1
|
Zhang X, Wang J, Zhang Z, Ye K. Tau in neurodegenerative diseases: molecular mechanisms, biomarkers, and therapeutic strategies. Transl Neurodegener 2024; 13:40. [PMID: 39107835 PMCID: PMC11302116 DOI: 10.1186/s40035-024-00429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/05/2024] [Indexed: 09/14/2024] Open
Abstract
The deposition of abnormal tau protein is characteristic of Alzheimer's disease (AD) and a class of neurodegenerative diseases called tauopathies. Physiologically, tau maintains an intrinsically disordered structure and plays diverse roles in neurons. Pathologically, tau undergoes abnormal post-translational modifications and forms oligomers or fibrous aggregates in tauopathies. In this review, we briefly introduce several tauopathies and discuss the mechanisms mediating tau aggregation and propagation. We also describe the toxicity of tau pathology. Finally, we explore the early diagnostic biomarkers and treatments targeting tau. Although some encouraging results have been achieved in animal experiments and preclinical studies, there is still no cure for tauopathies. More in-depth basic and clinical research on the pathogenesis of tauopathies is necessary.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiangyu Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Venati SR, Uversky VN. Exploring Intrinsic Disorder in Human Synucleins and Associated Proteins. Int J Mol Sci 2024; 25:8399. [PMID: 39125972 PMCID: PMC11313516 DOI: 10.3390/ijms25158399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, we explored the intrinsic disorder status of the three members of the synuclein family of proteins-α-, β-, and γ-synucleins-and showed that although all three human synucleins are highly disordered, the highest levels of disorder are observed in γ-synuclein. Our analysis of the peculiarities of the amino acid sequences and modeled 3D structures of the human synuclein family members revealed that the pathological mutations A30P, E46K, H50Q, A53T, and A53E associated with the early onset of Parkinson's disease caused some increase in the local disorder propensity of human α-synuclein. A comparative sequence-based analysis of the synuclein proteins from various evolutionary distant species and evaluation of their levels of intrinsic disorder using a set of commonly used bioinformatics tools revealed that, irrespective of their origin, all members of the synuclein family analyzed in this study were predicted to be highly disordered proteins, indicating that their intrinsically disordered nature represents an evolutionary conserved and therefore functionally important feature. A detailed functional disorder analysis of the proteins in the interactomes of the human synuclein family members utilizing a set of commonly used disorder analysis tools showed that the human α-synuclein interactome has relatively higher levels of intrinsic disorder as compared with the interactomes of human β- and γ- synucleins and revealed that, relative to the β- and γ-synuclein interactomes, α-synuclein interactors are involved in a much broader spectrum of highly diversified functional pathways. Although proteins interacting with three human synucleins were characterized by highly diversified functionalities, this analysis also revealed that the interactors of three human synucleins were involved in three common functional pathways, such as the synaptic vesicle cycle, serotonergic synapse, and retrograde endocannabinoid signaling. Taken together, these observations highlight the critical importance of the intrinsic disorder of human synucleins and their interactors in various neuronal processes.
Collapse
Affiliation(s)
- Sriya Reddy Venati
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Todd TW, Islam NN, Cook CN, Caulfield TR, Petrucelli L. Cryo-EM structures of pathogenic fibrils and their impact on neurodegenerative disease research. Neuron 2024; 112:2269-2288. [PMID: 38834068 PMCID: PMC11257806 DOI: 10.1016/j.neuron.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/13/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Neurodegenerative diseases are commonly associated with the formation of aberrant protein aggregates within the brain, and ultrastructural analyses have revealed that the proteins within these inclusions often assemble into amyloid filaments. Cryoelectron microscopy (cryo-EM) has emerged as an effective method for determining the near-atomic structure of these disease-associated filamentous proteins, and the resulting structures have revolutionized the way we think about aberrant protein aggregation and propagation during disease progression. These structures have also revealed that individual fibril conformations may dictate different disease conditions, and this newfound knowledge has improved disease modeling in the lab and advanced the ongoing pursuit of clinical tools capable of distinguishing and targeting different pathogenic entities within living patients. In this review, we summarize some of the recently developed cryo-EM structures of ex vivo α-synuclein, tau, β-amyloid (Aβ), TAR DNA-binding protein 43 (TDP-43), and transmembrane protein 106B (TMEM106B) fibrils and discuss how these structures are being leveraged toward mechanistic research and therapeutic development.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Naeyma N Islam
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Casey N Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
4
|
Jin M, Wang S, Gao X, Zou Z, Hirotsune S, Sun L. Pathological and physiological functional cross-talks of α-synuclein and tau in the central nervous system. Neural Regen Res 2024; 19:855-862. [PMID: 37843221 PMCID: PMC10664117 DOI: 10.4103/1673-5374.382231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/05/2023] [Accepted: 07/12/2023] [Indexed: 10/17/2023] Open
Abstract
α-Synuclein and tau are abundant multifunctional brain proteins that are mainly expressed in the presynaptic and axonal compartments of neurons, respectively. Previous works have revealed that intracellular deposition of α-synuclein and/or tau causes many neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Despite intense investigation, the normal physiological functions and roles of α-synuclein and tau are still unclear, owing to the fact that mice with knockout of either of these proteins do not present apparent phenotypes. Interestingly, the co-occurrence of α-synuclein and tau aggregates was found in post-mortem brains with synucleinopathies and tauopathies, some of which share similarities in clinical manifestations. Furthermore, the direct interaction of α-synuclein with tau is considered to promote the fibrillization of each of the proteins in vitro and in vivo. On the other hand, our recent findings have revealed that α-synuclein and tau are cooperatively involved in brain development in a stage-dependent manner. These findings indicate strong cross-talk between the two proteins in physiology and pathology. In this review, we provide a summary of the recent findings on the functional roles of α-synuclein and tau in the physiological conditions and pathogenesis of neurodegenerative diseases. A deep understanding of the interplay between α-synuclein and tau in physiological and pathological conditions might provide novel targets for clinical diagnosis and therapeutic strategies to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Mingyue Jin
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shengming Wang
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Xiaodie Gao
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Zhenyou Zou
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, Guangxi Zhuang Autonomous Region, China
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Liyuan Sun
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
5
|
Li W, Li JY. Overlaps and divergences between tauopathies and synucleinopathies: a duet of neurodegeneration. Transl Neurodegener 2024; 13:16. [PMID: 38528629 DOI: 10.1186/s40035-024-00407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Proteinopathy, defined as the abnormal accumulation of proteins that eventually leads to cell death, is one of the most significant pathological features of neurodegenerative diseases. Tauopathies, represented by Alzheimer's disease (AD), and synucleinopathies, represented by Parkinson's disease (PD), show similarities in multiple aspects. AD manifests extrapyramidal symptoms while dementia is also a major sign of advanced PD. We and other researchers have sequentially shown the cross-seeding phenomenon of α-synuclein (α-syn) and tau, reinforcing pathologies between synucleinopathies and tauopathies. The highly overlapping clinical and pathological features imply shared pathogenic mechanisms between the two groups of disease. The diagnostic and therapeutic strategies seemingly appropriate for one distinct neurodegenerative disease may also apply to a broader spectrum. Therefore, a clear understanding of the overlaps and divergences between tauopathy and synucleinopathy is critical for unraveling the nature of the complicated associations among neurodegenerative diseases. In this review, we discuss the shared and diverse characteristics of tauopathies and synucleinopathies from aspects of genetic causes, clinical manifestations, pathological progression and potential common therapeutic approaches targeting the pathology, in the aim to provide a timely update for setting the scheme of disease classification and provide novel insights into the therapeutic development for neurodegenerative diseases.
