1
|
Cui Y, Zhang X, Liu J, Hou Y, Song Q, Cao M, Zhang J, Wang X, Liu C, Wang P, Wang Y. Myeloid ectopic viral integration site 2 accelerates the progression of Alzheimer's disease. Aging Cell 2024; 23:e14260. [PMID: 38994634 PMCID: PMC11464116 DOI: 10.1111/acel.14260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Amyloid plaques, a major pathological hallmark of Alzheimer's disease (AD), are caused by an imbalance between the amyloidogenic and non-amyloidogenic pathways of amyloid precursor protein (APP). BACE1 cleavage of APP is the rate-limiting step for amyloid-β production and plaque formation in AD. Although the alteration of BACE1 expression in AD has been investigated, the underlying mechanisms remain unknown. In this study, we determined MEIS2 was notably elevated in AD models and AD patients. Alterations in the expression of MEIS2 can modulate the levels of BACE1. MEIS2 downregulation improved the learning and memory retention of AD mice and decreased the number of amyloid plaques. MEIS2 binds to the BACE1 promoter, positively regulates BACE1 expression, and accelerates APP amyloid degradation in vitro. Therefore, our findings suggest that MEIS2 might be a critical transcription factor in AD, since it regulates BACE1 expression and accelerates BACE1-mediated APP amyloidogenic cleavage. MEIS2 is a promising early intervention target for AD treatment.
Collapse
Affiliation(s)
- Yuting Cui
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Xiaomin Zhang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Jing Liu
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Yuli Hou
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Qiao Song
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Min Cao
- Department of Clinical LaboratoryBeijing Huairou HospitalBeijingPeople's Republic of China
| | - Jingjing Zhang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Xiaoling Wang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Congcong Liu
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Peichang Wang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Yaqi Wang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| |
Collapse
|
2
|
Pu Y, Yang J, Pan Q, Li C, Wang L, Xie X, Chen X, Xiao F, Chen G. MGST3 regulates BACE1 protein translation and amyloidogenesis by controlling the RGS4-mediated AKT signaling pathway. J Biol Chem 2024; 300:107530. [PMID: 38971310 PMCID: PMC11332907 DOI: 10.1016/j.jbc.2024.107530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 06/16/2024] [Indexed: 07/08/2024] Open
Abstract
Microsomal glutathione transferase 3 (MGST3) regulates eicosanoid and glutathione metabolism. These processes are associated with oxidative stress and apoptosis, suggesting that MGST3 might play a role in the pathophysiology of Alzheimer's disease. Here, we report that knockdown (KD) of MGST3 in cell lines reduced the protein level of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and the resulting amyloidogenesis. Interestingly, MGST3 KD did not alter intracellular reactive oxygen species level but selectively reduced the expression of apoptosis indicators which could be associated with the receptor of cysteinyl leukotrienes, the downstream metabolites of MGST3 in arachidonic acid pathway. We then showed that the effect of MGST3 on BACE1 was independent of cysteinyl leukotrienes but involved a translational mechanism. Further RNA-seq analysis identified that regulator of G-protein signaling 4 (RGS4) was a target gene of MGST3. Silencing of RGS4 inhibited BACE1 translation and prevented MGST3 KD-mediated reduction of BACE1. The potential mechanism was related to AKT activity, as the protein level of phosphorylated AKT was significantly reduced by silencing of MGST3 and RGS4, and the AKT inhibitor abolished the effect of MGST3/RGS4 on phosphorylated AKT and BACE1. Together, MGST3 regulated amyloidogenesis by controlling BACE1 protein expression, which was mediated by RGS4 and downstream AKT signaling pathway.
Collapse
Affiliation(s)
- Yalan Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China; Department of Neurology, Langzhong People's Hospital, Nanchong, Sichuan, China
| | - Jie Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China; Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Sichuan, China
| | - Qiuling Pan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Chenlu Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiaoyong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China.
| | - Guojun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China.
| |
Collapse
|
3
|
Qin SJ, Zeng QG, Zeng HX, Li SP, Andersson J, Zhao B, Oudin A, Kanninen KM, Jalava P, Jin NX, Yang M, Lin LZ, Liu RQ, Dong GH, Zeng XW. Neurotoxicity of fine and ultrafine particulate matter: A comprehensive review using a toxicity pathway-oriented adverse outcome pathway framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174450. [PMID: 38969138 DOI: 10.1016/j.scitotenv.2024.174450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Fine particulate matter (PM2.5) can cause brain damage and diseases. Of note, ultrafine particles (UFPs) with an aerodynamic diameter less than or equal to 100 nm are a growing concern. Evidence has suggested toxic effects of PM2.5 and UFPs on the brain and links to neurological diseases. However, the underlying mechanism has not yet been fully illustrated due to the variety of the study models, different endpoints, etc. The adverse outcome pathway (AOP) framework is a pathway-based approach that could systematize mechanistic knowledge to assist health risk assessment of pollutants. Here, we constructed AOPs by collecting molecular mechanisms in PM-induced neurotoxicity assessments. We chose particulate matter (PM) as a stressor in the Comparative Toxicogenomics Database (CTD) and identified the critical toxicity pathways based on Ingenuity Pathway Analysis (IPA). We found 65 studies investigating the potential mechanisms linking PM2.5 and UFPs to neurotoxicity, which contained 2, 675 genes in all. IPA analysis showed that neuroinflammation signaling and glucocorticoid receptor signaling were the common toxicity pathways. The upstream regulator analysis (URA) of PM2.5 and UFPs demonstrated that the neuroinflammation signaling was the most initially triggered upstream event. Therefore, neuroinflammation was recognized as the MIE. Strikingly, there is a clear sequence of activation of downstream signaling pathways with UFPs, but not with PM2.5. Moreover, we found that inflammation response and homeostasis imbalance were key cellular events in PM2.5 and emphasized lipid metabolism and mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in UFPs. Previous AOPs, which only focused on phenotypic changes in neurotoxicity upon PM exposure, we for the first time propose AOP framework in which PM2.5 and UFPs may activate pathway cascade reactions, resulting in adverse outcomes associated with neurotoxicity. Our toxicity pathway-based approach not only advances risk assessment for PM-induced neurotoxicity but shines a spotlight on constructing AOP frameworks for new chemicals.
Collapse
Affiliation(s)
- Shuang-Jian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Guo Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui-Xian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shen-Pan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | | | - Bin Zhao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Nan-Xiang Jin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Mo Yang
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
4
|
Li CL, Zhou GF, Xie XY, Wang L, Chen X, Pan QL, Pu YL, Yang J, Song L, Chen GJ. STAU1 exhibits a dual function by promoting amyloidogenesis and tau phosphorylation in cultured cells. Exp Neurol 2024; 377:114805. [PMID: 38729552 DOI: 10.1016/j.expneurol.2024.114805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
Staufen-1 (STAU1) is a double-stranded RNA-binding protein (RBP) involved in a variety of pathological conditions. In this study, we investigated the potential role of STAU1 in Alzheimer's disease (AD), in which two hallmarks are well-established as cerebral β-amyloid protein (Aβ) deposition and Tau-centered neurofibrillary tangles. We found that STAU1 protein level was significantly increased in cells that stably express full-length APP and the brain of APP/PS1 mice, an animal model of AD. STAU1 knockdown, as opposed to overexpression, significantly decreased the protein levels of β-amyloid converting enzyme 1 (BACE1) and Aβ. We further found that STAU1 extended the half-life of the BACE1 mRNA through binding to the 3' untranslated region (3'UTR). Transcriptome analysis revealed that STAU1 enhanced the expression of growth arrest and DNA damage 45 β (GADD45B) upstream of P38 MAPK signaling, which contributed to STAU1-induced regulation of Tau phosphorylation at Ser396 and Thr181. Together, STAU1 promoted amyloidogenesis by inhibiting BACE1 mRNA decay, and augmented Tau phosphorylation through activating GADD45B in relation to P38 MAPK. Targeting STAU1 that acts on both amyloidogenesis and tauopathy may serve as an optimistic approach for AD treatment.
Collapse
Affiliation(s)
- Chen-Lu Li
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Gui-Feng Zhou
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Xiao-Yong Xie
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Xue Chen
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Qiu-Ling Pan
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Ya-Lan Pu
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Jie Yang
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Li Song
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China.
| |
Collapse
|
5
|
Lin JJ, Chen R, Yang LY, Gong M, Du MY, Mu SQ, Jiang ZA, Li HH, Yang Y, Wang XH, Wang SF, Liu KX, Cao SH, Wang ZY, Zhao AQ, Yang SY, Li C, Sun SG. Hsa_circ_0001402 alleviates vascular neointimal hyperplasia through a miR-183-5p-dependent regulation of vascular smooth muscle cell proliferation, migration, and autophagy. J Adv Res 2024; 60:93-110. [PMID: 37499939 PMCID: PMC11156604 DOI: 10.1016/j.jare.2023.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023] Open
Abstract
INTRODUCTION Vascular neointimal hyperplasia, a pathological process observed in cardiovascular diseases such as atherosclerosis and pulmonary hypertension, involves the abundant presence of vascular smooth muscle cells (VSMCs). The proliferation, migration, and autophagy of VSMCs are associated with the development of neointimal lesions. Circular RNAs (circRNAs) play critical roles in regulating VSMC proliferation and migration, thereby participating in neointimal hyperplasia. However, the regulatory roles of circRNAs in VSMC autophagy remain unclear. OBJECTIVES We aimed to identify circRNAs that are involved in VSMC autophagy-mediated neointimal hyperplasia, as well as elucidate the underlying mechanisms. METHODS Dual-luciferase reporter gene assay was performed to validate two competing endogenous RNA axes, hsa_circ_0001402/miR-183-5p/FKBP prolyl isomerase like (FKBPL) and hsa_circ_0001402/miR-183-5p/beclin 1 (BECN1). Cell proliferation and migration analyses were employed to investigate the effects of hsa_circ_0001402, miR-183-5p, or FKBPL on VSMC proliferation and migration. Cell autophagy analysis was conducted to reveal the role of hsa_circ_0001402 or miR-183-5p on VSMC autophagy. The role of hsa_circ_0001402 or miR-183-5p on neointimal hyperplasia was evaluated using a mouse model of common carotid artery ligation. RESULTS Hsa_circ_0001402 acted as a sponge for miR-183-5p, leading to the suppression of miR-183-5p expression. Through direct interaction with the coding sequence (CDS) of FKBPL, miR-183-5p promoted VSMC proliferation and migration by decreasing FKBPL levels. Besides, miR-183-5p reduced BECN1 levels by targeting the 3'-untranslated region (UTR) of BECN1, thus inhibiting VSMC autophagy. By acting as a miR-183-5p sponge, overexpression of hsa_circ_0001402 increased FKBPL levels to inhibit VSMC proliferation and migration, while simultaneously elevating BECN1 levels to activate VSMC autophagy, thereby alleviating neointimal hyperplasia. CONCLUSION Hsa_circ_0001402, acting as a miR-183-5p sponge, increases FKBPL levels to inhibit VSMC proliferation and migration, while enhancing BECN1 levels to activate VSMC autophagy, thus alleviating neointimal hyperplasia. The hsa_circ_0001402/miR-183-5p/FKBPL axis and hsa_circ_0001402/miR-183-5p/BECN1 axis may offer potential therapeutic targets for neointimal hyperplasia.
