asymmetry, particularly relative atrophy in the right hemisphere, may be linked to aggressive behaviors in early AD. These findings shed light on the neurobiological underpinnings of NPS, contributing to the development of potential interventions.
Collapse
Affiliation(s)
- Hiroshi Kameyama
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenji Tagai
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | - Emi Takasaki
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | - Tetsuo Kashibayashi
- Dementia-Related Disease Medical Center, Hyogo Prefectural Rehabilitation Hospital at Nishi-Harima, Hyogo, Japan
| | - Ryuichi Takahashi
- Dementia-Related Disease Medical Center, Hyogo Prefectural Rehabilitation Hospital at Nishi-Harima, Hyogo, Japan
| | - Hideki Kanemoto
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazunari Ishii
- Department of Radiology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masatoshi Shigeta
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Hiroaki Kazui
- Department of Neuropsychiatry, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
10
|
Béreau M, Castrioto A, Servant M, Lhommée E, Desmarets M, Bichon A, Pélissier P, Schmitt E, Klinger H, Longato N, Phillipps C, Wirth T, Fraix V, Benatru I, Durif F, Azulay JP, Moro E, Broussolle E, Thobois S, Tranchant C, Krack P, Anheim M. Imbalanced motivated behaviors according to motor sign asymmetry in drug-naïve Parkinson's disease. Sci Rep 2023; 13:21234. [PMID: 38040775 PMCID: PMC10692157 DOI: 10.1038/s41598-023-48188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023] Open
Abstract
Few studies have considered the influence of motor sign asymmetry on motivated behaviors in de novo drug-naïve Parkinson's disease (PD). We tested whether motor sign asymmetry could be associated with different motivated behavior patterns in de novo drug-naïve PD. We performed a cross-sectional study in 128 de novo drug-naïve PD patients and used the Ardouin Scale of Behavior in Parkinson's disease (ASBPD) to assess a set of motivated behaviors. We assessed motor asymmetry based on (i) side of motor onset and (ii) MDS-UPDRS motor score, then we compared right hemibody Parkinson's disease to left hemibody Parkinson's disease. According to the MDS-UPDRS motor score, patients with de novo right hemibody PD had significantly lower frequency of approach behaviors (p = 0.031), including nocturnal hyperactivity (p = 0.040), eating behavior (p = 0.040), creativity (p = 0.040), and excess of motivation (p = 0.017) than patients with de novo left hemibody PD. Patients with de novo left hemibody PD did not significantly differ from those with de novo right hemibody PD regarding avoidance behaviors including apathy, anxiety and depression. Our findings suggest that motor sign asymmetry may be associated with an imbalance between motivated behaviors in de novo drug-naïve Parkinson's disease.
Collapse
Affiliation(s)
- Matthieu Béreau
- Neurology Department, University Hospital of Besançon, CHRU de Besançon, 3 Bd Alexandre Fleming, 25030, Besançon Cedex, France.
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive - UR LINC, Université Bourgogne Franche-Comté, Besançon, France.
| | - Anna Castrioto
- Inserm, U1216, Grenoble Institut Neurosciences, CHU Grenoble Alpes, University Grenoble Alpes, 38000, Grenoble, France
| | - Mathieu Servant
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive - UR LINC, Université Bourgogne Franche-Comté, Besançon, France
| | - Eugénie Lhommée
- Inserm, U1216, Grenoble Institut Neurosciences, CHU Grenoble Alpes, University Grenoble Alpes, 38000, Grenoble, France
| | - Maxime Desmarets
- Unité de Méthodologie, CIC INSERM 1431, CHU de Besançon, Besançon, France
| | - Amélie Bichon
- Inserm, U1216, Grenoble Institut Neurosciences, CHU Grenoble Alpes, University Grenoble Alpes, 38000, Grenoble, France
| | - Pierre Pélissier
- Inserm, U1216, Grenoble Institut Neurosciences, CHU Grenoble Alpes, University Grenoble Alpes, 38000, Grenoble, France
| | - Emmanuelle Schmitt
- Inserm, U1216, Grenoble Institut Neurosciences, CHU Grenoble Alpes, University Grenoble Alpes, 38000, Grenoble, France
| | - Hélène Klinger
- Movement Disorders Unit, Neurology Department, Hospices Civils de Lyon, Lyon, France
- Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon 1, University of Lyon, Lyon, France
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Bron, France
| | - Nadine Longato
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Clélie Phillipps
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Thomas Wirth
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104, Université de Strasbourg, Illkirch, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Valérie Fraix
- Inserm, U1216, Grenoble Institut Neurosciences, CHU Grenoble Alpes, University Grenoble Alpes, 38000, Grenoble, France
| | - Isabelle Benatru
- Neurology Department, University Hospital of Poitiers, Poitiers, France
- INSERM, CHU de Poitiers, Centre d'Investigation Clinique CIC1402, University of Poitiers, Poitiers, France
| | - Franck Durif
- EA7280 NPsy-Sydo, Université Clermont Auvergne, Clermont-Ferrand, France
- Neurology Department, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Jean-Philippe Azulay
- Movement Disorders Unit, Neurology Department, University Hospital of Marseille, Marseille, France
| | - Elena Moro
- Inserm, U1216, Grenoble Institut Neurosciences, CHU Grenoble Alpes, University Grenoble Alpes, 38000, Grenoble, France
| | - Emmanuel Broussolle
- Movement Disorders Unit, Neurology Department, Hospices Civils de Lyon, Lyon, France
- Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon 1, University of Lyon, Lyon, France
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Bron, France
| | - Stéphane Thobois
- Movement Disorders Unit, Neurology Department, Hospices Civils de Lyon, Lyon, France
- Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon 1, University of Lyon, Lyon, France
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Bron, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Paul Krack
- Department of Neurology, Movement Disorders Center, University Hospital of Bern, Bern, Switzerland
| | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104, Université de Strasbourg, Illkirch, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
11
|
Minogue G, Kawles A, Zouridakis A, Keszycki R, Macomber A, Lubbat V, Gill N, Mao Q, Flanagan ME, Zhang H, Castellani R, Bigio EH, Mesulam MM, Geula C, Gefen T. Distinct Patterns of Hippocampal Pathology in Alzheimer's Disease with Transactive Response DNA-binding Protein 43. Ann Neurol 2023; 94:1036-1047. [PMID: 37592884 PMCID: PMC10872839 DOI: 10.1002/ana.26762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Age-related dementia syndromes are often not related to a single pathophysiological process, leading to multiple neuropathologies found at autopsy. An amnestic dementia syndrome can be associated with Alzheimer's disease (AD) with comorbid transactive response DNA-binding protein 43 (TDP-43) pathology (AD/TDP). Here, we investigated neuronal integrity and pathological burden of TDP-43 and tau, along the well-charted trisynaptic hippocampal circuit (dentate gyrus [DG], CA3, and CA1) in participants with amnestic dementia due to AD/TDP, amnestic dementia due to AD alone, or non-amnestic dementia due to TDP-43 proteinopathy associated with frontotemporal lobar degeneration (FTLD-TDP). METHODS A total of 48 extensively characterized cases (14 AD, 16 AD/TDP, 18 FTLD-TDP) were analyzed using digital HALO software (Indica Labs, Albuquerque, NM, USA) to quantify pathological burden and neuronal loss. RESULTS In AD/TDP and FTLD-TDP, TDP-43 immunoreactivity was greatest in the DG. Tau immunoreactivity was significantly greater in DG and CA3 in AD/TDP compared with pure AD. All clinical groups showed the highest amounts of neurons in DG, followed by CA3, then CA1. The AD and AD/TDP groups showed lower neuronal counts compared with the FTLD-TDP group across all hippocampal subregions consistent with the salience of the amnestic phenotype. INTERPRETATION We conclude that AD/TDP can be distinguished from AD and FTLD-TDP based on differential regional distributions of hippocampal tau and TDP-43. Findings suggest that tau aggregation in AD/TDP might be enhanced by TDP-43. ANN NEUROL 2023;94:1036-1047.
Collapse
Affiliation(s)
- Grace Minogue
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Allegra Kawles
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Antonia Zouridakis
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rachel Keszycki
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Alyssa Macomber
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Vivienne Lubbat
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Nathan Gill
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Qinwen Mao
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Margaret E. Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Hui Zhang
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rudolph Castellani
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Eileen H. Bigio
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - M.-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
12
|
Sokołowski A, Roy ARK, Goh SM, Hardy EG, Datta S, Cobigo Y, Brown JA, Spina S, Grinberg L, Kramer J, Rankin KP, Seeley WW, Sturm VE, Rosen HJ, Miller BL, Perry DC. Neuropsychiatric symptoms and imbalance of atrophy in behavioral variant frontotemporal dementia. Hum Brain Mapp 2023; 44:5013-5029. [PMID: 37471695 PMCID: PMC10502637 DOI: 10.1002/hbm.26428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/25/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Behavioral variant frontotemporal dementia is characterized by heterogeneous frontal, insular, and anterior temporal atrophy patterns that vary along left-right and dorso-ventral axes. Little is known about how these structural imbalances impact clinical symptomatology. The goal of this study was to assess the frequency of frontotemporal asymmetry (right- or left-lateralization) and dorsality (ventral or dorsal predominance of atrophy) and to investigate their clinical correlates. Neuropsychiatric symptoms and structural images were analyzed for 250 patients with behavioral variant frontotemporal dementia. Frontotemporal atrophy was most often symmetric while left-lateralized (9%) and right-lateralized (17%) atrophy were present in a minority of patients. Atrophy was more often ventral (32%) than dorsal (3%) predominant. Patients with right-lateralized atrophy were characterized by higher severity of abnormal eating behavior and hallucinations compared to those with left-lateralized atrophy. Subsequent analyses clarified that eating behavior was associated with right atrophy to a greater extent than a lack of left atrophy, and hallucinations were driven mainly by right atrophy. Dorsality analyses showed that anxiety, euphoria, and disinhibition correlated with ventral-predominant atrophy. Agitation, irritability, and depression showed greater severity with a lack of regional atrophy, including in dorsal regions. Aberrant motor behavior and apathy were not explained by asymmetry or dorsality. This study provides additional insight into how anatomical heterogeneity influences the clinical presentation of patients with behavioral variant frontotemporal dementia. Behavioral symptoms can be associated not only with the presence or absence of focal atrophy, but also with right/left or dorsal/ventral imbalance of gray matter volume.
Collapse
Affiliation(s)
- Andrzej Sokołowski
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Ashlin R. K. Roy
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Sheng‐Yang M. Goh
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Emily G. Hardy
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Samir Datta
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Yann Cobigo
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Jesse A. Brown
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Salvatore Spina
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lea Grinberg
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Joel Kramer
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Katherine P. Rankin
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - William W. Seeley
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of PathologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Virginia E. Sturm
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Howard J. Rosen
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Bruce L. Miller
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - David C. Perry
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
13
|
Ohm DT, Rhodes E, Bahena A, Capp N, Lowe M, Sabatini P, Trotman W, Olm CA, Phillips J, Prabhakaran K, Rascovsky K, Massimo L, McMillan C, Gee J, Tisdall MD, Yushkevich PA, Lee EB, Grossman M, Irwin DJ. Neuroanatomical and cellular degeneration associated with a social disorder characterized by new ritualistic belief systems in a TDP-C patient vs. a Pick patient. Front Neurol 2023; 14:1245886. [PMID: 37900607 PMCID: PMC10600461 DOI: 10.3389/fneur.2023.1245886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/15/2023] [Indexed: 10/31/2023] Open
Abstract
Frontotemporal dementia (FTD) is a spectrum of clinically and pathologically heterogenous neurodegenerative dementias. Clinical and anatomical variants of FTD have been described and associated with underlying frontotemporal lobar degeneration (FTLD) pathology, including tauopathies (FTLD-tau) or TDP-43 proteinopathies (FTLD-TDP). FTD patients with predominant degeneration of anterior temporal cortices often develop a language disorder of semantic knowledge loss and/or a social disorder often characterized by compulsive rituals and belief systems corresponding to predominant left or right hemisphere involvement, respectively. The neural substrates of these complex social disorders remain unclear. Here, we present a comparative imaging and postmortem study of two patients, one with FTLD-TDP (subtype C) and one with FTLD-tau (subtype Pick disease), who both developed new rigid belief systems. The FTLD-TDP patient developed a complex set of values centered on positivity and associated with specific physical and behavioral features of pigs, while the FTLD-tau patient developed compulsive, goal-directed behaviors related to general themes of positivity and spirituality. Neuroimaging showed left-predominant temporal atrophy in the FTLD-TDP patient and right-predominant frontotemporal atrophy in the FTLD-tau patient. Consistent with antemortem cortical atrophy, histopathologic examinations revealed severe loss of neurons and myelin predominantly in the anterior temporal lobes of both patients, but the FTLD-tau patient showed more bilateral, dorsolateral involvement featuring greater pathology and loss of projection neurons and deep white matter. These findings highlight that the regions within and connected to anterior temporal lobes may have differential vulnerability to distinct FTLD proteinopathies and serve important roles in human belief systems.
