1
|
Previtali R, Leidi A, Basso M, Izzo G, Stignani C, Spaccini L, Iascone M, Veggiotti P, Bova SM. Case report: Early-onset parkinsonism among the neurological features in children with PHACTR1 variants. Front Neurol 2023; 14:1181015. [PMID: 37483454 PMCID: PMC10359812 DOI: 10.3389/fneur.2023.1181015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
PACHTR1 is expressed in cardiovascular and neurological tissues. In the brain, it has a role in pre- and post-natal maturation. Previously reported PHACTR1-mutated patients showed early-onset epilepsy and intellectual disability. We describe two unreported cases with de novo pathogenic variants in PHACTR1 and their clinical pictures, compared with those of cases already reported in the literature. In line with previous reports, the two patients presented early-onset developmental and epileptic encephalopathy. In addition, one patient developed a speech disorder and a progressive movement disorder characterized by hypertonus, hypo-bradykinesia, hypomimia, ataxic gait, and retropulsion. She was treated with levodopa without any clinical improvement. Pathogenic variants in PHACTR1 may result in a cardiological or neurological phenotype. Severe developmental delay, intellectual disability, and early-onset developmental and epileptic encephalopathy are the main features of PHACTR1-mutated patients with neurological involvement. Movement and speech disorders have never previously been described and could be new features of the neurological phenotype.
Collapse
Affiliation(s)
| | | | | | - Giana Izzo
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Cecilia Stignani
- Department of Pediatric Orthopedics, V. Buzzi Children's Hospital, Milan, Italy
| | - Luigina Spaccini
- Clinical Genetics Unit, Department of Obstetrics and Gynecology, V. Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Maria Iascone
- Molecular Genetics Section, Medical Genetics Laboratory, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Pierangelo Veggiotti
- Department of Biomedical and Clinical Sciences, L. Sacco, University of Milan, Milan, Italy
- Pediatric Neurology Unit, Vittore Buzzi Children's Hospital, Milan, Italy
| | | |
Collapse
|
2
|
Liu R, Sun L, Wang Y, Jia M, Wang Q, Cai X, Wu J. Double-edged Role of K Na Channels in Brain Tuning: Identifying Epileptogenic Network Micro-Macro Disconnection. Curr Neuropharmacol 2022; 20:916-928. [PMID: 34911427 PMCID: PMC9881102 DOI: 10.2174/1570159x19666211215104829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is commonly recognized as a disease driven by generalized hyperexcited and hypersynchronous neural activity. Sodium-activated potassium channels (KNa channels), which are encoded by the Slo 2.2 and Slo 2.1 genes, are widely expressed in the central nervous system and considered as "brakes" to adjust neuronal adaptation through regulating action potential threshold or after-hyperpolarization under physiological condition. However, the variants in KNa channels, especially gain-of-function variants, have been found in several childhood epileptic conditions. Most previous studies focused on mapping the epileptic network on the macroscopic scale while ignoring the value of microscopic changes. Notably, paradoxical role of KNa channels working on individual neuron/microcircuit and the macroscopic epileptic expression highlights the importance of understanding epileptogenic network through combining microscopic and macroscopic methods. Here, we first illustrated the molecular and physiological function of KNa channels on preclinical seizure models and patients with epilepsy. Next, we summarized current hypothesis on the potential role of KNa channels during seizures to provide essential insight into what emerged as a micro-macro disconnection at different levels. Additionally, we highlighted the potential utility of KNa channels as therapeutic targets for developing innovative anti-seizure medications.