Collapse
Affiliation(s)
- Jia-Jie Lin
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Li-Yun Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Miao Gong
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Mei-Yang Du
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Shi-Qing Mu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Ze-An Jiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Huan-Huan Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Yang Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Xing-Hui Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Si-Fan Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Ke-Xin Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Shan-Hu Cao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhao-Yi Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - An-Qi Zhao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Shu-Yan Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China.
| | - Cheng Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Shao-Guang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
6
|
Li XY, Zhou GF, Xie XY, Pu YL, -Chen X, Li CL, Yang J, Wang L, Chen GJ. Short-term regulation of TSFM level does not alter amyloidogenesis and mitochondrial function in type-specific cells. Mol Biol Rep 2024; 51:484. [PMID: 38578353 DOI: 10.1007/s11033-024-09426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Mitochondrial Ts translation elongation factor (TSFM) is an enzyme that catalyzes exchange of guanine nucleotides. By forming a complex with mitochondrial Tu translation elongation factor (TUFM), TSFM participates in mitochondrial protein translation. We have previously reported that TUFM regulates translation of beta-site APP cleaving enzyme 1 (BACE1) via ROS (reactive oxygen species)-dependent mechanism, suggesting a potential role in amyloid precursor protein (APP) processing associated with Alzheimer's disease (AD), which led to the speculation that TSFM may regulate APP processing in a similar way to TUFM. METHODS AND RESULTS Here, we report that in cultured cells, knockdown or overexpression TSFM did not change protein levels in BACE1 and APP. Besides, the levels of cytoplasmic ROS and mitochondrial superoxide, in addition to ATP level, cell viability and mitochondrial membrane potential were not significantly altered by TSFM knockdown in the short term. Further transcriptome analysis revealed that expression of majority of mitochondrial genes were not remarkably changed by TSFM silencing. The possibility of TSFM involved in cardiomyopathy and cancer development was uncovered using bioinformatics analysis. CONCLUSIONS Collectively, short-term regulation of TSFM level in cultured cells does not cause a significant change in proteins involved in APP processing, levels in ROS and ATP associated with mitochondrial function. Whereas our study could contribute to comprehend certain clinical features of TSFM mutations, the roles of TSFM in cardiomyopathy and cancer development might deserve further investigation.
Collapse
Affiliation(s)
- Xiao-Yun Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Gui-Feng Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Xiong-Yong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Ya-Lan Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Xue -Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Chen-Lu Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Jie Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China.
| |
Collapse
|
7
|
Song L, Pan Q, Zhou G, Liu S, Zhu B, Lin P, Hu X, Zha J, Long Y, Luo B, Chen J, Tang Y, Tang J, Xiang X, Xie X, Deng X, Chen G. SHMT2 Mediates Small-Molecule-Induced Alleviation of Alzheimer Pathology Via the 5'UTR-dependent ADAM10 Translation Initiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305260. [PMID: 38183387 PMCID: PMC10953581 DOI: 10.1002/advs.202305260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/27/2023] [Indexed: 01/08/2024]
Abstract
It is long been suggested that one-carbon metabolism (OCM) is associated with Alzheimer's disease (AD), whereas the potential mechanisms remain poorly understood. Taking advantage of chemical biology, that mitochondrial serine hydroxymethyltransferase (SHMT2) directly regulated the translation of ADAM metallopeptidase domain 10 (ADAM10), a therapeutic target for AD is reported. That the small-molecule kenpaullone (KEN) promoted ADAM10 translation via the 5' untranslated region (5'UTR) and improved cognitive functions in APP/PS1 mice is found. SHMT2, which is identified as a target gene of KEN and the 5'UTR-interacting RNA binding protein (RBP), mediated KEN-induced ADAM10 translation in vitro and in vivo. SHMT2 controls AD signaling pathways through binding to a large number of RNAs and enhances the 5'UTR activity of ADAM10 by direct interaction with GAGGG motif, whereas this motif affected ribosomal scanning of eukaryotic initiation factor 2 (eIF2) in the 5'UTR. Together, KEN exhibits therapeutic potential for AD by linking OCM with RNA processing, in which the metabolic enzyme SHMT2 "moonlighted" as RBP by binding to GAGGG motif and promoting the 5'UTR-dependent ADAM10 translation initiation.
Collapse
Affiliation(s)
- Li Song
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Qiu‐Ling Pan
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Gui‐Feng Zhou
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Sheng‐Wei Liu
- Department of PharmacyYongchuan Hospital of Chongqing Medical UniversityChongqing402160China
| | - Bing‐Lin Zhu
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Pei‐Jia Lin
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiao‐Tong Hu
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Health ManagementDaping HospitalArmy Medical universityChongqing400042China
| | - Jing‐Si Zha
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Internal MedicineThe Southwest University HospitalChongqing400715China
| | - Yan Long
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Geriatric MedicineDaping HospitalArmy Medical universityChongqing400042China
| | - Biao Luo
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Jian Chen
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ying Tang
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyWest China HospitalSichuan UniversityChengdu610041China
| | - Jing Tang
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiao‐Jiao Xiang
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Nuclear MedicineThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Xiao‐Yong Xie
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiao‐Juan Deng
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Guo‐Jun Chen
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| |
Collapse
|
8
|
Maniam S, Maniam S. Screening Techniques for Drug Discovery in Alzheimer's Disease. ACS OMEGA 2024; 9:6059-6073. [PMID: 38371787 PMCID: PMC10870277 DOI: 10.1021/acsomega.3c07046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 02/20/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive and irreversible impairment of memory and other cognitive functions of the aging brain. Pathways such as amyloid beta neurotoxicity, tau pathogenesis and neuroinflammatory have been used to understand AD, despite not knowing the definite molecular mechanism which causes this progressive disease. This review attempts to summarize the small molecules that target these pathways using various techniques involving high-throughput screening, molecular modeling, custom bioassays, and spectroscopic detection tools. Novel and evolving screening methods developed to advance drug discovery initiatives in AD research are also highlighted.
Collapse
Affiliation(s)
- Sandra Maniam
- Department
of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Subashani Maniam
- School
of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
9
|
Chen K, Yu G. Tetrahydroalstonine possesses protective potentials on palmitic acid stimulated SK-N-MC cells by suppression of Aβ1-42 and tau through regulation of PI3K/Akt signaling pathway. Eur J Pharmacol 2024; 962:176251. [PMID: 38061471 DOI: 10.1016/j.ejphar.2023.176251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. The morbidity of Alzheimer's disease is currently on the rise worldwide, but no effective treatment is available. Cornus officinalis is an herb and edible plant used in traditional Chinese medicine, whose extract has neuroprotective properties. In this investigation, we endeavored to refine a systems pharmacology strategy combining bioinformatics analysis, drug prediction, network pharmacology, and molecular docking to screen tetrahydroalstonine (THA) from Cornus officinalis as a therapeutic component for AD. Subsequent in vitro experiments were validated using MTT assay, Annexin V-PI flow cytometry, Western blotting, and immunofluorescence analysis. In Palmitate acid-induced SK-N-MC cells, THA restored the impaired PI3K/AKT signaling pathway, regulated insulin resistance, and attenuated BACE1 and GSK3β activity. In addition, THA significantly reduced cell apoptosis rate, down-regulated relative levels of p-JNK/JNK, Bax/Bcl-2, cytochrome C, active caspase-3 and caspase-3, and attenuated Palmitate acid-induced Aβ1-42 and Tau generation. THA may regulate the phenotype of AD and reduce cell apoptosis by modulating the PI3K/AKT signaling pathway. This systematic analysis provides new ramifications concerning the therapeutic utility of tetrahydroalstonine for AD.
Collapse
Affiliation(s)
- Kang Chen
- Department of Neurology, Jiangsu Traditional Chinese Medicine Hospital, The Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, 210029, PR China
| | - Guran Yu
- Department of Neurology, Jiangsu Traditional Chinese Medicine Hospital, The Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, 210029, PR China.
| |
Collapse
|
10
|
Paramakrishnan N, Lim KG, Paramaswaran Y, Ali N, Waseem M, Shazly GA, Bin Jardan YA, Muthuraman A. Astaxanthin: A Marine Drug That Ameliorates Cerebrovascular-Damage-Associated Alzheimer's Disease in a Zebrafish Model via the Inhibition of Matrix Metalloprotease-13. Mar Drugs 2023; 21:433. [PMID: 37623714 PMCID: PMC10455645 DOI: 10.3390/md21080433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD) is a major type of dementia disorder. Common cognitive changes occur as a result of cerebrovascular damage (CVD) via the disruption of matrix metalloproteinase-13 (MMP-13). In diabetic cases, the progress of vascular dementia is faster and the AD rate is higher. Patients with type 2 diabetes are known to have a higher risk of the factor for AD progression. Hence, this study is designed to investigate the role of astaxanthin (AST) in CVD-associated AD in zebrafish via the inhibition of MMP-13 activity. CVD was developed through the intraperitoneal and intracerebral injection of streptozotocin (STZ). The AST (10 and 20 mg/L), donepezil (1 mg/L), and MMP-13 inhibitor (i.e., CL-82198; 10 μM) were exposed for 21 consecutive days in CVD animals. The cognitive changes in zebrafish were evaluated through light and dark chamber tests, a color recognition test, and a T-maze test. The biomarkers of AD pathology were assessed via the estimation of the cerebral extravasation of Evans blue, tissue nitrite, amyloid beta-peptide aggregation, MMP-13 activity, and acetylcholinesterase activity. The results revealed that exposure to AST leads to ameliorative behavioral and biochemical changes. Hence, AST can be used for the management of AD due to its multi-targeted actions, including MMP-13 inhibition.