Collapse
Affiliation(s)
- Daniel T. Ohm
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Emma Rhodes
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Alejandra Bahena
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Noah Capp
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - MaKayla Lowe
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Philip Sabatini
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Winifred Trotman
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher A. Olm
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeffrey Phillips
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Karthik Prabhakaran
- Penn Image Computing and Science Lab, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Katya Rascovsky
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Lauren Massimo
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Corey McMillan
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - James Gee
- Penn Image Computing and Science Lab, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - M. Dylan Tisdall
- Center for Advanced Magnetic Resonance Imaging and Spectroscopy, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Paul A. Yushkevich
- Penn Image Computing and Science Lab, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Edward B. Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - David J. Irwin
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
14
|
Grossman M, Seeley WW, Boxer AL, Hillis AE, Knopman DS, Ljubenov PA, Miller B, Piguet O, Rademakers R, Whitwell JL, Zetterberg H, van Swieten JC. Frontotemporal lobar degeneration. Nat Rev Dis Primers 2023; 9:40. [PMID: 37563165 DOI: 10.1038/s41572-023-00447-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 08/12/2023]
Abstract
Frontotemporal lobar degeneration (FTLD) is one of the most common causes of early-onset dementia and presents with early social-emotional-behavioural and/or language changes that can be accompanied by a pyramidal or extrapyramidal motor disorder. About 20-25% of individuals with FTLD are estimated to carry a mutation associated with a specific FTLD pathology. The discovery of these mutations has led to important advances in potentially disease-modifying treatments that aim to slow progression or delay disease onset and has improved understanding of brain functioning. In both mutation carriers and those with sporadic disease, the most common underlying diagnoses are linked to neuronal and glial inclusions containing tau (FTLD-tau) or TDP-43 (FTLD-TDP), although 5-10% of patients may have inclusions containing proteins from the FUS-Ewing sarcoma-TAF15 family (FTLD-FET). Biomarkers definitively identifying specific pathological entities in sporadic disease have been elusive, which has impeded development of disease-modifying treatments. Nevertheless, disease-monitoring biofluid and imaging biomarkers are becoming increasingly sophisticated and are likely to serve as useful measures of treatment response during trials of disease-modifying treatments. Symptomatic trials using novel approaches such as transcranial direct current stimulation are also beginning to show promise.
Collapse
Affiliation(s)
- Murray Grossman
- Department of Neurology and Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - William W Seeley
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| | - Adam L Boxer
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Peter A Ljubenov
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Miller
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Olivier Piguet
- School of Psychology and Brain and Mind Center, University of Sydney, Sydney, New South Wales, Australia
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The University of Gothenburg, Mölndal, Sweden
- Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
15
|
Giannini LA, Mol MO, Rajicic A, van Buuren R, Sarkar L, Arezoumandan S, Ohm DT, Irwin DJ, Rozemuller AJ, van Swieten JC, Seelaar H. Presymptomatic and early pathological features of MAPT-associated frontotemporal lobar degeneration. Acta Neuropathol Commun 2023; 11:126. [PMID: 37533060 PMCID: PMC10394953 DOI: 10.1186/s40478-023-01588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 08/04/2023] Open
Abstract
Early pathological features of frontotemporal lobar degeneration (FTLD) due to MAPT pathogenic variants (FTLD-MAPT) are understudied, since early-stage tissue is rarely available. Here, we report unique pathological data from three presymptomatic/early-stage MAPT variant carriers (FTLD Clinical Dementia Rating [FTLD-CDR] = 0-1). We examined neuronal degeneration semi-quantitatively and digitally quantified tau burden in 18 grey matter (9 cortical, 9 subcortical) and 13 white matter (9 cortical, 4 subcortical) regions. We compared presymptomatic/early-stage pathology to an intermediate/end-stage cohort (FTLD-CDR = 2-3) with the same variants (2 L315R, 10 P301L, 6 G272V), and developed a clinicopathological staging model for P301L and G272V variants. The 68-year-old presymptomatic L315R carrier (FTLD-CDR = 0) had limited tau burden morphologically similar to L315R end-stage carriers in middle frontal, antero-inferior temporal, amygdala, (para-)hippocampus and striatum, along with age-related Alzheimer's disease neuropathological change. The 59-year-old prodromal P301L carrier (FTLD-CDR = 0.5) had highest tau burden in anterior cingulate, anterior temporal, middle/superior frontal, and fronto-insular cortex, and amygdala. The 45-year-old early-stage G272V carrier (FTLD-CDR = 1) had highest tau burden in superior frontal and anterior cingulate cortex, subiculum and CA1. The severity and distribution of tau burden showed some regional variability between variants at presymptomatic/early-stage, while neuronal degeneration, mild-to-moderate, was similarly distributed in frontotemporal regions. Early-stage tau burden and neuronal degeneration were both less severe than in intermediate-/end-stage cases. In a subset of regions (10 GM, 8 WM) used for clinicopathological staging, clinical severity correlated strongly with neuronal degeneration (rho = 0.72, p < 0.001), less strongly with GM tau burden (rho = 0.57, p = 0.006), and did not with WM tau burden (p = 0.9). Clinicopathological staging showed variant-specific patterns of early tau pathology and progression across stages. These unique data demonstrate that tau pathology and neuronal degeneration are present already at the presymptomatic/early-stage of FTLD-MAPT, though less severely compared to intermediate/end-stage disease. Moreover, early pathological patterns, especially of tau burden, differ partly between specific MAPT variants.
Collapse
Affiliation(s)
- Lucia Aa Giannini
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Merel O Mol
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Ana Rajicic
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Renee van Buuren
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Lana Sarkar
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Sanaz Arezoumandan
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel T Ohm
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David J Irwin
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Annemieke Jm Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Center, location VUmc, Amsterdam, 1081 HZ, The Netherlands
| | - John C van Swieten
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands.
| |
Collapse
|
16
|
Diaz-Torres S, Ogonowski N, García-Marín LM, Bonham LW, Duran-Aniotz C, Yokoyama JS, Rentería ME. Genetic overlap between cortical brain morphometry and frontotemporal dementia risk. Cereb Cortex 2023; 33:7428-7435. [PMID: 36813468 PMCID: PMC10267623 DOI: 10.1093/cercor/bhad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Frontotemporal dementia (FTD) has a complex genetic etiology, where the precise mechanisms underlying the selective vulnerability of brain regions remain unknown. We leveraged summary-based data from genome-wide association studies (GWAS) and performed LD score regression to estimate pairwise genetic correlations between FTD risk and cortical brain imaging. Then, we isolated specific genomic loci with a shared etiology between FTD and brain structure. We also performed functional annotation, summary-data-based Mendelian randomization for eQTL using human peripheral blood and brain tissue data, and evaluated the gene expression in mice targeted brain regions to better understand the dynamics of the FTD candidate genes. Pairwise genetic correlation estimates between FTD and brain morphology measures were high but not statistically significant. We identified 5 brain regions with a strong genetic correlation (rg > 0.45) with FTD risk. Functional annotation identified 8 protein-coding genes. Building upon these findings, we show in a mouse model of FTD that cortical N-ethylmaleimide sensitive factor (NSF) expression decreases with age. Our results highlight the molecular and genetic overlap between brain morphology and higher risk for FTD, specifically for the right inferior parietal surface area and right medial orbitofrontal cortical thickness. In addition, our findings implicate NSF gene expression in the etiology of FTD.
Collapse
Affiliation(s)
- Santiago Diaz-Torres
- Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Natalia Ogonowski
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Centro de Neurociencias Cognitivas (CNC), Universidad de San Andrés, Buenos Aires, Argentina
| | - Luis M García-Marín
- Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Luke W Bonham
- Memory and Aging Center, University of California, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Claudia Duran-Aniotz
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- School of Psychology, Center for Social and Cognitive Neuroscience (CSCN), Universidad Adolfo Ibanez, Santiago, Chile
| | - Jennifer S Yokoyama
- Memory and Aging Center, University of California, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
- Department of Neurology, Weill Institute of Neurosciences, University of California, San Francisco, CA, United States
| | - Miguel E Rentería
- Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Chen M, Burke S, Olm CA, Irwin DJ, Massimo L, Lee EB, Trojanowski JQ, Gee JC, Grossman M. Antemortem network analysis of spreading pathology in autopsy-confirmed frontotemporal degeneration. Brain Commun 2023; 5:fcad147. [PMID: 37223129 PMCID: PMC10202556 DOI: 10.1093/braincomms/fcad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/15/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Despite well-articulated hypotheses of spreading pathology in animal models of neurodegenerative disease, the basis for spreading neurodegenerative pathology in humans has been difficult to ascertain. In this study, we used graph theoretic analyses of structural networks in antemortem, multimodal MRI from autopsy-confirmed cases to examine spreading pathology in sporadic frontotemporal lobar degeneration. We defined phases of progressive cortical atrophy on T1-weighted MRI using a published algorithm in autopsied frontotemporal lobar degeneration with tau inclusions or with transactional DNA binding protein of ∼43 kDa inclusions. We studied global and local indices of structural networks in each of these phases, focusing on the integrity of grey matter hubs and white matter edges projecting between hubs. We found that global network measures are compromised to an equal degree in patients with frontotemporal lobar degeneration with tau inclusions and frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions compared to healthy controls. While measures of local network integrity were compromised in both frontotemporal lobar degeneration with tau inclusions and frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions, we discovered several important characteristics that distinguished between these groups. Hubs identified in controls were degraded in both patient groups, but degraded hubs were associated with the earliest phase of cortical atrophy (i.e. epicentres) only in frontotemporal lobar degeneration with tau inclusions. Degraded edges were significantly more plentiful in frontotemporal lobar degeneration with tau inclusions than in frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions, suggesting that the spread of tau pathology involves more significant white matter degeneration. Weakened edges were associated with degraded hubs in frontotemporal lobar degeneration with tau inclusions more than in frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions, particularly in the earlier phases of the disease, and phase-to-phase transitions in frontotemporal lobar degeneration with tau inclusions were characterized by weakened edges in earlier phases projecting to diseased hubs in subsequent phases of the disease. When we examined the spread of pathology from a region diseased in an earlier phase to physically adjacent regions in subsequent phases, we found greater evidence of disease spreading to adjacent regions in frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions than in frontotemporal lobar degeneration with tau inclusions. We associated evidence of degraded grey matter hubs and weakened white matter edges with quantitative measures of digitized pathology from direct observations of patients' brain samples. We conclude from these observations that the spread of pathology from diseased regions to distant regions via weakened long-range edges may contribute to spreading disease in frontotemporal dementia-tau, while spread of pathology to physically adjacent regions via local neuronal connectivity may play a more prominent role in spreading disease in frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions.
Collapse
Affiliation(s)
- Min Chen
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Burke
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher A Olm
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David J Irwin
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren Massimo
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James C Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Murray Grossman
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Kawles A, Minogue G, Zouridakis A, Keszycki R, Gill N, Nassif C, Coventry C, Zhang H, Rogalski E, Flanagan ME, Castellani R, Bigio EH, Mesulam MM, Geula C, Gefen T. Differential vulnerability of the dentate gyrus to tauopathies in dementias. Acta Neuropathol Commun 2023; 11:1. [PMID: 36597124 PMCID: PMC9811688 DOI: 10.1186/s40478-022-01485-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
The dentate gyrus (DG), a key hippocampal subregion in memory processing, generally resists phosphorylated tau accumulation in the amnestic dementia of the Alzheimer's type due to Alzheimer's disease (DAT-AD), but less is known about the susceptibility of the DG to other tauopathies. Here, we report stereologic densities of total DG neurons and tau inclusions in thirty-two brains of human participants with autopsy-confirmed tauopathies with distinct isoform profiles-3R Pick's disease (PiD, N = 8), 4R corticobasal degeneration (CBD, N = 8), 4R progressive supranuclear palsy (PSP, N = 8), and 3/4R AD (N = 8). All participants were diagnosed during life with primary progressive aphasia (PPA), an aphasic clinical dementia syndrome characterized by progressive deterioration of language abilities with spared non-language cognitive abilities in early stages, except for five patients with DAT-AD as a comparison group. 51% of total participants were female. All specimens were stained immunohistochemically with AT8 to visualize tau pathology, and PPA cases were stained for Nissl substance to visualize neurons. Unbiased stereological analysis was performed in granule and hilar DG cells, and inclusion-to-neuron ratios were calculated. In the PPA group, PiD had highest mean total (granule + hilar) densities of DG tau pathology (p < 0.001), followed by CBD, AD, then PSP. PPA-AD cases showed more inclusions in hilar cells compared to granule cells, while the opposite was true in PiD and CBD. Inclusion-to-neuron ratios revealed, on average, 33% of all DG neurons in PiD cases contained a tau inclusion, compared to ~ 7% in CBD, 2% in AD, and 0.4% in PSP. There was no significant difference between DAT-AD and PPA-AD pathologic tau burden, suggesting that differences in DG burden are not specific to clinical phenotype. We conclude that the DG is differentially vulnerable to pathologic tau accumulation, raising intriguing questions about the structural integrity and functional significance of hippocampal circuits in neurodegenerative dementias.
Collapse
Affiliation(s)
- Allegra Kawles
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Grace Minogue
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
| | - Antonia Zouridakis
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
| | - Rachel Keszycki
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Nathan Gill
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Caren Nassif
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
| | - Christina Coventry
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
| | - Hui Zhang
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Margaret E. Flanagan
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Rudolph Castellani
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Eileen H. Bigio
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - M. Marsel Mesulam
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| |
Collapse
|
19
|
Olm CA, Burke SE, Peterson C, Lee EB, Trojanowski JQ, Massimo L, Irwin DJ, Grossman M, Gee JC. Event-based modeling of T1-weighted MRI is related to pathology in frontotemporal lobar degeneration due to tau and TDP. Neuroimage Clin 2022; 37:103285. [PMID: 36508888 PMCID: PMC9763503 DOI: 10.1016/j.nicl.2022.103285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND In previous studies of patients with frontotemporal lobar degeneration due to tau (FTLD-tau) and FTLD due to TDP (FTLD-TDP), cortical volumes derived from T1-weighted MRI have been used to identify a sequence of volume loss according to arbitrary volumetric criteria. Event-based modeling (EBM) is a probabilistic, generative machine learning model that determines the characteristic sequence of changes, or "events", occurring during disease progression. EBM also estimates an individual patient's disease "stage" by identifying which events have already occurred. In the present study, we use an EBM analysis to derive stages of regional anatomic atrophy in FTLD-tau and FTLD-TDP, and validated these stages against pathologic burden. METHODS Sporadic autopsy-confirmed patients with FTLD-tau (N = 42) and FTLD-TDP (N = 21), and 167 healthy controls with available T1-weighted images were identified. A subset of patients had quantitative digital histopathology of cortex performed at autopsy (FTLD-tau = 30, FTLD-TDP = 17). MRI images were processed, producing regional measures of cortical volumes. K-means clustering was used to find cortical regions with similar amounts of GM volume changes (n = 5 clusters). EBM was used to determine the characteristic sequence of cortical atrophy of identified clusters in autopsy-confirmed FTLD-tau and FTLD-TDP, and estimate each patient's disease stage by cortical volume biomarkers. Linear regressions related pathologic burden to EBM-estimated disease stages. RESULTS EBM for cortical volume biomarkers generated statistically robust characteristic sequences of cortical atrophy in each group of patients. Cortical volume-based EBM-estimated disease stage was associated with pathologic burden in FTLD-tau (R2 = 0.16, p = 0.017) and FTLD-TDP (R2 = 0.51, p = 0.0008). CONCLUSIONS We provide evidence that EBM can identify sequences of pathologically-confirmed cortical atrophy in sporadic FTLD-tau and FTLD-TDP.
