1
|
Coemans S, De Aguiar V, Paquier P, Tsapkini K, Engelborghs S, Struys E, Keulen S. Effects of Cerebellar Transcranial Direct Current Stimulation in Bilingual Logopenic Primary Progressive Aphasia. J Alzheimers Dis Rep 2024; 8:1253-1273. [PMID: 39434819 PMCID: PMC11491977 DOI: 10.3233/adr-240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/21/2024] [Indexed: 10/23/2024] Open
Abstract
Background Primary progressive aphasia (PPA) is a language-based dementia, causing progressive decline of language functions. Transcranial direct current stimulation (tDCS) can augment effects of speech-and language therapy (SLT). However, this has not been investigated in bilingual patients with PPA. Objective We evaluated the case of Mr. G., a French (native language, L1)/Dutch (second language, L2)-speaking 59-year-old male, with logopenic PPA, associated with Alzheimer's disease pathology. We aimed to characterize his patterns of language decline and evaluate the effects of tDCS applied to the right posterolateral cerebellum on his language abilities and executive control circuits. Methods In a within-subject controlled design, Mr. G received 9 sessions of sham and anodal tDCS combined with semantic and phonological SLT in L2. Changes were evaluated with an oral naming task in L2, the Boston Naming Task and subtests of the Bilingual Aphasia Test in in L2 and L1, the Stroop Test and Attention Network Test, before and after each phase of stimulation (sham/tDCS) and at 2-month follow-up. Results After anodal tDCS, but not after sham, results improved significantly on oral naming in L2, with generalization to untrained tasks and cross-language transfer (CLT) to L1: picture naming in both languages, syntactic comprehension and repetition in L2, and response times in the incongruent condition of the Attention Network Test, indicating increased inhibitory control. Conclusions Our preliminary results are the first to indicate that tDCS applied to the cerebellum may be a valuable tool to enhance the effects of SLT in bilingual patients with logopenic PPA.
Collapse
Affiliation(s)
- Silke Coemans
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Vânia De Aguiar
- Groningen Center for Language and Cognition (CLCG), University of Groningen, Groningen, The Netherlands
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Philippe Paquier
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| | - Sebastiaan Engelborghs
- Center for Neurosciences (C4N), Vrije Universiteit Brussels (VUB), Brussels, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Department of Biomedical Sciences, Universiteit Antwerpen (UA), Antwerp, Belgium
| | - Esli Struys
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Stefanie Keulen
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| |
Collapse
|
2
|
Williams EER, Sghirripa S, Rogasch NC, Hordacre B, Attrill S. Non-invasive brain stimulation in the treatment of post-stroke aphasia: a scoping review. Disabil Rehabil 2024; 46:3802-3826. [PMID: 37828899 DOI: 10.1080/09638288.2023.2259299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE Aphasia is an acquired language impairment that commonly results from stroke. Non-invasive brain stimulation (NIBS) might accelerate aphasia recovery trajectories and has seen mounting popularity in recent aphasia rehabilitation research. The present review aimed to: (1) summarise all existing literature on NIBS as a post-stroke aphasia treatment; and (2) provide recommendations for future NIBS-aphasia research. MATERIALS AND METHODS Databases for published and grey literature were searched using scoping review methodology. 278 journal articles, conference abstracts/posters, and books, and 38 items of grey literature, were included for analysis. RESULTS Quantitative analysis revealed that ipsilesional anodal transcranial direct current stimulation and contralesional 1-Hz repetitive transcranial magnetic stimulation were the most widely used forms of NIBS, while qualitative analysis identified four key themes including: the roles of the hemispheres in aphasia recovery and their relationship with NIBS; heterogeneity of individuals but homogeneity of subpopulations; individualisation of stimulation parameters; and much remains under-explored in the NIBS-aphasia literature. CONCLUSIONS Taken together, these results highlighted systemic challenges across the field such as small sample sizes, inter-individual variability, lack of protocol optimisation/standardisation, and inadequate focus on aphasiology. Four key recommendations are outlined herein to guide future research and refine NIBS methods for post-stroke aphasia treatment.
Collapse
Affiliation(s)
- Ellen E R Williams
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Sabrina Sghirripa
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Nigel C Rogasch
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Turner Institute of Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, The University of South Australia, Adelaide, Australia
| | - Stacie Attrill
- Speech Pathology, School of Allied Health Science and Practice, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
3
|
Sloane KL, Hamilton RH. Transcranial Direct Current Stimulation to Ameliorate Post-Stroke Cognitive Impairment. Brain Sci 2024; 14:614. [PMID: 38928614 PMCID: PMC11202055 DOI: 10.3390/brainsci14060614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Post-stroke cognitive impairment is a common and disabling condition with few effective therapeutic options. After stroke, neural reorganization and other neuroplastic processes occur in response to ischemic injury, which can result in clinical improvement through spontaneous recovery. Neuromodulation through transcranial direct current stimulation (tDCS) is a promising intervention to augment underlying neuroplasticity in order to improve cognitive function. This form of neuromodulation leverages mechanisms of neuroplasticity post-stroke to optimize neural reorganization and improve function. In this review, we summarize the current state of cognitive neurorehabilitation post-stroke, the practical features of tDCS, its uses in stroke-related cognitive impairment across cognitive domains, and special considerations for the use of tDCS in the post-stroke patient population.
Collapse
Affiliation(s)
- Kelly L. Sloane
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roy H. Hamilton
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Liu Q, Liu Y, Zhang Y. Effects of Cerebellar Non-Invasive Stimulation on Neurorehabilitation in Stroke Patients: An Updated Systematic Review. Biomedicines 2024; 12:1348. [PMID: 38927555 PMCID: PMC11201496 DOI: 10.3390/biomedicines12061348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The cerebellum is emerging as a promising target for noninvasive brain stimulation (NIBS). A systematic review was conducted to evaluate the effects of cerebellar NIBS on both motor and other symptoms in stroke rehabilitation, its impact on functional ability, and potential side effects (PROSPERO number: CRD42022365697). A systematic electronic database search was performed by using PubMed Central (PMC), EMBASE, and Web of Science, with a cutoff date of November 2023. Data extracted included study details, NIBS methodology, outcome measures, and results. The risk of bias in eligible studies was also assessed. Twenty-two clinical studies involving 1016 participants were finally included, with a focus on outcomes related to post-stroke motor recovery (gait and balance, muscle spasticity, and upper limb dexterity) and other functions (dysphagia and aphasia). Positive effects were observed, especially on motor functions like gait and balance. Some efficiency was also observed in dysphagia rehabilitation. However, findings on language recovery were preliminary and inconsistent. A slight improvement in functional ability was noted, with no serious adverse effects reported. Further studies are needed to explore the effects of cerebellar NIBS on post-stroke non-motor deficits and to understand how cerebellar engagement can facilitate more precise treatment strategies for stroke rehabilitation.
Collapse
Affiliation(s)
- Qi Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yang Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yumei Zhang
- Department of Rehabilitation, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
5
|
Rangus I, Rios AS, Horn A, Fritsch M, Khalil A, Villringer K, Udke B, Ihrke M, Grittner U, Galinovic I, Al-Fatly B, Endres M, Kufner A, Nolte CH. Fronto-thalamic networks and the left ventral thalamic nuclei play a key role in aphasia after thalamic stroke. Commun Biol 2024; 7:700. [PMID: 38849518 PMCID: PMC11161613 DOI: 10.1038/s42003-024-06399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Thalamic aphasia results from focal thalamic lesions that cause dysfunction of remote but functionally connected cortical areas due to language network perturbation. However, specific local and network-level neural substrates of thalamic aphasia remain incompletely understood. Using lesion symptom mapping, we demonstrate that lesions in the left ventrolateral and ventral anterior thalamic nucleus are most strongly associated with aphasia in general and with impaired semantic and phonemic fluency and complex comprehension in particular. Lesion network mapping (using a normative connectome based on fMRI data from 1000 healthy individuals) reveals a Thalamic aphasia network encompassing widespread left-hemispheric cerebral connections, with Broca's area showing the strongest associations, followed by the superior and middle frontal gyri, precentral and paracingulate gyri, and globus pallidus. Our results imply the critical involvement of the left ventrolateral and left ventral anterior thalamic nuclei in engaging left frontal cortical areas, especially Broca's area, during language processing.