Collapse
Affiliation(s)
- Ru Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lei Sun
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | | | - Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiang Cai
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,Address correspondence to these authors at the Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tel: +0086-18062552085; E-mail: Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Tel: +0086-13319285082; E-mail:
| | - Jianping Wu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China;,Address correspondence to these authors at the Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tel: +0086-18062552085; E-mail: Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Tel: +0086-13319285082; E-mail:
| |
Collapse
|
3
|
Guevara EE, Hopkins WD, Hof PR, Ely JJ, Bradley BJ, Sherwood CC. Comparative analysis reveals distinctive epigenetic features of the human cerebellum. PLoS Genet 2021; 17:e1009506. [PMID: 33956822 PMCID: PMC8101944 DOI: 10.1371/journal.pgen.1009506] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Identifying the molecular underpinnings of the neural specializations that underlie human cognitive and behavioral traits has long been of considerable interest. Much research on human-specific changes in gene expression and epigenetic marks has focused on the prefrontal cortex, a brain structure distinguished by its role in executive functions. The cerebellum shows expansion in great apes and is gaining increasing attention for its role in motor skills and cognitive processing, including language. However, relatively few molecular studies of the cerebellum in a comparative evolutionary context have been conducted. Here, we identify human-specific methylation in the lateral cerebellum relative to the dorsolateral prefrontal cortex, in a comparative study with chimpanzees (Pan troglodytes) and rhesus macaques (Macaca mulatta). Specifically, we profiled genome-wide methylation levels in the three species for each of the two brain structures and identified human-specific differentially methylated genomic regions unique to each structure. We further identified which differentially methylated regions (DMRs) overlap likely regulatory elements and determined whether associated genes show corresponding species differences in gene expression. We found greater human-specific methylation in the cerebellum than the dorsolateral prefrontal cortex, with differentially methylated regions overlapping genes involved in several conditions or processes relevant to human neurobiology, including synaptic plasticity, lipid metabolism, neuroinflammation and neurodegeneration, and neurodevelopment, including developmental disorders. Moreover, our results show some overlap with those of previous studies focused on the neocortex, indicating that such results may be common to multiple brain structures. These findings further our understanding of the cerebellum in human brain evolution. Humans are distinguished from other species by several aspects of cognition. While much comparative evolutionary neuroscience has focused on the neocortex, increasing recognition of the cerebellum’s role in cognition and motor processing has inspired considerable new research. Comparative molecular studies, however, generally continue to focus on the neocortex. We sought to characterize potential genetic regulatory traits distinguishing the human cerebellum by undertaking genome-wide epigenetic profiling of the lateral cerebellum, and compared this to the prefrontal cortex of humans, chimpanzees, and rhesus macaque monkeys. We found that humans showed greater differential CpG methylation–an epigenetic modification of DNA that can reflect past or present gene expression–in the cerebellum than the prefrontal cortex, highlighting the importance of this structure in human brain evolution. Humans also specifically show methylation differences at genes involved in neurodevelopment, neuroinflammation, synaptic plasticity, and lipid metabolism. These differences are relevant for understanding processes specific to humans, such as extensive plasticity, as well as pronounced and prevalent neurodegenerative conditions associated with aging.
Collapse
Affiliation(s)
- Elaine E. Guevara
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, United States of America
- * E-mail:
| | - William D. Hopkins
- Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- New York Consortium in Evolutionary Primatology, New York, New York, United States of America
| | - John J. Ely
- MAEBIOS, Alamogordo, New Mexico, United States of America
| | - Brenda J. Bradley
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, United States of America
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, United States of America
| |
Collapse
|
4
|
PHACTR1 genetic variability is not critical in small vessel ischemic disease patients and PcomA recruitment in C57BL/6J mice. Sci Rep 2021; 11:6072. [PMID: 33727568 PMCID: PMC7966789 DOI: 10.1038/s41598-021-84919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 02/04/2021] [Indexed: 11/29/2022] Open
Abstract