Collapse
Affiliation(s)
- Christopher A Olm
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States.
| | - Sarah E Burke
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States.
| | - Claire Peterson
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States; Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States.
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lauren Massimo
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States.
| | - David J Irwin
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States; Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States.
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States.
| | - James C Gee
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
20
|
Giannini LAA, Ohm DT, Rozemuller AJM, Dratch L, Suh E, van Deerlin VM, Trojanowski JQ, Lee EB, van Swieten JC, Grossman M, Seelaar H, Irwin DJ. Isoform-specific patterns of tau burden and neuronal degeneration in MAPT-associated frontotemporal lobar degeneration. Acta Neuropathol 2022; 144:1065-1084. [PMID: 36066634 PMCID: PMC9995405 DOI: 10.1007/s00401-022-02487-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/26/2023]
Abstract
Frontotemporal lobar degeneration with MAPT pathogenic variants (FTLD-MAPT) has heterogeneous tau pathological inclusions postmortem, consisting of three-repeat (3R) or four-repeat (4R) tau isoforms, or a combination (3R + 4R). Here, we studied grey matter tau burden, its relation to neuronal degeneration, and regional patterns of pathology in different isoform groups of FTLD-MAPT. We included 38 FTLD-MAPT autopsy cases with 10 different MAPT pathogenic variants, grouped based on predominant tau isoform(s). In up to eleven regions (ten cortical and one striatal), we quantified grey matter tau burden using digital histopathological analysis and assigned semi-quantitative ratings for neuronal degeneration (i.e. 0-4) and separate burden of glial and neuronal tau inclusions (i.e. 0-3). We used mixed modelling to compare pathology measures (1) across the entire cohort and (2) within isoform groups. In the total cohort, tau burden and neuronal degeneration were positively associated and most severe in the anterior temporal, anterior cingulate and transentorhinal cortices. Isoform groups showed distinctive features of tau burden and neuronal degeneration. Across all regions, the 3R isoform group had lower tau burden compared to the 4R group (p = 0.008), while at the same time showing more severe neuronal degeneration than the 4R group (p = 0.002). The 3R + 4R group had an intermediate profile with relatively high tau burden along with relatively severe neuronal degeneration. Neuronal tau inclusions were most frequent in the 4R group (p < 0.001 vs. 3R), while cortical glial tau inclusions were most frequent in the 3R + 4R and 4R groups (p ≤ 0.009 vs. 3R). Regionally, neuronal degeneration was consistently most severe in the anterior temporal cortex within each isoform group. In contrast, the regions with the highest tau burden differed in isoform groups (3R: striatum; 3R + 4R: striatum, inferior parietal lobule, middle frontal cortex, anterior cingulate cortex; 4R: transentorhinal cortex, anterior temporal cortex, fusiform gyrus). We conclude that FTLD-MAPT isoform groups show distinctive features of overall neuronal degeneration and regional tau burden, but all share pronounced anterior temporal neuronal degeneration. These data suggest that distinct isoform-related mechanisms of genetic tauopathies, with slightly divergent tau distribution, may share similar regional vulnerability to neurodegeneration within the frontotemporal paralimbic networks.
Collapse
Affiliation(s)
- Lucia A A Giannini
- Alzheimer Center, Department of Neurology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Daniel T Ohm
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Frontotemporal Degeneration Center (FTDC), University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - Laynie Dratch
- Frontotemporal Degeneration Center (FTDC), University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - EunRan Suh
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivianna M van Deerlin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John C van Swieten
- Alzheimer Center, Department of Neurology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Murray Grossman
- Frontotemporal Degeneration Center (FTDC), University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - Harro Seelaar
- Alzheimer Center, Department of Neurology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - David J Irwin
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Frontotemporal Degeneration Center (FTDC), University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Coughlin DG, Hiniker A, Peterson C, Kim Y, Arezoumandan S, Giannini L, Pizzo D, Weintraub D, Siderowf A, Litvan I, Rissman RA, Galasko D, Hansen L, Trojanowski JQ, Lee E, Grossman M, Irwin D. Digital Histological Study of Neocortical Grey and White Matter Tau Burden Across Tauopathies. J Neuropathol Exp Neurol 2022; 81:953-964. [PMID: 36269086 PMCID: PMC9677241 DOI: 10.1093/jnen/nlac094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
3R/4R-tau species are found in Alzheimer disease (AD) and ∼50% of Lewy body dementias at autopsy (LBD+tau); 4R-tau accumulations are found in progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). Digital image analysis techniques can elucidate patterns of tau pathology more precisely than traditional methods but repeatability across centers is unclear. We calculated regional percentage areas occupied by tau pathological inclusions from the middle frontal cortex (MFC), superior temporal cortex (STC), and angular gyrus (ANG) from cases from the University of Pennsylvania and the University of California San Diego with AD, LBD+tau, PSP, or CBD (n = 150) using QuPath. In both cohorts, AD and LBD+tau had the highest grey and white matter tau burden in the STC (p ≤ 0.04). White matter tau burden was relatively higher in 4R-tauopathies than 3R/4R-tauopathies (p < 0.003). Grey and white matter tau were correlated in all diseases (R2=0.43-0.79, p < 0.04) with the greatest increase of white matter per unit grey matter tau observed in PSP (p < 0.02 both cohorts). Grey matter tau negatively correlated with MMSE in AD and LBD+tau (r = -4.4 to -5.4, p ≤ 0.02). These data demonstrate the feasibility of cross-institutional digital histology studies that generate finely grained measurements of pathology which can be used to support biomarker development and models of disease progression.
Collapse
Affiliation(s)
- David G Coughlin
- From the Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Annie Hiniker
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Claire Peterson
- Digital Neuropathology Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yongya Kim
- From the Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Sanaz Arezoumandan
- Digital Neuropathology Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lucia Giannini
- Digital Neuropathology Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, Erasmus University Medical Center, Alzheimer Center, Rotterdam, The Netherlands
| | - Donald Pizzo
- Center for Advanced Laboratory Medicine, University of California San Diego, La Jolla, California, USA
| | - Daniel Weintraub
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew Siderowf
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Irene Litvan
- From the Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Robert A Rissman
- From the Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Douglas Galasko
- From the Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Lawrence Hansen
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Irwin
- Digital Neuropathology Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Neurovascular dysfunction in GRN-associated frontotemporal dementia identified by single-nucleus RNA sequencing of human cerebral cortex. Nat Neurosci 2022; 25:1034-1048. [PMID: 35879464 DOI: 10.1038/s41593-022-01124-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/16/2022] [Indexed: 12/13/2022]
Abstract
Frontotemporal dementia (FTD) is the second most prevalent form of early-onset dementia, affecting predominantly frontal and temporal cerebral lobes. Heterozygous mutations in the progranulin gene (GRN) cause autosomal-dominant FTD (FTD-GRN), associated with TDP-43 inclusions, neuronal loss, axonal degeneration and gliosis, but FTD-GRN pathogenesis is largely unresolved. Here we report single-nucleus RNA sequencing of microglia, astrocytes and the neurovasculature from frontal, temporal and occipital cortical tissue from control and FTD-GRN brains. We show that fibroblast and mesenchymal cell numbers were enriched in FTD-GRN, and we identified disease-associated subtypes of astrocytes and endothelial cells. Expression of gene modules associated with blood-brain barrier (BBB) dysfunction was significantly enriched in FTD-GRN endothelial cells. The vasculature supportive function and capillary coverage by pericytes was reduced in FTD-GRN tissue, with increased and hypertrophic vascularization and an enrichment of perivascular T cells. Our results indicate a perturbed BBB and suggest that the neurovascular unit is severely affected in FTD-GRN.
Collapse
|
23
|
Chen M, Ohm DT, Phillips JS, McMillan CT, Capp N, Peterson C, Xie E, Wolk DA, Trojanowski JQ, Lee EB, Gee J, Grossman M, Irwin DJ. Divergent Histopathological Networks of Frontotemporal Degeneration Proteinopathy Subytpes. J Neurosci 2022; 42:3868-3877. [PMID: 35318284 PMCID: PMC9087810 DOI: 10.1523/jneurosci.2061-21.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 11/21/2022] Open
Abstract
Network analyses inform complex systems such as human brain connectivity, but this approach is seldom applied to gold-standard histopathology. Here, we use two complimentary computational approaches to model microscopic progression of the main subtypes of tauopathy versus TDP-43 proteinopathy in the human brain. Digital histopathology measures were obtained in up to 13 gray matter (GM) and adjacent white matter (WM) cortical brain regions sampled from 53 tauopathy and 66 TDP-43 proteinopathy autopsy patients. First, we constructed a weighted non-directed graph for each group, where nodes are defined as GM and WM regions sampled and edges in the graph are weighted using the group-level Pearson's correlation coefficient for each pairwise node comparison. Additionally, we performed mediation analyses to test mediation effects of WM pathology between anterior frontotemporal and posterior parietal GM nodes. We find greater correlation (i.e., edges) between GM and WM node pairs in tauopathies compared with TDP-43 proteinopathies. Moreover, WM pathology strongly correlated with a graph metric of pathology spread (i.e., node-strength) in tauopathies (r = 0.60, p < 0.03) but not in TDP-43 proteinopathies (r = 0.03, p = 0.9). Finally, we found mediation effects for WM pathology on the association between anterior and posterior GM pathology in FTLD-Tau but not in FTLD-TDP. These data suggest distinct tau and TDP-43 proteinopathies may have divergent patterns of cellular propagation in GM and WM. More specifically, axonal spread may be more influential in FTLD-Tau progression. Network analyses of digital histopathological measurements can inform models of disease progression of cellular degeneration in the human brain.SIGNIFICANCE STATEMENT In this study, we uniquely perform two complimentary computational approaches to model and contrast microscopic disease progression between common frontotemporal lobar degeneration (FTLD) proteinopathy subtypes with similar clinical syndromes during life. Our models suggest white matter (WM) pathology influences cortical spread of disease in tauopathies that is less evident in TDP-43 proteinopathies. These data support the hypothesis that there are neuropathologic signatures of cellular degeneration within neurocognitive networks for specific protienopathies. These distinctive patterns of cellular pathology can guide future efforts to develop tissue-sensitive imaging and biological markers with diagnostic and prognostic utility for FTLD. Moreover, our novel computational approach can be used in future work to model various neurodegenerative disorders with mixed proteinopathy within the human brain connectome.
Collapse
Affiliation(s)
- Min Chen
- Penn Image Computing and Science Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Daniel T Ohm
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jeffrey S Phillips
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Corey T McMillan
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Noah Capp
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Claire Peterson
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Emily Xie
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - David A Wolk
- Alzheimer's Disease Research Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - James Gee
- Penn Image Computing and Science Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - David J Irwin
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
24
|
Burke SE, Phillips JS, Olm CA, Peterson CS, Cook PA, Gee JC, Lee EB, Trojanowski JQ, Massimo L, Irwin DJ, Grossman M. Phases of volume loss in patients with known frontotemporal lobar degeneration spectrum pathology. Neurobiol Aging 2022; 113:95-107. [PMID: 35325815 PMCID: PMC9241163 DOI: 10.1016/j.neurobiolaging.2022.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) includes clinically similar FTLD-tau or FTLD-TDP proteinopathies which lack in vivo markers for accurate antemortem diagnosis. To identify early distinguishing sites of cortical atrophy between groups, we retrospectively analyzed in vivo volumetric MRI from 42 FTLD-Tau and 21 FTLD-TDP patients and validated these findings with postmortem measures of pathological burden. Our frequency-based staging model revealed distinct loci of maximal early cortical atrophy in each group, including dorsolateral and medial frontal regions in FTLD-Tau and ventral frontal and anterior temporal regions in FTLD-TDP. Sørenson-Dice calculations between proteinopathy groups showed little overlap of phases. Conversely, within-group subtypes showed good overlap between 3R- and 4R-tauopathies, and between TDP-43 Types A and C for early regions with subtle divergence between subtypes in subsequent phases of atrophy. Postmortem validation found an association of imaging phases with pathologic burden within FTLD-tau (F(4, 238) = 17.44, p < 0.001) and FTLD-TDP (F(4,245) = 42.32, p < 0.001). These results suggest that relatively early, distinct markers of atrophy may distinguish FTLD proteinopathies during life.