Collapse
Affiliation(s)
- Ida Rangus
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany.
| | - Ana Sofia Rios
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
| | - Andreas Horn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit experimenteller Neurologie, Movement Disorder and Neuromodulation Unit, Berlin, Germany
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Merve Fritsch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Psychiatrie und Psychotherapie, Berlin, Germany
| | - Ahmed Khalil
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany
| | - Kersten Villringer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany
| | - Birgit Udke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Audiologie und Phoniatrie, Berlin, Germany
| | - Manuela Ihrke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Audiologie und Phoniatrie, Berlin, Germany
| | - Ulrike Grittner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Biometrie und klinische Epidemiologie, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ivana Galinovic
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany
| | - Bassam Al-Fatly
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit experimenteller Neurologie, Movement Disorder and Neuromodulation Unit, Berlin, Germany
| | - Matthias Endres
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (Deutsches Zentrum für Herz Kreislauferkrankungen, DZHK), Partner Site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, NeuroCure Clinical Research Center (NCRC), Berlin, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Partner Site Berlin, Berlin, Germany
| | - Anna Kufner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany
| | - Christian H Nolte
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (Deutsches Zentrum für Herz Kreislauferkrankungen, DZHK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
6
|
Kinoshita Y, Hatakeyama M, Otsuki M, Ishiguro T, Saji E, Kanazawa M, Onodera O. Cerebellar compensation: a case of aphasia due to cerebellar hemorrhage. J Neurol 2024; 271:3639-3642. [PMID: 38436678 PMCID: PMC11136835 DOI: 10.1007/s00415-024-12276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Yukiko Kinoshita
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata City, Niigata, 951-8585, Japan
| | - Masahiro Hatakeyama
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata City, Niigata, 951-8585, Japan.
| | - Mika Otsuki
- Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Takanobu Ishiguro
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata City, Niigata, 951-8585, Japan
| | - Etsuji Saji
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata City, Niigata, 951-8585, Japan
| | - Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata City, Niigata, 951-8585, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata City, Niigata, 951-8585, Japan
| |
Collapse
|
7
|
Tilton-Bolowsky V, Stockbridge MD, Hillis AE. Remapping and Reconnecting the Language Network after Stroke. Brain Sci 2024; 14:419. [PMID: 38790398 PMCID: PMC11117613 DOI: 10.3390/brainsci14050419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Here, we review the literature on neurotypical individuals and individuals with post-stroke aphasia showing that right-hemisphere regions homologous to language network and other regions, like the right cerebellum, are activated in language tasks and support language even in healthy people. We propose that language recovery in post-stroke aphasia occurs largely by potentiating the right hemisphere network homologous to the language network and other networks that previously supported language to a lesser degree and by modulating connection strength between nodes of the right-hemisphere language network and undamaged nodes of the left-hemisphere language network. Based on this premise (supported by evidence we review), we propose that interventions should be aimed at potentiating the right-hemisphere language network through Hebbian learning or by augmenting connections between network nodes through neuroplasticity, such as non-invasive brain stimulation and perhaps modulation of neurotransmitters involved in neuroplasticity. We review aphasia treatment studies that have taken this approach. We conclude that further aphasia rehabilitation with this aim is justified.
Collapse
Affiliation(s)
| | | | - Argye E. Hillis
- Departments of Neurology, Physical Medicine & Rehabilitation, and Cognitive Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (V.T.-B.); (M.D.S.)
| |
Collapse
|
8
|
Camerino I, Ferreira J, Vonk JM, Kessels RPC, de Leeuw FE, Roelofs A, Copland D, Piai V. Systematic Review and Meta-Analyses of Word Production Abilities in Dysfunction of the Basal Ganglia: Stroke, Small Vessel Disease, Parkinson's Disease, and Huntington's Disease. Neuropsychol Rev 2024; 34:1-26. [PMID: 36564612 DOI: 10.1007/s11065-022-09570-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/13/2022] [Accepted: 11/16/2022] [Indexed: 12/25/2022]
Abstract
Clinical populations with basal ganglia pathologies may present with language production impairments, which are often described in combination with comprehension measures or attributed to motor, memory, or processing-speed problems. In this systematic review and meta-analysis, we studied word production in four (vascular and non-vascular) pathologies of the basal ganglia: stroke affecting the basal ganglia, small vessel disease, Parkinson's disease, and Huntington's disease. We compared scores of these clinical populations with those of matched cognitively unimpaired adults on four well-established production tasks, namely picture naming, category fluency, letter fluency, and past-tense verb inflection. We conducted a systematic search in PubMed and PsycINFO with terms for basal ganglia structures, basal ganglia disorders and language production tasks. A total of 114 studies were included, containing results for one or more of the tasks of interest. For each pathology and task combination, effect sizes (Hedges' g) were extracted comparing patient versus control groups. For all four populations, performance was consistently worse than that of cognitively unimpaired adults across the four language production tasks (p-values < 0.010). Given that performance in picture naming and verb inflection across all pathologies was quantified in terms of accuracy, our results suggest that production impairments cannot be fully explained by motor or processing-speed deficits. Our review shows that while language production difficulties in these clinical populations are not negligible, more evidence is necessary to determine the exact mechanism that leads to these deficits and whether this mechanism is the same across different pathologies.
Collapse
Affiliation(s)
- Ileana Camerino
- Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands
| | - João Ferreira
- Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands.
| | - Jet M Vonk
- Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roy P C Kessels
- Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands
- Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
- Donders Centre for Medical Neuroscience, Department of Medical Psychology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ardi Roelofs
- Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands
| | - David Copland
- School of Health and Rehabilitation Sciences, The University of Queensland, Saint Lucia, QLD, Australia
- Queensland Aphasia Research Centre, The University of Queensland, Herston, QLD, Australia
| | - Vitória Piai
- Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands
- Donders Centre for Medical Neuroscience, Department of Medical Psychology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Lammers B, Sydnor MJ, Cust S, Kim JH, Yenokyan G, Hillis AE, Sebastian R. Protocol for Cerebellar Stimulation for Aphasia Rehabilitation (CeSAR): A randomized, double-blind, sham-controlled trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.05.24302365. [PMID: 38370630 PMCID: PMC10871367 DOI: 10.1101/2024.02.05.24302365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
In this randomized, double-blind, sham-controlled trial of Cerebellar Stimulation for Aphasia Rehabilitation (CeSAR), we will determine the effectiveness of cathodal tDCS (transcranial direct current stimulation) to the right cerebellum for the treatment of chronic aphasia (>6 months post stroke). We will test the hypothesis that cerebellar tDCS in combination with an evidenced-based anomia treatment (semantic feature analysis, SFA) will be associated with greater improvement in naming untrained pictures (as measured by the change in Philadelphia Picture Naming Test), 1-week post treatment, compared to sham plus SFA. We will also evaluate the effects of cerebellar tDCS on naming trained items as well as the effects on functional communication, content, efficiency, and word-retrieval of picture description, and quality of life. Finally, we will identify imaging and linguistic biomarkers to determine the characteristics of stroke patients that benefit from cerebellar tDCS and SFA treatment. We expect to enroll 60 participants over five years. Participants will receive 15, 25-minute sessions of cerebellar tDCS (3-5 sessions per week) or sham tDCS combined with 1 hour of SFA treatment. Participants will be evaluated prior to the start of treatment, one-week post-treatment, 1-, 3-, and 6-months post treatment on primary and secondary outcome variables. The long-term aim of this study is to provide the basis for a Phase III randomized controlled trial of cerebellar tDCS vs sham with concurrent language therapy for treatment of chronic aphasia. Trial registration: The trial is registered with ClinicalTrials.gov NCT05093673.