Collapse
Affiliation(s)
- Wen Li
- Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, 110122, China
| | - Jia-Yi Li
- Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, 110122, China.
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, BMC A10, 22184, Lund, Sweden.
| |
Collapse
|
6
|
Ding J, Wu J, Hou X, Yang L, Gao Y, Zheng J, Jia N, He Z, Zhang H, Wang C, Qi X, Huang J, Pei X, Wang J. α-synuclein-lack expression rescues methamphetamine-induced mossy fiber degeneration in dorsal hippocampal CA3. Neurotoxicology 2024; 101:36-45. [PMID: 38311184 DOI: 10.1016/j.neuro.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Methamphetamine (METH) - induced cognitive impairments may be related to synaptic degeneration at mossy fiber terminals, critical for spatial memory formation in hippocampal circuits. We have previously found METH-induced neurodegeneration in the striatum by increasing the α-synuclein (α-SYN) level. However, whether and how the METH-induced mossy fiber degeneration is also blamed for the abnormal accumulation of α-SYN remains to be elucidated. Chronic METH exposure decreased mossy fiber density but upregulatedα-SYN and phosphorylated TAU (TAU-pSer396) in hippocampal CA3, associated with glial cell overactivation, axonal neuropathies, and memory impairment. Notably, the knockout of the α-SYN gene significantly alleviated the METH-induced mossy fiber degeneration and memory impairment. Meanwhile, the TAU-pSer396 accumulation and glial activation were ameliorated by α-SYN knockout. Our findings suggest an essential role of α-SYN in mediating METH-induced mossy fiber degeneration, providing promising therapeutic and prophylactic targets for METH-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China; Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jun Wu
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaotao Hou
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China; Guangdong Provincial Key Laboratory of Genetic Disease Diagnostic, Guangzhou, China
| | - Li Yang
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian, China
| | - Yingdong Gao
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian, China
| | - Juan Zheng
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian, China
| | - Nannan Jia
- Neonatal Screening Center, Taian Maternity and Child Health Hospital, Taian, China
| | - Zheng He
- Neonatal Screening Center, Taian Maternity and Child Health Hospital, Taian, China
| | - Hui Zhang
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian, China
| | - Chengfei Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jiang Huang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xianglin Pei
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang China.
| | - Jiawen Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
7
|
Borghammer P, Okkels N, Weintraub D. Parkinson's Disease and Dementia with Lewy Bodies: One and the Same. JOURNAL OF PARKINSON'S DISEASE 2024; 14:383-397. [PMID: 38640172 PMCID: PMC11091584 DOI: 10.3233/jpd-240002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/21/2024]
Abstract
The question whether Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are expressions of the same underlying disease has been vigorously debated for decades. The recently proposed biological definitions of Lewy body disease, which do not assign any particular importance to the dopamine system over other degenerating neurotransmitter systems, has once more brought the discussion about different types of Lewy body disease to the forefront. Here, we briefly compare PDD and DLB in terms of their symptoms, imaging findings, and neuropathology, ultimately finding them to be indistinguishable. We then present a conceptual framework to demonstrate how one can view different clinical syndromes as manifestations of a shared underlying Lewy body disease. Early Parkinson's disease, isolated RBD, pure autonomic failure and other autonomic symptoms, and perhaps even psychiatric symptoms, represent diverse manifestations of the initial clinical stages of Lewy body disease. They are characterized by heterogeneous and comparatively limited neuronal dysfunction and damage. In contrast, Lewy body dementia, an encompassing term for both PDD and DLB, represents a more uniform and advanced stage of the disease. Patients in this category display extensive and severe Lewy pathology, frequently accompanied by co-existing pathologies, as well as multi-system neuronal dysfunction and degeneration. Thus, we propose that Lewy body disease should be viewed as a single encompassing disease entity. Phenotypic variance is caused by the presence of individual risk factors, disease mechanisms, and co-pathologies. Distinct subtypes of Lewy body disease can therefore be defined by subtype-specific disease mechanisms or biomarkers.
Collapse
Affiliation(s)
- Per Borghammer
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Okkels
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Daniel Weintraub
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Dues DJ, Ma Y, Nguyen APT, Offerman AV, Beddows I, Moore DJ. Formation of templated inclusions in a forebrain α-synuclein mouse model is independent of LRRK2. Neurobiol Dis 2023; 188:S0969-9961(23)00354-6. [PMID: 38435455 PMCID: PMC10906965 DOI: 10.1016/j.nbd.2023.106338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 03/05/2024] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) and α-synuclein share enigmatic roles in the pathobiology of Parkinson's disease (PD). LRRK2 mutations are a common genetic cause of PD which, in addition to neurodegeneration, often present with abnormal deposits of α-synuclein in the form of Lewy-related pathology. As Lewy-related pathology is a prominent neuropathologic finding in sporadic PD, the relationship between LRRK2 and α-synuclein has garnered considerable interest. However, whether and how LRRK2 might influence the accumulation of Lewy-related pathology remains poorly understood. Through stereotactic injection of mouse α-synuclein pre-formed fibrils (PFF), we modeled the spread of Lewy-related pathology within forebrain regions where LRRK2 is most highly expressed. The impact of LRRK2 genotype on the formation of α-synuclein inclusions was evaluated at 1-month post-injection. Neither deletion of LRRK2 nor G2019S LRRK2 knockin appreciably altered the burden of α-synuclein pathology at this early timepoint. These observations fail to provide support for a robust pathophysiologic interaction between LRRK2 and α-synuclein in the forebrain in vivo. There was, however, a modest reduction in microglial activation induced by PFF delivery in the hippocampus of LRRK2 knockout mice, suggesting that LRRK2 may contribute to α-synuclein-induced neuroinflammation. Collectively, our data indicate that the pathological accumulation of α-synuclein in the mouse forebrain is largely independent of LRRK2.
Collapse
Affiliation(s)
- Dylan J. Dues
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Yue Ma
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - An Phu Tran Nguyen
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Alina V. Offerman
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Ian Beddows
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Darren J. Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
9
|
Smith ED, Vo Q, Giasson BI, Borchelt DR, Prokop S, Chakrabarty P. Human tauopathy strains defined by phosphorylation in R1-R2 repeat domains of tau. Acta Neuropathol Commun 2023; 11:172. [PMID: 37891635 PMCID: PMC10612232 DOI: 10.1186/s40478-023-01664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Distinctive post-translational modifications (PTM) characterize tau inclusions found in tauopathy patients. Using detergent-insoluble tau isolated from Alzheimer's disease (AD-tau) or Progressive Supranuclear Palsy (PSP-tau) patients, we provide insights into whether phosphorylation of critical residues determine templated tau seeding. Our initial data with phosphorylation-ablating mutations (Ser/Thr → Ala) on select sites of P301L tau showed no changes in seeding efficacy by AD-tau or PSP-tau. Interestingly, when specific sites in the R1-R2 repeat domains (Ser262/Thr263/Ser289/Ser305) were mutated to phosphorylation-mimicking amino acid Glu, it substantially reduced the seeding efficiency of AD-tau, but not PSP-tau seeds. The resultant detergent-insoluble tau shows deficient phosphorylation on AT8, AT100, AT180 and PHF1 epitopes, indicating inter-domain cooperativity. We further identify Ser305 as a critical determinant of AD-tau-specific seeding, whereby the phospho-mimicking Ser305Glu tau abrogates seeding by AD-tau but not PSP-tau. This suggests that phosphorylation on Ser305 could be related to the formation of disease-specific tau strains. Our results highlight the existence of a phospho-PTM code in tau seeding and further demonstrate the distinctive nature of this code in 4R tauopathies.