Collapse
Affiliation(s)
- Sarah E Burke
- Department of Neurology, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA..
| | - Jeffrey S Phillips
- Department of Neurology, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA
| | - Christopher A Olm
- Department of Neurology, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA.; Department of Radiology, Penn Image Computing & Science Lab (PICSL), Philadelphia, PA, USA
| | - Claire S Peterson
- Department of Neurology, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA.; Digital Pathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Phillip A Cook
- Department of Radiology, Penn Image Computing & Science Lab (PICSL), Philadelphia, PA, USA
| | - James C Gee
- Department of Radiology, Penn Image Computing & Science Lab (PICSL), Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Center of Neurodegenerative Disease Research, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center of Neurodegenerative Disease Research, Philadelphia, PA, USA
| | - Lauren Massimo
- Department of Neurology, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA.; Digital Pathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA
| |
Collapse
|
25
|
Kawles A, Nishihira Y, Feldman A, Gill N, Minogue G, Keszycki R, Coventry C, Spencer C, Lilek J, Ajroud K, Coppola G, Rademakers R, Rogalski E, Weintraub S, Zhang H, Flanagan ME, Bigio EH, Mesulam MM, Geula C, Mao Q, Gefen T. Cortical and subcortical pathological burden and neuronal loss in an autopsy series of FTLD-TDP-type C. Brain 2022; 145:1069-1078. [PMID: 34919645 PMCID: PMC9050539 DOI: 10.1093/brain/awab368] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/11/2021] [Accepted: 08/29/2021] [Indexed: 10/31/2023] Open
Abstract
The TDP-43 type C pathological form of frontotemporal lobar degeneration is characterized by the presence of immunoreactive TDP-43 short and long dystrophic neurites, neuronal cytoplasmic inclusions, neuronal loss and gliosis and the absence of neuronal intranuclear inclusions. Frontotemporal lobar degeneration-TDP-type C cases are commonly associated with the semantic variant of primary progressive aphasia or behavioural variant frontotemporal dementia. Here, we provide detailed characterization of regional distributions of pathological TDP-43 and neuronal loss and gliosis in cortical and subcortical regions in 10 TDP-type C cases and investigate the relationship between inclusions and neuronal loss and gliosis. Specimens were obtained from the first 10 TDP-type C cases accessioned from the Northwestern Alzheimer's Disease Research Center (semantic variant of primary progressive aphasia, n = 7; behavioural variant frontotemporal dementia, n = 3). A total of 42 cortical (majority bilateral) and subcortical regions were immunostained with a phosphorylated TDP-43 antibody and/or stained with haematoxylin-eosin. Regions were evaluated for atrophy, and for long dystrophic neurites, short dystrophic neurites, neuronal cytoplasmic inclusions, and neuronal loss and gliosis using a semiquantitative 5-point scale. We calculated a 'neuron-to-inclusion' score (TDP-type C mean score - neuronal loss and gliosis mean score) for each region per case to assess the relationship between TDP-type C inclusions and neuronal loss and gliosis. Primary progressive aphasia cases demonstrated leftward asymmetry of cortical atrophy consistent with the aphasic phenotype. We also observed abundant inclusions and neurodegeneration in both cortical and subcortical regions, with certain subcortical regions emerging as particularly vulnerable to dystrophic neurites (e.g. amygdala, caudate and putamen). Interestingly, linear mixed models showed that regions with lowest TDP-type C pathology had high neuronal dropout, and conversely, regions with abundant pathology displayed relatively preserved neuronal densities (P < 0.05). This inverse relationship between the extent of TDP-positive inclusions and neuronal loss may reflect a process whereby inclusions disappear as their associated neurons are lost. Together, these findings offer insight into the putative substrates of neurodegeneration in unique dementia syndromes.
Collapse
Affiliation(s)
- Allegra Kawles
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yasushi Nishihira
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alex Feldman
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nathan Gill
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Grace Minogue
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rachel Keszycki
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Christina Coventry
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Callen Spencer
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jaclyn Lilek
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kaouther Ajroud
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Giovanni Coppola
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hui Zhang
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Margaret E Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Eileen H Bigio
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - M -Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Qinwen Mao
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
26
|
Heikkinen S, Cajanus A, Katisko K, Hartikainen P, Vanninen R, Haapasalo A, Krüger J, Remes AM, Solje E. Brainstem atrophy is linked to extrapyramidal symptoms in frontotemporal dementia. J Neurol 2022; 269:4488-4497. [PMID: 35377014 PMCID: PMC9294011 DOI: 10.1007/s00415-022-11095-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/26/2022]
Abstract
AbstractExtrapyramidal (EP) symptoms are a known feature in a subpopulation of patients with behavioral variant frontotemporal dementia (bvFTD). Concomitant EP symptoms with FTD-like neuropsychiatric symptoms are also core features in progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). This complicates the early diagnosis of these disorders. Our retrospective register study aimed to discover imaging (MRI and FDG-PET) biomarkers to differentiate PSP, CBD, and bvFTD patients with extrapyramidal symptoms (EP +) from bvFTD patients without EP symptoms (EP-). The records of 2751 patients were screened for the diagnoses and presence of EP symptoms. A total of 222 patients were submitted to imaging analysis and applicable imaging data were recovered from 139 patients. Neuroimaging data were analyzed using Freesurfer software. In the whole cohort, EP + patients showed lower volumes of gray matter compared to EP- patients in the putamen (p = 0.002), bilateral globus pallidum (p = 0.002, p = 0.042), ventral diencephalon (p = 0.002) and brain stem (p < 0.001). In the bvFTD subgroup, there was volumetric difference between EP + and EP− patients in the brain stem. FDG-PET scans in the bvFTD patient subgroup showed that EP + patients had comparative hypometabolism of the superior cerebellar peduncle (SCP) and the frontal lobes. We discovered that EP symptoms are linked to brainstem atrophy in bvFTD patients and the whole cohort. Also, evident hypometabolism in the SCP of bvFTD EP + patients was detected as compared to bvFTD EP− patients. This could indicate that the EP symptoms in these diseases have a more caudal origin in the brainstem than in Parkinson’s disease.
Collapse
Affiliation(s)
- Sami Heikkinen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P.O. Box 1627 (Yliopistonranta 1C), 70211, Kuopio, Finland
| | - Antti Cajanus
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P.O. Box 1627 (Yliopistonranta 1C), 70211, Kuopio, Finland
| | - Kasper Katisko
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P.O. Box 1627 (Yliopistonranta 1C), 70211, Kuopio, Finland
| | | | - Ritva Vanninen
- Department of Radiology, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine - Radiology, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Johanna Krüger
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland
- MRC, Oulu University Hospital, Oulu, Finland
| | - Anne M Remes
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland
- MRC, Oulu University Hospital, Oulu, Finland
| | - Eino Solje
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P.O. Box 1627 (Yliopistonranta 1C), 70211, Kuopio, Finland.
- Neuro Center, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
27
|
Tisdall MD, Ohm DT, Lobrovich R, Das SR, Mizsei G, Prabhakaran K, Ittyerah R, Lim S, McMillan CT, Wolk DA, Gee J, Trojanowski JQ, Lee EB, Detre JA, Yushkevich P, Grossman M, Irwin DJ. Ex vivo MRI and histopathology detect novel iron-rich cortical inflammation in frontotemporal lobar degeneration with tau versus TDP-43 pathology. Neuroimage Clin 2022; 33:102913. [PMID: 34952351 PMCID: PMC8715243 DOI: 10.1016/j.nicl.2021.102913] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/28/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023]
Abstract
Comparative study of whole-hemisphere ex vivo T2*-weighted MRI and histopathology. Sample of FTLD-Tau and FTLD-TDP subtypes with reference to healthy and AD brain. Novel focal upper cortical-layer iron-rich pathology distinguishes FTLD-TDP from clinically-similar FTLD-Tau and AD. Distinct novel iron-rich FTLD-Tau pathology in mid-to-deep cortical-layers and WM. T2*-weighted MRI signatures offer in vivo biomarker targets for FTLD proteinopathy.
Frontotemporal lobar degeneration (FTLD) is a heterogeneous spectrum of age-associated neurodegenerative diseases that include two main pathologic categories of tau (FTLD-Tau) and TDP-43 (FTLD-TDP) proteinopathies. These distinct proteinopathies are often clinically indistinguishable during life, posing a major obstacle for diagnosis and emerging therapeutic trials tailored to disease-specific mechanisms. Moreover, MRI-derived measures have had limited success to date discriminating between FTLD-Tau or FTLD-TDP. T2*-weighted (T2*w) ex vivo MRI has previously been shown to be sensitive to non-heme iron in healthy intracortical lamination and myelin, and to pathological iron deposits in amyloid-beta plaques and activated microglia in Alzheimer’s disease neuropathologic change (ADNC). However, an integrated, ex vivo MRI and histopathology approach is understudied in FTLD. We apply joint, whole-hemisphere ex vivo MRI at 7 T and histopathology to the study autopsy-confirmed FTLD-Tau (n = 4) and FTLD-TDP (n = 3), relative to ADNC disease-control brains with antemortem clinical symptoms of frontotemporal dementia (n = 2), and an age-matched healthy control. We detect distinct laminar patterns of novel iron-laden glial pathology in both FTLD-Tau and FTLD-TDP brains. We find iron-positive ameboid and hypertrophic microglia and astrocytes largely in deeper GM and adjacent WM in FTLD-Tau. In contrast, FTLD-TDP presents prominent superficial cortical layer iron reactivity in astrocytic processes enveloping small blood vessels with limited involvement of adjacent WM, as well as more diffuse distribution of punctate iron-rich dystrophic microglial processes across all GM lamina. This integrated MRI/histopathology approach reveals ex vivo MRI features that are consistent with these pathological observations distinguishing FTLD-Tau and FTLD-TDP subtypes, including prominent irregular hypointense signal in deeper cortex in FTLD-Tau whereas FTLD-TDP showed upper cortical layer hypointense bands and diffuse cortical speckling. Moreover, differences in adjacent WM degeneration and iron-rich gliosis on histology between FTLD-Tau and FTLD-TDP were also readily apparent on MRI as hyperintense signal and irregular areas of hypointensity, respectively that were more prominent in FTLD-Tau compared to FTLD-TDP. These unique histopathological and radiographic features were distinct from healthy control and ADNC brains, suggesting that iron-sensitive T2*w MRI, adapted to in vivo application at sufficient resolution, may eventually offer an opportunity to improve antemortem diagnosis of FTLD proteinopathies using tissue-validated methods.
Collapse
Affiliation(s)
- M Dylan Tisdall
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States.
| | - Daniel T Ohm
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Rebecca Lobrovich
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Sandhitsu R Das
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Gabor Mizsei
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Karthik Prabhakaran
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Ranjit Ittyerah
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Sydney Lim
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Corey T McMillan
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - David A Wolk
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - James Gee
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - John Q Trojanowski
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, United States
| | - Edward B Lee
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, United States
| | - John A Detre
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States; Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Paul Yushkevich
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Murray Grossman
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - David J Irwin
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States; Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, United States.
| |
Collapse
|
28
|
Signature laminar distributions of pathology in frontotemporal lobar degeneration. Acta Neuropathol 2022; 143:363-382. [PMID: 34997851 PMCID: PMC8858288 DOI: 10.1007/s00401-021-02402-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/11/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) with either tau (FTLD-tau) or TDP-43 (FTLD-TDP) inclusions are distinct proteinopathies that frequently cause similar frontotemporal dementia (FTD) clinical syndromes. FTD syndromes often display macroscopic signatures of neurodegeneration at the level of regions and networks, but it is unclear if subregional laminar pathology display patterns unique to proteinopathy or clinical syndrome. We hypothesized that FTLD-tau and FTLD-TDP accumulate pathology in relatively distinct cortical layers independent of clinical syndrome, with greater involvement of lower layers in FTLD-tau. The current study examined 170 patients with either FTLD-tau (n = 73) or FTLD-TDP (n = 97) spanning dementia and motor phenotypes in the FTD spectrum. We digitally measured the percent area occupied by tau and TDP-43 pathology in upper layers (I-III), lower layers (IV-VI), and juxtacortical white matter (WM) from isocortical regions in both hemispheres where available. Linear mixed-effects models compared ratios of upper to lower layer pathology between FTLD groups and investigated relationships with regions, WM pathology, and global cognitive impairment while adjusting for demographics. We found lower ratios of layer pathology in FTLD-tau and higher ratios of layer pathology in FTLD-TDP, reflecting lower layer-predominant tau pathology and upper layer-predominant TDP-43 pathology, respectively (p < 0.001). FTLD-tau displayed lower ratios of layer pathology related to greater WM tau pathology (p = 0.002) and to earlier involved/severe pathology regions (p = 0.007). In contrast, FTLD-TDP displayed higher ratios of layer pathology not related to either WM pathology or regional severity. Greater cognitive impairment was associated with higher ratios of layer pathology in FTLD-tau (p = 0.018), but was not related to ratios of layer pathology in FTLD-TDP. Lower layer-predominant tau pathology and upper layer-predominant TDP-43 pathology are proteinopathy-specific, regardless of clinical syndromes or regional networks that define these syndromes. Thus, patterns of laminar change may provide a useful anatomical framework for investigating how degeneration of select cells and corresponding laminar circuits influence large-scale networks and clinical symptomology in FTLD.
Collapse
|
29
|
Tremblay C, Serrano GE, Intorcia AJ, Curry J, Sue LI, Nelson CM, Walker JE, Glass MJ, Arce RA, Fleisher AS, Pontecorvo MJ, Atri A, Montine TJ, Chen K, Beach TG. Hemispheric Asymmetry and Atypical Lobar Progression of Alzheimer-Type Tauopathy. J Neuropathol Exp Neurol 2022; 81:158-171. [PMID: 35191506 DOI: 10.1093/jnen/nlac008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The spread of neurofibrillary tau pathology in Alzheimer disease (AD) mostly follows a stereotypical pattern of topographical progression but atypical patterns associated with interhemispheric asymmetry have been described. Because histopathological studies that used bilateral sampling are limited, this study aimed to assess interhemispheric tau pathology differences and the presence of topographically atypical cortical spreading patterns. Immunohistochemical staining for detection of tau pathology was performed in 23 regions of interest in 57 autopsy cases comparing bilateral cortical regions and hemispheres. Frequent mild (82% of cases) and occasional moderate (32%) interhemispheric density discrepancies were observed, whereas marked discrepancies were uncommon (7%) and restricted to occipital regions. Left and right hemispheric tau pathology dominance was observed with similar frequencies, except in Braak Stage VI that favored a left dominance. Interhemispheric Braak stage differences were observed in 16% of cases and were more frequent in advanced (IV-VI) versus early (I-III) stages. One atypical lobar topographical pattern in which occipital tau pathology density exceeded frontal lobe scores was identified in 4 cases favoring a left dominant asymmetry. We speculate that asymmetry and atypical topographical progression patterns may be associated with atypical AD clinical presentations and progression characteristics, which should be tested by comprehensive clinicopathological correlations.