Collapse
Affiliation(s)
| | - Khian Giap Lim
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Yamunna Paramaswaran
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Waseem
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Gamal A. Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arunachalam Muthuraman
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| |
Collapse
|
11
|
Aksnes M, Edwin TH, Saltvedt I, Eldholm RS, Chaudhry FA, Halaas NB, Myrstad M, Watne LO, Knapskog AB. Sex-specific associations of matrix metalloproteinases in Alzheimer's disease. Biol Sex Differ 2023; 14:35. [PMID: 37221606 DOI: 10.1186/s13293-023-00514-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/21/2023] [Indexed: 05/25/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) can be characterised in vivo by biomarkers reflecting amyloid-β (Aβ) and tau pathology. However, there is a need for biomarkers reflecting additional pathological pathways. Matrix metalloproteinases (MMPs) have recently been highlighted as candidate biomarkers for sex-specific mechanisms and progression in AD. METHODS In this cross-sectional study, we investigated nine MMPs and four tissue inhibitors of metalloproteinases (TIMPs) in the cerebrospinal fluid of 256 memory clinic patients with mild cognitive impairment or dementia due to AD and 100 cognitively unimpaired age-matched controls. We studied group differences in MMP/TIMP levels and examined the associations with established markers of Aβ and tau pathology as well as disease progression. Further, we studied sex-specific interactions. RESULTS MMP-10 and TIMP-2 levels differed significantly between the memory clinic patients and the cognitively unimpaired controls. Furthermore, MMP- and TIMP-levels were generally strongly associated with tau biomarkers, whereas only MMP-3 and TIMP-4 were associated with Aβ biomarkers; these associations were sex-specific. In terms of progression, we found a trend towards higher MMP-10 at baseline predicting more cognitive and functional decline over time exclusively in women. CONCLUSION Our results support the use of MMPs/TIMPs as markers of sex differences and progression in AD. Our findings show sex-specific effects of MMP-3 and TIMP-4 on amyloid pathology. Further, this study highlights that the sex-specific effects of MMP-10 on cognitive and functional decline should be studied further if MMP-10 is to be used as a prognostic biomarker for AD.
Collapse
Affiliation(s)
- Mari Aksnes
- Department of Geriatric Medicine, University of Oslo, 0315, Oslo, Norway.
| | - Trine H Edwin
- Department of Geriatric Medicine, Oslo University Hospital, 0450, Oslo, Norway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7030, Trondheim, Norway
- Department of Geriatric Medicine, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030, Trondheim, Norway
| | - Rannveig S Eldholm
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7030, Trondheim, Norway
- Department of Geriatric Medicine, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030, Trondheim, Norway
| | - Farrukh A Chaudhry
- Department of Molecular Medicine, University of Oslo, 0315, Oslo, Norway
| | - Nathalie B Halaas
- Department of Geriatric Medicine, University of Oslo, 0315, Oslo, Norway
- Department of Geriatric Medicine, Oslo University Hospital, 0450, Oslo, Norway
| | - Marius Myrstad
- Department of Internal Medicine, Bærum Hospital, Vestre Viken Hospital Trust, 1346, Gjettum, Norway
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, 1346, Gjettum, Norway
| | - Leiv O Watne
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
- Department of Geriatric Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Anne-Brita Knapskog
- Department of Geriatric Medicine, Oslo University Hospital, 0450, Oslo, Norway
| |
Collapse
|
12
|
Liu Y, Zhou G, Song L, Wen Q, Xie S, Chen L, Wang L, Xie X, Chen X, Pu Y, Chen G. DEAD-Box Helicase 17 Promotes Amyloidogenesis by Regulating BACE1 Translation. Brain Sci 2023; 13:brainsci13050745. [PMID: 37239217 DOI: 10.3390/brainsci13050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Amyloidogenesis is one of the key pathophysiological changes in Alzheimer's disease (AD). Accumulation of the toxic Aβ results from the catalytic processing of β-amyloid precursor protein (APP) associated β-amyloid converting enzyme 1 (BACE1) activity. It is reported that dead-box helicase 17 (DDX17) controls RNA metabolism and is involved in the development of multiple diseases. However, whether DDX17 might play a role in amyloidogenesis has not been documented. In the present study, we found that DDX17 protein level was significantly increased in HEK and SH-SY5Y cells that stably express full-length APP (HEK-APP and Y5Y-APP) and in the brain of APP/PS1 mice, an animal model of AD. DDX17 knockdown, as opposed to DDX17 overexpression, markedly reduced the protein levels of BACE1 and the β-amyloid peptide (Aβ) in Y5Y-APP cells. We further found that DDX17-mediated enhancement of BACE1 was selectively attenuated by translation inhibitors. Specifically, DDX17 selectively interacted with the 5' untranslated region (5'UTR) of BACE1 mRNA, and deletion of the 5'UTR abolished the effect of DDX17 on luciferase activity or protein level of BACE1. Here, we show that the enhanced expression of DDX17 in AD was associated with amyloidogenesis; through the 5'UTR-dependent BACE1 translation, DDX17 might serve as an important mediator contributing to the progression of AD.
Collapse
Affiliation(s)
- Yue Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Guifeng Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Li Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Qixin Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Shiqi Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Long Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Xiaoyong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Xue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Yalan Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Guojun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| |
Collapse
|
13
|
Qiu W, Liu H, Liu Y, Lu X, Wang L, Hu Y, Feng F, Li Q, Sun H. Regulation of beta-amyloid for the treatment of Alzheimer's disease: Research progress of therapeutic strategies and bioactive compounds. Med Res Rev 2023. [PMID: 36945751 DOI: 10.1002/med.21947] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/09/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is difficult to treat. Extracellular amyloid is the principal pathological criterion for the diagnosis of AD. Amyloid β (Aβ) interacts with various receptor molecules on the plasma membrane and mediates a series of signaling pathways that play a vital role in the occurrence and development of AD. Research on receptors that interact with Aβ is currently ongoing. Overall, there are no effective medications to treat AD. In this review, we first discuss the importance of Aβ in the pathogenesis of AD, then summarize the latest progress of Aβ-related targets and compounds. Finally, we put forward the challenges and opportunities in the development of effective AD therapies.
Collapse
Affiliation(s)
- Weimin Qiu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yijun Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin Lu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lei Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanyu Hu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
- Department of Natural Medicinal Chemistry, Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, Jiangsu, Huaian, China
| | - Qi Li
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
14
|
Luo B, Chen J, Zhou GF, Xie XY, Tang J, Wen QX, Song L, Xie SQ, Long Y, Chen GJ, Hu XT. Apicidin attenuates memory deficits by reducing the Aβ load in APP/PS1 mice. CNS Neurosci Ther 2023; 29:1300-1311. [PMID: 36708130 PMCID: PMC10068467 DOI: 10.1111/cns.14102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 01/29/2023] Open
Abstract
AIMS Amyloid beta (Aβ) is an important pathological feature of Alzheimer's disease (AD). A disintegrin and metalloproteinase 10 (ADAM10) can reduce the production of toxic Aβ by activating the nonamyloidogenic pathway of amyloid precursor protein (APP). We previously found that apicidin, which is a histone deacetylase (HDAC) inhibitor, can promote the expression of ADAM10 and reduce the production of Aβ in vitro. This study was designed to determine the potential of apicidin treatment to reverse learning and memory impairments in an AD mouse model and the possible correlation of these effects with ADAM10. METHODS Nine-month-old APP/PS1 mice and C57 mice received intraperitoneal injections of apicidin or vehicle for 2 months. At 11 months of age, we evaluated the memory performance of mice with Morris water maze (MWM) and context fear conditioning tests. The Aβ levels were assessed in mouse brain using the immunohistochemical method and ELISA. The expression of corresponding protein involved in proteolytic processing of APP and the phosphorylation of tau were assessed by Western blotting. RESULTS Apicidin reversed the deficits of spatial reference memory and contextual fear memory, attenuated the formation of Aβ-enriched plaques, and decreased the levels of soluble and insoluble Aβ40/42 in APP/PS1 mice. Moreover, apicidin significantly increased the expression of ADAM10, improved the level of sAPPα, and reduced the production of sAPPβ, but did not affect the levels of phosphorylated tau in APP/PS1 mice. CONCLUSION Apicidin significantly improves the AD symptoms of APP/PS1 mice by regulating the expression of ADAM10, which may contribute to decreasing the levels of Aβ rather than decreasing the phosphorylation of tau.
Collapse
Affiliation(s)
- Biao Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Jian Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Gui-Feng Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Yong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Jing Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Qi-Xin Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Li Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Shi-Qi Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yan Long
- Department of Health Management, Daping Hospital, Army Medical University, Chongqing, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Tong Hu
- Department of Health Management, Daping Hospital, Army Medical University, Chongqing, China.,Department of Neurology, The Ninth People's Hospital of Chongqing, Chongqing, China
| |
Collapse
|
15
|
Hu LT, Xie XY, Zhou GF, Wen QX, Song L, Luo B, Deng XJ, Pan QL, Chen GJ. HMGCS2-Induced Autophagic Degradation of Tau Involves Ketone Body and ANKRD24. J Alzheimers Dis 2023; 91:407-426. [PMID: 36442191 DOI: 10.3233/jad-220640] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Accumulation of hyperphosphorylated Tau (pTau) contributes to the formation of neurofibrillary tangles in Alzheimer's disease (AD), and targeting Tau/pTau metabolism has emerged as a therapeutic approach. We have previously reported that mitochondrial 3-hydroxy-3-methylglutaryl-COA synthase 2 (HMGCS2) is involved in AD by promoting autophagic clearance of amyloid-β protein precursor via ketone body-associated mechanism, whether HMGCS2 may also regulate Tau metabolism remains elusive. OBJECTIVE The present study was to investigate the role of HMGCS2 in Tau/p degradation. METHODS The protein levels of Tau and pTau including pT217 and pT181, as well as autophagic markers LAMP1 and LC3-II were assessed by western blotting. The differentially regulated genes by HMGCS2 were analyzed by RNA sequencing. Autophagosomes were assessed by transmission electron microscopy. RESULTS HMGCS2 significantly decreased Tau/pTau levels, which was paralleled by enhanced formation of autophagic vacuoles and prevented by autophagic regulators chloroquine, bafilomycin A1, 3-methyladenine, and rapamycin. Moreover, HMGCS2-induced alterations of LAMP1/LC3-II and Tau/pTau levels were mimicked by ketone body acetoacetate or β-hydroxybutyrate. Further RNA-sequencing identified ankyrin repeat domain 24 (ANKRD24) as a target gene of HMGCS2, and silencing of ANKRD24 reduced LAMP1/LC3-II levels, which was accompanied by the altered formation of autophagic vacuoles, and diminished the effect of HMGCS2 on Tau/pTau. CONCLUSION HMGCS2 promoted autophagic clearance of Tau/pTau, in which ketone body and ANKRD24 played an important role.