Collapse
Affiliation(s)
- Ethan D Smith
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, BMS J484, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Quan Vo
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, BMS J484, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Benoit I Giasson
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, BMS J484, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - David R Borchelt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, BMS J484, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, BMS J484, Gainesville, FL, 32610, USA
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32610, USA
| | - Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, BMS J484, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
10
|
Dues DJ, Ma Y, Nguyen APT, Offerman AV, Beddows I, Moore DJ. Formation of templated inclusions in a forebrain α-synuclein mouse model is independent of LRRK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553965. [PMID: 37645723 PMCID: PMC10462117 DOI: 10.1101/2023.08.19.553965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) and α-synuclein share enigmatic roles in the pathobiology of Parkinson's disease (PD). LRRK2 mutations are a common genetic cause of PD which, in addition to neurodegeneration, often present with abnormal deposits of α-synuclein in the form of Lewy-related pathology. As Lewy-related pathology is a prominent neuropathologic finding in sporadic PD, the relationship between LRRK2 and α-synuclein has garnered considerable interest. However, whether and how LRRK2 might influence the accumulation of Lewy-related pathology remains poorly understood. Through stereotactic injection of mouse α-synuclein pre-formed fibrils (PFF), we modeled the spread of Lewy-related pathology within forebrain regions where LRRK2 is most highly expressed. The impact of LRRK2 genotype on the formation of α-synuclein inclusions was evaluated at 1-month post-injection. Neither deletion of LRRK2 nor G2019S LRRK2 knockin appreciably altered the burden of α-synuclein pathology at this early timepoint. These observations fail to provide support for a robust pathophysiologic interaction between LRRK2 and α-synuclein in the forebrain in vivo. There was, however, a modest reduction in microglial activation induced by PFF delivery in the hippocampus of LRRK2 knockout mice, suggesting that LRRK2 may contribute to α-synuclein-induced neuroinflammation. Collectively, our data indicate that the pathological accumulation of α-synuclein in the mouse forebrain is largely independent of LRRK2.
Collapse
Affiliation(s)
- Dylan J. Dues
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Yue Ma
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - An Phu Tran Nguyen
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Alina V. Offerman
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Ian Beddows
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Darren J. Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| |
Collapse
|
11
|
Manca M, Standke HG, Browne DF, Huntley ML, Thomas OR, Orrú CD, Hughson AG, Kim Y, Zhang J, Tatsuoka C, Zhu X, Hiniker A, Coughlin DG, Galasko D, Kraus A. Tau seeds occur before earliest Alzheimer's changes and are prevalent across neurodegenerative diseases. Acta Neuropathol 2023; 146:31-50. [PMID: 37154939 PMCID: PMC10261243 DOI: 10.1007/s00401-023-02574-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/10/2023]
Abstract
Tau neurofibrillary tangles are a hallmark of Alzheimer's disease neuropathological change. However, it remains largely unclear how distinctive Alzheimer's disease tau seeds (i.e. 3R/4R) correlate with histological indicators of tau accumulation. Furthermore, AD tau co-pathology is thought to influence features and progression of other neurodegenerative diseases including Lewy body disease; yet measurements of different types of tau seeds in the setting of such diseases is an unmet need. Here, we use tau real-time quaking-induced conversion (RT-QuIC) assays to selectively quantitate 3R/4R tau seeds in the frontal lobe which accumulates histologically identifiable tau pathology at late disease stages of AD neuropathologic change. Seed quantitation across a spectrum of neurodegenerative disease cases and controls indicated tau seeding activity can be detected well before accompanying histopathological indication of tau deposits, and even prior to the earliest evidence of Alzheimer's-related tau accumulation anywhere in the brain. In later stages of AD, 3R/4R tau RT-QuIC measures correlated with immunohistochemical tau burden. In addition, Alzheimer's tau seeds occur in the vast majority of cases evaluated here inclusive of primary synucleinopathies, frontotemporal lobar degeneration and even controls albeit at multi-log lower levels than Alzheimer's cases. α-synuclein seeding activity confirmed synucleinopathy cases and further indicated the co-occurrence of α-synuclein seeds in some Alzheimer's disease and primary tauopathy cases. Our analysis indicates that 3R/4R tau seeds in the mid-frontal lobe correlate with the overall Braak stage and Alzheimer's disease neuropathologic change, supporting the quantitative predictive value of tau RT-QuIC assays. Our data also indicate 3R/4R tau seeds are elevated in females compared to males at high (≥ IV) Braak stages. This study suggests 3R/4R tau seeds are widespread even prior to the earliest stages of Alzheimer's disease changes, including in normal, and even young individuals, with prevalence across multiple neurodegenerative diseases to further define disease subtypes.
Collapse
Affiliation(s)
- Matteo Manca
- Department of Pathology, Case Western Reserve University School of Medicine, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Heidi G Standke
- Department of Pathology, Case Western Reserve University School of Medicine, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Danielle F Browne
- Department of Pathology, Case Western Reserve University School of Medicine, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Mikayla L Huntley
- Department of Pathology, Case Western Reserve University School of Medicine, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Olivia R Thomas
- Department of Pathology, Case Western Reserve University School of Medicine, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Christina D Orrú
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Andrew G Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Yongya Kim
- Department of Neurosciences, University of California San Diego, San Diego, CA, 92093-0612, USA
| | - Jing Zhang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Curtis Tatsuoka
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University School of Medicine, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Annie Hiniker
- Department of Pathology, University of California San Diego, San Diego, CA, 92093-0612, USA
| | - David G Coughlin
- Department of Neurosciences, University of California San Diego, San Diego, CA, 92093-0612, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California San Diego, San Diego, CA, 92093-0612, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University School of Medicine, 2103 Cornell Road, Cleveland, OH, 44106, USA.