Collapse
Affiliation(s)
- Cécilia Tremblay
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Geidy E Serrano
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Jasmine Curry
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Lucia I Sue
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Courtney M Nelson
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Jessica E Walker
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Michael J Glass
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Richard A Arce
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | - Alireza Atri
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA.,Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, Arizona, USA.,School of Mathematics and Statistics, Arizona State University, Tempe, Arizona, USA.,Department of Neurology, College of Medicine Phoenix, University of Arizona, Tucson, Arizona, USA
| | - Thomas G Beach
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| |
Collapse
|
30
|
Xu YL, Wang XY, Chen J, Kang M, Wang YX, Zhang LJ, Shu HY, Liao XL, Zou J, Wei H, Ling Q, Shao Y. Altered Spontaneous Brain Activity Patterns of Meibomian Gland Dysfunction in Severely Obese Population Measured Using the Fractional Amplitude of Low-Frequency Fluctuations. Front Psychiatry 2022; 13:914039. [PMID: 35633781 PMCID: PMC9130486 DOI: 10.3389/fpsyt.2022.914039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Utilizing the fractional amplitude of low-frequency fluctuations (fALFF) technique, this study sought to correlate spontaneous cerebral abnormalities with the clinical manifestations of meibomian gland dysfunction (MGD) in severely obese (SO) population. SUBJECTS AND METHODS Twelve MGD patients in SO population (PATs) (4 males and 8 females) and twelve healthy controls (HCs) (6 males and 6 females) matched by gender and age were enrolled. Every participant underwent resting-state functional magnetic resonance imaging (rs-MRI) scanning. Spontaneous cerebral activity alterations were examined using the fALFF method. Receiver operating characteristic (ROC) curves were utilized to classify the medial fALFF values of the PATs and HCs. PATs were also asked to complete anxiety and depression score forms, permitting a correlation analysis. RESULTS In contrast with HCs, PATs had prominently increased fALFF values in the left lingual gyrus, the right globus pallidus, the right anterior cingulate and paracingulate gyri and the left middle occipital lobe (P < 0.05), and decreased fALFF values in the right cerebellum, the left fusiform gyrus, the right medial orbitofrontal gyrus, the left triangle inferior frontal gyrus and the left inferior parietal gyrus (P < 0.05). The results of the ROC curve indicated that changes in regional fALFF values might help diagnose MGD in SO population. Moreover, fALFF values in the right cerebellum of PATs were positively correlated with hospital anxiety and depression scores (HADS) (r = 0.723, P = 0.008). The fALFF values in the left triangle inferior frontal gyrus of PAT were negatively correlated with HADS (r = -0.651, P = 0.022). CONCLUSIONS Aberrant spontaneous activity was observed in multiple regions of the cerebrum, offering helpful information about the pathology of MGD in SO population. Aberrant fALFF values in these regions likely relates to the latent pathologic mechanisms of anomalous cerebral activities in PATs.
Collapse
Affiliation(s)
- Yu-Ling Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Yu Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Kang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi-Xin Wang
- Department of Ophthalmology and Visual Sciences, Cardiff University, Cardiff, United Kingdom
| | - Li-Juan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui-Ye Shu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu-Lin Liao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jie Zou
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong Wei
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian Ling
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
31
|
Kim BJ, Lee V, Lee EB, Saludades A, Trojanowski JQ, Dunaief JL, Grossman M, Irwin DJ. Retina tissue validation of optical coherence tomography determined outer nuclear layer loss in FTLD-tau. Acta Neuropathol Commun 2021; 9:184. [PMID: 34794500 PMCID: PMC8600822 DOI: 10.1186/s40478-021-01290-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/06/2021] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is associated with inner retina (nerve fiber and ganglion cell layers) thinning. In contrast, we have seen outer retina thinning driven by photoreceptor outer nuclear layer (ONL) thinning with antemortem optical coherence tomography (OCT) among patients considered to have a frontotemporal degeneration tauopathy (FTLD-Tau). Our objective was to determine if postmortem retinal tissue from FTLD-Tau patients demonstrates ONL loss observed antemortem on OCT. Two probable FTLD-Tau patients that were deeply phenotyped by clinical and genetic testing were imaged with OCT and followed to autopsy. Postmortem brain and retinal tissue were evaluated by a neuropathologist and ocular pathologist, respectively, masked to diagnosis. OCT findings were correlated with retinal histology. The two patients had autopsy-confirmed FTLD-Tau neuropathology and had antemortem OCT measurements showing ONL thinning (66.9 μm, patient #1; 74.9 μm, patient #2) below the 95% confidence interval of normal limits (75.1-120.7 μm) in our healthy control cohort. Postmortem, retinal tissue from both patients demonstrated loss of nuclei in the ONL, matching ONL loss visualized on antemortem OCT. Nuclei counts from each area of ONL loss (2 - 3 nuclei per column) seen in patient eyes were below the 95% confidence interval (4 - 8 nuclei per column for ONL) of 3 normal control retinas analyzed at the same location. Our evaluation of retinal tissue from FTLD-Tau patients confirms ONL loss seen antemortem by OCT. Continued investigation of ONL thinning as a biomarker that may distinguish FTLD-Tau from other dementias is warranted.
Collapse
Affiliation(s)
- Benjamin J Kim
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Vivian Lee
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Adrienne Saludades
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Joshua L Dunaief
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Murray Grossman
- Frontotemporal Lobar Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - David J Irwin
- Frontotemporal Lobar Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
32
|
Ravikumar S, Wisse LEM, Lim S, Ittyerah R, Xie L, Bedard ML, Das SR, Lee EB, Tisdall MD, Prabhakaran K, Lane J, Detre JA, Mizsei G, Trojanowski JQ, Robinson JL, Schuck T, Grossman M, Artacho-Pérula E, de Onzoño Martin MMI, Del Mar Arroyo Jiménez M, Muñoz M, Romero FJM, Del Pilar Marcos Rabal M, Sánchez SC, González JCD, de la Rosa Prieto C, Parada MC, Irwin DJ, Wolk DA, Insausti R, Yushkevich PA. Ex vivo MRI atlas of the human medial temporal lobe: characterizing neurodegeneration due to tau pathology. Acta Neuropathol Commun 2021; 9:173. [PMID: 34689831 PMCID: PMC8543911 DOI: 10.1186/s40478-021-01275-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
Tau neurofibrillary tangle (NFT) pathology in the medial temporal lobe (MTL) is closely linked to neurodegeneration, and is the early pathological change associated with Alzheimer's disease (AD). To elucidate patterns of structural change in the MTL specifically associated with tau pathology, we compared high-resolution ex vivo MRI scans of human postmortem MTL specimens with histology-based pathological assessments of the MTL. MTL specimens were obtained from twenty-nine brain donors, including patients with AD, other dementias, and individuals with no known history of neurological disease. Ex vivo MRI scans were combined using a customized groupwise diffeomorphic registration approach to construct a 3D probabilistic atlas that captures the anatomical variability of the MTL. Using serial histology imaging in eleven specimens, we labelled the MTL subregions in the atlas based on cytoarchitecture. Leveraging the atlas and neuropathological ratings of tau and TAR DNA-binding protein 43 (TDP-43) pathology severity, morphometric analysis was performed to correlate regional MTL thickness with the severity of tau pathology, after correcting for age and TDP-43 pathology. We found significant correlations between tau pathology and thickness in the entorhinal cortex (ERC) and stratum radiatum lacunosum moleculare (SRLM). When focusing on cases with low levels of TDP-43 pathology, we found strong associations between tau pathology and thickness in the ERC, SRLM and the subiculum/cornu ammonis 1 (CA1) subfields of the hippocampus, consistent with early Braak stages.
Collapse
Affiliation(s)
- Sadhana Ravikumar
- Department of Bioengineering, University of Pennsylvania, Richards Building 6th Floor, Suite D, 3700 Hamilton Walk, Philadelphia, PA, 19104, USA.
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Laura E M Wisse
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Diagnostic Radiology, Lund University, 22242, Lund, Sweden
| | - Sydney Lim
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ranjit Ittyerah
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Long Xie
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Madigan L Bedard
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sandhitsu R Das
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward B Lee
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - M Dylan Tisdall
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Karthik Prabhakaran
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jacqueline Lane
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gabor Mizsei
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John L Robinson
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Theresa Schuck
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emilio Artacho-Pérula
- Human Neuroanatomy Laboratory, CSIC Neuromax Associated Unit, University of Castilla La Mancha, 02008, Albacete, Spain
| | | | - María Del Mar Arroyo Jiménez
- Human Neuroanatomy Laboratory, CSIC Neuromax Associated Unit, University of Castilla La Mancha, 02008, Albacete, Spain
| | - Monica Muñoz
- Human Neuroanatomy Laboratory, CSIC Neuromax Associated Unit, University of Castilla La Mancha, 02008, Albacete, Spain
| | | | - Maria Del Pilar Marcos Rabal
- Human Neuroanatomy Laboratory, CSIC Neuromax Associated Unit, University of Castilla La Mancha, 02008, Albacete, Spain
| | - Sandra Cebada Sánchez
- Human Neuroanatomy Laboratory, CSIC Neuromax Associated Unit, University of Castilla La Mancha, 02008, Albacete, Spain
| | - José Carlos Delgado González
- Human Neuroanatomy Laboratory, CSIC Neuromax Associated Unit, University of Castilla La Mancha, 02008, Albacete, Spain
| | - Carlos de la Rosa Prieto
- Human Neuroanatomy Laboratory, CSIC Neuromax Associated Unit, University of Castilla La Mancha, 02008, Albacete, Spain
| | - Marta Córcoles Parada
- Human Neuroanatomy Laboratory, CSIC Neuromax Associated Unit, University of Castilla La Mancha, 02008, Albacete, Spain
| | - David J Irwin
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ricardo Insausti
- Human Neuroanatomy Laboratory, CSIC Neuromax Associated Unit, University of Castilla La Mancha, 02008, Albacete, Spain
| | - Paul A Yushkevich
- Department of Bioengineering, University of Pennsylvania, Richards Building 6th Floor, Suite D, 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
33
|
Lubben N, Ensink E, Coetzee GA, Labrie V. The enigma and implications of brain hemispheric asymmetry in neurodegenerative diseases. Brain Commun 2021; 3:fcab211. [PMID: 34557668 PMCID: PMC8454206 DOI: 10.1093/braincomms/fcab211] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 01/15/2023] Open
Abstract
The lateralization of the human brain may provide clues into the pathogenesis and progression of neurodegenerative diseases. Though differing in their presentation and underlying pathologies, neurodegenerative diseases are all devastating and share an intriguing theme of asymmetrical pathology and clinical symptoms. Parkinson’s disease, with its distinctive onset of motor symptoms on one side of the body, stands out in this regard, but a review of the literature reveals asymmetries in several other neurodegenerative diseases. Here, we review the lateralization of the structure and function of the healthy human brain and the common genetic and epigenetic patterns contributing to the development of asymmetry in health and disease. We specifically examine the role of asymmetry in Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, and interrogate whether these imbalances may reveal meaningful clues about the origins of these diseases. We also propose several hypotheses for how lateralization may contribute to the distinctive and enigmatic features of asymmetry in neurodegenerative diseases, suggesting a role for asymmetry in the choroid plexus, neurochemistry, protein distribution, brain connectivity and the vagus nerve. Finally, we suggest how future studies may reveal novel insights into these diseases through the lens of asymmetry.
Collapse
Affiliation(s)
- Noah Lubben
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Elizabeth Ensink
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Gerhard A Coetzee
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Viviane Labrie
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
34
|
Geraudie A, Díaz Rivera M, Montembeault M, García AM. Language in Behavioral Variant Frontotemporal Dementia: Another Stone to Be Turned in Latin America. Front Neurol 2021; 12:702770. [PMID: 34447348 PMCID: PMC8383282 DOI: 10.3389/fneur.2021.702770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/12/2021] [Indexed: 12/03/2022] Open
Abstract
Beyond canonical deficits in social cognition and interpersonal conduct, behavioral variant frontotemporal dementia (bvFTD) involves language difficulties in a substantial proportion of cases. However, since most evidence comes from high-income countries, the scope and relevance of language deficits in Latin American bvFTD samples remain poorly understood. As a first step toward reversing this scenario, we review studies reporting language measures in Latin American bvFTD cohorts relative to other groups. We identified 24 papers meeting systematic criteria, mainly targeting phonemic and semantic fluency, naming, semantic processing, and comprehension skills. The evidence shows widespread impairments in these domains, often related to overall cognitive disturbances. Some of these deficits may be as severe as in other diseases where they are more widely acknowledged, such as Alzheimer's disease. Considering the prevalence and informativeness of language deficits in bvFTD patients from other world regions, the need arises for more systematic research in Latin America, ideally spanning multiple domains, in diverse languages and dialects, with validated batteries. We outline key challenges and pathways of progress in this direction, laying the ground for a new regional research agenda on the disorder.