Collapse
Affiliation(s)
- Becky Lammers
- Department of Physical Medicine and Rehabilitation, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Myra J. Sydnor
- Department of Physical Medicine and Rehabilitation, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Sarah Cust
- Department of Physical Medicine and Rehabilitation, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Ji Hyun Kim
- Department of Physical Medicine and Rehabilitation, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Gayane Yenokyan
- Johns Hopkins Biostatistics Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Argye E. Hillis
- Department of Physical Medicine and Rehabilitation, School of Medicine, Johns Hopkins University, Baltimore, MD
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD
- Department of Cognitive Science, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| | - Rajani Sebastian
- Department of Physical Medicine and Rehabilitation, School of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
10
|
Campbell T, Diuguid C, Vasaya S, Janda P, Vickers A. Mixed Aphasia Caused by Bilateral Cerebellar Infarcts: a Case Report. CEREBELLUM (LONDON, ENGLAND) 2024; 23:255-259. [PMID: 36690828 DOI: 10.1007/s12311-023-01521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
Although neuroanatomical and physiological understanding of the cerebellum has evolved over recent decades and continues to develop, there is much that remains to be expounded upon, especially with regard to nonmotor roles. Neurocognitive and language processing is one area where involvement of the cerebellum is no longer in question, but the extent and mechanism of this relationship have yet to be defined. For example, which of the cerebellar hemispheres is involved continues to be debated. We present a case wherein a thrombus in the basilar artery led to bihemispheric cerebellar strokes with profound mixed effects on the patient's language and cognition. To the authors' knowledge, this is the first reported case of bilateral cerebellar strokes resulting in a mixed aphasia reported in scientific literature. This demonstrates the importance of continued research into a model for cerebellar function and the clinical impact of lesions to various cerebellar regions.
Collapse
Affiliation(s)
- Taylor Campbell
- Valley Hospital Medical Center, Las Vegas, USA.
- Las Vegas Neurology Center, 2020 Wellness Way Ste. 300, Las Vegas, NV, 89106, USA.
| | - Christy Diuguid
- Kirk Kerkorian School of Medicine at University of Nevada Las Vegas, 1650 W Charleston Blvd, NV, 89016, Las Vegas, USA
| | - Sannah Vasaya
- Valley Hospital Medical Center, Las Vegas, USA
- Las Vegas Neurology Center, 2020 Wellness Way Ste. 300, Las Vegas, NV, 89106, USA
| | - Paul Janda
- Valley Hospital Medical Center, Las Vegas, USA
- Las Vegas Neurology Center, 2020 Wellness Way Ste. 300, Las Vegas, NV, 89106, USA
- Neurology, Touro University Nevada, Henderson, USA
| | - Aroucha Vickers
- Valley Hospital Medical Center, Las Vegas, USA
- Las Vegas Neurology Center, 2020 Wellness Way Ste. 300, Las Vegas, NV, 89106, USA
- Neurology and Neuro-Ophthalmology, Touro University Nevada, Henderson, USA
- Neuro-Ophthalmology Department, Las Vegas Neurology Center, Las Vegas, USA
| |
Collapse
|
11
|
Hong-Yu L, Zhi-Jie Z, Juan L, Ting X, Wei-Chun H, Ning Z. Effects of Cerebellar Transcranial Direct Current Stimulation in Patients with Stroke: a Systematic Review. CEREBELLUM (LONDON, ENGLAND) 2023; 22:973-984. [PMID: 36028789 DOI: 10.1007/s12311-022-01464-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The cerebellum is involved in regulating motor, affective, and cognitive processes. It is a promising target for transcranial direct current stimulation (tDCS) intervention in stroke. OBJECTIVES To review the current evidence for cerebellar tDCS (ctDCS) in stroke, its problems, and its future directions. METHODS We searched the Web of Science, MEDLINE, CINAHL, EMBASE, Cochrane Library, and PubMed databases. Eligible studies were identified after a systematic literature review of the effects of ctDCS in stroke patients. The changes in assessment scale scores and objective indicators after stimulation were reviewed. RESULTS Eleven studies were included in the systematic review, comprising 169 stroke patients. Current evidence suggests that anode tDCS on the right cerebellar hemisphere does not appear to enhance language processing in stroke patients. Compared with the sham group, stroke patients showed a significant improvement in the verb generation task after cathodal ctDCS stimulation. However, with regard to naming, two studies came to the opposite conclusion. The contralesional anodal ctDCS is expected to improve standing balance but not motor learning in stroke patients. The bipolar bilateral ctDCS protocol to target dentate nuclei (PO10h and PO9h) had a positive effect on standing balance, goal-directed weight shifting, and postural control in stroke patients. CONCLUSIONS ctDCS appears to improve poststroke language and motor dysfunction (particularly gait). However, the evidence for these results was insufficient, and the quality of the relevant studies was low. ctDCS stimulation parameters and individual factors of participants may affect the therapeutic effect of ctDCS. Researchers need to take a more regulated approach in the future to conduct studies with large sample sizes. Overall, ctDCS remains a promising stroke intervention technique that could be used in the future.
Collapse
Affiliation(s)
- Li Hong-Yu
- General Hospital of Ningxia Medical University, Yinchuan, 750003, China.
| | - Zhang Zhi-Jie
- Yinchuan Stomatology Hospital, Yinchuan, 750002, China
| | - Li Juan
- General Hospital of Ningxia Medical University, Yinchuan, 750003, China
| | - Xiong Ting
- General Hospital of Ningxia Medical University, Yinchuan, 750003, China
| | - He Wei-Chun
- General Hospital of Ningxia Medical University, Yinchuan, 750003, China
| | - Zhu Ning
- General Hospital of Ningxia Medical University, Yinchuan, 750003, China
| |
Collapse
|
12
|
Coemans S, Struys E, Tsapkini K, Paquier P, Vandenborre D, Keulen S. Case report: the effects of cerebellar tDCS in bilingual post-stroke aphasia. Front Hum Neurosci 2023; 17:1173178. [PMID: 37545596 PMCID: PMC10398340 DOI: 10.3389/fnhum.2023.1173178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/15/2023] [Indexed: 08/08/2023] Open
Abstract
Transcranial Direct Current Stimulation may be a useful neuromodulation tool for enhancing the effects of speech and language therapy in people with aphasia, but research so far has focused on monolinguals. We present the effects of 9 sessions of anodal cerebellar tDCS (ctDCS) coupled with language therapy in a bilingual patient with chronic post-stroke aphasia caused by left frontal ischemia, in a double-blind, sham-controlled within-subject design. Language therapy was provided in his second language (L2). Both sham and anodal treatment improved trained picture naming in the treated language (L2), while anodal ctDCS in addition improved picture naming of untrained items in L2 and his first language, L1. Picture description improved in L2 and L1 after anodal ctDCS, but not after sham.