Recently, several genome-wide association studies identified PHACTR1 as key locus for five diverse vascular disorders: coronary artery disease, migraine, fibromuscular dysplasia, cervical artery dissection and hypertension. Although these represent significant risk factors or comorbidities for ischemic stroke, PHACTR1 role in brain small vessel ischemic disease and ischemic stroke most important survival mechanism, such as the recruitment of brain collateral arteries like posterior communicating arteries (PcomAs), remains unknown. Therefore, we applied exome and genome sequencing in a multi-ethnic cohort of 180 early-onset independent familial and apparently sporadic brain small vessel ischemic disease and CADASIL-like Caucasian patients from US, Portugal, Finland, Serbia and Turkey and in 2 C57BL/6J stroke mouse models (bilateral common carotid artery stenosis [BCCAS] and middle cerebral artery occlusion [MCAO]), characterized by different degrees of PcomAs patency. We report 3 very rare coding variants in the small vessel ischemic disease-CADASIL-like cohort (p.Glu198Gln, p.Arg204Gly, p.Val251Leu) and a stop-gain mutation (p.Gln273*) in one MCAO mouse. These coding variants do not cluster in PHACTR1 known pathogenic domains and are not likely to play a critical role in small vessel ischemic disease or brain collateral circulation. We also exclude the possibility that copy number variants (CNVs) or a variant enrichment in Phactr1 may be associated with PcomA recruitment in BCCAS mice or linked to diverse vascular traits (cerebral blood flow pre-surgery, PcomA size, leptomeningeal microcollateral length and junction density during brain hypoperfusion) in C57BL/6J mice, respectively. Genetic variability in PHACTR1 is not likely to be a common susceptibility factor influencing small vessel ischemic disease in patients and PcomA recruitment in C57BL/6J mice. Nonetheless, rare variants in PHACTR1 RPEL domains may influence the stroke outcome and are worth investigating in a larger cohort of small vessel ischemic disease patients, different ischemic stroke subtypes and with functional studies.
Collapse
|
5
|
Expression analyses of PLEKHG2, a Rho family-specific guanine nucleotide exchange factor, during mouse brain development. Med Mol Morphol 2021; 54:146-155. [PMID: 33492483 DOI: 10.1007/s00795-020-00275-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/03/2020] [Indexed: 01/20/2023]
Abstract
Abnormalities of PLEKHG2 gene, encoding a Rho family-specific guanine nucleotide exchange factor, are involved in microcephaly with intellectual disability. However, not only the role of PLEKHG2 in the developmental process but also its expression profile is unknown. In this study, we prepared a specific antibody against PLEKHG2 and carried out expression analyses with mouse tissues. In western blotting, PLEKHG2 exhibited a tissue-dependent expression profile in adult mouse and was expressed in a developmental stage-dependent manner in brain. Then, in immunohistochemical analyses, while PLEKHG2 was observed in the cortical plate and ventricular zone surface of the cerebral cortex at embryonic day 14, it came to be distributed throughout the cerebral cortex in layer II/III and V during corticogenesis. PLEKHG2 was also detected mainly in the nucleus of neurons in the hippocampal CA regions and dentate gyrus at P7. Notably, the nuclear accumulation disappeared at P30 and PLEKHG2 came to be located at the axons and/or dendrites at this time point. Moreover, in vitro immunofluorescence revealed that PLEKHG2 was at least partially localized at both excitatory and inhibitory synapses in primary cultured hippocampal neurons. These results suggest roles of PLEKHG2 in the development of the central nervous tissue and synaptic function.
Collapse
|
6
|
Fedoryshchak RO, Přechová M, Butler AM, Lee R, O'Reilly N, Flynn HR, Snijders AP, Eder N, Ultanir S, Mouilleron S, Treisman R. Molecular basis for substrate specificity of the Phactr1/PP1 phosphatase holoenzyme. eLife 2020; 9:61509. [PMID: 32975518 PMCID: PMC7599070 DOI: 10.7554/elife.61509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
PPP-family phosphatases such as PP1 have little intrinsic specificity. Cofactors can target PP1 to substrates or subcellular locations, but it remains unclear how they might confer sequence-specificity on PP1. The cytoskeletal regulator Phactr1 is a neuronally enriched PP1 cofactor that is controlled by G-actin. Structural analysis showed that Phactr1 binding remodels PP1's hydrophobic groove, creating a new composite surface adjacent to the catalytic site. Using phosphoproteomics, we identified mouse fibroblast and neuronal Phactr1/PP1 substrates, which include cytoskeletal components and regulators. We determined high-resolution structures of Phactr1/PP1 bound to the dephosphorylated forms of its substrates IRSp53 and spectrin αII. Inversion of the phosphate in these holoenzyme-product complexes supports the proposed PPP-family catalytic mechanism. Substrate sequences C-terminal to the dephosphorylation site make intimate contacts with the composite Phactr1/PP1 surface, which are required for efficient dephosphorylation. Sequence specificity explains why Phactr1/PP1 exhibits orders-of-magnitude enhanced reactivity towards its substrates, compared to apo-PP1 or other PP1 holoenzymes.