Collapse
Affiliation(s)
- Amandine Geraudie
- Neurology Department, Toulouse University Hospital, Toulouse, France
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Mariano Díaz Rivera
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- Agencia Nacional de Promoción Científica y Tecnológica, Buenos Aires, Argentina
| | - Maxime Montembeault
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Adolfo M. García
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Faculty of Education, National University of Cuyo, Mendoza, Argentina
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
35
|
Hsu CCH, Huang CC, Tsai SJ, Chen LK, Li HC, Lo CYZ, Lin CP. Differential Age Trajectories of White Matter Changes Between Sexes Correlate with Cognitive Performances. Brain Connect 2021; 11:759-771. [PMID: 33858197 DOI: 10.1089/brain.2020.0961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Aging is accompanied by a gradual deterioration in multiple cognitive abilities and brain structures. Both cognitive function and white matter (WM) structure are found to be associated with neurodegeneration diseases and correlated with sex during aging. However, it is still unclear whether the brain structural change could be attributable to sex, and how sex would affect cognitive performances during aging. Materials and Methods: Diffusion magnetic resonance imaging (MRI) scans were performed on 1127 healthy participants (age range: 21-89) at a single site. The age trajectories of the WM tract microstructure were delineated to estimate the turning age and changing rate between sexes. The canonical correlation analysis and moderated mediation analysis were used to examine the relationship between sex-linked WM tracts and cognitive performances. Results: The axon intactness and demyelination of sex-linked tracts during aging were multifaceted. Sex-linked tracts in females peak around 5 years later than those in males but change significantly faster after the turning age. Projection and association tracts (e.g., corticospinal tracts and parahippocampal cingulum) contributed to a significant decrease in visuospatial functions (VS) and executive functions (E). We discovered that there is a stronger indirect effect of sex-linked tracts on cognitive functions in females than in males. Conclusion: Our findings suggest that the vulnerable projection and association tracts in females may induce negative impacts on integrating multiple functions, which results in a faster decrease in VS and E.
Collapse
Affiliation(s)
- Chih-Chin Heather Hsu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Center of Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chu-Chung Huang
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.,Shanghai Changning Mental Health Center, Shanghai, China
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Liang-Kung Chen
- Center of Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan.,Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan
| | - Hui-Chun Li
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
36
|
Peet BT, Spina S, Mundada N, La Joie R. Neuroimaging in Frontotemporal Dementia: Heterogeneity and Relationships with Underlying Neuropathology. Neurotherapeutics 2021; 18:728-752. [PMID: 34389969 PMCID: PMC8423978 DOI: 10.1007/s13311-021-01101-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia encompasses a group of clinical syndromes defined pathologically by degeneration of the frontal and temporal lobes. Historically, these syndromes have been challenging to diagnose, with an average of about three years between the time of symptom onset and the initial evaluation and diagnosis. Research in the field of neuroimaging has revealed numerous biomarkers of the various frontotemporal dementia syndromes, which has provided clinicians with a method of narrowing the differential diagnosis and improving diagnostic accuracy. As such, neuroimaging is considered a core investigative tool in the evaluation of neurodegenerative disorders. Furthermore, patterns of neurodegeneration correlate with the underlying neuropathological substrates of the frontotemporal dementia syndromes, which can aid clinicians in determining the underlying etiology and improve prognostication. This review explores the advancements in neuroimaging and discusses the phenotypic and pathologic features of behavioral variant frontotemporal dementia, semantic variant primary progressive aphasia, and nonfluent variant primary progressive aphasia, as seen on structural magnetic resonance imaging and positron emission tomography.
Collapse
Affiliation(s)
- Bradley T Peet
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Nidhi Mundada
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| |
Collapse
|
37
|
Giannini LAA, Peterson C, Ohm D, Xie SX, McMillan CT, Raskovsky K, Massimo L, Suh E, Van Deerlin VM, Wolk DA, Trojanowski JQ, Lee EB, Grossman M, Irwin DJ. Frontotemporal lobar degeneration proteinopathies have disparate microscopic patterns of white and grey matter pathology. Acta Neuropathol Commun 2021; 9:30. [PMID: 33622418 PMCID: PMC7901087 DOI: 10.1186/s40478-021-01129-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 01/10/2023] Open
Abstract
Frontotemporal lobar degeneration proteinopathies with tau inclusions (FTLD-Tau) or TDP-43 inclusions (FTLD-TDP) are associated with clinically similar phenotypes. However, these disparate proteinopathies likely differ in cellular severity and regional distribution of inclusions in white matter (WM) and adjacent grey matter (GM), which have been understudied. We performed a neuropathological study of subcortical WM and adjacent GM in a large autopsy cohort (n = 92; FTLD-Tau = 37, FTLD-TDP = 55) using a validated digital image approach. The antemortem clinical phenotype was behavioral-variant frontotemporal dementia (bvFTD) in 23 patients with FTLD-Tau and 42 with FTLD-TDP, and primary progressive aphasia (PPA) in 14 patients with FTLD-Tau and 13 with FTLD-TDP. We used linear mixed-effects models to: (1) compare WM pathology burden between proteinopathies; (2) investigate the relationship between WM pathology burden and WM degeneration using luxol fast blue (LFB) myelin staining; (3) study regional patterns of pathology burden in clinico-pathological groups. WM pathology burden was greater in FTLD-Tau compared to FTLD-TDP across regions (beta = 4.21, SE = 0.34, p < 0.001), and correlated with the degree of WM degeneration in both FTLD-Tau (beta = 0.32, SE = 0.10, p = 0.002) and FTLD-TDP (beta = 0.40, SE = 0.08, p < 0.001). WM degeneration was greater in FTLD-Tau than FTLD-TDP particularly in middle-frontal and anterior cingulate regions (p < 0.05). Distinct regional patterns of WM and GM inclusions characterized FTLD-Tau and FTLD-TDP proteinopathies, and associated in part with clinical phenotype. In FTLD-Tau, WM pathology was particularly severe in the dorsolateral frontal cortex in nonfluent-variant PPA, and GM pathology in dorsolateral and paralimbic frontal regions with some variation across tauopathies. Differently, FTLD-TDP had little WM regional variability, but showed severe GM pathology burden in ventromedial prefrontal regions in both bvFTD and PPA. To conclude, FTLD-Tau and FTLD-TDP proteinopathies have distinct severity and regional distribution of WM and GM pathology, which may impact their clinical presentation, with overall greater severity of WM pathology as a distinguishing feature of tauopathies.
Collapse
Affiliation(s)
- Lucia A A Giannini
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
- Department of Neurology, Alzheimer Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Claire Peterson
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - Daniel Ohm
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - Sharon X Xie
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Corey T McMillan
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - Katya Raskovsky
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - Lauren Massimo
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - EunRah Suh
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David A Wolk
- Department of Pathology and Laboratory Medicine, Alzheimer's Disease Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Alzheimer's Disease Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Alzheimer's Disease Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - David J Irwin
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
38
|
Hu J, Qing Z, Liu R, Zhang X, Lv P, Wang M, Wang Y, He K, Gao Y, Zhang B. Deep Learning-Based Classification and Voxel-Based Visualization of Frontotemporal Dementia and Alzheimer's Disease. Front Neurosci 2021; 14:626154. [PMID: 33551735 PMCID: PMC7858673 DOI: 10.3389/fnins.2020.626154] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/28/2020] [Indexed: 11/13/2022] Open
Abstract
Frontotemporal dementia (FTD) and Alzheimer's disease (AD) have overlapping symptoms, and accurate differential diagnosis is important for targeted intervention and treatment. Previous studies suggest that the deep learning (DL) techniques have the potential to solve the differential diagnosis problem of FTD, AD and normal controls (NCs), but its performance is still unclear. In addition, existing DL-assisted diagnostic studies still rely on hypothesis-based expert-level preprocessing. On the one hand, it imposes high requirements on clinicians and data themselves; On the other hand, it hinders the backtracking of classification results to the original image data, resulting in the classification results cannot be interpreted intuitively. In the current study, a large cohort of 3D T1-weighted structural magnetic resonance imaging (MRI) volumes (n = 4,099) was collected from two publicly available databases, i.e., the ADNI and the NIFD. We trained a DL-based network directly based on raw T1 images to classify FTD, AD and corresponding NCs. And we evaluated the convergence speed, differential diagnosis ability, robustness and generalizability under nine scenarios. The proposed network yielded an accuracy of 91.83% based on the most common T1-weighted sequence [magnetization-prepared rapid acquisition with gradient echo (MPRAGE)]. The knowledge learned by the DL network through multiple classification tasks can also be used to solve subproblems, and the knowledge is generalizable and not limited to a specified dataset. Furthermore, we applied a gradient visualization algorithm based on guided backpropagation to calculate the contribution graph, which tells us intuitively why the DL-based networks make each decision. The regions making valuable contributions to FTD were more widespread in the right frontal white matter regions, while the left temporal, bilateral inferior frontal and parahippocampal regions were contributors to the classification of AD. Our results demonstrated that DL-based networks have the ability to solve the enigma of differential diagnosis of diseases without any hypothesis-based preprocessing. Moreover, they may mine the potential patterns that may be different from human clinicians, which may provide new insight into the understanding of FTD and AD.
Collapse
Affiliation(s)
- Jingjing Hu
- National Institute of Healthcare Data Science at Nanjing University, Nanjing, China.,State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
| | - Zhao Qing
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Renyuan Liu
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Zhang
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Pin Lv
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Maoxue Wang
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Wang
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Kelei He
- National Institute of Healthcare Data Science at Nanjing University, Nanjing, China.,Medical School of Nanjing University, Nanjing, China
| | - Yang Gao
- National Institute of Healthcare Data Science at Nanjing University, Nanjing, China.,State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
| | - Bing Zhang
- National Institute of Healthcare Data Science at Nanjing University, Nanjing, China.,State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China.,Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
39
|
Placek K, Benatar M, Wuu J, Rampersaud E, Hennessy L, Van Deerlin VM, Grossman M, Irwin DJ, Elman L, McCluskey L, Quinn C, Granit V, Statland JM, Burns TM, Ravits J, Swenson A, Katz J, Pioro EP, Jackson C, Caress J, So Y, Maiser S, Walk D, Lee EB, Trojanowski JQ, Cook P, Gee J, Sha J, Naj AC, Rademakers R, Chen W, Wu G, Paul Taylor J, McMillan CT. Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis. EMBO Mol Med 2021; 13:e12595. [PMID: 33270986 PMCID: PMC7799365 DOI: 10.15252/emmm.202012595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 11/09/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a multi-system disease characterized primarily by progressive muscle weakness. Cognitive dysfunction is commonly observed in patients; however, factors influencing risk for cognitive dysfunction remain elusive. Using sparse canonical correlation analysis (sCCA), an unsupervised machine-learning technique, we observed that single nucleotide polymorphisms collectively associate with baseline cognitive performance in a large ALS patient cohort (N = 327) from the multicenter Clinical Research in ALS and Related Disorders for Therapeutic Development (CReATe) Consortium. We demonstrate that a polygenic risk score derived using sCCA relates to longitudinal cognitive decline in the same cohort and also to in vivo cortical thinning in the orbital frontal cortex, anterior cingulate cortex, lateral temporal cortex, premotor cortex, and hippocampus (N = 90) as well as post-mortem motor cortical neuronal loss (N = 87) in independent ALS cohorts from the University of Pennsylvania Integrated Neurodegenerative Disease Biobank. Our findings suggest that common genetic polymorphisms may exert a polygenic contribution to the risk of cortical disease vulnerability and cognitive dysfunction in ALS.
Collapse
|
40
|
Placek K, Benatar M, Wuu J, Rampersaud E, Hennessy L, Van Deerlin VM, Grossman M, Irwin DJ, Elman L, McCluskey L, Quinn C, Granit V, Statland JM, Burns TM, Ravits J, Swenson A, Katz J, Pioro EP, Jackson C, Caress J, So Y, Maiser S, Walk D, Lee EB, Trojanowski JQ, Cook P, Gee J, Sha J, Naj AC, Rademakers R, Chen W, Wu G, Paul Taylor J, McMillan CT. Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis. EMBO Mol Med 2021. [PMID: 33270986 PMCID: PMC7799365 DOI: 10.15252/emmm.202012595|] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a multi-system disease characterized primarily by progressive muscle weakness. Cognitive dysfunction is commonly observed in patients; however, factors influencing risk for cognitive dysfunction remain elusive. Using sparse canonical correlation analysis (sCCA), an unsupervised machine-learning technique, we observed that single nucleotide polymorphisms collectively associate with baseline cognitive performance in a large ALS patient cohort (N = 327) from the multicenter Clinical Research in ALS and Related Disorders for Therapeutic Development (CReATe) Consortium. We demonstrate that a polygenic risk score derived using sCCA relates to longitudinal cognitive decline in the same cohort and also to in vivo cortical thinning in the orbital frontal cortex, anterior cingulate cortex, lateral temporal cortex, premotor cortex, and hippocampus (N = 90) as well as post-mortem motor cortical neuronal loss (N = 87) in independent ALS cohorts from the University of Pennsylvania Integrated Neurodegenerative Disease Biobank. Our findings suggest that common genetic polymorphisms may exert a polygenic contribution to the risk of cortical disease vulnerability and cognitive dysfunction in ALS.