Collapse
Affiliation(s)
- Silke Coemans
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels, Brussels, Belgium
| | - Esli Struys
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels, Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussels, Brussels, Belgium
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
| | - Philippe Paquier
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels, Brussels, Belgium
- Center for Research in Cognition and Neurosciences (CRCN), Université Libre de Bruxelles, Brussels, Belgium
- Department of Translational Neurosciences (TNW), Universiteit Antwerpen (UA), Antwerp, Belgium
| | - Dorien Vandenborre
- Health and Wellbeing Research Unit, Thomas More University of Applied Sciences, Antwerp, Belgium
| | - Stefanie Keulen
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels, Brussels, Belgium
| |
Collapse
|
13
|
Keser Z, Meier EL, Stockbridge MD, Breining BL, Hillis AE, Sebastian R. Corticocerebellar White Matter Integrity Is Related to Naming Outcome in Post-Stroke Aphasia. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:404-419. [PMID: 37588128 PMCID: PMC10426388 DOI: 10.1162/nol_a_00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/03/2023] [Indexed: 08/18/2023]
Abstract
Studies have shown that the integrity of white matter tracts connecting different regions in the left cerebral hemisphere is important for aphasia recovery after stroke. However, the impact of the underlying structural connection between the cortex and the cerebellum in post-stroke aphasia is poorly understood. We studied the microstructural integrity of the cerebellum and the corticocerebellar connections and their role in picture naming. Fifty-six patients with left cerebral infarcts (sparing the cerebellum) underwent diffusion tensor imaging (DTI) and Boston Naming Test. We compared the fractional anisotropy (FA) and mean diffusivity (MD) values of the right and the left cerebellum (lobular gray and white matter structures) and cerebellocortical connections. Recursive feature elimination and Spearman correlation analyses were performed to evaluate the relationship between naming performance and the corticocerebellar connections. We found that the right, relative to left, cerebellar structures and their connections with the left cerebrum showed lower FA and higher MD values, both reflecting lower microstructural integrity. This trend was not observed in the healthy controls. Higher MD values of the right major cerebellar outflow tract were associated with poorer picture naming performance. Our study provides the first DTI data demonstrating the critical importance of ascending and descending corticocerebellar connections for naming outcomes after stroke.
Collapse
Affiliation(s)
- Zafer Keser
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Erin L. Meier
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, USA
| | - Melissa D. Stockbridge
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bonnie L. Breining
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rajani Sebastian
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Gong Q, Yan R, Chen H, Duan X, Wu X, Zhang X, Zhou Y, Feng Z, Chen Y, Liu J, Xu P, Qiu J, Liu H, Hou J. Effects of cerebellar transcranial direct current stimulation on rehabilitation of upper limb motor function after stroke. Front Neurol 2023; 14:1044333. [PMID: 37006504 PMCID: PMC10060824 DOI: 10.3389/fneur.2023.1044333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
BackgroundThe cerebellum is involved in the control and coordination of movements but it remains unclear whether stimulation of the cerebellum could improve the recovery of upper limb motor function. Therefore, this study aimed to explore whether cerebellar transcranial direct current stimulation (tDCS) therapy could promote the recovery of upper limb motor function in patients who suffered a stroke.MethodsIn this randomized, double-blind, and sham-controlled prospective study, 77 stroke patients were recruited and randomly assigned to the tDCS group (n = 39) or the control group (n = 38). The patients received anodal (2 mA, 20 min) or sham tDCS therapy for 4 weeks. The primary outcome was the change in the Fugl-Meyer Assessment-Upper Extremity (FMA-UE) score from baseline to the first day after 4 weeks of treatment (T1) and 60 days after 4 weeks of treatment (T2). The secondary outcomes were the FMA-UE response rates assessed at T1 and T2. Adverse events (AEs) related to the tDCS treatment were also recorded.ResultsAt T1, the mean FMA-UE score increased by 10.7 points [standard error of the mean (SEM) = 1.4] in the tDCS group and by 5.8 points (SEM = 1.3) in the control group (difference between the two groups was 4.9 points, P = 0.013). At T2, the mean FMA-UE score increased by 18.9 points (SEM = 2.1) in the tDCS group and by 12.7 points (SEM = 2.1) in the control group (the difference between the two groups was 6.2 points, P = 0.043). At T1, 26 (70.3%) patients in the tDCS group had a clinically meaningful response to the FMA-UE score compared to 12 (34.3%) patients in the control group (the difference between the two groups was 36.0%, P =0.002). At T2, 33 (89.2%) patients in the tDCS group had a clinically meaningful response to the FMA-UE score compared with 19 (54.3%) patients in the control group (the difference between the two groups was 34.9%, P = 0.001). There was no statistically significant difference in the incidence of adverse events between the two groups. In the subgroup analysis of different hemiplegic sides, the rehabilitation effect of patients with right hemiplegia was better than that of patients with left hemiplegia (P < 0.05); in the age subgroup analysis, different age groups of patients did not show a significant difference in the rehabilitation effect (P > 0.05).ConclusionCerebellar tDCS can be used as an effective and safe treatment to promote recovery of upper limb motor function in stroke patients.Trial registrationChiCTR.org.cn, identifier: ChiCTR2200061838.
Collapse
Affiliation(s)
- Qiuwen Gong
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rubing Yan
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Han Chen
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xia Duan
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoyu Wu
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Zhang
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yi Zhou
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhou Feng
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ya Chen
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jianbo Liu
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Peng Xu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Qiu
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongliang Liu
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingming Hou
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Jingming Hou
| |
Collapse
|
15
|
Wessel MJ, Draaisma LR, Hummel FC. Mini-review: Transcranial Alternating Current Stimulation and the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2023; 22:120-128. [PMID: 35060078 DOI: 10.1007/s12311-021-01362-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 02/01/2023]
Abstract
Oscillatory activity in the cerebellum and linked networks is an important aspect of neuronal processing and functional implementation of behavior. So far, it was challenging to quantify and study cerebellar oscillatory signatures in human neuroscience due to the constraints of non-invasive cerebellar electrophysiological recording and interventional techniques. The emerging cerebellar transcranial alternating current stimulation technique (CB-tACS) is a promising tool, which may partially overcome this challenge and provides an exciting non-invasive opportunity to better understand cerebellar physiology.Several studies have successfully demonstrated that CB-tACS can modulate the cerebellar outflow and cerebellum-linked behavior. In the present narrative review, we summarize current studies employing the CB-tACS approach and discuss open research questions. Hereby, we aim to provide an overview on this emerging electrophysiological technique and strive to promote future research in the field. CB-tACS will contribute in the further deciphering of cerebellar oscillatory signatures and its role for motor, cognitive, or affective functions. In long term, CB-tACS could develop into a therapeutic tool for retuning disturbed oscillatory activity in cerebellar networks underlying brain disorders.
Collapse
Affiliation(s)
- Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland. .,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL Valais), Sion, Switzerland. .,Department of Neurology, Julius-Maximilians-University Würzburg, Würzburg, Germany.
| | - Laurijn R Draaisma
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL Valais), Sion, Switzerland.,Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
16
|
Shah-Basak P, Boukrina O, Li XR, Jebahi F, Kielar A. Targeted neurorehabilitation strategies in post-stroke aphasia. Restor Neurol Neurosci 2023; 41:129-191. [PMID: 37980575 PMCID: PMC10741339 DOI: 10.3233/rnn-231344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
BACKGROUND Aphasia is a debilitating language impairment, affecting millions of people worldwide. About 40% of stroke survivors develop chronic aphasia, resulting in life-long disability. OBJECTIVE This review examines extrinsic and intrinsic neuromodulation techniques, aimed at enhancing the effects of speech and language therapies in stroke survivors with aphasia. METHODS We discuss the available evidence supporting the use of transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation, and functional MRI (fMRI) real-time neurofeedback in aphasia rehabilitation. RESULTS This review systematically evaluates studies focusing on efficacy and implementation of specialized methods for post-treatment outcome optimization and transfer to functional skills. It considers stimulation target determination and various targeting approaches. The translation of neuromodulation interventions to clinical practice is explored, emphasizing generalization and functional communication. The review also covers real-time fMRI neurofeedback, discussing current evidence for efficacy and essential implementation parameters. Finally, we address future directions for neuromodulation research in aphasia. CONCLUSIONS This comprehensive review aims to serve as a resource for a broad audience of researchers and clinicians interested in incorporating neuromodulation for advancing aphasia care.