Collapse
Affiliation(s)
- Li-Tian Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China.,Department of Neurology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiao-Yong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Gui-Feng Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Qi-Xin Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Li Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Biao Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Juan Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Qiu-Ling Pan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China.,Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Nguyen YT, Kim N, Lee HJ. Metal Complexes as Promising Matrix Metalloproteinases Regulators. Int J Mol Sci 2023; 24:ijms24021258. [PMID: 36674771 PMCID: PMC9861486 DOI: 10.3390/ijms24021258] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Nowadays, cancers and dementia, such as Alzheimer's disease, are the most fatal causes of death. Many studies tried to understand the pathogenesis of those diseases clearly and develop a promising way to treat the diseases. Matrix metalloproteinases (MMPs) have been reported to be involved in the pathology of cancers and AD through tumor cell movement and amyloid degradation. Therefore, control of the levels and actions of MMPs, especially MMP-2 and MMP-9, is necessary to care for and/or cure cancer and AD. Various molecules have been examined for their potential application as regulators of MMPs expression and activity. Among the molecules, multiple metal complexes have shown advantages, including simple synthesis, less toxicity and specificity toward MMPs in cancer cells or in the brain. In this review, we summarize the recent studies and knowledge of metal complexes (e.g., Pt-, Ru-, Au-, Fe-, Cu-, Ni-, Zn-, and Sn-complexes) targeting MMPs and their potentials for treating and/or caring the most fatal human diseases, cancers and AD.
Collapse
Affiliation(s)
- Yen Thi Nguyen
- Department of Chemistry, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
- Correspondence: (N.K.); (H.J.L.)
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
- Correspondence: (N.K.); (H.J.L.)
| |
Collapse
|
17
|
Liu B, Wang Y, He D, Han G, Wang H, Lin Y, Zhang T, Yi C, Li H. LTBP1 Gene Expression in the Cerebral Cortex and its Neuroprotective Mechanism in Mice with Postischemic Stroke Epilepsy. Curr Pharm Biotechnol 2023; 24:317-329. [PMID: 35676846 DOI: 10.2174/1389201023666220608091511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study aimed at exploring the expression level of LTBP1 in the mouse model of epilepsy. The mechanism of LTBP1 in epileptic cerebral neural stem cells was deeply investigated to control the occurrence of epilepsy with neuroprotection. METHODS qRT-PCR was conducted for the expression levels of LTBP1 in clinical human epileptic tissues and neural stem cells, as well as normal cerebral tissues and neural stem cells. The mouse model of postischemic stroke epilepsy (PSE) was established by the middle cerebral artery occlusion (MCAO). Then, qRT-PCR was conducted again for the expression levels of LTBP1 in mouse epileptic tissues and neural stem cells as well as normal cerebral tissues and neural stem cells. The activation and inhibitory vectors of LTBP1 were constructed to detect the effects of LTBP1 on the proliferation of cerebral neural stem cells in the PSE model combined with CCK-8. Finally, Western blot was conducted for the specific mechanism of LTBP1 affecting the development of epileptic cells. RESULTS Racine score and epilepsy index of 15 mice showed epilepsy symptoms after the determination with MCAO, showing a successful establishment of the PSE model. LTBP1 expression in both diseased epileptic tissues and cells was higher than that in normal clinical epileptic tissues and cells. Meanwhile, qRT-PCR showed higher LTBP1 expression in both mouse epileptic tissues and their neural stem cells compared to that in normal tissues and cells. CCK-8 showed that the activation of LTBP1 stimulated the increased proliferative capacity of epileptic cells, while the inhibition of LTBP1 expression controlled the proliferation of epileptic cells. Western blot showed an elevated expression of TGFβ/SMAD signaling pathway-associated protein SMAD1/5/8 after activating LTBP1. The expression of molecular MMP-13 associated with the occurrence of inflammation was also activated. CONCLUSION LTBP1 can affect the changes in inflammation-related pathways by activating the TGFβ/SMAD signaling pathway and stimulate the development of epilepsy, and the inhibition of LTBP1 expression can control the occurrence of epilepsy with neuroprotection.
Collapse
Affiliation(s)
- Bo Liu
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Yan Wang
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Dongruo He
- Department of Neurophysiology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Guochao Han
- Department of Neurophysiology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Hao Wang
- Department of Neurophysiology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Yuan Lin
- Department of Neurophysiology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Tianyu Zhang
- Department of CT, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Chao Yi
- Department of Neurosurgery, Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Hui Li
- Department of Neurophysiology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| |
Collapse
|
18
|
Wen QX, Luo B, Xie XY, Zhou GF, Chen J, Song L, Liu Y, Xie SQ, Chen L, Li KY, Xiang XJ, Chen GJ. AP2S1 regulates APP degradation through late endosome-lysosome fusion in cells and APP/PS1 mice. Traffic 2023; 24:20-33. [PMID: 36412210 PMCID: PMC10107530 DOI: 10.1111/tra.12874] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/08/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
AP2S1 is the sigma 2 subunit of adaptor protein 2 (AP2) that is essential for endocytosis. In this study, we investigated the potential role of AP2S1 in intracellular processing of amyloid precursor protein (APP), which contributes to the pathogenesis of Alzheimer disease (AD) by generating the toxic β-amyloid peptide (Aβ). We found that knockdown or overexpression of AP2S1 decreased or increased the protein levels of APP and Aβ in cells stably expressing human full-length APP695, respectively. This effect was unrelated to endocytosis but involved lysosomal degradation. Morphological studies revealed that silencing of AP2S1 promoted the translocalization of APP from RAB9-positive late endosomes (LE) to LAMP1-positive lysosomes, which was paralleled by the enhanced LE-lysosome fusion. In support, silencing of vacuolar protein sorting-associated protein 41 (VPS41) that is implicated in LE-lyso fusion prevented AP2S1-mediated regulation of APP degradation and translocalization. In APP/PS1 mice, an animal model of AD, AAV-mediated delivery of AP2S1 shRNA in the hippocampus significantly reduced the protein levels of APP and Aβ, with the concomitant APP translocalization, LE-lyso fusion and the improved cognitive functions. Taken together, these data uncover a LE-lyso fusion mechanism in APP degradation and suggest a novel role for AP2S1 in the pathophysiology of AD.
Collapse
Affiliation(s)
- Qi-Xin Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Biao Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Yong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Gui-Feng Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Jian Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Li Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yue Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Shi-Qi Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Long Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Kun-Yi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Jiao Xiang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China.,Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Leung HW, Foo G, VanDongen A. Arc Regulates Transcription of Genes for Plasticity, Excitability and Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081946. [PMID: 36009494 PMCID: PMC9405677 DOI: 10.3390/biomedicines10081946] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
The immediate early gene Arc is a master regulator of synaptic function and a critical determinant of memory consolidation. Here, we show that Arc interacts with dynamic chromatin and closely associates with histone markers for active enhancers and transcription in cultured rat hippocampal neurons. Both these histone modifications, H3K27Ac and H3K9Ac, have recently been shown to be upregulated in late-onset Alzheimer’s disease (AD). When Arc induction by pharmacological network activation was prevented using a short hairpin RNA, the expression profile was altered for over 1900 genes, which included genes associated with synaptic function, neuronal plasticity, intrinsic excitability, and signalling pathways. Interestingly, about 100 Arc-dependent genes are associated with the pathophysiology of AD. When endogenous Arc expression was induced in HEK293T cells, the transcription of many neuronal genes was increased, suggesting that Arc can control expression in the absence of activated signalling pathways. Taken together, these data establish Arc as a master regulator of neuronal activity-dependent gene expression and suggest that it plays a significant role in the pathophysiology of AD.
Collapse
Affiliation(s)
| | - Gabriel Foo
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Antonius VanDongen
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Correspondence:
| |
Collapse
|
20
|
Long Y, Cheng Y, Yang J, Yang T, Lai Y. Abeta-induced Presynaptic Release of UBC9 through Extracellular Vesicles involves SNAP23. Neurosci Lett 2022; 785:136771. [DOI: 10.1016/j.neulet.2022.136771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
|
21
|
Besse S, Poujol R, Hussin JG. Comparative Study of Protein Aggregation Propensity and Mutation Tolerance Between Naked Mole-Rat and Mouse. Genome Biol Evol 2022; 14:evac057. [PMID: 35482036 PMCID: PMC9086952 DOI: 10.1093/gbe/evac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular mechanisms of aging and life expectancy have been studied in model organisms with short lifespans. However, long-lived species may provide insights into successful strategies for healthy aging, potentially opening the door for novel therapeutic interventions in age-related diseases. Notably, naked mole-rats, the longest-lived rodent, present attenuated aging phenotypes compared with mice. Their resistance toward oxidative stress has been proposed as one hallmark of their healthy aging, suggesting their ability to maintain cell homeostasis, specifically their protein homeostasis. To identify the general principles behind their protein homeostasis robustness, we compared the aggregation propensity and mutation tolerance of naked mole-rat and mouse orthologous proteins. Our analysis showed no proteome-wide differential effects in aggregation propensity and mutation tolerance between these species, but several subsets of proteins with a significant difference in aggregation propensity. We found an enrichment of proteins with higher aggregation propensity in naked mole-rat, and these are functionally involved in the inflammasome complex and nucleic acid binding. On the other hand, proteins with lower aggregation propensity in naked mole-rat have a significantly higher mutation tolerance compared with the rest of the proteins. Among them, we identified proteins known to be associated with neurodegenerative and age-related diseases. These findings highlight the intriguing hypothesis about the capacity of the naked mole-rat proteome to delay aging through its proteomic intrinsic architecture.
Collapse
Affiliation(s)
- Savandara Besse
- Département de Biochimie et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, Québec, Canada
- Centre Robert-Cedergren en Bioinformatique et Génomique, Université de Montréal, Québec, Canada
| | | | - Julie G. Hussin
- Institut de Cardiologie de Montréal, Québec, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Québec, Canada
| |
Collapse
|
22
|
Pomilio AB, Vitale AA, Lazarowski AJ. Uncommon Noninvasive Biomarkers for the Evaluation and Monitoring of the Etiopathogenesis of Alzheimer's Disease. Curr Pharm Des 2022; 28:1152-1169. [DOI: 10.2174/1381612828666220413101929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Background:
Alzheimer´s disease (AD) is the most widespread dementia in the world, followed by vascular dementia. Since AD is a heterogeneous disease that shows several varied phenotypes, it is not easy to make an accurate diagnosis, so it arises when the symptoms are clear and the disease is already very advanced. Therefore, it is important to find out biomarkers for AD early diagnosis that facilitate treatment or slow down the disease. Classic biomarkers are obtained from cerebrospinal fluid and plasma, along with brain imaging by positron emission tomography. Attempts have been made to discover uncommon biomarkers from other body fluids, which are addressed in this update.