Collapse
Affiliation(s)
- Katerina Placek
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Michael Benatar
- Department of NeurologyLeonard M. Miller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Joanne Wuu
- Department of NeurologyLeonard M. Miller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Evadnie Rampersaud
- Center for Applied BioinformaticsSt. Jude Children’s Research HospitalMemphisTNUSA
| | - Laura Hennessy
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Vivianna M Van Deerlin
- Department of Pathology & Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Murray Grossman
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - David J Irwin
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Lauren Elman
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Leo McCluskey
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Colin Quinn
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Volkan Granit
- Department of NeurologyLeonard M. Miller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Jeffrey M Statland
- Department of NeurologyUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Ted M Burns
- Department of NeurologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
| | - John Ravits
- Department of NeurosciencesUniversity of California San DiegoSan DiegoCAUSA
| | | | - Jon Katz
- Forbes Norris ALS CenterCalifornia Pacific Medical CenterSan FranciscoCAUSA
| | - Erik P Pioro
- Department of NeurologyCleveland ClinicClevelandOHUSA
| | - Carlayne Jackson
- Department of NeurologyUniversity of Texas Health Science CenterSan AntonioTXUSA
| | - James Caress
- Department of NeurologyWake Forest University School of MedicineWinston‐SalemNCUSA
| | - Yuen So
- Department of NeurologyStanford University Medical CenterSan JoseCAUSA
| | - Samuel Maiser
- Department of NeurologyUniversity of Minnesota Medical CenterMinneapolisMNUSA
| | - David Walk
- Department of NeurologyUniversity of Minnesota Medical CenterMinneapolisMNUSA
| | - Edward B Lee
- Department of Pathology & Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - John Q Trojanowski
- Department of Pathology & Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Philip Cook
- Penn Image Computing Science Laboratory (PICSL)Department of RadiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - James Gee
- Penn Image Computing Science Laboratory (PICSL)Department of RadiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Jin Sha
- Department of Biostatistics, Epidemiology, and InformaticsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA,Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Adam C Naj
- Department of Pathology & Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA,Department of Biostatistics, Epidemiology, and InformaticsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA,Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | | | | | - Wenan Chen
- Center for Applied BioinformaticsSt. Jude Children’s Research HospitalMemphisTNUSA
| | - Gang Wu
- Center for Applied BioinformaticsSt. Jude Children’s Research HospitalMemphisTNUSA
| | - J Paul Taylor
- Center for Applied BioinformaticsSt. Jude Children’s Research HospitalMemphisTNUSA,The Howard Hughes Medical InstituteChevy ChaseMSUSA
| | - Corey T McMillan
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
41
|
Ohm DT, Peterson C, Lobrovich R, Cousins KAQ, Gibbons GS, McMillan CT, Wolk DA, Van Deerlin V, Elman L, Spindler M, Deik A, Siderowf A, Trojanowski JQ, Lee EB, Grossman M, Irwin DJ. Degeneration of the locus coeruleus is a common feature of tauopathies and distinct from TDP-43 proteinopathies in the frontotemporal lobar degeneration spectrum. Acta Neuropathol 2020; 140:675-693. [PMID: 32804255 DOI: 10.1007/s00401-020-02210-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Neurodegeneration of the locus coeruleus (LC) in age-related neurodegenerative diseases such as Alzheimer's disease (AD) is well documented. However, detailed studies of LC neurodegeneration in the full spectrum of frontotemporal lobar degeneration (FTLD) proteinopathies comparing tauopathies (FTLD-tau) to TDP-43 proteinopathies (FTLD-TDP) are lacking. Here, we tested the hypothesis that there is greater LC neuropathology and neurodegeneration in FTLD-tau compared to FTLD-TDP. We examined 280 patients including FTLD-tau (n = 94), FTLD-TDP (n = 135), and two reference groups: clinical/pathological AD (n = 32) and healthy controls (HC, n = 19). Adjacent sections of pons tissue containing the LC were immunostained for phosphorylated TDP-43 (1D3-p409/410), hyperphosphorylated tau (PHF-1), and tyrosine hydroxylase (TH) to examine neuromelanin-containing noradrenergic neurons. Blinded to clinical and pathologic diagnoses, we semi-quantitatively scored inclusions of tau and TDP-43 both inside LC neuronal somas and in surrounding neuropil. We also digitally measured the percent area occupied of neuromelanin inside of TH-positive LC neurons and in surrounding neuropil to calculate a ratio of extracellular-to-intracellular neuromelanin as an objective composite measure of neurodegeneration. We found that LC tau burden in FTLD-tau was greater than LC TDP-43 burden in FTLD-TDP (z = - 11.38, p < 0.0001). Digital measures of LC neurodegeneration in FTLD-tau were comparable to AD (z = - 1.84, p > 0.05) but greater than FTLD-TDP (z = - 3.85, p < 0.0001) and HC (z = - 4.12, p < 0.0001). Both tau burden and neurodegeneration were consistently elevated in the LC across pathologic and clinical subgroups of FTLD-tau compared to FTLD-TDP subgroups. Moreover, LC tau burden positively correlated with neurodegeneration in the total FTLD group (rho = 0.24, p = 0.001), while TDP-43 burden did not correlate with LC neurodegeneration in FTLD-TDP (rho = - 0.01, p = 0.90). These findings suggest that patterns of disease propagation across all tauopathies include prominent LC tau and neurodegeneration that are relatively distinct from the minimal degenerative changes to the LC in FTLD-TDP and HC. Antemortem detection of LC neurodegeneration and/or function could potentially improve antemortem differentiation of underlying FTLD tauopathies from clinically similar FTLD-TDP proteinopathies.
Collapse
Affiliation(s)
- Daniel T Ohm
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Claire Peterson
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rebecca Lobrovich
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katheryn A Q Cousins
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Garrett S Gibbons
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Corey T McMillan
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David A Wolk
- Alzheimer's Disease Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Memory Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivianna Van Deerlin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Alzheimer's Disease Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lauren Elman
- Comprehensive Amyotrophic Lateral Sclerosis Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Meredith Spindler
- Parkinson's Disease and Movement Disorders Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andres Deik
- Parkinson's Disease and Movement Disorders Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew Siderowf
- Parkinson's Disease and Movement Disorders Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Alzheimer's Disease Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Alzheimer's Disease Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Murray Grossman
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David J Irwin
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
42
|
Coughlin DG, Phillips JS, Roll E, Peterson C, Lobrovich R, Rascovsky K, Ungrady M, Wolk DA, Das S, Weintraub D, Lee EB, Trojanowski JQ, Shaw LM, Vaishnavi S, Siderowf A, Nasrallah IM, Irwin DJ, McMillan CT. Multimodal in vivo and postmortem assessments of tau in Lewy body disorders. Neurobiol Aging 2020; 96:137-147. [PMID: 33002767 DOI: 10.1016/j.neurobiolaging.2020.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
We compared regional retention of 18F-flortaucipir between 20 patients with Lewy body disorders (LBD), 12 Alzheimer's disease patients with positive amyloid positron emission tomography (PET) scans (AD+Aβ) and 15 healthy controls with negative amyloid PET scans (HC-Aβ). In LBD subjects, we compared the relationship between 18F-flortaucipir retention and cerebrospinal fluid (CSF) tau, cognitive performance, and neuropathological tau at autopsy. The LBD cohort was stratified using an Aβ42 cut-off of 192 pg/mL to enrich for groups likely harboring tau pathology (LBD+Aβ = 11, LBD-Aβ = 9). 18F-flortaucipir retention was higher in LBD+AB than HC-Aβ in five, largely temporal-parietal regions with sparing of medial temporal regions. Higher retention was associated with higher CSF total-tau levels (p = 0.04), poorer domain-specific cognitive performance (p = 0.02-0.04), and greater severity of neuropathological tau in corresponding regions. While 18F-flortaucipir retention in LBD is intermediate between healthy controls and AD, retention relates to cognitive impairment, CSF total-tau, and neuropathological tau. Future work in larger autopsy-validated cohorts is needed to define LBD-specific tau biomarker profiles.
Collapse
Affiliation(s)
- David G Coughlin
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Digital Neuropathology Laboratory, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Lewy Body Disease Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey S Phillips
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Roll
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Claire Peterson
- Digital Neuropathology Laboratory, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Lobrovich
- Digital Neuropathology Laboratory, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Katya Rascovsky
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Molly Ungrady
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sandhitsu Das
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Weintraub
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Michael J. Crescenz VA Medical Center, Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA, USA
| | - Edward B Lee
- Alzheimer's Disease Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Center for Neurodegenerative Disease Research, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie M Shaw
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sanjeev Vaishnavi
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Lewy Body Disease Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Siderowf
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Lewy Body Disease Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ilya M Nasrallah
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Digital Neuropathology Laboratory, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Lewy Body Disease Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Corey T McMillan
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | | |
Collapse
|
43
|
Woollacott IOC, Toomey CE, Strand C, Courtney R, Benson BC, Rohrer JD, Lashley T. Microglial burden, activation and dystrophy patterns in frontotemporal lobar degeneration. J Neuroinflammation 2020; 17:234. [PMID: 32778130 PMCID: PMC7418403 DOI: 10.1186/s12974-020-01907-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Microglial dysfunction is implicated in frontotemporal lobar degeneration (FTLD). Although studies have reported excessive microglial activation or senescence (dystrophy) in Alzheimer’s disease (AD), few have explored this in FTLD. We examined regional patterns of microglial burden, activation and dystrophy in sporadic and genetic FTLD, sporadic AD and controls. Methods Immunohistochemistry was performed in frontal and temporal grey and white matter from 50 pathologically confirmed FTLD cases (31 sporadic, 19 genetic: 20 FTLD-tau, 26 FTLD-TDP, four FTLD-FUS), five AD cases and five controls, using markers to detect phagocytic (CD68-positive) and antigen-presenting (CR3/43-positive) microglia, and microglia in general (Iba1-positive). Microglial burden and activation (morphology) were assessed quantitatively for each microglial phenotype. Iba1-positive microglia were assessed semi-quantitatively for dystrophy severity and qualitatively for rod-shaped and hypertrophic morphology. Microglia were compared in each region between FTLD, AD and controls, and between different pathological subtypes of FTLD, including its main subtypes (FTLD-tau, FTLD-TDP, FTLD-FUS), and subtypes of FTLD-tau, FTLD-TDP and genetic FTLD. Microglia were also compared between grey and white matter within each lobe for each group. Results There was a higher burden of phagocytic and antigen-presenting microglia in FTLD and AD cases than controls, but activation was often not increased. Burden was generally higher in white matter than grey matter, but activation was greater in grey matter. However, microglia varied regionally according to FTLD subtype and disease mechanism. Dystrophy was more severe in FTLD and AD than controls, and more severe in white than grey matter, but this also varied regionally and was particularly extensive in FTLD due to progranulin (GRN) mutations. Presence of rod-shaped and hypertrophic microglia also varied by FTLD subtype. Conclusions This study demonstrates regionally variable microglial involvement in FTLD and links this to underlying disease mechanisms. This supports investigation of microglial dysfunction in disease models and consideration of anti-senescence therapies in clinical trials.
Collapse
Affiliation(s)
- Ione O C Woollacott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Christina E Toomey
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Catherine Strand
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Robert Courtney
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Bridget C Benson
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK. .,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
44
|
Gefen T, Teylan MA, Besser L, Pollner E, Moshkovich A, Weintraub S. Measurement and characterization of distinctive clinical phenotypes using the Frontotemporal Lobar Degeneration Module (FTLD-MOD). Alzheimers Dement 2020; 16:918-925. [PMID: 32400973 PMCID: PMC7580870 DOI: 10.1002/alz.12098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/31/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The Frontotemporal Lobar Degeneration Module (FTLD-MOD) was designed as a research neuropsychological battery to evaluate clinical symptoms associated with FTLD. This study investigated whether the FTLD-MOD could differentiate between primary progressive aphasia (PPA) and behavioral variant frontotemporal dementia (bvFTD), two distinct FTLD-related syndromes. METHODS Retrospective analysis was conducted on data collected from the initial visit of 165 subjects with PPA, 268 with bvFTD, and 251 cognitively normal controls from the National Alzheimer's Coordinating Center. Generalized linear models were used to compare group performance patterns on FTLD-MOD tasks of language, behavior, and memory. RESULTS PPA participants showed significantly poorer performances on all language tasks whereas bvFTD participants demonstrated poorer performances on most behavioral measures. There were no differences in memory performances. Descriptive data on participant groups are provided for reference. DISCUSSION Findings from this multi-center sample suggest that the FTLD-MOD can differentiate between distinctive clinical phenotypes commonly associated with FTLD.
Collapse
Affiliation(s)
- Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Merilee A. Teylan
- National Alzheimer’s Coordinating Center, Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Lilah Besser
- Institute for Human Health and Disease Intervention (I-HEALTH), School of Urban and Regional Planning, Florida Atlantic University, Boca Raton, Florida, USA
| | - Emma Pollner
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anna Moshkovich
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
45
|
Kopach O, Esteras N, Wray S, Rusakov DA, Abramov AY. Maturation and phenotype of pathophysiological neuronal excitability of human cells in tau-related dementia. J Cell Sci 2020; 133:jcs241687. [PMID: 32299835 PMCID: PMC7272359 DOI: 10.1242/jcs.241687] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/01/2020] [Indexed: 01/23/2023] Open
Abstract
Frontotemporal dementia and parkinsonism (FTDP-17) caused by the 10+16 splice-site mutation in the gene encoding microtubule-associated protein tau (MAPT) provides an established platform to model tau-related dementia in vitro Neurons derived from human induced pluripotent stem cells (iPSCs) have been shown to recapitulate the neurodevelopmental profile of tau pathology during in vitro corticogenesis, as in the adult human brain. However, the neurophysiological phenotype of these cells has remained unknown, leaving unanswered questions regarding the functional relevance and the gnostic power of this disease model. In this study, we used electrophysiology to explore the membrane properties and intrinsic excitability of the generated neurons and found that human cells mature by ∼150 days of neurogenesis to become compatible with matured cortical neurons. In earlier FTDP-17, however, neurons exhibited a depolarized resting membrane potential associated with increased resistance and reduced voltage-gated Na+- and K+-channel-mediated conductance. Expression of the Nav1.6 protein was reduced in FTDP-17. These effects led to reduced cell capability of induced firing and changed the action potential waveform in FTDP-17. The revealed neuropathology might thus contribute to the clinicopathological profile of the disease. This sheds new light on the significance of human in vitro models of dementia.