| |
Collapse
|
12
|
Ponnusamy M, Wang S, Yuksel M, Hansen MT, Blazier DM, McMillan JD, Zhang X, Dammer EB, Collier L, Thinakaran G. Loss of forebrain BIN1 attenuates hippocampal pathology and neuroinflammation in a tauopathy model. Brain 2023; 146:1561-1579. [PMID: 36059072 PMCID: PMC10319775 DOI: 10.1093/brain/awac318] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Bridging integrator 1 (BIN1) is the second most prevalent genetic risk factor identified by genome-wide association studies (GWAS) for late-onset Alzheimer's disease. BIN1 encodes an adaptor protein that regulates membrane dynamics in the context of endocytosis and neurotransmitter vesicle release. In vitro evidence suggests that BIN1 can directly bind to tau in the cytosol. In addition, BIN1's function limits extracellular tau seed uptake by endocytosis and subsequent propagation as well as influences tau release through exosomes. However, the in vivo roles of BIN1 in tau pathogenesis and tauopathy-mediated neurodegeneration remain uncharacterized. We generated conditional knockout mice with a selective loss of Bin1 expression in the forebrain excitatory neurons and oligodendrocytes in P301S human tau transgenic background (line PS19). PS19 mice develop age-dependent tau neuropathology and motor deficits and are commonly used to study Alzheimer's disease tau pathophysiology. The severity of motor deficits and neuropathology was compared between experimental and control mice that differ with respect to forebrain BIN1 expression. BIN1's involvement in tau pathology and neuroinflammation was quantified by biochemical methods and immunostaining. Transcriptome changes were profiled by RNA-sequencing analysis to gain molecular insights. The loss of forebrain BIN1 expression in PS19 mice exacerbated tau pathology in the somatosensory cortex, thalamus, spinal cord and sciatic nerve, accelerated disease progression and caused early death. Intriguingly, the loss of BIN1 also mitigated tau neuropathology in select regions, including the hippocampus, entorhinal/piriform cortex, and amygdala, thus attenuating hippocampal synapse loss, neuronal death, neuroinflammation and brain atrophy. At the molecular level, the loss of forebrain BIN1 elicited complex neuronal and non-neuronal transcriptomic changes, including altered neuroinflammatory gene expression, concomitant with an impaired microglial transition towards the disease-associated microglial phenotype. These results provide crucial new information on in vivo BIN1 function in the context of tau pathogenesis. We conclude that forebrain neuronal BIN1 expression promotes hippocampal tau pathogenesis and neuroinflammation. Our findings highlight an exciting region specificity in neuronal BIN1 regulation of tau pathogenesis and reveal cell-autonomous and non-cell-autonomous mechanisms involved in BIN1 modulation of tau neuropathology.
Collapse
Affiliation(s)
- Moorthi Ponnusamy
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Shuai Wang
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Melike Yuksel
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Mitchell T Hansen
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Danielle M Blazier
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Joseph D McMillan
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Xiaolin Zhang
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Lisa Collier
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Gopal Thinakaran
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
13
|
I F. The unique neuropathological vulnerability of the human brain to aging. Ageing Res Rev 2023; 87:101916. [PMID: 36990284 DOI: 10.1016/j.arr.2023.101916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD)-related neurofibrillary tangles (NFT), argyrophilic grain disease (AGD), aging-related tau astrogliopathy (ARTAG), limbic predominant TDP-43 proteinopathy (LATE), and amygdala-predominant Lewy body disease (LBD) are proteinopathies that, together with hippocampal sclerosis, progressively appear in the elderly affecting from 50% to 99% of individuals aged 80 years, depending on the disease. These disorders usually converge on the same subject and associate with additive cognitive impairment. Abnormal Tau, TDP-43, and α-synuclein pathologies progress following a pattern consistent with an active cell-to-cell transmission and abnormal protein processing in the host cell. However, cell vulnerability and transmission pathways are specific for each disorder, albeit abnormal proteins may co-localize in particular neurons. All these alterations are unique or highly prevalent in humans. They all affect, at first, the archicortex and paleocortex to extend at later stages to the neocortex and other regions of the telencephalon. These observations show that the phylogenetically oldest areas of the human cerebral cortex and amygdala are not designed to cope with the lifespan of actual humans. New strategies aimed at reducing the functional overload of the human telencephalon, including optimization of dream repair mechanisms and implementation of artificial circuit devices to surrogate specific brain functions, appear promising.
Collapse
Affiliation(s)
- Ferrer I
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain; Biomedical Research Network of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
14
|
Borghammer P, Just MK, Horsager J, Skjærbæk C, Raunio A, Kok EH, Savola S, Murayama S, Saito Y, Myllykangas L, Van Den Berge N. A postmortem study suggests a revision of the dual-hit hypothesis of Parkinson's disease. NPJ Parkinsons Dis 2022; 8:166. [PMID: 36450732 PMCID: PMC9712280 DOI: 10.1038/s41531-022-00436-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
The dual-hit hypothesis of Parkinson's disease (PD) originally postulated that a neurotropic pathogen leads to formation of α-synuclein pathology in the olfactory bulb (OB) and dorsal motor nucleus of the vagus (DMV) and then invades the brain from these two entry points. Little work has been conducted to validate an important underlying premise for the dual-hit hypothesis, namely that the initial Lewy pathology does arise simultaneously in the OB and the enteric nervous system (ENS) plexuses and DMV at the earliest disease stage. We conducted a focused re-analysis of two postmortem datasets, which included large numbers of mild Lewy body disease (LBD) cases. We found that cases with α-synuclein pathology restricted to the peripheral autonomic nervous system and/or lower brainstem (early body-first LBD cases) very rarely had any OB pathology, suggesting that Lewy pathology commonly arises in the ENS without concomitant involvement of the OB. In contrast, cases with mild amygdala-predominant Lewy pathology (early brain-first LBD cases) nearly always showed OB pathology. This is compatible with the first pathology being triggered in the OB or amygdala followed by secondary spreading to connected structures, but without early involvement of the ENS or lower brainstem. These observations support that the pathologic process starts in either the olfactory bulb or the ENS, but rarely in the olfactory bulb and gut simultaneously. More studies on neuropathological datasets are warranted to reproduce these findings. The agreement between the revised single-hit hypothesis and the recently proposed brain-first vs. body-first model of LBD is discussed.