Objective:
This update aims to describe recent biomarkers from minimally invasive body fluids for the patients, such as saliva, urine, eye fluid or tears.
Methods:
Biomarkers were determined in patients versus controls by single tandem mass spectrometry, and immunoassays. Metabolites were identified by nuclear magnetic resonance, and microRNAs with genome-wide high-throughput real-time polymerase chain reaction-based platforms.
Results:
Biomarkers from urine, saliva, and eye fluid were described, including peptides/proteins, metabolites, and some microRNAs. The association with AD neuroinflammation and neurodegeneration was analyzed, highlighting the contribution of matrix metalloproteinases, the immune system and microglia, as well as the vascular system.
Conclusion:
Unusual biomarkers have been developed, which distinguish each stage and progression of the disease, and are suitable for the early AD diagnosis. An outstanding relationship of biomarkers with neuroinflammation and neurodegeneration was assessed, clearing up concerns of the etiopathogenesis of AD.
Collapse
Affiliation(s)
- Alicia B. Pomilio
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Arturo A. Vitale
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Alberto J. Lazarowski
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Córdoba 2351, C1120AAF Buenos Aires, Argentina
| |
Collapse
|
23
|
Qu J, Xiong X, Hujie G, Ren J, Yan L, Ma L. MicroRNA-132-3p alleviates neuron apoptosis and impairments of learning and memory abilities in Alzheimer's disease by downregulation of HNRNPU stabilized BACE1. Cell Cycle 2021; 20:2309-2320. [PMID: 34585626 DOI: 10.1080/15384101.2021.1982507] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neuro-degenerative disease characterized by dementia. MicroRNAs (miRNAs) are involved in many diseases, including AD. MiR-132-3p has been identified to be downregulated in AD. In this study, we explored the effects of miR-132-3p on neuron apoptosis and impairments of learning and memory abilities. Aβ1-42-stimulated SH-SY5Y cells were used as in vitro models of AD. An AD-like homocysteine (Hcy) rat model was established to evaluate the effects of miR-132-3p on AD pathogenesis in vivo. RIP, RNA pull down and luciferase reporter assays were conducted to investigate the relationship between miR-132-3p and its downstream target genes. The viability and apoptosis of SH-SY5Y cells were measured by CCK-8 and TUNEL assays. The rat spatial learning and memory abilities were accessed using Morris water maze test. Results indicated that miR-132-3p was downregulated in SH-SY5Y cells after Aβ1-42 treatment and promoted cell apoptosis. Mechanistically, miR-132-3p targeted heterogeneous nuclear ribonucleoprotein U (HNRNPU). HNRNPU acted as an RNA binding protein (RBP) to regulate the mRNA stability of β-site amyloid precursor protein cleaving enzyme 1 (BACE1). Overexpression of HNRNPU or BACE1 reversed the effects of miR-132-3p overexpression on the viability and apoptosis of Aβ1-42-treated SH-SY5Y cells. In vivo experiments revealed the downregulation of miR-132-3p in the hippocampus of Hcy-treated rats. MiR-132-3p suppressed levels of apoptotic genes in hippocampus and reduced impairments of learning and memory abilities in Hcy-treated rats. In conclusion, miR-132-3p reduces apoptosis of SH-SY5Y cells and alleviates impairments of learning and memory abilities in AD rats by modulating the HNRNPU/BACE1 axis.
Collapse
Affiliation(s)
- Jie Qu
- Department of Health Care, Xinjiang Military General Hospital, Urumqi, Xinjiang, China
| | - Xiaowei Xiong
- Department of Health Care, Xinjiang Military General Hospital, Urumqi, Xinjiang, China
| | - Gulibaha Hujie
- Department of Health Care, Xinjiang Military General Hospital, Urumqi, Xinjiang, China
| | - Jun Ren
- Department of Neurology, Xinjiang Military General Hospital, Urumqi, Xinjiang, China
| | - Lihui Yan
- Department of Health Care, Xinjiang Military General Hospital, Urumqi, Xinjiang, China
| | - Liqun Ma
- Department of Health Care, Xinjiang Military General Hospital, Urumqi, Xinjiang, China
| |
Collapse
|
24
|
Chen B, Chen Y, Rai KR, Wang X, Liu S, Li Y, Xiao M, Ma Y, Wang G, Guo G, Huang S, Chen JL. Deficiency of eIF4B Increases Mouse Mortality and Impairs Antiviral Immunity. Front Immunol 2021; 12:723885. [PMID: 34566982 PMCID: PMC8461113 DOI: 10.3389/fimmu.2021.723885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic translation initiation factor 4B (eIF4B) plays an important role in mRNA translation initiation, cell survival and proliferation in vitro. However, its function in vivo is poorly understood. Here, we identified that eIF4B knockout (KO) in mice led to embryonic lethality, and the embryos displayed severe liver damage. Conditional KO (CKO) of eIF4B in adulthood profoundly increased the mortality of mice, characterized by severe pathological changes in several organs and reduced number of peripheral blood lymphocytes. Strikingly, eIF4B CKO mice were highly susceptible to viral infection with severe pulmonary inflammation. Selective deletion of eIF4B in lung epithelium also markedly promoted replication of influenza A virus (IAV) in the lung of infected animals. Furthermore, we observed that eIF4B deficiency significantly enhanced the expression of several important inflammation-associated factors and chemokines, including serum amyloid A1 (Saa1), Marco, Cxcr1, Ccl6, Ccl8, Ccl20, Cxcl2, Cxcl17 that are implicated in recruitment and activation of neutrophiles and macrophages. Moreover, the eIF4B-deficient mice exhibited impaired natural killer (NK) cell-mediated cytotoxicity during the IAV infection. Collectively, the results reveal that eIF4B is essential for mouse survival and host antiviral responses, and establish previously uncharacterized roles for eIF4B in regulating normal animal development and antiviral immunity in vivo.
Collapse
Affiliation(s)
- Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kul Raj Rai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuefei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shasha Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yingying Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Meng Xiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yun Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Guoqing Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guijie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Ji-Long Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
25
|
Chen J, Luo B, Zhong BR, Li KY, Wen QX, Song L, Xiang XJ, Zhou GF, Hu LT, Deng XJ, Ma YL, Chen GJ. Sulfuretin exerts diversified functions in the processing of amyloid precursor protein. Genes Dis 2021; 8:867-881. [PMID: 34522714 PMCID: PMC8427253 DOI: 10.1016/j.gendis.2020.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 01/03/2023] Open
Abstract
Sulfuretin is a flavonoid that protects cell from damage induced by reactive oxygen species and inflammation. In this study, we investigated the role of sulfuretin in the processing of amyloid precursor protein (APP), in association with the two catalytic enzymes the α-secretase a disintegrin and metalloproteinase (ADAM10), and the beta-site APP cleaving enzyme 1 (BACE1) that play important roles in the generation of β amyloid protein (Aβ) in Alzheimer's disease (AD). We found that sulfuretin increased the levels of the immature but not the mature form of ADAM10 protein. The enhanced ADAM10 transcription by sulfuretin was mediated by the nucleotides −444 to −300 in the promoter region, and was attenuated by silencing or mutation of transcription factor retinoid X receptor (RXR) and by GW6471, a specific inhibitor of peroxisome proliferator-activated receptor α (PPAR-α). We further found that sulfuretin preferentially increased protein levels of the immature form of APP (im-APP) but significantly reduced those of BACE1, sAPPβ and β-CTF, whereas Aβ1-42 levels were slightly increased. Finally, the effect of sulfuretin on BACE1 and im-APP was selectively attenuated by the translation inhibitor cycloheximide and by lysosomal inhibitor chloroquine, respectively. Taken together, (1) RXR/PPAR-α signaling was involved in sulfuretin-mediated ADAM10 transcription. (2) Alteration of Aβ protein level by sulfuretin was not consistent with that of ADAM10 and BACE1 protein levels, but was consistent with the elevated level of im-APP protein, suggesting that im-APP, an isoform mainly localized to trans-Golgi network, plays an important role in Aβ generation.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Biao Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Bi-Rou Zhong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Kun-Yi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Qi-Xin Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Li Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Xiao-Jiao Xiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Gui-Feng Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Li-Tian Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China.,Department of Neurology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, PR China
| | - Xiao-Juan Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Yuan-Lin Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| |
Collapse
|
26
|
Jorda A, Aldasoro M, Aldasoro C, Valles SL. Inflammatory Chemokines Expression Variations and Their Receptors in APP/PS1 Mice. J Alzheimers Dis 2021; 83:1051-1060. [PMID: 34397415 DOI: 10.3233/jad-210489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND In Alzheimer's disease (AD), an increase in inflammation is distinctive. Amyloid precursor protein plus presenilin-1 (APP/PS1 mice) is a model for this illness. Chemokines secreted by central nervous system (CNS) cells could play multiple important roles in AD. Data looking for the chemokines involved in inflammatory mechanisms are lacking. To understand the changes that occur in the inflammation process in AD, it is necessary to improve strategies to act on specific inflammatory targets. OBJECTIVE Chemokines and their receptors involved in phagocytosis, demyelination, chemotaxis, and coagulation were the objective of our study. METHODS Female APPswe/PS1 double-transgenic mice (B6C3-Tg) were used and cortex brain from 20-22-month-old mice obtained and used to quantify chemokines and chemokine receptors expression using RT-PCR technique. RESULTS Significant inflammatory changes were detected in APP/PS1 compared to wild type mice. CCR1, CCR3, CCR4, and CCR9 were elevated, and CCR2 were decreased compared with wild type mice. Their ligands CCL7, CCL11, CCL17, CCL22, CCL25, and CXCL4 showed an increase expression; however, changes were not observed in CCL2 in APP/PS1 compared to wild type mice. CONCLUSION This change in expression could explain the differences between AD patients and elderly people without this illness. This would provide a new strategy for the treatment of AD, with the possibility to act in specific inflammatory targets.