Collapse
Affiliation(s)
| | - Olga Boukrina
- Kessler Foundation, Center for Stroke Rehabilitation Research, West Orange, NJ, USA
| | - Xin Ran Li
- School of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Fatima Jebahi
- Department of Speech, Languageand Hearing Sciences, University of Arizona, Tucson, AZ, USA
| | - Aneta Kielar
- Department of Speech, Languageand Hearing Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
17
|
Liu D, Chen M, Lin Q, Li T, Chen X, Dai G, Wu X, Li J, Liu H, Liu P. Theta burst stimulation over left cerebellum does not modulate auditory feedback control of vocal production. Front Neurosci 2022; 16:1051629. [PMID: 36620446 PMCID: PMC9814006 DOI: 10.3389/fnins.2022.1051629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background Accumulating evidence has shown significant contributions of the right cerebellum to auditory-motor integration for vocal production. Whether the left cerebellum is likewise involved in vocal motor control, however, remains unclear. Methods By applying neuronavigated continuous and intermittent theta burst stimulation (cTBS/iTBS) over the left cerebellar lobule VII (Crus I), the present event-related potential (ERP) study investigated whether the left cerebellum exerts causal effects in modulating auditory feedback control of vocal pitch production. After receiving cTBS, iTBS, or sham stimulation over the left cerebellum, a group of fifteen young adults produced sustained vowels while hearing their voice unexpectedly shifted in pitch upwards or downwards by 200 cents. The effects of cerebellar stimulation were assessed by measuring the vocal and ERP (N1/P2) responses to pitch perturbations across the conditions. Results When compared to sham stimulation, cTBS or iTBS over the left cerebellar lobule VII (Crus I) led to no systematic changes in vocal compensations for pitch perturbations in auditory feedback. Also, the cortical N1/P2 responses did not vary significantly across the three stimulation sessions. Conclusion These findings present the first neurobehavioral evidence suggesting that the left cerebellum is not causally associated with auditory feedback control of vocal production. Together with previously reported causal effects of the right cerebellum in modulating vocal pitch regulation, the present study lends support to the hypothesis that there is a functional lateralization of the cerebellum in vocal motor control though auditory feedback.
Collapse
Affiliation(s)
- Dongxu Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingyun Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing Lin
- Department of Rehabilitation Medicine, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Tingni Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangyan Dai
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuqin Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,*Correspondence: Hanjun Liu,
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China,Peng Liu,
| |
Collapse
|
18
|
Ntakou EA, Nasios G, Nousia A, Siokas V, Messinis L, Dardiotis E. Targeting Cerebellum with Non-Invasive Transcranial Magnetic or Current Stimulation after Cerebral Hemispheric Stroke-Insights for Corticocerebellar Network Reorganization: A Comprehensive Review. Healthcare (Basel) 2022; 10:healthcare10122401. [PMID: 36553925 PMCID: PMC9778071 DOI: 10.3390/healthcare10122401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Non-invasive brain stimulation (NIBS) has emerged as one of the methods implemented in stroke rehabilitation. Cerebellar stimulation has gained research interest as an alternative strategy to cortical stimulation, based on the role of the cerebellum and corticocerebellar tracts in different motor and cognitive functions. This review investigates the role of the cerebellum in motor and cognitive rehabilitation following cerebral stroke using NIBS techniques combined with other therapies (e.g., speech or physical therapy). Fifteen randomized clinical trials were included. The majority of the literature findings point towards the cerebellum as a promising neurostimulation target following stroke of the cerebral cortex. Findings concern mostly rehabilitation of gait and balance, where cathodal transcranial direct current stimulation (tDCS) and intermittent theta-burst stimulation (iTBS) of the contralesional cerebellar hemisphere produce, in the presented clinical sample, improved performance and plasticity changes in the corticocerebellar network, combined with other rehabilitation methods. Data regarding aphasia rehabilitation are scarce, with right cerebellar tDCS exercising some impact in individual linguistic functions combined with language therapy. Based on recent data concerning cerebellar functions and corticocerebellar networks, along with the development of clinical protocols regarding non-invasive cerebellar (NICS) application, the cerebellum can prove a crucial intervention target in rehabilitation following stroke.
Collapse
Affiliation(s)
- Eleni Aikaterini Ntakou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Grigorios Nasios
- Department of Speech and Language Therapy, University of Ioannina, 45500 Ioannina, Greece
| | - Anastasia Nousia
- Department of Speech and Language Therapy, University of Ioannina, 45500 Ioannina, Greece
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
- Correspondence: ; Tel.: +30-6972437386
| | - Lambros Messinis
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| |
Collapse
|
19
|
Stockbridge MD, Bunker LD, Hillis AE. Reversing the Ruin: Rehabilitation, Recovery, and Restoration After Stroke. Curr Neurol Neurosci Rep 2022; 22:745-755. [PMID: 36181577 PMCID: PMC9525934 DOI: 10.1007/s11910-022-01231-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Stroke is a common cause of disability in aging adults. A given individual's needs after stroke vary as a function of the stroke extent and location. The purpose of this review was to discuss recent clinical investigations addressing rehabilitation of an array of overlapping functional domains. RECENT FINDINGS Research is ongoing in the domains of movement, cognition, attention, speech, language, swallowing, and mental health. To best assist patients' recovery, innovative research has sought to develop and evaluate behavioral approaches, identify and refine synergistic approaches that augment the response to behavioral therapy, and integrate technology where appropriate, particularly to introduce and titrate real-world complexity and improve the overall experience of therapy. Recent and ongoing trials have increasingly adopted a multidisciplinary nature - augmenting refined behavioral therapy approaches with methods for increasing their potency, such as pharmaceutical or electrical interventions. The integration of virtual reality, robotics, and other technological advancements has generated immense excitement, but has not resulted in consistent improvements over more universally accessible, lower technology therapy.
Collapse
Affiliation(s)
- Melissa D Stockbridge
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 4, Suite 446, Baltimore, MD, 21287, USA.
| | - Lisa D Bunker
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 4, Suite 446, Baltimore, MD, 21287, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 4, Suite 446, Baltimore, MD, 21287, USA
| |
Collapse
|
20
|
Riley EA, Verblaauw M, Masoud H, Bonilha L. Pre-frontal tDCS improves sustained attention and promotes artificial grammar learning in aphasia: An open-label study. Brain Stimul 2022; 15:1026-1028. [PMID: 35868486 PMCID: PMC10021860 DOI: 10.1016/j.brs.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/02/2022] Open
Affiliation(s)
- Ellyn A Riley
- SU Aphasia Lab, Dept. of Communication Sciences & Disorders, Syracuse University, Syracuse, NY, USA.
| | - Mikaella Verblaauw
- SU Aphasia Lab, Dept. of Communication Sciences & Disorders, Syracuse University, Syracuse, NY, USA
| | - Hesham Masoud
- Dept. of Neurology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Leonardo Bonilha
- Dept. of Neurology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
21
|
Sheppard SM, Goldberg EB, Sebastian R, Walker A, Meier EL, Hillis AE. Transcranial Direct Current Stimulation Paired With Verb Network Strengthening Treatment Improves Verb Naming in Primary Progressive Aphasia: A Case Series. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2022; 31:1736-1754. [PMID: 35605599 PMCID: PMC9531928 DOI: 10.1044/2022_ajslp-21-00272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/16/2022] [Accepted: 03/10/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE There are few evidence-based treatments for language deficits in primary progressive aphasia (PPA). PPA treatments are often adopted from the poststroke aphasia literature. The poststroke aphasia literature has shown promising results using Verb Network Strengthening Treatment (VNeST), a behavioral therapy that focuses on improving naming by producing verbs and their arguments in phrases and sentences. Emerging research in poststroke aphasia and PPA has shown promising results pairing behavioral language therapy with transcranial direct current stimulation (tDCS). METHOD This study used a double-blind, within-subjects, sham-controlled crossover design to study the effect of anodal tDCS applied to left inferior frontal gyrus (IFG) plus VNeST versus VNeST plus sham stimulation in two individuals with nonfluent variant PPA and one individual with logopenic variant PPA. Participants received two phases of treatment, each with 15 1-hr sessions of VNeST. One phase paired VNeST with tDCS stimulation, and one with sham. For each phase, language testing was conducted at baseline, and at 1 week and 8 weeks posttreatment conclusion. For each participant, treatment efficacy was evaluated for each treatment phase by comparing the mean change in accuracy between baseline and the follow-up time points for naming trained verbs (primary outcome measure), untrained verbs, and nouns on the Object and Action Naming Battery. Mean change from baseline was also directly compared between tDCS and sham phases at each time point. RESULTS Results revealed a different pattern of outcomes for each of the participants. A tDCS advantage was not found for trained verbs for any participant. Two participants with nonfluent variant PPA had a tDCS advantage for generalization to naming of untrained verbs, which was apparent at 1 week and 8 weeks posttreatment. One participant with nonfluent variant also showed evidence of generalization to sentence production in the tDCS phase. CONCLUSION VNeST plus anodal tDCS stimulation of left IFG shows promising results for improving naming in PPA.