Collapse
Affiliation(s)
- Per Borghammer
- grid.154185.c0000 0004 0512 597XDepartment of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mie Kristine Just
- grid.154185.c0000 0004 0512 597XDepartment of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob Horsager
- grid.154185.c0000 0004 0512 597XDepartment of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Casper Skjærbæk
- grid.154185.c0000 0004 0512 597XDepartment of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anna Raunio
- grid.7737.40000 0004 0410 2071Department of Pathology, University of Helsinki, and HUS Diagnostic Center, University Hospital, Helsinki, Finland
| | - Eloise H. Kok
- grid.7737.40000 0004 0410 2071Department of Pathology, University of Helsinki, and HUS Diagnostic Center, University Hospital, Helsinki, Finland
| | - Sara Savola
- grid.7737.40000 0004 0410 2071Department of Pathology, University of Helsinki, and HUS Diagnostic Center, University Hospital, Helsinki, Finland
| | - Shigeo Murayama
- grid.136593.b0000 0004 0373 3971Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, Japan ,grid.417092.9Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Yuko Saito
- grid.417092.9Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Liisa Myllykangas
- grid.7737.40000 0004 0410 2071Department of Pathology, University of Helsinki, and HUS Diagnostic Center, University Hospital, Helsinki, Finland
| | - Nathalie Van Den Berge
- grid.154185.c0000 0004 0512 597XDepartment of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Dhakal S, Robang AS, Bhatt N, Puangmalai N, Fung L, Kayed R, Paravastu AK, Rangachari V. Distinct neurotoxic TDP-43 fibril polymorphs are generated by heterotypic interactions with α-Synuclein. J Biol Chem 2022; 298:102498. [PMID: 36116552 PMCID: PMC9587012 DOI: 10.1016/j.jbc.2022.102498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Amyloid aggregates of specific proteins constitute important pathological hallmarks in many neurodegenerative diseases, defining neuronal degeneration and disease onset. Recently, increasing numbers of patients show comorbidities and overlaps between multiple neurodegenerative diseases, presenting distinct phenotypes. Such overlaps are often accompanied by colocalizations of more than one amyloid protein, prompting the question of whether direct interactions between different amyloid proteins could generate heterotypic amyloids. To answer this question, we investigated the effect of α-synuclein (αS) on the DNA-binding protein TDP-43 aggregation inspired by their coexistence in pathologies such as Lewy body dementia and limbic predominant age-related TDP-43 encephalopathy. We previously showed αS and prion-like C-terminal domain (PrLD) of TDP-43 synergistically interact to generate toxic heterotypic aggregates. Here, we extend these studies to investigate whether αS induces structurally and functionally distinct polymorphs of PrLD aggregates. Using αS-PrLD heterotypic aggregates generated in two different stoichiometric proportions, we show αS can affect PrLD fibril forms. PrLD fibrils show distinctive residue level signatures determined by solid state NMR, dye-binding capability, proteinase K (PK) stability, and thermal stability toward SDS denaturation. Furthremore, by gold nanoparticle labeling and transmission electron microscopy, we show the presence of both αS and PrLD proteins within the same fibrils, confirming the existence of heterotypic amyloid fibrils. We also observe αS and PrLD colocalize in the cytosol of neuroblastoma cells and show that the heterotypic PrLD fibrils selectively induce synaptic dysfunction in primary neurons. These findings establish the existence of heterotypic amyloid and provide a molecular basis for the observed overlap between synucleinopathies and TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Shailendra Dhakal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA; Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Alicia S Robang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Leiana Fung
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA; Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA.
| |
Collapse
|
16
|
Gonzalez De La Cruz E, Vo Q, Moon K, McFarland KN, Weinrich M, Williams T, Giasson BI, Chakrabarty P. MhcII Regulates Transmission of α-Synuclein-Seeded Pathology in Mice. Int J Mol Sci 2022; 23:8175. [PMID: 35897751 PMCID: PMC9332117 DOI: 10.3390/ijms23158175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
MHCII molecules, expressed by professional antigen-presenting cells (APCs) such as T cells and B cells, are hypothesized to play a key role in the response of cellular immunity to α-synuclein (α-syn). However, the role of cellular immunity in the neuroanatomic transmission of α-syn pre-formed fibrillar (PFF) seeds is undetermined. To illuminate whether cellular immunity influences the transmission of α-syn seeds from the periphery into the CNS, we injected preformed α-syn PFFs in the hindlimb of the Line M83 transgenic mouse model of synucleinopathy lacking MhcII. We showed that a complete deficiency in MhcII accelerated the appearance of seeded α-syn pathology and shortened the lifespan of the PFF-seeded M83 mice. To characterize whether B-cell and T-cell inherent MhcII function underlies this accelerated response to PFF seeding, we next injected α-syn PFFs in Rag1-/- mice which completely lacked these mature lymphocytes. There was no alteration in the lifespan or burden of endstage α-syn pathology in the PFF-seeded, Rag1-deficient M83+/- mice. Together, these results suggested that MhcII function on immune cells other than these classical APCs is potentially involved in the propagation of α-syn in this model of experimental synucleinopathy. We focused on microglia next, finding that while microglial burden was significantly upregulated in PFF-seeded, MhcII-deficient mice relative to controls, the microglial activation marker Cd68 was reduced in these mice, suggesting that these microglia were not responsive. Additional analysis of the CNS showed the early appearance of the neurotoxic astrocyte A1 signature and the induction of the Ifnγ-inducible anti-viral response mediated by MhcI in the MhcII-deficient, PFF-seeded mice. Overall, our data suggest that the loss of MhcII function leads to a dysfunctional response in non-classical APCs and that this response could potentially play a role in determining PFF-induced pathology. Collectively, our results identify the critical role of MhcII function in synucleinopathies induced by α-syn prion seeds.
Collapse
Affiliation(s)
- Elsa Gonzalez De La Cruz
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
| | - Quan Vo
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
| | - Katie Moon
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
| | - Karen N. McFarland
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Mary Weinrich
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
| | - Tristan Williams
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I. Giasson
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
17
|
Vermilyea SC, Christensen A, Meints J, Singh B, Martell-Martínez H, Karim MR, Lee MK. Loss of tau expression attenuates neurodegeneration associated with α-synucleinopathy. Transl Neurodegener 2022; 11:34. [PMID: 35773715 PMCID: PMC9248195 DOI: 10.1186/s40035-022-00309-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuronal dysfunction and degeneration linked to α-synuclein (αS) pathology is thought to be responsible for the progressive nature of Parkinson's disease and related dementia with Lewy bodies. Studies have indicated bidirectional pathological relationships between αS pathology and tau abnormalities. We recently showed that A53T mutant human αS (HuαS) can cause post-synaptic and cognitive deficits that require microtubule-associated protein tau expression. However, the role of tau in the development of αS pathology and subsequent neuronal dysfunction has been controversial. Herein, we set out to determine the role of tau in the onset and progression of αS pathology (α-synucleinopathy) using a transgenic mouse model of α-synucleinopathy lacking mouse tau expression. METHODS Transgenic mice expressing A53T mutant HuαS (TgA53T) were crossed with mTau-/- mice to generate TgA53T/mTau-/-. To achieve more uniform induction of α-synucleinopathy in mice, we used intramuscular injections of αS preformed fibrils (PFF) in non-transgenic (nTg), TgA53T, TgA53T/mTau-/-, and mTau-/- mice. Motor behavior was analyzed at 70 days post inoculation (dpi) of PFF and tissues for biochemical and neuropathological analysis were collected at 40 dpi, 70 dpi, and end stage. RESULTS Loss of tau expression significantly delayed the onset of motor deficits in the TgA53T model and the progression of α-synucleinopathy disease, as evidenced by a significant reduction in histopathological and behavioral markers of neurodegeneration and disease, and a significant improvement in survival. In vitro application of PFF to primary mouse hippocampal neurons demonstrated no changes in PFF uptake and processing or pS129 αS aggregation as a function of tau expression. However, PFF-induced neurotoxicity, including morphological deficits in nTg neurons, was prevented with tau removal. CONCLUSIONS Collectively, our data suggest that tau is likely acting downstream of αS pathology to affect neuronal homeostasis and survival. This work further supports the investigation of tau in α-synucleinopathies to identify novel disease-modifying therapeutic strategies.