Collapse
Affiliation(s)
- Adrián Jorda
- Department of Physiology, School of Medicine, University of Valencia, Spain.,Faculty of Surgery and Chiropody, University of Valencia, Spain
| | - Martin Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Constanza Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Soraya L Valles
- Department of Physiology, School of Medicine, University of Valencia, Spain
| |
Collapse
|
27
|
Bettegazzi B, Sebastian Monasor L, Bellani S, Codazzi F, Restelli LM, Colombo AV, Deigendesch N, Frank S, Saito T, Saido TC, Lammich S, Tahirovic S, Grohovaz F, Zacchetti D. Casein Kinase 2 dependent phosphorylation of eIF4B regulates BACE1 expression in Alzheimer's disease. Cell Death Dis 2021; 12:769. [PMID: 34349120 PMCID: PMC8339060 DOI: 10.1038/s41419-021-04062-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Increased Aβ production plays a fundamental role in the pathogenesis of the disease and BACE1, the protease that triggers the amyloidogenic processing of APP, is a key protein and a pharmacological target in AD. Changes in neuronal activity have been linked to BACE1 expression and Aβ generation, but the underlying mechanisms are still unclear. We provide clear evidence for the role of Casein Kinase 2 in the control of activity-driven BACE1 expression in cultured primary neurons, organotypic brain slices, and murine AD models. More specifically, we demonstrate that neuronal activity promotes Casein Kinase 2 dependent phosphorylation of the translation initiation factor eIF4B and this, in turn, controls BACE1 expression and APP processing. Finally, we show that eIF4B expression and phosphorylation are increased in the brain of APPPS1 and APP-KI mice, as well as in AD patients. Overall, we provide a definition of a mechanism linking brain activity with amyloid production and deposition, opening new perspectives from the therapeutic standpoint.
Collapse
Affiliation(s)
- Barbara Bettegazzi
- Vita-Salute San Raffaele University, via Olgettina 58, 20132, Milan, Italy.
- IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.
| | | | - Serena Bellani
- Vita-Salute San Raffaele University, via Olgettina 58, 20132, Milan, Italy
- IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Franca Codazzi
- Vita-Salute San Raffaele University, via Olgettina 58, 20132, Milan, Italy
- IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Lisa Michelle Restelli
- Basel University Hospital, Institute of Medical Genetics and Pathology, Schoenbeinstrasse 40, 4031, Basel (CH), Switzerland
| | | | - Nikolaus Deigendesch
- Basel University Hospital, Institute of Medical Genetics and Pathology, Schoenbeinstrasse 40, 4031, Basel (CH), Switzerland
| | - Stephan Frank
- Basel University Hospital, Institute of Medical Genetics and Pathology, Schoenbeinstrasse 40, 4031, Basel (CH), Switzerland
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Department of Neurocognitive Science, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Sven Lammich
- BMC - Biochemistry, Ludwig Maximilians University Munich, 81377, Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377, Munich, Germany
| | - Fabio Grohovaz
- Vita-Salute San Raffaele University, via Olgettina 58, 20132, Milan, Italy
- IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Daniele Zacchetti
- IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
28
|
Zhong BR, Zhou GF, Song L, Wen QX, Deng XJ, Ma YL, Hu LT, Chen GJ. TUFM is involved in Alzheimer's disease-like pathologies that are associated with ROS. FASEB J 2021; 35:e21445. [PMID: 33774866 DOI: 10.1096/fj.202002461r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 12/14/2022]
Abstract
Mitochondrial Tu translation elongation factor (TUFM or EF-Tu) is part of the mitochondrial translation machinery. It is reported that TUFM expression is reduced in the brain of Alzheimer's disease (AD), suggesting that TUFM might play a role in the pathophysiology. In this study, we found that TUFM protein level was decreased in the hippocampus and cortex especially in the aged APP/PS1 mice, an animal model of AD. In HEK cells that stably express full-length human amyloid-β precursor protein (HEK-APP), TUFM knockdown or overexpression increased or reduced the protein levels of β-amyloid protein (Aβ) and β-amyloid converting enzyme 1 (BACE1), respectively. TUFM-mediated reduction of BACE1 was attenuated by translation inhibitor cycloheximide (CHX) or α-[2-[4-(3,4-Dichlorophenyl)-2-thiazolyl]hydrazinylidene]-2-nitro-benzenepropanoic acid (4EGI1), and in cells overexpressing BACE1 constructs deleting the 5' untranslated region (5'UTR). TUFM silencing increased the half-life of BACE1 mRNA, suggesting that RNA stability was affected by TUFM. In support, transcription inhibitor Actinomycin D (ActD) and silencing of nuclear factor κB (NFκB) failed to abolish TUFM-mediated regulation of BACE1 protein and mRNA. We further found that the mitochondria-targeted antioxidant TEMPO diminished the effects of TUFM on BACE1, suggesting that reactive oxygen species (ROS) played an important role. Indeed, cellular ROS levels were affected by TUFM knockdown or overexpression, and TUFM-mediated regulation of apoptosis and Tau phosphorylation at selective sites was attenuated by TEMPO. Collectively, TUFM protein levels were decreased in APP/PS1 mice. TUFM is involved in AD pathology by regulating BACE1 translation, apoptosis, and Tau phosphorylation, in which ROS plays an important role.
Collapse
Affiliation(s)
- Bi-Rou Zhong
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Gui-Feng Zhou
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Li Song
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Qi-Xin Wen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Juan Deng
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yuan-Lin Ma
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Li-Tian Hu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China.,Department of Neurology, Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Guo-Jun Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
29
|
miR- 218- 2 regulates cognitive functions in the hippocampus through complement component 3-dependent modulation of synaptic vesicle release. Proc Natl Acad Sci U S A 2021; 118:2021770118. [PMID: 33782126 DOI: 10.1073/pnas.2021770118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
microRNA-218 (miR-218) has been linked to several cognition related neurodegenerative and neuropsychiatric disorders. However, whether miR-218 plays a direct role in cognitive functions remains unknown. Here, using the miR-218 knockout (KO) mouse model and the sponge/overexpression approaches, we showed that miR-218-2 but not miR-218-1 could bidirectionally regulate the contextual and spatial memory in the mice. Furthermore, miR-218-2 deficiency induced deficits in the morphology and presynaptic neurotransmitter release in the hippocampus to impair the long term potentiation. Combining the RNA sequencing analysis and luciferase reporter assay, we identified complement component 3 (C3) as a main target gene of miR-218 in the hippocampus to regulate the presynaptic functions. Finally, we showed that restoring the C3 activity in the miR-218-2 KO mice could rescue the synaptic and learning deficits. Therefore, miR-218-2 played an important role in the cognitive functions of mice through C3, which can be a mechanism for the defective cognition of miR-218 related neuronal disorders.
Collapse
|
30
|
Hoogmartens J, Hens E, Engelborghs S, De Deyn PP, van der Zee J, Van Broeckhoven C, Cacace R. Investigation of the role of matrix metalloproteinases in the genetic etiology of Alzheimer's disease. Neurobiol Aging 2021; 104:105.e1-105.e6. [PMID: 33892965 DOI: 10.1016/j.neurobiolaging.2021.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/26/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022]
Abstract
Matrix metalloproteinases (MMPs) are a multigene family of proteinases regulating the functions of a large number of signaling and scaffolding molecules that are involved in neuro-inflammation, synaptic dysfunction and neuronal death. MMPs have been associated with neurological conditions, such as Alzheimer's disease (AD), through a sudden and massive upregulation of particular members of the MMP family. Evidence for this hypothesis can be found in the clinical observation of increased MMP1 and MMP3 expression levels in plasma of AD patients compared to control individuals and in the pro-amyloidogenic effects that have been described for additional MMP family members like MMP13, MT1-MMP, and MT5-MMP. Consequently, we investigated the role of MMP1, 3, 13, MT1-MMP, and MT5-MMP in the genetic etiology of AD. We performed full exonic resequencing of these 5 MMPs in 1278 AD patients (mean age at onset [AAO]: 74.88 ± 9.10, range: 29-96) and 797 age-matched control individuals (mean age at inclusion [AAI]: 74.92 ± 6.48, range: 65-100) from Flanders-Belgium and identified MMP13 as most promising candidate gene. We identified 6 ultra-rare (≤0.01%) MMP13 missense mutations in 6 patients that were absent from the control cohort. We observed in one control individual a frameshift mutation (p.G269Qfs*2) leading to a premature termination codon. Based on previously described functional evidence, suggesting that MMP13 regulates BACE1 processing, and our genetic findings, we hypothesize a gain-of-function disease mechanism for the missense mutations found in patients. Functional experimental studies remain essential to assess the effect of these mutations on disease related processes and genetic replication studies are needed to corroborate our findings.
Collapse
Affiliation(s)
- Julie Hoogmartens
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium; Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Elisabeth Hens
- Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp, Middelheim and Hoge Beuken, Antwerp, Belgium; Department of Neurology, University Hospital Antwerp, Edegem, Belgium; Department of Neurology, UZ Brussel and Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sebastiaan Engelborghs
- Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology, UZ Brussel and Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Paul De Deyn
- Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp, Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium; Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium; Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Rita Cacace
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium; Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | |
Collapse
|
31
|
A high-throughput screening to identify small molecules that suppress huntingtin promoter activity or activate huntingtin-antisense promoter activity. Sci Rep 2021; 11:6157. [PMID: 33731741 PMCID: PMC7969751 DOI: 10.1038/s41598-021-85279-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/09/2021] [Indexed: 12/26/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in exon 1 of huntingtin (HTT). While there are currently no disease-modifying treatments for HD, recent efforts have focused on the development of nucleotide-based therapeutics to lower HTT expression. As an alternative to siRNA or oligonucleotide methods, we hypothesized that suppression of HTT expression might be accomplished by small molecules that either (1) directly decrease HTT expression by suppressing HTT promoter activity or (2) indirectly decrease HTT expression by increasing the promoter activity of HTT-AS, the gene antisense to HTT that appears to inhibit expression of HTT. We developed and employed a high-throughput screen for modifiers of HTT and HTT-AS promoter activity using luminescent reporter HEK293 cells; of the 52,041 compounds tested, we identified 898 replicable hits. We used a rigorous stepwise approach to assess compound toxicity and the capacity of the compounds to specifically lower huntingtin protein in 5 different cell lines, including HEK293 cells, HD lymphoblastoid cells, mouse primary neurons, HD iPSCs differentiated into cortical-like neurons, and HD hESCs. We found no compounds which were able to lower huntingtin without lowering cell viability in all assays, though the potential efficacy of a few compounds at non-toxic doses could not be excluded. Our results suggest that more specific targets may facilitate a small molecule approach to HTT suppression.