Collapse
Affiliation(s)
- Roman O Fedoryshchak
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Magdalena Přechová
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Abbey M Butler
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom.,Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Rebecca Lee
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom.,Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Nicola O'Reilly
- Peptide Chemistry Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Helen R Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Ambrosius P Snijders
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Noreen Eder
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom.,Kinases and Brain Development Laboratory The Francis Crick Institute, London, United Kingdom
| | - Sila Ultanir
- Kinases and Brain Development Laboratory The Francis Crick Institute, London, United Kingdom
| | - Stephane Mouilleron
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Richard Treisman
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
7
|
Gambino G, Rizzo V, Giglia G, Ferraro G, Sardo P. Microtubule Dynamics and Neuronal Excitability: Advances on Cytoskeletal Components Implicated in Epileptic Phenomena. Cell Mol Neurobiol 2020; 42:533-543. [PMID: 32929563 PMCID: PMC8891195 DOI: 10.1007/s10571-020-00963-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022]
Abstract
Extensive researches have deepened knowledge on the role of synaptic components in epileptogenesis, but limited attention has been devoted to the potential implication of the cytoskeleton. The study of the development of epilepsy and hyperexcitability states involves molecular, synaptic, and structural alterations of neuronal bioelectric activity. In this paper we aim to explore the neurobiological targets involved in microtubule functioning and cytoskeletal transport, i.e. how dynamic scaffolding of microtubules can influence neuronal morphology and excitability, in order to suggest a potential role for microtubule dynamics in the processes turning a normal neuronal network in a hyperexcited one. Pathophysiological alterations of microtubule dynamics inducing neurodegeneration, network remodeling and relative impairment on synaptic transmission were overviewed. Recent researches were reported on the phosphorylation state of microtubule-associated proteins such as tau in neurodegenerative diseases and epileptic states, but also on the effect of microtubule-active agents influencing cytoskeleton destabilization in epilepsy models. The manipulation of microtubule polymerization was found effective in the modulation of hyperexcitability. In addition, it was considered the importance of microtubules and related neurotrophic factors during neural development since they are essential for the formation of a properly functional neuronal network. Otherwise, this can lead to cognitive deficits, hyperexcitability phenomena and neurodevelopmental disorders. Lastly, we evaluated the role of microtubule dynamics on neuronal efficiency considering their importance in the transport of mitochondria, cellular elements fulfilling energy requirements for neuronal activity, and a putative influence on cannabinoid-mediated neuroprotection. This review provides novel perspectives for the implication of microtubule dynamics in the development of epileptic phenomena.
Collapse
Affiliation(s)
- Giuditta Gambino
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione Di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Valerio Rizzo
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione Di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Giuseppe Giglia
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione Di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy.