Collapse
Affiliation(s)
- Scott C Vermilyea
- Department of Neuroscience, University of Minnesota - Twin Cities, 321 Church Street S.E., Minneapolis, MN, USA, 6-145 Jackson Hall.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Anne Christensen
- Department of Neuroscience, University of Minnesota - Twin Cities, 321 Church Street S.E., Minneapolis, MN, USA, 6-145 Jackson Hall
| | - Joyce Meints
- Department of Neuroscience, University of Minnesota - Twin Cities, 321 Church Street S.E., Minneapolis, MN, USA, 6-145 Jackson Hall.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Balvindar Singh
- Department of Neuroscience, University of Minnesota - Twin Cities, 321 Church Street S.E., Minneapolis, MN, USA, 6-145 Jackson Hall
| | - Héctor Martell-Martínez
- Department of Neuroscience, University of Minnesota - Twin Cities, 321 Church Street S.E., Minneapolis, MN, USA, 6-145 Jackson Hall.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Md Razaul Karim
- Department of Neuroscience, University of Minnesota - Twin Cities, 321 Church Street S.E., Minneapolis, MN, USA, 6-145 Jackson Hall.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Michael K Lee
- Department of Neuroscience, University of Minnesota - Twin Cities, 321 Church Street S.E., Minneapolis, MN, USA, 6-145 Jackson Hall. .,Institute for Translational Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN, USA. .,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA. .,University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
18
|
Just MK, Gram H, Theologidis V, Jensen PH, Nilsson KPR, Lindgren M, Knudsen K, Borghammer P, Van Den Berge N. Alpha-Synuclein Strain Variability in Body-First and Brain-First Synucleinopathies. Front Aging Neurosci 2022; 14:907293. [PMID: 35693346 PMCID: PMC9178288 DOI: 10.3389/fnagi.2022.907293] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Pathogenic alpha-synuclein (asyn) aggregates are a defining feature of neurodegenerative synucleinopathies, which include Parkinson's disease, Lewy body dementia, pure autonomic failure and multiple system atrophy. Early accurate differentiation between these synucleinopathies is challenging due to the highly heterogeneous clinical profile at early prodromal disease stages. Therefore, diagnosis is often made in late disease stages when a patient presents with a broad range of motor and non-motor symptoms easing the differentiation. Increasing data suggest the clinical heterogeneity seen in patients is explained by the presence of distinct asyn strains, which exhibit variable morphologies and pathological functions. Recently, asyn seed amplification assays (PMCA and RT-QuIC) and conformation-specific ligand assays have made promising progress in differentiating between synucleinopathies in prodromal and advanced disease stages. Importantly, the cellular environment is known to impact strain morphology. And, asyn aggregate pathology can propagate trans-synaptically along the brain-body axis, affecting multiple organs and propagating through multiple cell types. Here, we present our hypothesis that the changing cellular environments, an asyn seed may encounter during its brain-to-body or body-to-brain propagation, may influence the structure and thereby the function of the aggregate strains developing within the different cells. Additionally, we aim to review strain characteristics of the different synucleinopathies in clinical and preclinical studies. Future preclinical animal models of synucleinopathies should investigate if asyn strain morphology is altered during brain-to-body and body-to-brain spreading using these seeding amplification and conformation-specific assays. Such findings would greatly deepen our understanding of synucleinopathies and the potential link between strain and phenotypic variability, which may enable specific diagnosis of different synucleinopathies in the prodromal phase, creating a large therapeutic window with potential future applications in clinical trials and personalized therapeutics.
Collapse
Affiliation(s)
- Mie Kristine Just
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Hjalte Gram
- Department of Biomedicine, DANDRITE-Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
| | - Vasileios Theologidis
- Department of Biomedicine, DANDRITE-Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
| | - Poul Henning Jensen
- Department of Biomedicine, DANDRITE-Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
| | - K. Peter R. Nilsson
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Mikael Lindgren
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Karoline Knudsen
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Per Borghammer
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Nathalie Van Den Berge
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
19
|
Pan L, Li C, Meng L, Tian Y, He M, Yuan X, Zhang G, Zhang Z, Xiong J, Chen G, Zhang Z. Tau accelerates α-synuclein aggregation and spreading in Parkinson's disease. Brain 2022; 145:3454-3471. [PMID: 35552614 DOI: 10.1093/brain/awac171] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
The aggregation and prion-like propagation of α-synuclein are involved in the pathogenesis of Parkinson's disease. However, the underlying mechanisms regulating the assembly and spreading of α-synuclein fibrils remain poorly understood. Tau co-deposits with α-synuclein in the brains of Parkinson's disease patients, suggesting a pathological interplay between them. Here we show that tau interacts with α-synuclein and accelerates its aggregation. Compared with pure α-synuclein fibrils, the tau-modified α-synuclein fibrils show enhanced seeding activity, inducing mitochondrial dysfunction, synaptic impairment, and neurotoxicity in vitro. Injection of the tau-modified α-synuclein fibrils into the striatum of mice induces more severe α-synuclein pathology, motor dysfunction, and cognitive impairment when compared with the mice injected with pure α-synuclein fibrils. Knockout of tau attenuates the propagation of α-synuclein pathology and Parkinson's disease-like symptoms both in mice injected with α-syn fibrils and α-syn A53 T transgenic mice. In conclusion, tau facilitates α-synuclein aggregation and propagation in Parkinson's disease.
Collapse
Affiliation(s)
- Lina Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chunrui Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mingyang He
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430070, China
| | - Xin Yuan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
20
|
Williams T, Ruiz AJ, Ruiz AM, Vo Q, Tsering W, Xu G, McFarland K, Giasson BI, Sullivan P, Borchelt DR, Chakrabarty P. Impact of APOE genotype on prion-type propagation of tauopathy. Acta Neuropathol Commun 2022; 10:57. [PMID: 35440098 PMCID: PMC9019935 DOI: 10.1186/s40478-022-01359-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
Apolipoprotein (APOE) is a major risk factor of Alzheimer's disease (AD), with the E2, E3 and E4 isoforms differentially regulating the burden of AD-associated neuropathologies, such as amyloid β and tau. In AD, pathological tau is thought to spread along neuroanatomic connections following a prion-like mechanism. To provide insights into whether APOE isoforms differentially regulate the prion properties of tau and determine trans-synaptic transmission of tauopathy, we have generated human P301S mutant tau transgenic mice (PS19) that carry human APOE (APOE2, APOE3 or APOE4) or mouse Apoe allele. Mice received intrahippocamal injections of preformed aggregates of K18-tau at young ages, which were analyzed 5 months post-inoculation. Compared to the parental PS19 mice with mouse Apoe alleles, PS19 mice expressing human APOE alleles generally responded to K18-tau seeding with more intense AT8 immunoreactive phosphorylated tau athology. APOE3 homozygous mice accumulated higher levels of AT8-reactive ptau and microgliosis relative to APOE2 or APOE4 homozygotes (E3 > E4~2). PS19 mice that were heterozygous for APOE3 showed similar results, albeit to a lesser degree. In the timeframe of our investigation, we did not observe significant induction of argentophilic or MC1-reactive neurofibrillary tau tangle in PS19 mice homozygous for human APOE. To our knowledge, this is the first comprehensive study in rodent models that provides neuropathological insights into the dose-dependent effect of APOE isoforms on phosphorylated tau pathology induced by recombinant tau prions.