Collapse
|
32
|
Chopra N, Wang R, Maloney B, Nho K, Beck JS, Pourshafie N, Niculescu A, Saykin AJ, Rinaldi C, Counts SE, Lahiri DK. MicroRNA-298 reduces levels of human amyloid-β precursor protein (APP), β-site APP-converting enzyme 1 (BACE1) and specific tau protein moieties. Mol Psychiatry 2021; 26:5636-5657. [PMID: 31942037 PMCID: PMC8758483 DOI: 10.1038/s41380-019-0610-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common age-related form of dementia, associated with deposition of intracellular neuronal tangles consisting primarily of hyperphosphorylated microtubule-associated protein tau (p-tau) and extracellular plaques primarily comprising amyloid- β (Aβ) peptide. The p-tau tangle unit is a posttranslational modification of normal tau protein. Aβ is a neurotoxic peptide excised from the amyloid-β precursor protein (APP) by β-site APP-cleaving enzyme 1 (BACE1) and the γ-secretase complex. MicroRNAs (miRNAs) are short, single-stranded RNAs that modulate protein expression as part of the RNA-induced silencing complex (RISC). We identified miR-298 as a repressor of APP, BACE1, and the two primary forms of Aβ (Aβ40 and Aβ42) in a primary human cell culture model. Further, we discovered a novel effect of miR-298 on posttranslational levels of two specific tau moieties. Notably, miR-298 significantly reduced levels of ~55 and 50 kDa forms of the tau protein without significant alterations of total tau or other forms. In vivo overexpression of human miR-298 resulted in nonsignificant reduction of APP, BACE1, and tau in mice. Moreover, we identified two miR-298 SNPs associated with higher cerebrospinal fluid (CSF) p-tau and lower CSF Aβ42 levels in a cohort of human AD patients. Finally, levels of miR-298 varied in postmortem human temporal lobe between AD patients and age-matched non-AD controls. Our results suggest that miR-298 may be a suitable target for AD therapy.
Collapse
Affiliation(s)
- Nipun Chopra
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA
| | - Ruizhi Wang
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA
| | - Bryan Maloney
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Indiana Alzheimers Disease Center, Indiana University School of Medicine, Indianapolis, IN USA
| | - Kwangsik Nho
- grid.257413.60000 0001 2287 3919Indiana Alzheimers Disease Center, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Departments of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
| | - John S. Beck
- grid.17088.360000 0001 2150 1785Departments of Translational Neuroscience and Family Medicine, Michigan State University, Grand Rapids, MI USA
| | - Naemeh Pourshafie
- grid.94365.3d0000 0001 2297 5165Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| | - Alexander Niculescu
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA
| | - Andrew J. Saykin
- grid.257413.60000 0001 2287 3919Indiana Alzheimers Disease Center, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Departments of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN USA
| | - Carlo Rinaldi
- grid.4991.50000 0004 1936 8948Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Scott E. Counts
- grid.17088.360000 0001 2150 1785Departments of Translational Neuroscience and Family Medicine, Michigan State University, Grand Rapids, MI USA
| | - Debomoy K. Lahiri
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Indiana Alzheimers Disease Center, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN USA
| |
Collapse
|
33
|
Taherkhani A, Moradkhani S, Orangi A, Jalalvand A, Khamverdi Z. Molecular docking study of flavonoid compounds for possible matrix metalloproteinase-13 inhibition. J Basic Clin Physiol Pharmacol 2020; 32:1105-1119. [PMID: 34898135 DOI: 10.1515/jbcpp-2020-0036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/10/2020] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Matrix metalloproteinase-13 (MMP-13) has been reported to be involved in different biological processes such as degradation of extracellular matrix proteins, activating or degrading some significant regulatory proteins, wound healing, tissue remodeling, cartilage degradation, bone development, bone mineralization, ossification, cell migration, and tumor cell invasion. Further, MMP-13 participates in many oral diseases such as tooth decay, gingivitis, and degradation of enamel and tissue around the implant. In addition, inhibition of MMP-13 has shown therapeutic properties for Alzheimer's disease (AD). We performed molecular docking to assess the binding affinity of 29 flavonoid compounds with the MMP-13. Additionally, pharmacokinetic and toxicity characteristics of the top-ranked flavonoids were studied. The current study also intended to identify the most important amino acids involved in the inhibition of MMP-13 based on topological feature (degree) in the ligand-amino acid network for MMP-13. METHODS Molecular docking and network analysis were studied using AutoDock and Cytoscape software, respectively. Pharmacokinetic and toxicity characteristics of compounds were predicted using bioinformatics web tools. RESULTS The results revealed that nine of the studied flavonoids had considerable estimated free energy of binding and inhibition constant: Rutin, nicotiflorin, orientin, vitexin, apigenin-7-glucoside, quercitrin, isoquercitrin, quercitrin-3-rhamnoside, and vicenin-2. Proline-242 was found to be the most important amino acid inhibiting the enzyme. CONCLUSIONS The results of the current study may be helpful in the prevention and therapeutic procedures of many disorders such as cancer, tooth caries, and AD. Nevertheless, validation tests are required in the future.
Collapse
Affiliation(s)
- Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shirin Moradkhani
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Product Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Athena Orangi
- Department of Restorative Dentistry, Dental Research Center, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Jalalvand
- Department of Influenza and other respiratory viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Khamverdi
- Department of Restorative Dentistry, Dental Research Center, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
34
|
Sánchez K, Maguire-Zeiss K. MMP13 Expression Is Increased Following Mutant α-Synuclein Exposure and Promotes Inflammatory Responses in Microglia. Front Neurosci 2020; 14:585544. [PMID: 33343280 PMCID: PMC7738560 DOI: 10.3389/fnins.2020.585544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
α-Synuclein is a 140-amino acid protein that readily misfolds and is associated with the Lewy body pathology found in sporadic and genetic forms of Parkinson's disease. We and others have shown that wild-type α-synuclein is a damage-associated molecular pattern that directly elicits a proinflammatory response in microglia through toll-like receptor activation. Here we investigated the direct effect of oligomeric mutant α-synuclein (A53T) on microglia morphology and activation. We found that misfolded A53T increased quantitative measures of amoeboid cell morphology, NFκB nuclear translocation and the expression of prototypical proinflammatory molecules. We also demonstrated that A53T increased expression of MMP13, a matrix metalloproteinase that remodels the extracellular matrix. To better understand the role of MMP13 in synucleinopathies, we further characterized the role of MMP13 in microglial signaling. We showed exposure of microglia to MMP13 induced a change in morphology and promoted the release of TNFα and MMP9. Notably, IL1β was not released indicating that the pathway involved in MMP13 activation of microglia may be different than the A53T pathway. Lastly, MMP13 increased the expression of CD68 suggesting that the lysosomal pathway might be altered by this MMP. Taken together this study shows that mutant α-synuclein directly induces a proinflammatory phenotype in microglia, which includes the expression of MMP13. In turn, MMP13 directly alters microglia supporting the need for multi-target therapies to treat Parkinson's disease patients.
Collapse
Affiliation(s)
- Kathryn Sánchez
- Department of Biology, Georgetown University, Washington, DC, United States
| | - Kathleen Maguire-Zeiss
- Department of Biology, Georgetown University, Washington, DC, United States.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
35
|
Ammassari-Teule M. Early-Occurring Dendritic Spines Alterations in Mouse Models of Alzheimer's Disease Inform on Primary Causes of Neurodegeneration. Front Synaptic Neurosci 2020; 12:566615. [PMID: 33013348 PMCID: PMC7511703 DOI: 10.3389/fnsyn.2020.566615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/17/2020] [Indexed: 01/04/2023] Open
Abstract
The consensus that synaptic failure is the earliest cause of cognitive deterioration in Alzheimer’s disease (AD) has initially led to investigate structural (dendritic spines) and physiological (LTP) synaptic dysfunctions in mouse models of AD with established cognitive alterations. The challenge is now to track down ultra-early alterations in spines to uncover causes rather than disease’s symptoms. This review article pinpoints dysregulations of the postsynaptic density (PSD) protein network which alter the morphology and function of spines in pre- and early- symptomatic hAPP mouse models of AD, and, hence, inform on primary causes of neurodegeneration.
Collapse
Affiliation(s)
- Martine Ammassari-Teule
- Institute of Biochemistry and Cell Biology, CNR-National Research Council, Rome, Italy.,Laboratory of Psychobiology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
36
|
Li KY, Xiang XJ, Song L, Chen J, Luo B, Wen QX, Zhong BR, Zhou GF, Deng XJ, Ma YL, Hu LT, Chen GJ. Mitochondrial TXN2 attenuates amyloidogenesis via selective inhibition of BACE1 expression. J Neurochem 2020; 157:1351-1365. [PMID: 32920833 DOI: 10.1111/jnc.15184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022]
Abstract
Thioredoxin-2 (TXN2) is a mitochondrial protein and represents one of the intrinsic antioxidant enzymes. It has long been recognized that mitochondrial dysfunction and oxidative stress contribute to the pathogenesis of Alzheimer's disease (AD). We hypothesized that mitochondrial TXN2 might play a role in AD-like pathology. In this study, we found that in SH-SY5Y and HEK cells stably express full-length human amyloid-β precursor protein (HEK-APP), TXN2 silencing or over-expression selectively increased or decreased the transcription of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), respectively, without altering the protein levels of others enzymes involved in the catalytic processing of APP. As a result, β-amyloid protein (Aβ) levels were significantly decreased by TXN2. In addition, in cells treated with 3-nitropropionic acid (3-NP) that is known to increase reactive oxygen species (ROS) and promote mitochondrial dysfunction, TXN2 silencing resulted in further enhancement of BACE1 protein levels, suggesting a role of TXN2 in ROS removal. The downstream signaling might involve NFκB, as TXN2 reduced the phosphorylation of p65 and IκBα; and p65 knockdown significantly attenuated TXN2-mediated regulation of BACE1. Concomitantly, the levels of cellular ROS, apoptosis-related proteins and cell viability were altered by TXN2 silencing or over-expression. In APPswe/PS1E9 mice, an animal model of AD, the cortical and hippocampal TXN2 protein levels were decreased at 12 months but not at 6 months, suggesting an age-dependent decline. Collectively, TXN2 regulated BACE1 expression and amyloidogenesis via cellular ROS and NFκB signaling. TXN2 might serve as a potential target especially for early intervention of AD.