Collapse
Affiliation(s)
- Shannon M. Sheppard
- Department of Communication Sciences and Disorders, Chapman University, Irvine, CA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Emily B. Goldberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rajani Sebastian
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alexandra Walker
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Erin L. Meier
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Cognitive Science, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
22
|
Zheng K, Chen M, Shen Y, Xu X, Gao F, Huang G, Ji Y, Su B, Song D, Fang H, Liu P, Ren C. Cerebellar Continuous Theta Burst Stimulation for Aphasia Rehabilitation: Study Protocol for a Randomized Controlled Trial. Front Aging Neurosci 2022; 14:909733. [PMID: 35721014 PMCID: PMC9201405 DOI: 10.3389/fnagi.2022.909733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Language recovery is limited in moderate to severe post-stroke aphasia patients. Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising tool in improving language dysfunctions caused by post-stroke aphasia, but the treatment outcome is as yet mixed. Considerable evidence has demonstrated the essential involvement of the cerebellum in a variety of language functions, suggesting that it may be a potential stimulation target of TMS for the treatment of post-stroke aphasia. Theta burst stimulation (TBS) is a specific pattern of rTMS with shorter stimulation times and better therapeutic effects. The effect of continuous TBS (cTBS) on the cerebellum in patients with aphasia with chronic stroke needs further exploration. Methods In this randomized, sham-controlled clinical trial, patients (n = 40) with chronic post-stroke aphasia received 10 sessions of real cTBS (n = 20) or sham cTBS (n = 20) over the right cerebellar Crus I+ a 30-min speech-language therapy. The Western Aphasia Battery (WAB) serves as the primary measure of the treatment outcome. The secondary outcome measures include the Boston Diagnostic Aphasia Examination, Boston Naming Test and speech acoustic parameters. Resting-state fMRI data were also obtained to examine treatment-induced changes in functional connectivity of the cerebro-cerebellar network. These outcome measures are assessed before, immediately after, and 12 weeks after cerebellar cTBS intervention. Discussion This protocol holds promise that cerebellar cTBS is a potential strategy to improve language functions in chronic post-stroke aphasia. The resting-state fMRI may explore the neural mechanism underlying the aphasia rehabilitation with cerebellar cTBS.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Mingyun Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinlei Xu
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Fanglan Gao
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Guilan Huang
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Yingying Ji
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Bin Su
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Da Song
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Hui Fang
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Caili Ren
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| |
Collapse
|
23
|
Xie X, Zhang T, Bai T, Chen C, Ji GJ, Tian Y, Yang J, Wang K. Resting-State Neural-Activity Alterations in Subacute Aphasia after Stroke. Brain Sci 2022; 12:brainsci12050678. [PMID: 35625064 PMCID: PMC9139890 DOI: 10.3390/brainsci12050678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/06/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Linguistic deficits are frequent symptoms among stroke survivors. The neural mechanism of post-stroke aphasia (PSA) was incompletely understood. Recently, resting-state functional magnetic resonance imaging (rs-fMRI) was widely used among several neuropsychological disorders. However, previous rs-fMRI studies of PSA were limited to very small sample size and the absence of reproducibility with different neuroimaging indexes. The present study performed comparisons with static and dynamic amplitude of low-frequency fluctuations (ALFF) and functional connectivity (FC) based on modest sample size (40 PSA and 37 healthy controls). Compared with controls, PSA showed significantly increased static ALFF predominantly in the bilateral supplementary motor area (SMA) and right hippocampus-parahippocampus (R HIP-ParaHip) and decreased static ALFF in right cerebellum. The increased dynamic ALFF in SMA and decreased dynamic ALFF in right cerebellum were also found in PSA. The static and dynamic ALFF in right cerebellum was positively correlated with spontaneous speech. The FC between the SMA and R HIP-ParaHip was significantly stronger in patients than controls and positively correlated with ALFF in bilateral SMA. In addition, the FC between the R HIP-ParaHip and the right temporal was also enhanced in patients and negatively correlated with repetition, naming, and comprehension score. These findings revealed consistently abnormal intrinsic neural activity in SMA and cerebellum, which may underlie linguistic deficits in PSA.
Collapse
Affiliation(s)
- Xiaohui Xie
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China; (X.X.); (T.Z.); (T.B.); (C.C.); (Y.T.)
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China;
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China
| | - Ting Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China; (X.X.); (T.Z.); (T.B.); (C.C.); (Y.T.)
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China;
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China; (X.X.); (T.Z.); (T.B.); (C.C.); (Y.T.)
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China;
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China
| | - Chen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China; (X.X.); (T.Z.); (T.B.); (C.C.); (Y.T.)
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China;
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China
| | - Gong-Jun Ji
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China;
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China; (X.X.); (T.Z.); (T.B.); (C.C.); (Y.T.)
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China;
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China
| | - Jinying Yang
- Laboratory Center for Information Science, University of Science and Technology of China, Hefei 230026, China;
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China; (X.X.); (T.Z.); (T.B.); (C.C.); (Y.T.)
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China;
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 231299, China
- Correspondence: ; Tel.: +86-0551-62923704
| |
Collapse
|
24
|
Harvey DY, Hamilton R. Noninvasive brain stimulation to augment language therapy for poststroke aphasia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:241-250. [PMID: 35078601 DOI: 10.1016/b978-0-12-823384-9.00012-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Behavioral language treatment approaches represent the standard of care for persons with aphasia (PWA), but the benefits of these treatments are variable. Moreover, due to the logistic and financial limitations on the amount of behavioral therapy available to patients, it is often infeasible for PWA to receive behavioral interventions with the level of frequency, intensity, or duration that would provide significant and lasting benefit, underscoring the need for novel, effective treatment approaches. Noninvasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), have emerged as promising neurally-based tools to enhance language abilities for PWA following stroke. This chapter first provides an overview of the methods and physiologic basis motivating the use of NIBS to enhance aphasia recovery followed by a selective review of the growing evidence of its potential as a novel therapeutic tool. Subsequent sections discuss some of the principles that may prove most useful in guiding and optimizing the effects of NIBS on aphasia recovery, focusing on how the functional state of the brain at the time of stimulation interacts with the behavioral aftereffects of neuromodulation. We conclude with a discussion of current challenges and future directions for NIBS in aphasia treatment.
Collapse
Affiliation(s)
- Denise Y Harvey
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Roy Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
25
|
Manto M, Argyropoulos GPD, Bocci T, Celnik PA, Corben LA, Guidetti M, Koch G, Priori A, Rothwell JC, Sadnicka A, Spampinato D, Ugawa Y, Wessel MJ, Ferrucci R. Consensus Paper: Novel Directions and Next Steps of Non-invasive Brain Stimulation of the Cerebellum in Health and Disease. CEREBELLUM (LONDON, ENGLAND) 2021; 21:1092-1122. [PMID: 34813040 DOI: 10.1007/s12311-021-01344-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/11/2022]
Abstract
The cerebellum is involved in multiple closed-loops circuitry which connect the cerebellar modules with the motor cortex, prefrontal, temporal, and parietal cortical areas, and contribute to motor control, cognitive processes, emotional processing, and behavior. Among them, the cerebello-thalamo-cortical pathway represents the anatomical substratum of cerebellum-motor cortex inhibition (CBI). However, the cerebellum is also connected with basal ganglia by disynaptic pathways, and cerebellar involvement in disorders commonly associated with basal ganglia dysfunction (e.g., Parkinson's disease and dystonia) has been suggested. Lately, cerebellar activity has been targeted by non-invasive brain stimulation (NIBS) techniques including transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to indirectly affect and tune dysfunctional circuitry in the brain. Although the results are promising, several questions remain still unsolved. Here, a panel of experts from different specialties (neurophysiology, neurology, neurosurgery, neuropsychology) reviews the current results on cerebellar NIBS with the aim to derive the future steps and directions needed. We discuss the effects of TMS in the field of cerebellar neurophysiology, the potentials of cerebellar tDCS, the role of animal models in cerebellar NIBS applications, and the possible application of cerebellar NIBS in motor learning, stroke recovery, speech and language functions, neuropsychiatric and movement disorders.