Collapse
|
21
|
Sengupta U, Kayed R. Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Prog Neurobiol 2022; 214:102270. [DOI: 10.1016/j.pneurobio.2022.102270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/28/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022]
|
22
|
Mari Z, Mestre TA. The Disease Modification Conundrum in Parkinson’s Disease: Failures and Hopes. Front Aging Neurosci 2022; 14:810860. [PMID: 35296034 PMCID: PMC8920063 DOI: 10.3389/fnagi.2022.810860] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
In the last half-century, Parkinson’s disease (PD) has played a historical role in demonstrating our ability to translate preclinical scientific advances in pathology and pharmacology into highly effective clinical therapies. Yet, as highly efficacious symptomatic treatments were successfully developed and adopted in clinical practice, PD remained a progressive disease without a cure. In contrast with the success story of symptomatic therapies, the lack of translation of disease-modifying interventions effective in preclinical models into clinical success has continued to accumulate failures in the past two decades. The ability to stop, prevent or mitigate progression in PD remains the “holy grail” in PD science at the present time. The large number of high-quality disease modification clinical trials in the past two decades with its lessons learned, as well as the growing knowledge of PD molecular pathology should enable us to have a deeper understanding of the reasons for past failures and what we need to do to reach better outcomes. Periodic reviews and mini-reviews of the unsolved disease modification conundrum in PD are important, considering how this field is rapidly evolving along with our views and understanding of the possible explanations.
Collapse
Affiliation(s)
- Zoltan Mari
- Parkinson’s and Movement Disorders Program, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
- *Correspondence: Zoltan Mari,
| | - Tiago A. Mestre
- Division of Neurology, Department of Medicine, Parkinson’s Disease and Movement Disorders Center, The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
23
|
Targeted proteolytic products of τ and α-synuclein in neurodegeneration. Essays Biochem 2021; 65:905-912. [PMID: 34846537 PMCID: PMC8709889 DOI: 10.1042/ebc20210028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022]
Abstract
CNS pathological inclusions comprising τ or α-synuclein (αSyn) define a spectrum of neurodegenerative diseases, and these can often present concurrently in the same individuals. The aggregation of both proteins is clearly associated with neurodegeneration and the deleterious properties of each protein is further supported by mutations in each gene (MAPT and SNCA, respectively) resulting in disease. The initiating events in most sporadic neurodegenerative diseases are still unclear but growing evidence suggests that the aberrant proteolytic cleavage of τ and αSyn results in products that can be toxic and/or initiate aggregation that can further spread by a prion-like mechanism. The accumulation of some of these cleavage products can further potentiate the progression of protein aggregation transmission and lead to their accumulation in peripheral biofluids such as cerebrospinal fluid (CSF) and blood. The future development of new tools to detect specific τ and αSyn abnormal cleavage products in peripheral biofluids could be useful biomarkers and better understand of the role of unique proteolytic activities could yield therapeutic interventions.
Collapse
|
24
|
Limorenko G, Lashuel HA. Revisiting the grammar of Tau aggregation and pathology formation: how new insights from brain pathology are shaping how we study and target Tauopathies. Chem Soc Rev 2021; 51:513-565. [PMID: 34889934 DOI: 10.1039/d1cs00127b] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Converging evidence continues to point towards Tau aggregation and pathology formation as central events in the pathogenesis of Alzheimer's disease and other Tauopathies. Despite significant advances in understanding the morphological and structural properties of Tau fibrils, many fundamental questions remain about what causes Tau to aggregate in the first place. The exact roles of cofactors, Tau post-translational modifications, and Tau interactome in regulating Tau aggregation, pathology formation, and toxicity remain unknown. Recent studies have put the spotlight on the wide gap between the complexity of Tau structures, aggregation, and pathology formation in the brain and the simplicity of experimental approaches used for modeling these processes in research laboratories. Embracing and deconstructing this complexity is an essential first step to understanding the role of Tau in health and disease. To help deconstruct this complexity and understand its implication for the development of effective Tau targeting diagnostics and therapies, we firstly review how our understanding of Tau aggregation and pathology formation has evolved over the past few decades. Secondly, we present an analysis of new findings and insights from recent studies illustrating the biochemical, structural, and functional heterogeneity of Tau aggregates. Thirdly, we discuss the importance of adopting new experimental approaches that embrace the complexity of Tau aggregation and pathology as an important first step towards developing mechanism- and structure-based therapies that account for the pathological and clinical heterogeneity of Alzheimer's disease and Tauopathies. We believe that this is essential to develop effective diagnostics and therapies to treat these devastating diseases.
Collapse
Affiliation(s)
- Galina Limorenko
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
25
|
Lloyd GM, Dhillon JKS, Gorion KMM, Riffe C, Fromholt SE, Xia Y, Giasson BI, Borchelt DR. Collusion of α-Synuclein and Aβ aggravating co-morbidities in a novel prion-type mouse model. Mol Neurodegener 2021; 16:63. [PMID: 34503546 PMCID: PMC8427941 DOI: 10.1186/s13024-021-00486-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/19/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The misfolding of host-encoded proteins into pathological prion conformations is a defining characteristic of many neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and Lewy body dementia. A current area of intense study is the way in which the pathological deposition of these proteins might influence each other, as various combinations of co-pathology between prion-capable proteins are associated with exacerbation of disease. A spectrum of pathological, genetic and biochemical evidence provides credence to the notion that amyloid β (Aβ) accumulation can induce and promote α-synuclein pathology, driving neurodegeneration. METHODS To assess the interplay between α-synuclein and Aβ on protein aggregation kinetics, we crossed mice expressing human α-synuclein (M20) with APPswe/PS1dE9 transgenic mice (L85) to generate M20/L85 mice. We then injected α-synuclein preformed fibrils (PFFs) unilaterally into the hippocampus of 6-month-old mice, harvesting 2 or 4 months later. RESULTS Immunohistochemical analysis of M20/L85 mice revealed that pre-existing Aβ plaques exacerbate the spread and deposition of induced α-synuclein pathology. This process was associated with increased neuroinflammation. Unexpectedly, the injection of α-synuclein PFFs in L85 mice enhanced the deposition of Aβ; whereas the level of Aβ deposition in M20/L85 bigenic mice, injected with α-synuclein PFFs, did not differ from that of mice injected with PBS. CONCLUSIONS These studies reveal novel and unexpected interplays between α-synuclein pathology, Aβ and neuroinflammation in mice that recapitulate the pathology of Alzheimer's disease and Lewy body dementia.
Collapse
Affiliation(s)
- Grace M Lloyd
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Jess-Karan S Dhillon
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Kimberly-Marie M Gorion
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Cara Riffe
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Susan E Fromholt
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Yuxing Xia
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, BMS J499, J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA.
| | - David R Borchelt
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, BMS J499, J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA.