Collapse
Affiliation(s)
- Kun-Yi Li
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China.,Department of Neurology, the Second People's Hospital of Chengdu, Chengdu, China
| | - Xiao-Jiao Xiang
- Department of Nuclear Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Song
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Jian Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Biao Luo
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Qi-Xin Wen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Bi-Rou Zhong
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Gui-Feng Zhou
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Juan Deng
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yuan-Lin Ma
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Li-Tian Hu
- Department of Neurology, Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Guo-Jun Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
37
|
Zipfel P, Rochais C, Baranger K, Rivera S, Dallemagne P. Matrix Metalloproteinases as New Targets in Alzheimer's Disease: Opportunities and Challenges. J Med Chem 2020; 63:10705-10725. [PMID: 32459966 DOI: 10.1021/acs.jmedchem.0c00352] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although matrix metalloproteinases (MMPs) are implicated in the regulation of numerous physiological processes, evidence of their pathological roles have also been obtained in the last decades, making MMPs attractive therapeutic targets for several diseases. Recent discoveries of their involvement in central nervous system (CNS) disorders, and in particular in Alzheimer's disease (AD), have paved the way to consider MMP modulators as promising therapeutic strategies. Over the past few decades, diverse approaches have been undertaken in the design of therapeutic agents targeting MMPs for various purposes, leading, more recently, to encouraging developments. In this article, we will present recent examples of inhibitors ranging from small molecules and peptidomimetics to biologics. We will also discuss the scientific knowledge that has led to the development of emerging tools and techniques to overcome the challenges of selective MMP inhibition.
Collapse
Affiliation(s)
- Pauline Zipfel
- Normandie Univ, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Christophe Rochais
- Normandie Univ, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Kévin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Patrick Dallemagne
- Normandie Univ, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| |
Collapse
|
38
|
Transient upregulation of translational efficiency in prodromal and early symptomatic Tg2576 mice contributes to Aβ pathology. Neurobiol Dis 2020; 139:104787. [PMID: 32032729 DOI: 10.1016/j.nbd.2020.104787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/14/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022] Open
Abstract
TG2576 mice show highest levels of the full length mutant Swedish Human Amyloid Precursor Protein (APPKM670/671LN) during prodromal and early sympotomatic stages. Interestingly, this occurs in association with the unbalanced expression of two of its RNA Binding proteins (RBPs) opposite regulators, the Fragile-X Mental Retardation Protein (FMRP) and the heteronuclear Ribonucleoprotein C (hnRNP C). Whether an augmentation in overall translational efficiency also contributes to the elevation of APP levels at those early developmental stages is currently unknown. We investigated this possibility by performing a longitudinal polyribosome profiling analysis of APP mRNA and protein in total hippocampal extracts from Tg2576 mice. Results showed that protein polysomal signals were exclusively detected in pre-symptomatic (1 months) and early symptomatic (3 months) mutant mice. Differently, hAPP mRNA polysomal signals were detected at any age, but a peak of expression was found when mice were 3-month old. Consistent with an early but transient rise of translational efficiency, the phosphorylated form of the initial translation factor eIF2α (p-eIF2α) was reduced at pre-symptomatic and early symptomatic stages, whereas it was increased at the fully symptomatic stage. Pharmacological downregulation of overall translation in early symptomatic mutants was then found to reduce hippocampal levels of full length APP, Aβspecies, BACE1 and Caspase-3, to rescue predominant LTD at hippocampal synapses, to revert dendritic spine loss and memory alterations, and to reinstate memory-induced c-fosactivation. Altogether, our findings demonstrate that overall translation is upregulated in prodromal and early symptomatic Tg2576 mice, and that restoring proper translational control at the onset of AD-like symptoms blocks the emergence of the AD-like phenotype.
Collapse
|
39
|
Xie J, Liang R, Wang Y, Huang J, Cao X, Niu B. Progress in Target Drug Molecules for Alzheimer's Disease. Curr Top Med Chem 2020; 20:4-36. [DOI: 10.2174/1568026619666191203113745] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/20/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that 4 widespread in the elderly.
The etiology of AD is complicated, and its pathogenesis is still unclear. Although there are many
researches on anti-AD drugs, they are limited to reverse relief symptoms and cannot treat diseases.
Therefore, the development of high-efficiency anti-AD drugs with no side effects has become an urgent
need. Based on the published literature, this paper summarizes the main targets of AD and their drugs,
and focuses on the research and development progress of these drugs in recent years.
Collapse
Affiliation(s)
- Jiayang Xie
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Ruirui Liang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yajiang Wang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Junyi Huang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Bing Niu
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
40
|
Khatib T, Chisholm DR, Whiting A, Platt B, McCaffery P. Decay in Retinoic Acid Signaling in Varied Models of Alzheimer's Disease and In-Vitro Test of Novel Retinoic Acid Receptor Ligands (RAR-Ms) to Regulate Protective Genes. J Alzheimers Dis 2020; 73:935-954. [PMID: 31884477 PMCID: PMC7081102 DOI: 10.3233/jad-190931] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2019] [Indexed: 12/22/2022]
Abstract
Retinoic acid has been previously proposed in the treatment of Alzheimer's disease (AD). Here, five transgenic mouse models expressing AD and frontotemporal dementia risk genes (i.e., PLB2APP, PLB2TAU, PLB1Double, PLB1Triple, and PLB4) were used to investigate if consistent alterations exist in multiple elements of the retinoic acid signaling pathway in these models. Many steps of the retinoic acid signaling pathway including binding proteins and metabolic enzymes decline, while the previously reported increase in RBP4 was only consistent at late (6 months) but not early (3 month) ages. The retinoic acid receptors were exceptional in their consistent decline in mRNA and protein with transcript decline of retinoic acid receptors β and γ by 3 months, before significant pathology, suggesting involvement in early stages of disease. Decline in RBP1 transcript may also be an early but not late marker of disease. The decline in the retinoic acid signaling system may therefore be a therapeutic target for AD and frontotemporal dementia. Thus, novel stable retinoic acid receptor modulators (RAR-Ms) activating multiple genomic and non-genomic pathways were probed for therapeutic control of gene expression in rat primary hippocampal and cortical cultures. RAR-Ms promoted the non-amyloidogenic pathway, repressed lipopolysaccharide induced inflammatory genes and induced genes with neurotrophic action. RAR-Ms had diverse effects on gene expression allowing particular RAR-Ms to be selected for maximal therapeutic effect. Overall the results demonstrated the early decline of retinoic acid signaling in AD and frontotemporal dementia models and the activity of stable and potent alternatives to retinoic acid as potential therapeutics.
Collapse
Affiliation(s)
- Thabat Khatib
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - David R. Chisholm
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, UK
| | - Andrew Whiting
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, UK
| | - Bettina Platt
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Peter McCaffery
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| |
Collapse
|
41
|
Xu J, Lu Y, Liu Q, Xia A, Zhao J, Xu X, Sun Q, Qi F, Sun B. Long noncoding RNA GMAN promotes hepatocellular carcinoma progression by interacting with eIF4B. Cancer Lett 2019; 473:1-12. [PMID: 31875526 DOI: 10.1016/j.canlet.2019.12.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/06/2019] [Accepted: 12/18/2019] [Indexed: 12/24/2022]
Abstract
Gastric cancer metastasis associated long noncoding RNA (GMAN), a long noncoding RNA, is associated with metastasis in gastric cancer. However, its underlying mechanisms in hepatocellular carcinoma (HCC) are unclear. We found that lncRNA-GMAN was significantly overexpressed in HCC tissues. GMAN expression is associated with vascular invasion, histological grade, tumor, node, metastasis (TNM) stage, short overall survival, and disease-free survival. Knockdown of GMAN induced apoptosis and suppressed invasive and migration potential in vitro and vivo, whereas ectopic GMAN expression produced the opposite effect. We also found that the inhibition of apoptosis, rather than promotion of proliferation, was responsible for GMAN-enhanced cellular viability. Mechanistic analyses indicated that GMAN directly combined with eukaryotic translation initiation factor 4B (eIF4B) and promoted its phosphorylation at serine-422 by preventing eIF4B binding and dephosphorization of the protein phosphatase 2A subunit B. The results demonstrated the stability of p-eIF4B and the elevation of mRNA translation and anti-apoptosis-related protein expression, which further induced proliferation and metastasis of HCC. The current study demonstrates that GMAN regulates the progression of HCC by inhibiting apoptosis and promoting the survival of cancer cells.
Collapse
Affiliation(s)
- Jianbo Xu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 210000, Nanjing, Jiangsu Province, PR China; Department of Hepatobiliary Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, 223001, Huai'an No.1, Jiangsu Province, PR China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.
| | - Yijun Lu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 210000, Nanjing, Jiangsu Province, PR China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.
| | - Qiaoyu Liu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 210000, Nanjing, Jiangsu Province, PR China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.
| | - Anliang Xia
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 210000, Nanjing, Jiangsu Province, PR China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.
| | - Jian Zhao
- Department of Hepatobiliary Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, 223001, Huai'an No.1, Jiangsu Province, PR China.
| | - Xiaoliang Xu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 210000, Nanjing, Jiangsu Province, PR China.
| | - Qikai Sun
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 210000, Nanjing, Jiangsu Province, PR China.
| | - Fuzhen Qi
- Department of Hepatobiliary Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, 223001, Huai'an No.1, Jiangsu Province, PR China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 210000, Nanjing, Jiangsu Province, PR China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.
| |
Collapse
|
42
|
Webers A, Heneka MT, Gleeson PA. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer's disease. Immunol Cell Biol 2019; 98:28-41. [PMID: 31654430 DOI: 10.1111/imcb.12301] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/20/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is characterized by amyloid beta (Aβ) accumulation, tau pathology and neuroinflammation. Recently, there has been considerable interest in the role of neuroinflammation in directly contributing to the progression of AD. Studies in mice and humans have identified a role for microglial cells, the resident innate immune cells of the central nervous system, in AD. Activated microglia are a key hallmark of the disease and the secretion of proinflammatory cytokines by microglia may result in a positive feedback loop between neurons and microglia, resulting in ongoing low-grade inflammation. Traditionally, the pathways of Aβ production and neuroinflammation have been considered independently; however, recent studies suggest that these processes may converge to promote the pathology associated with AD. Here we review the importance of inflammation and microglia in AD development and effects of inflammatory responses on cellular pathways of neurons, including Aβ generation.
Collapse
Affiliation(s)
- Alessandra Webers
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.,Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Paul A Gleeson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
43
|
Matrix metalloproteinase 13, a new target for therapy in Alzheimer's disease. Genes Dis 2019; 6:1-2. [PMID: 30906825 PMCID: PMC6411778 DOI: 10.1016/j.gendis.2019.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/10/2019] [Indexed: 11/22/2022] Open
|