Collapse
Affiliation(s)
- Mario Manto
- Service de Neurologie, CHU-Charleroi, 6000, Charleroi, Belgium.,Service Des Neurosciences, UMons, 7000, Mons, Belgium
| | - Georgios P D Argyropoulos
- Division of Psychology, Faculty of Natural Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Tommaso Bocci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142, Milan, Italy.,ASST Santi Paolo E Carlo, Via di Rudinì, 8, 20142, Milan, Italy
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Parkville. Victoria, Australia
| | - Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142, Milan, Italy.,Department of Electronics, Information and Bioengineering, Politecnico Di Milano, 20133, Milan, Italy
| | - Giacomo Koch
- Fondazione Santa Lucia IRCCS, via Ardeatina 306, 00179, Rome, Italy
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142, Milan, Italy.,ASST Santi Paolo E Carlo, Via di Rudinì, 8, 20142, Milan, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Anna Sadnicka
- Motor Control and Movement Disorders Group, St George's University of London, London, UK.,Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Danny Spampinato
- Fondazione Santa Lucia IRCCS, via Ardeatina 306, 00179, Rome, Italy
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| | - Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Roberta Ferrucci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142, Milan, Italy. .,ASST Santi Paolo E Carlo, Via di Rudinì, 8, 20142, Milan, Italy.
| |
Collapse
|
26
|
Lorca-Puls DL, Gajardo-Vidal A, Oberhuber M, Prejawa S, Hope TMH, Leff AP, Green DW, Price CJ. Brain regions that support accurate speech production after damage to Broca's area. Brain Commun 2021; 3:fcab230. [PMID: 34671727 PMCID: PMC8523882 DOI: 10.1093/braincomms/fcab230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Broca’s area in the posterior half of the left inferior frontal gyrus has traditionally been considered an important node in the speech production network. Nevertheless, recovery of speech production has been reported, to different degrees, within a few months of damage to Broca’s area. Importantly, contemporary evidence suggests that, within Broca’s area, its posterior part (i.e. pars opercularis) plays a more prominent role in speech production than its anterior part (i.e. pars triangularis). In this study, we therefore investigated the brain activation patterns that underlie accurate speech production following stroke damage to the opercular part of Broca’s area. By combining functional MRI and 13 tasks that place varying demands on speech production, brain activation was compared in (i) seven patients of interest with damage to the opercular part of Broca’s area; (ii) 55 neurologically intact controls; and (iii) 28 patient controls with left-hemisphere damage that spared Broca’s area. When producing accurate overt speech responses, the patients with damage to the left pars opercularis activated a substantial portion of the normal bilaterally distributed system. Within this system, there was a lesion-site-dependent effect in a specific part of the right cerebellar Crus I where activation was significantly higher in the patients with damage to the left pars opercularis compared to both neurologically intact and patient controls. In addition, activation in the right pars opercularis was significantly higher in the patients with damage to the left pars opercularis relative to neurologically intact controls but not patient controls (after adjusting for differences in lesion size). By further examining how right Crus I and right pars opercularis responded across a range of conditions in the neurologically intact controls, we suggest that these regions play distinct roles in domain-general cognitive control. Finally, we show that enhanced activation in the right pars opercularis cannot be explained by release from an inhibitory relationship with the left pars opercularis (i.e. dis-inhibition) because right pars opercularis activation was positively related to left pars opercularis activation in neurologically intact controls. Our findings motivate and guide future studies to investigate (i) how exactly right Crus I and right pars opercularis support accurate speech production after damage to the opercular part of Broca’s area and (ii) whether non-invasive neurostimulation to one or both of these regions boosts speech production recovery after damage to the opercular part of Broca’s area.
Collapse
Affiliation(s)
- Diego L Lorca-Puls
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea Gajardo-Vidal
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | | | - Marion Oberhuber
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Susan Prejawa
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Thomas M H Hope
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Alexander P Leff
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - David W Green
- Department of Experimental Psychology, University College London, London, UK
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
27
|
Coemans S, Struys E, Vandenborre D, Wilssens I, Engelborghs S, Paquier P, Tsapkini K, Keulen S. A Systematic Review of Transcranial Direct Current Stimulation in Primary Progressive Aphasia: Methodological Considerations. Front Aging Neurosci 2021; 13:710818. [PMID: 34690737 PMCID: PMC8530184 DOI: 10.3389/fnagi.2021.710818] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022] Open
Abstract
A variety of tDCS approaches has been used to investigate the potential of tDCS to improve language outcomes, or slow down the decay of language competences caused by Primary Progressive Aphasia (PPA). The employed stimulation protocols and study designs in PPA are generally speaking similar to those deployed in post-stroke aphasic populations. These two etiologies of aphasia however differ substantially in their pathophysiology, and for both conditions the optimal stimulation paradigm still needs to be established. A systematic review was done and after applying inclusion and exclusion criteria, 15 articles were analyzed focusing on differences and similarities across studies especially focusing on PPA patient characteristics (age, PPA variant, language background), tDCS stimulation protocols (intensity, frequency, combined therapy, electrode configuration) and study design as recent reviews and group outcomes for individual studies suggest tDCS is an effective tool to improve language outcomes, while methodological approach and patient characteristics are mentioned as moderators that may influence treatment effects. We found that studies of tDCS in PPA have clinical and methodological and heterogeneity regarding patient populations, stimulation protocols and study design. While positive group results are usually found irrespective of these differences, the magnitude, duration and generalization of these outcomes differ when comparing stimulation locations, and when results are stratified according to the clinical variant of PPA. We interpret the results of included studies in light of patient characteristics and methodological decisions. Further, we highlight the role neuroimaging can play in study protocols and interpreting results and make recommendations for future work.
Collapse
Affiliation(s)
- Silke Coemans
- Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
| | - Esli Struys
- Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Dorien Vandenborre
- Department of Speech and Language Pathology, Thomas More University of Applied Sciences, Antwerp, Belgium
| | - Ineke Wilssens
- Department of Speech and Language Pathology, Thomas More University of Applied Sciences, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Reference Center for Biological Markers of Dementia, BIODEM, Institute Born-Bunge, Universiteit Antwerpen, Antwerp, Belgium
| | - Philippe Paquier
- Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Research in Cognition and Neurosciences (CRCN), Université Libre de Bruxelles, Antwerp, Belgium
- Department of Translational Neurosciences (TNW), Universiteit Antwerpen, Antwerp, Belgium
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
| | - Stefanie Keulen
- Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
28
|
Vitti E, Hillis AE. Treatment of post-stroke aphasia: A narrative review for stroke neurologists. Int J Stroke 2021; 16:1002-1008. [PMID: 33949274 DOI: 10.1177/17474930211017807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review is intended to help physicians guide patients to optimal management of post-stroke aphasia. We review literature on post-stroke aphasia treatment, focusing on: (1) when and for whom language therapy is most effective, (2) the variety of approaches that can be effective for different individuals, and (3) the extent to which behavioral therapy might be augmented by non-invasive brain stimulation and/or medications.