| |
Collapse
|
26
|
Ferreira N, Gram H, Sorrentino ZA, Gregersen E, Schmidt SI, Reimer L, Betzer C, Perez-Gozalbo C, Beltoja M, Nagaraj M, Wang J, Nowak JS, Dong M, Willén K, Cholak E, Bjerregaard-Andersen K, Mendez N, Rabadia P, Shahnawaz M, Soto C, Otzen DE, Akbey Ü, Meyer M, Giasson BI, Romero-Ramos M, Jensen PH. Multiple system atrophy-associated oligodendroglial protein p25α stimulates formation of novel α-synuclein strain with enhanced neurodegenerative potential. Acta Neuropathol 2021; 142:87-115. [PMID: 33978813 PMCID: PMC8217051 DOI: 10.1007/s00401-021-02316-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/08/2023]
Abstract
Pathology consisting of intracellular aggregates of alpha-Synuclein (α-Syn) spread through the nervous system in a variety of neurodegenerative disorders including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. The discovery of structurally distinct α-Syn polymorphs, so-called strains, supports a hypothesis where strain-specific structures are templated into aggregates formed by native α-Syn. These distinct strains are hypothesised to dictate the spreading of pathology in the tissue and the cellular impact of the aggregates, thereby contributing to the variety of clinical phenotypes. Here, we present evidence of a novel α-Syn strain induced by the multiple system atrophy-associated oligodendroglial protein p25α. Using an array of biophysical, biochemical, cellular, and in vivo analyses, we demonstrate that compared to α-Syn alone, a substoichiometric concentration of p25α redirects α-Syn aggregation into a unique α-Syn/p25α strain with a different structure and enhanced in vivo prodegenerative properties. The α-Syn/p25α strain induced larger inclusions in human dopaminergic neurons. In vivo, intramuscular injection of preformed fibrils (PFF) of the α-Syn/p25α strain compared to α-Syn PFF resulted in a shortened life span and a distinct anatomical distribution of inclusion pathology in the brain of a human A53T transgenic (line M83) mouse. Investigation of α-Syn aggregates in brain stem extracts of end-stage mice demonstrated that the more aggressive phenotype of the α-Syn/p25α strain was associated with an increased load of α-Syn aggregates based on a Förster resonance energy transfer immunoassay and a reduced α-Syn aggregate seeding activity based on a protein misfolding cyclic amplification assay. When injected unilaterally into the striata of wild-type mice, the α-Syn/p25α strain resulted in a more-pronounced motoric phenotype than α-Syn PFF and exhibited a "tropism" for nigro-striatal neurons compared to α-Syn PFF. Overall, our data support a hypothesis whereby oligodendroglial p25α is responsible for generating a highly prodegenerative α-Syn strain in multiple system atrophy.
Collapse
|
27
|
Takaichi Y, Chambers JK, Ano Y, Takashima A, Nakayama H, Uchida K. Deposition of Phosphorylated α-Synuclein and Activation of GSK-3β and PP2A in the PS19 Mouse Model of Tauopathy. J Neuropathol Exp Neurol 2021; 80:731-740. [PMID: 34151989 DOI: 10.1093/jnen/nlab054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The simultaneous accumulation of multiple pathological proteins, such as hyperphosphorylated tau (hp-tau) and phosphorylated α-synuclein (p-αSyn), has been reported in the brains of patients with various neurodegenerative diseases. We previously demonstrated that hp-tau-dependent p-αSyn accumulation was associated with the activation of GSK-3β in the brains of P301L tau transgenic mice. To confirm the effects of another mutant tau on p-αSyn accumulation in vivo, we herein examined the brains of PS19 mice that overexpress human P301S mutant tau. Immunohistochemically, hp-tau and p-αSyn aggregates were detected in the same neuronal cells in the cerebrum and brain stem of aged PS19 mice. A semiquantitative analysis showed a positive correlation between hp-tau and p-αSyn accumulation. Furthermore, an activated form of GSK-3β was detected within cells containing both hp-tau and p-αSyn aggregates in PS19 mice. Western blotting showed a decrease in inactivated PP2A levels in PS19 mice. The present results suggest that the overexpression of human P301S mutant tau induces p-αSyn accumulation that is accompanied by not only GSK-3β, but also PP2A activation in PS19 mice, and highlight the synergic effects between tau and αSyn in the pathophysiology of neurodegenerative diseases that show the codeposition of tau and αSyn.
Collapse
Affiliation(s)
| | - James K Chambers
- From the Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo (YT, JKC, HN, KU); Research Laboratories for Health Science & Food Technologies and the Central Laboratories for Key Technologies, Kirin Company Ltd, Kanagawa (YA); Department of Life Science, Faculty of Science, Gakushuin University, Tokyo (AT), Japan
| | - Yasuhisa Ano
- From the Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo (YT, JKC, HN, KU); Research Laboratories for Health Science & Food Technologies and the Central Laboratories for Key Technologies, Kirin Company Ltd, Kanagawa (YA); Department of Life Science, Faculty of Science, Gakushuin University, Tokyo (AT), Japan
| | - Akihiko Takashima
- From the Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo (YT, JKC, HN, KU); Research Laboratories for Health Science & Food Technologies and the Central Laboratories for Key Technologies, Kirin Company Ltd, Kanagawa (YA); Department of Life Science, Faculty of Science, Gakushuin University, Tokyo (AT), Japan
| | - Hiroyuki Nakayama
- From the Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo (YT, JKC, HN, KU); Research Laboratories for Health Science & Food Technologies and the Central Laboratories for Key Technologies, Kirin Company Ltd, Kanagawa (YA); Department of Life Science, Faculty of Science, Gakushuin University, Tokyo (AT), Japan
| | - Kazuyuki Uchida
- From the Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo (YT, JKC, HN, KU); Research Laboratories for Health Science & Food Technologies and the Central Laboratories for Key Technologies, Kirin Company Ltd, Kanagawa (YA); Department of Life Science, Faculty of Science, Gakushuin University, Tokyo (AT), Japan
| |
Collapse
|
28
|
Borghammer P. The α-Synuclein Origin and Connectome Model (SOC Model) of Parkinson's Disease: Explaining Motor Asymmetry, Non-Motor Phenotypes, and Cognitive Decline. JOURNAL OF PARKINSON'S DISEASE 2021; 11:455-474. [PMID: 33682732 PMCID: PMC8150555 DOI: 10.3233/jpd-202481] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 12/12/2022]
Abstract
A new model of Parkinson's disease (PD) pathogenesis is proposed, the α-Synuclein Origin site and Connectome (SOC) model, incorporating two aspects of α-synuclein pathobiology that impact the disease course for each patient: the anatomical location of the initial α-synuclein inclusion, and α-synuclein propagation dependent on the ipsilateral connections that dominate connectivity of the human brain. In some patients, initial α-synuclein pathology occurs within the CNS, leading to a brain-first subtype of PD. In others, pathology begins in the peripheral autonomic nervous system, leading to a body-first subtype. In brain-first cases, it is proposed that the first pathology appears unilaterally, often in the amygdala. If α-synuclein propagation depends on connection strength, a unilateral focus of pathology will disseminate more to the ipsilateral hemisphere. Thus, α-synuclein spreads mainly to ipsilateral structures including the substantia nigra. The asymmetric distribution of pathology leads to asymmetric dopaminergic degeneration and motor asymmetry. In body-first cases, the α-synuclein pathology ascends via the vagus to both the left and right dorsal motor nuclei of the vagus owing to the overlapping parasympathetic innervation of the gut. Consequently, the initial α-synuclein pathology inside the CNS is more symmetric, which promotes more symmetric propagation in the brainstem, leading to more symmetric dopaminergic degeneration and less motor asymmetry. At diagnosis, body-first patients already have a larger, more symmetric burden of α-synuclein pathology, which in turn promotes faster disease progression and accelerated cognitive decline. The SOC model is supported by a considerable body of existing evidence and may have improved explanatory power.
Collapse
Affiliation(s)
- Per Borghammer
- Department of Nuclear Medicine & PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|