| | - Giuseppe Ferraro
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione Di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Pierangelo Sardo
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione Di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| |
Collapse
|
8
|
Pavone P, Polizzi A, Marino SD, Corsello G, Falsaperla R, Marino S, Ruggieri M. West syndrome: a comprehensive review. Neurol Sci 2020; 41:3547-3562. [PMID: 32827285 PMCID: PMC7655587 DOI: 10.1007/s10072-020-04600-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
Abstract
Since its first clinical description (on his son) by William James West (1793–1848) in 1841, and the definition of the classical triad of (1) infantile spasms; (2) hypsarrhythmia, and (3) developmental arrest or regression as “West syndrome”, new and relevant advances have been recorded in this uncommon disorder. New approaches include terminology of clinical spasms (e.g., infantile (IS) vs. epileptic spasms (ES)), variety of clinical and electroencephalographic (EEG) features (e.g., typical ictal phenomena without EEG abnormalities), burden of developmental delay, spectrum of associated genetic abnormalities, pathogenesis, treatment options, and related outcome and prognosis. Aside the classical manifestations, IS or ES may present with atypical electroclinical phenotypes (e.g., subtle spasms; modified hypsarrhythmia) and may have their onset outside infancy. An increasing number of genes, proteins, and signaling pathways play crucial roles in the pathogenesis. This condition is currently regarded as a spectrum of disorders: the so-called infantile spasm syndrome (ISs), in association with other causal factors, including structural, infectious, metabolic, syndromic, and immunologic events, all acting on a genetic predisposing background. Hormonal therapy and ketogenic diet are widely used also in combination with (classical and recent) pharmacological drugs. Biologically targeted and gene therapies are increasingly studied. The present narrative review searched in seven electronic databases (primary MeSH terms/keywords included West syndrome, infantile spasms and infantile spasms syndrome and were coupled to 25 secondary clinical, EEG, therapeutic, outcomes, and associated conditions terms) including MEDLINE, Embase, Cochrane Central, Web of Sciences, Pubmed, Scopus, and OMIM to highlight the past knowledge and more recent advances.
Collapse
Affiliation(s)
- Piero Pavone
- Unit of Clinical Pediatrics, AOU "Policlinico", PO "G. Rodolico", University of Catania, Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Simona Domenica Marino
- Unit of Pediatrics, Neonatology and Neonatal Intensive Care, and Pediatric Emergency, AOU "Policlinico", PO "San Marco", University of Catania, Catania, Italy
| | - Giovanni Corsello
- Unit of Pediatrics and Neonatal Intensive Therapy, Department of Promotion of Maternal and Infantile and Internal Medicine Health, and Specialist Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Neonatal Intensive Therapy, Department of Promotion of Maternal and Infantile and Internal Medicine Health, and Specialist Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Silvia Marino
- Unit of Pediatrics, Neonatology and Neonatal Intensive Care, and Pediatric Emergency, AOU "Policlinico", PO "San Marco", University of Catania, Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, AOU "Policlinico", PO "G. Rodolico", Via S. Sofia, 87, 95128, Catania, Italy.
| |
Collapse
|
9
|
Schachtschneider KM, Welge ME, Auvil LS, Chaki S, Rund LA, Madsen O, Elmore MR, Johnson RW, Groenen MA, Schook LB. Altered Hippocampal Epigenetic Regulation Underlying Reduced Cognitive Development in Response to Early Life Environmental Insults. Genes (Basel) 2020; 11:genes11020162. [PMID: 32033187 PMCID: PMC7074491 DOI: 10.3390/genes11020162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/13/2022] Open
Abstract
The hippocampus is involved in learning and memory and undergoes significant growth and maturation during the neonatal period. Environmental insults during this developmental timeframe can have lasting effects on brain structure and function. This study assessed hippocampal DNA methylation and gene transcription from two independent studies reporting reduced cognitive development stemming from early life environmental insults (iron deficiency and porcine reproductive and respiratory syndrome virus (PRRSv) infection) using porcine biomedical models. In total, 420 differentially expressed genes (DEGs) were identified between the reduced cognition and control groups, including genes involved in neurodevelopment and function. Gene ontology (GO) terms enriched for DEGs were associated with immune responses, angiogenesis, and cellular development. In addition, 116 differentially methylated regions (DMRs) were identified, which overlapped 125 genes. While no GO terms were enriched for genes overlapping DMRs, many of these genes are known to be involved in neurodevelopment and function, angiogenesis, and immunity. The observed altered methylation and expression of genes involved in neurological function suggest reduced cognition in response to early life environmental insults is due to altered cholinergic signaling and calcium regulation. Finally, two DMRs overlapped with two DEGs, VWF and LRRC32, which are associated with blood brain barrier permeability and regulatory T-cell activation, respectively. These results support the role of altered hippocampal DNA methylation and gene expression in early life environmentally-induced reductions in cognitive development across independent studies.