Collapse
Affiliation(s)
- Emilia Vitti
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
29
|
Fridriksson J, Hillis AE. Current Approaches to the Treatment of Post-Stroke Aphasia. J Stroke 2021; 23:183-201. [PMID: 34102754 PMCID: PMC8189855 DOI: 10.5853/jos.2020.05015] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/21/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Aphasia, impairment of language after stroke or other neurological insult, is a common and often devastating condition that affects nearly every social activity and interaction. Behavioral speech and language therapy is the mainstay of treatment, although other interventions have been introduced to augment the effects of the behavioral therapy. In this narrative review, we discuss advances in aphasia therapy in the last 5 years and focus primarily on properly powered, randomized, controlled trials of both behavioral therapies and interventions to augment therapy for post-stroke aphasia. These trials include evaluation of behavioral therapies and computer-delivered language therapies. We also discuss outcome prediction trials as well as interventional trials that have employed noninvasive brain stimulation, or medications to augment language therapy. Supported by evidence from Phase III trials and large meta-analyses, it is now generally accepted that aphasia therapy can improve language processing for many patients. Not all patients respond similarly to aphasia therapy with the most severe patients being the least likely responders. Nevertheless, it is imperative that all patients, regardless of severity, receive aphasia management focused on direct therapy of language deficits, counseling, or both. Emerging evidence from Phase II trials suggests transcranial brain stimulation is a promising method to boost aphasia therapy outcomes.
Collapse
Affiliation(s)
- Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Argye Elizabeth Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Billeri L, Naro A. A narrative review on non-invasive stimulation of the cerebellum in neurological diseases. Neurol Sci 2021; 42:2191-2209. [PMID: 33759055 DOI: 10.1007/s10072-021-05187-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022]
Abstract
IMPORTANCE The cerebellum plays an important role in motor, cognitive, and affective functions owing to its dense interconnections with basal ganglia and cerebral cortex. This review aimed at summarizing the non-invasive cerebellar stimulation (NICS) approaches used to modulate cerebellar output and treat cerebellar dysfunction in the motor domain. OBSERVATION The utility of NICS in the treatment of cerebellar and non-cerebellar neurological diseases (including Parkinson's disease, dementia, cerebellar ataxia, and stroke) is discussed. NICS induces meaningful clinical effects from repeated sessions alone in both cerebellar and non-cerebellar diseases. However, there are no conclusive data on this issue and several concerns need to be still addressed before NICS could be considered a valuable, standard therapeutic tool. CONCLUSIONS AND RELEVANCE Even though some challenges must be overcome to adopt NICS in a wider clinical setting, this tool might become a useful strategy to help patients with lesions in the cerebellum and cerebral areas that are connected with the cerebellum whether one could enhance cerebellar activity with the intention of facilitating the cerebellum and the entire, related network, rather than attempting to facilitate a partially damaged cortical region or inhibiting the homologs' contralateral area. The different outcome of each approach would depend on the residual functional reserve of the cerebellum, which is confirmed as a critical element to be probed preliminary in order to define the best patient-tailored NICS.
Collapse
Affiliation(s)
- Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy.
| |
Collapse
|
31
|
Rice LC, D'Mello AM, Stoodley CJ. Differential Behavioral and Neural Effects of Regional Cerebellar tDCS. Neuroscience 2021; 462:288-302. [PMID: 33731315 DOI: 10.1016/j.neuroscience.2021.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
The human cerebellum contributes to both motor and non-motor processes. Within the cerebellum, different subregions support sensorimotor and broader cognitive functions, due to regional patterns in anatomical connectivity with the cerebral cortex and spinal and vestibular systems. We evaluated the effects of transcranial direct current stimulation (tDCS) targeting different cerebellar regions on language task performance and whole-brain functional activation patterns. Functional MRI data were acquired while 43 healthy young adults (15 males, 28 females; 23.3 ± 3.0 years) performed a sentence completion task before and after 20 min of 1.5 mA anodal tDCS. Participants received tDCS targeting either the anterior sensorimotor cerebellum (n = 11; 3 cm right of inion, over lobule V); the right posterolateral cerebellum (n = 18; 1 cm down and 4 cm right of inion, over lobule VII); or sham tDCS (n = 14). TDCS targeting the right posterolateral cerebellum improved task accuracy relative to the sham condition (p = 0.04) and increased activation in left frontal and temporal cortices relevant to task performance (post-tDCS > pre-tDCS; T 3.17, FDR p < 0.05 cluster correction). The regions of increased BOLD signal after right posterolateral cerebellar tDCS fell within the network showing functional connectivity with right cerebellar lobule VII, suggesting specific modulation of this network. In contrast, tDCS targeting the sensorimotor cerebellum did not impact task performance and increased BOLD signal only in one cluster extending into the precentral gyrus. These findings indicate that sensorimotor and cognitive functional cerebellar subregions differentially impact behavioral task performance and task-relevant activation patterns, further contributing to our understanding of the cerebellar modulation of motor and non-motor functions.
Collapse
Affiliation(s)
- Laura C Rice
- Department of Neuroscience and Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA.
| | - Anila M D'Mello
- Department of Neuroscience and Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA.
| | - Catherine J Stoodley
- Department of Neuroscience and Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA.
| |
Collapse
|
32
|
Huang H, Chen L, Chopp M, Young W, Robert Bach J, He X, Sarnowaska A, Xue M, Chunhua Zhao R, Shetty A, Siniscalco D, Guo X, Khoshnevisan A, Hawamdeh Z. The 2020 Yearbook of Neurorestoratology. JOURNAL OF NEURORESTORATOLOGY 2021; 9:1-12. [PMID: 37387779 PMCID: PMC10289216 DOI: 10.26599/jnr.2021.9040002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 09/23/2023] Open
Abstract
COVID-19 has been an emerging and rapidly evolving risk to people of the world in 2020. Facing this dangerous situation, many colleagues in Neurorestoratology did their best to avoid infection if themselves and their patients, and continued their work in the research areas described in the 2020 Yearbook of Neurorestoratology. Neurorestorative achievements and progress during 2020 includes recent findings on the pathogenesis of neurological diseases, neurorestorative mechanisms and clinical therapeutic achievements. Therapeutic progress during this year included advances in cell therapies, neurostimulation/neuromodulation, brain-computer interface (BCI), and pharmaceutical neurorestorative therapies, which improved neurological functions and quality of life for patients. Four clinical guidelines or standards of Neurorestoratology were published in 2020. Milestone examples include: 1) a multicenter randomized, double-blind, placebo-controlled study of olfactory ensheathing cell treatment of chronic stroke showed functional improvements; 2) patients after transhumeral amputation experienced increased sensory acuity and had improved effectiveness in work and other activities of daily life using a prosthesis; 3) a patient with amyotrophic lateral sclerosis used a steady-state visual evoked potential (SSVEP)-based BCI to achieve accurate and speedy computer input; 4) a patient with complete chronic spinal cord injury recovered both motor function and touch sensation with a BCI and restored ability to detect objects by touch and several sensorimotor functions. We hope these achievements motivate and encourage other scientists and physicians to increase neurorestorative research and its therapeutic applications.
Collapse
Affiliation(s)
- Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, 100143, China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine Beijing, Beijing, 100007, China
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Wise Young
- Department of Cell Biochemistry and Neuroscience, Rutgers University, New Jersey, USA
| | - John Robert Bach
- Center for Ventilator Management Alternatives, University Hospital, Newark, New Jersey, USA
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Anna Sarnowaska
- Translational Platform for Regenerative Medicine & Cell Therapy Team of The Central Nervous System Diseases, Polish Academy of Sciences, Warsaw, Poland
| | - Mengzhou Xue
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Henan Joint International Laboratory of Intracerebral Hemorrhagic Brain Injury, Zhengzhou, 450001, Henan, China
| | - Robert Chunhua Zhao
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Ashok Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, USA
| | - Dario Siniscalco
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli" via S. Maria di Costantinopoli, 16 80138, Naples, Italy
| | - Xiaoling Guo
- Neurological Center, The 981 Hospital of PLA, Chengde, 067000, Hebei, China
| | | | - Ziad Hawamdeh
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|