Collapse
Affiliation(s)
- Olga Kopach
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Noemí Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 1PJ, UK
| | - Dmitri A Rusakov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
46
|
Mutsaerts HJMM, Mirza SS, Petr J, Thomas DL, Cash DM, Bocchetta M, de Vita E, Metcalfe AWS, Shirzadi Z, Robertson AD, Tartaglia MC, Mitchell SB, Black SE, Freedman M, Tang-Wai D, Keren R, Rogaeva E, van Swieten J, Laforce R, Tagliavini F, Borroni B, Galimberti D, Rowe JB, Graff C, Frisoni GB, Finger E, Sorbi S, de Mendonça A, Rohrer JD, MacIntosh BJ, Masellis M. Cerebral perfusion changes in presymptomatic genetic frontotemporal dementia: a GENFI study. Brain 2019; 142:1108-1120. [PMID: 30847466 PMCID: PMC6439322 DOI: 10.1093/brain/awz039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/14/2018] [Accepted: 01/04/2019] [Indexed: 11/12/2022] Open
Abstract
Genetic forms of frontotemporal dementia are most commonly due to mutations in three genes, C9orf72, GRN or MAPT, with presymptomatic carriers from families representing those at risk. While cerebral blood flow shows differences between frontotemporal dementia and other forms of dementia, there is limited evidence of its utility in presymptomatic stages of frontotemporal dementia. This study aimed to delineate the cerebral blood flow signature of presymptomatic, genetic frontotemporal dementia using a voxel-based approach. In the multicentre GENetic Frontotemporal dementia Initiative (GENFI) study, we investigated cross-sectional differences in arterial spin labelling MRI-based cerebral blood flow between presymptomatic C9orf72, GRN or MAPT mutation carriers (n = 107) and non-carriers (n = 113), using general linear mixed-effects models and voxel-based analyses. Cerebral blood flow within regions of interest derived from this model was then explored to identify differences between individual gene carrier groups and to estimate a timeframe for the expression of these differences. The voxel-based analysis revealed a significant inverse association between cerebral blood flow and the expected age of symptom onset in carriers, but not non-carriers. Regions included the bilateral insulae/orbitofrontal cortices, anterior cingulate/paracingulate gyri, and inferior parietal cortices, as well as the left middle temporal gyrus. For all bilateral regions, associations were greater on the right side. After correction for partial volume effects in a region of interest analysis, the results were found to be largely driven by the C9orf72 genetic subgroup. These cerebral blood flow differences first appeared approximately 12.5 years before the expected symptom onset determined on an individual basis. Cerebral blood flow was lower in presymptomatic mutation carriers closer to and beyond their expected age of symptom onset in key frontotemporal dementia signature regions. These results suggest that arterial spin labelling MRI may be a promising non-invasive imaging biomarker for the presymptomatic stages of genetic frontotemporal dementia.
Collapse
Affiliation(s)
- Henri J M M Mutsaerts
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Saira S Mirza
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Jan Petr
- PET Center, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - David L Thomas
- Institute of Neurology, University College London, London, UK
| | - David M Cash
- Institute of Neurology, University College London, London, UK
| | | | - Enrico de Vita
- Institute of Neurology, University College London, London, UK
| | - Arron W S Metcalfe
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Zahra Shirzadi
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Andrew D Robertson
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.,Memory Clinic, University Health Network, Toronto, Canada.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Sara B Mitchell
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Sandra E Black
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Morris Freedman
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,Baycrest Centre for Geriatric Care, Toronto, Canada
| | - David Tang-Wai
- Memory Clinic, University Health Network, Toronto, Canada.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Ron Keren
- Memory Clinic, University Health Network, Toronto, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - John van Swieten
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire (CIME), Département des Sciences Neurologiques, CHU de Québec, Faculté de médecine, Université Laval, Québec, Canada
| | - Fabrizio Tagliavini
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Barbara Borroni
- Department of Medical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Galimberti
- Centro Dino Ferrari, Fondazione Ca' Granda IRCCS Ospedale Policlinico, University of Milan, Milan, Italy
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Caroline Graff
- Department of Geriatric Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Canada
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | | | | | - Bradley J MacIntosh
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, Toronto, Canada.,Cognitive and Movement Disorders Clinic, Sunnybrook Health Sciences Centre, Toronto, Canada
| | | |
Collapse
|
47
|
Tavares TP, Mitchell DGV, Coleman K, Shoesmith C, Bartha R, Cash DM, Moore KM, van Swieten J, Borroni B, Galimberti D, Tartaglia MC, Rowe J, Graff C, Tagliavini F, Frisoni G, Cappa S, Laforce R, de Mendonça A, Sorbi S, Wallstrom G, Masellis M, Rohrer JD, Finger EC. Ventricular volume expansion in presymptomatic genetic frontotemporal dementia. Neurology 2019; 93:e1699-e1706. [PMID: 31578297 PMCID: PMC6946476 DOI: 10.1212/wnl.0000000000008386] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
Objective To characterize the time course of ventricular volume expansion in genetic frontotemporal dementia (FTD) and identify the onset time and rates of ventricular expansion in presymptomatic FTD mutation carriers. Methods Participants included patients with a mutation in MAPT, PGRN, or C9orf72, or first-degree relatives of mutation carriers from the GENFI study with MRI scans at study baseline and at 1 year follow-up. Ventricular volumes were obtained from MRI scans using FreeSurfer, with manual editing of segmentation and comparison to fully automated segmentation to establish reliability. Linear mixed models were used to identify differences in ventricular volume and in expansion rates as a function of time to expected disease onset between presymptomatic carriers and noncarriers. Results A total of 123 participants met the inclusion criteria and were included in the analysis (18 symptomatic carriers, 46 presymptomatic mutation carriers, and 56 noncarriers). Ventricular volume differences were observed 4 years prior to symptom disease onset for presymptomatic carriers compared to noncarriers. Annualized rates of ventricular volume expansion were greater in presymptomatic carriers relative to noncarriers. Importantly, time-intensive manually edited and fully automated ventricular volume resulted in similar findings. Conclusions Ventricular volume differences are detectable in presymptomatic genetic FTD. Concordance of results from time-intensive manual editing and fully automatic segmentation approaches support its value as a measure of disease onset and progression in future studies in both presymptomatic and symptomatic genetic FTD.
Collapse
Affiliation(s)
- Tamara P Tavares
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Derek G V Mitchell
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Kristy Coleman
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Christen Shoesmith
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Robert Bartha
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - David M Cash
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Katrina M Moore
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - John van Swieten
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Barbara Borroni
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Daniela Galimberti
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Maria Carmela Tartaglia
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - James Rowe
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Caroline Graff
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Fabrizio Tagliavini
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Giovanni Frisoni
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Stefano Cappa
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Robert Laforce
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Alexandre de Mendonça
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Sandro Sorbi
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Garrick Wallstrom
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Mario Masellis
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Jonathan D Rohrer
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Elizabeth C Finger
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada.
| | | |
Collapse
|
48
|
Müller HP, Brenner D, Roselli F, Wiesner D, Abaei A, Gorges M, Danzer KM, Ludolph AC, Tsao W, Wong PC, Rasche V, Weishaupt JH, Kassubek J. Longitudinal diffusion tensor magnetic resonance imaging analysis at the cohort level reveals disturbed cortical and callosal microstructure with spared corticospinal tract in the TDP-43 G298S ALS mouse model. Transl Neurodegener 2019; 8:27. [PMID: 31485326 PMCID: PMC6716821 DOI: 10.1186/s40035-019-0163-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
Background In vivo diffusion tensor imaging (DTI) of the mouse brain was used to identify TDP-43 associated alterations in a mouse model for amyotrophic lateral sclerosis (ALS). Methods Ten mice with TDP-43 G298S overexpression under control of the Thy1.2 promoter and 10 wild type (wt) underwent longitudinal DTI scans at 11.7 T, including one baseline and one follow-up scan with an interval of about 5 months. Whole brain-based spatial statistics (WBSS) of DTI-based parameter maps was used to identify longitudinal alterations of TDP-43 G298S mice compared to wt at the cohort level. Results were supplemented by tractwise fractional anisotropy statistics (TFAS) and histological evaluation of motor cortex for signs of neuronal loss. Results Alterations at the cohort level in TDP-43 G298S mice were observed cross-sectionally and longitudinally in motor areas M1/M2 and in transcallosal fibers but not in the corticospinal tract. Neuronal loss in layer V of motor cortex was detected in TDP-43 G298S at the later (but not at the earlier) timepoint compared to wt. Conclusion DTI mapping of TDP-43 G298S mice demonstrated progression in motor areas M1/M2. WBSS and TFAS are useful techniques to localize TDP-43 G298S associated alterations over time in this ALS mouse model, as a biological marker.
Collapse
Affiliation(s)
- Hans-Peter Müller
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| | - David Brenner
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| | - Francesco Roselli
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany.,2German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Diana Wiesner
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| | - Alireza Abaei
- 3Core Facility Small Animal MRI, University of Ulm, Ulm, Germany
| | - Martin Gorges
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| | - Karin M Danzer
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| | - Albert C Ludolph
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| | - William Tsao
- 4Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Philip C Wong
- 4Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Volker Rasche
- 3Core Facility Small Animal MRI, University of Ulm, Ulm, Germany
| | - Jochen H Weishaupt
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| | - Jan Kassubek
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| |
Collapse
|
49
|
Giannini LAA, Xie SX, Peterson C, Zhou C, Lee EB, Wolk DA, Grossman M, Trojanowski JQ, McMillan CT, Irwin DJ. Empiric Methods to Account for Pre-analytical Variability in Digital Histopathology in Frontotemporal Lobar Degeneration. Front Neurosci 2019; 13:682. [PMID: 31333403 PMCID: PMC6616086 DOI: 10.3389/fnins.2019.00682] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Digital pathology is increasingly prominent in neurodegenerative disease research, but variability in immunohistochemical staining intensity between staining batches prevents large-scale comparative studies. Here we provide a statistically rigorous method to account for staining batch effects in a large sample of brain tissue with frontotemporal lobar degeneration with tau inclusions (FTLD-Tau, N = 39) or TDP-43 inclusions (FTLD-TDP, N = 53). We analyzed the relationship between duplicate measurements of digital pathology, i.e., percent area occupied by pathology (%AO) for grey matter (GM) and white matter (WM), from two distinct staining batches. We found a significant difference in duplicate measurements from distinct staining batches in FTLD-Tau (mean difference: GM = 1.13 ± 0.44, WM = 1.28 ± 0.56; p < 0.001) and FTLD-TDP (GM = 0.95 ± 0.66, WM = 0.90 ± 0.77; p < 0.001), and these measurements were linearly related (R-squared [Rsq]: FTLD-Tau GM = 0.92, WM = 0.92; FTLD-TDP GM = 0.75, WM = 0.78; p < 0.001 all). We therefore used linear regression to transform %AO from distinct staining batches into equivalent values. Using a train-test set design, we examined transformation prerequisites (i.e., Rsq) from linear-modeling in training sets, and we applied equivalence factors (i.e., beta, intercept) to independent testing sets to determine transformation outcomes (i.e., intraclass correlation coefficient [ICC]). First, random iterations (×100) of linear regression showed that smaller training sets (N = 12–24), feasible for prospective use, have acceptable transformation prerequisites (mean Rsq: FTLD-Tau ≥0.9; FTLD-TDP ≥0.7). When cross-validated on independent complementary testing sets, in FTLD-Tau, N = 12 training sets resulted in 100% of GM and WM transformations with optimal transformation outcomes (ICC ≥ 0.8), while in FTLD-TDP N = 24 training sets resulted in optimal ICC in testing sets (GM = 72%, WM = 98%). We therefore propose training sets of N = 12 in FTLD-Tau and N = 24 in FTLD-TDP for prospective transformations. Finally, the transformation enabled us to significantly reduce batch-related difference in duplicate measurements in FTLD-Tau (GM/WM: p < 0.001 both) and FTLD-TDP (GM/WM: p < 0.001 both), and to decrease the necessary sample size estimated in a power analysis in FTLD-Tau (GM:-40%; WM: -34%) and FTLD-TDP (GM: -20%; WM: -30%). Finally, we tested generalizability of our approach using a second, open-source, image analysis platform and found similar results. We concluded that a small sample of tissue stained in duplicate can be used to account for pre-analytical variability such as staining batch effects, thereby improving methods for future studies.
Collapse
Affiliation(s)
- Lucia A A Giannini
- Penn Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Neurology, University Medical Center Groningen - University of Groningen, Groningen, Netherlands
| | - Sharon X Xie
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Claire Peterson
- Penn Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Cecilia Zhou
- Penn Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Alzheimer's Disease Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David A Wolk
- Alzheimer's Disease Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John Q Trojanowski
- Alzheimer's Disease Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Corey T McMillan
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David J Irwin
- Penn Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
50
|
The standardization of cerebrospinal fluid markers and neuropathological diagnoses brings to light the frequent complexity of concomitant pathology in Alzheimer's disease: The next challenge for biochemical markers? Clin Biochem 2019; 72:15-23. [PMID: 31194969 DOI: 10.1016/j.clinbiochem.2019.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
During the last two decades, neuropathological examination of the brain has evolved both technically and scientifically. The increasing use of immunohistochemistry to detect protein aggregates paralleled a better understanding of neuroanatomical progression of protein deposition. As a consequence, an international effort was achieved to standardize hyperphosphorylated-Tau (phospho-TAU), ßAmyloid (Aß), alpha syncuclein (alpha-syn), phosphorylated transactive response DNA-binding protein 43 (phospho-TDP43) and vascular pathology detection. Meanwhile harmonized staging systems emerged in order to increase inter rater reproducibility. Therefore, a refined definition of Alzheimer's disease was recommended., a clearer picture of the neuropathological lesions diversity emerged secondarily to the systematic assessment of concomitant pathology highlighting finally a low rate of pure AD pathology. This brings new challenges to laboratory medicine in the field of cerebrospinal fluid (CSF) markers of Alzheimer's disease: how to further validate total Tau, phospho-TAU, Aß40 and Aß42 and new marker level cut-offs while autopsy rates are declining?
Collapse
|