Collapse
Affiliation(s)
- Kyle M. Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.W.); (L.S.A.)
| | - Michael E. Welge
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.W.); (L.S.A.)
| | - Loretta S. Auvil
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.W.); (L.S.A.)
| | - Sulalita Chaki
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
| | - Laurie A. Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University, 6708 Wageningen, The Netherlands; (O.M.); (M.A.M.G.)
| | - Monica R.P. Elmore
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
| | - Martien A.M. Groenen
- Animal Breeding and Genomics, Wageningen University, 6708 Wageningen, The Netherlands; (O.M.); (M.A.M.G.)
| | - Lawrence B. Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60607, USA;
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.W.); (L.S.A.)
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
- Correspondence:
| |
Collapse
|
10
|
Ali SR, Malone TJ, Zhang Y, Prechova M, Kaczmarek LK. Phactr1 regulates Slack (KCNT1) channels via protein phosphatase 1 (PP1). FASEB J 2020; 34:1591-1601. [PMID: 31914597 PMCID: PMC6956700 DOI: 10.1096/fj.201902366r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022]
Abstract
The Slack (KCNT1) gene encodes sodium-activated potassium channels that are abundantly expressed in the central nervous system. Human mutations alter the function of Slack channels, resulting in epilepsy and intellectual disability. Most of the disease-causing mutations are located in the extended cytoplasmic C-terminus of Slack channels and result in increased Slack current. Previous experiments have shown that the C-terminus of Slack channels binds a number of cytoplasmic signaling proteins. One of these is Phactr1, an actin-binding protein that recruits protein phosphatase 1 (PP1) to certain phosphoprotein substrates. Using co-immunoprecipitation, we found that Phactr1 is required to link the channels to actin. Using patch clamp recordings, we found that co-expression of Phactr1 with wild-type Slack channels reduces the current amplitude but has no effect on Slack channels in which a conserved PKC phosphorylation site (S407) that regulates the current amplitude has been mutated. Furthermore, a Phactr1 mutant that disrupts the binding of PP1 but not that of actin fails to alter Slack currents. Our data suggest that Phactr1 regulates the Slack by linking PP1 to the channel. Targeting Slack-Phactr1 interactions may therefore be helpful in developing the novel therapies for brain disorders associated with the malfunction of Slack channels.
Collapse
Affiliation(s)
- Syed Rydwan Ali
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | | | - Yalan Zhang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Magdalena Prechova
- Signalling and Transcription Group, The Francis Crick Institute, London, UK
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, CZ
| | - Leonard Konrad Kaczmarek
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Noda M, Iwamoto I, Tabata H, Yamagata T, Ito H, Nagata KI. Role of Per3, a circadian clock gene, in embryonic development of mouse cerebral cortex. Sci Rep 2019; 9:5874. [PMID: 30971765 PMCID: PMC6458147 DOI: 10.1038/s41598-019-42390-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/21/2019] [Indexed: 02/04/2023] Open
Abstract
Per3 is one of the primary components of circadian clock system. While circadian dysregulation is known to be involved in the pathogenesis of several neuropsychiatric diseases. It remains largely unknown whether they participate in embryonic brain development. Here, we examined the role of clock gene Per3 in the development of mouse cerebral cortex. In situ hybridization analysis revealed that Per3 is expressed in the developing mouse cortex. Acute knockdown of Per3 with in utero electroporation caused abnormal positioning of cortical neurons, which was rescued by RNAi-resistant Per3. Per3-deficient cells showed abnormal migration phenotypes, impaired axon extension and dendritic arbor formation. Taken together, Per3 was found to play a pivotal role in corticogenesis via regulation of excitatory neuron migration and synaptic network formation.
Collapse
Affiliation(s)
- Mariko Noda
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Ikuko Iwamoto
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | | | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|