1
|
Tozlu C, Jamison K, Kang Y, Rua SH, Kaunzner UW, Nguyen T, Kuceyeski A, Gauthier SA. TSPO-PET Reveals Higher Inflammation in White Matter Disrupted by Paramagnetic Rim Lesions in Multiple Sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.627857. [PMID: 39803549 PMCID: PMC11722250 DOI: 10.1101/2025.01.03.627857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Objective To explore whether the inflammatory activity is higher in white matter (WM) tracts disrupted by paramagnetic rim lesions (PRLs) and if inflammation in PRL-disrupted WM tracts is associated with disability in people with multiple sclerosis (MS). Methods Forty-four MS patients and 16 healthy controls were included. 18 kDa-translocator protein positron emission tomography (TSPO-PET) with the 11C-PK11195 radioligand was used to measure the neuroinflammatory activity. The Network Modification Tool was used to identify WM tracts disrupted by PRLs and non-PRLs that were delineated on MRI. The Expanded Disability Status Scale was used to measure disability. Results MS patients had higher inflammatory activity in whole brain WM compared to healthy controls (p=0.001). Compared to patients without PRLs, patients with PRLs exhibited higher levels of inflammatory activity in the WM tracts disrupted by any type of lesions (p=0.02) or PRLs (p=0.004). In patients with at least one PRL, inflammatory activity was higher in WM tracts highly disrupted by PRLs compared to WM tracts highly disrupted by non-PRLs (p=0.009). Elevated inflammatory activity in highly disrupted WM tracts was associated with increased disability in patients with PRL (p=0.03), but not in patients without PRL (p=0.2). Interpretation This study suggests that patients with PRLs may exhibit more diffuse WM inflammation in addition to higher inflammation along WM tracts disrupted by PRLs compared to non-PRLs, which could contribute to larger lesion volumes and faster disability progression. Imaging PRLs may serve to identify patients with both focal and diffuse inflammation, guiding therapeutic interventions aimed at reducing inflammation and preventing progressive disability in MS.
Collapse
Affiliation(s)
- Ceren Tozlu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Keith Jamison
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Yeona Kang
- Department of Mathematics, Howard University, Washington DC, USA
| | - Sandra Hurtado Rua
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, Ohio, USA
| | - Ulrike W Kaunzner
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Thanh Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Susan A Gauthier
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
2
|
Dal-Bianco A, Oh J, Sati P, Absinta M. Chronic active lesions in multiple sclerosis: classification, terminology, and clinical significance. Ther Adv Neurol Disord 2024; 17:17562864241306684. [PMID: 39711984 PMCID: PMC11660293 DOI: 10.1177/17562864241306684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
In multiple sclerosis (MS), increasing disability is considered to occur due to persistent, chronic inflammation trapped within the central nervous system (CNS). This condition, known as smoldering neuroinflammation, is present across the clinical spectrum of MS and is currently understood to be relatively resistant to treatment with existing disease-modifying therapies. Chronic active white matter lesions represent a key component of smoldering neuroinflammation. Initially characterized in autopsy specimens, multiple approaches to visualize chronic active lesions (CALs) in vivo using advanced neuroimaging techniques and postprocessing methods are rapidly emerging. Among these in vivo imaging correlates of CALs, paramagnetic rim lesions (PRLs) are defined by the presence of a perilesional rim formed by iron-laden microglia and macrophages, whereas slowly expanding lesions are identified based on linear, concentric lesion expansion over time. In recent years, several longitudinal studies have linked the occurrence of in vivo detected CALs to a more aggressive disease course. PRLs are highly specific to MS and therefore have recently been incorporated into the MS diagnostic criteria. They also have prognostic potential as biomarkers to identify patients at risk of early and severe disease progression. These developments could significantly affect MS care and the evaluation of new treatments. This review describes the latest knowledge on CAL biology and imaging and the relevance of CALs to the natural history of MS. In addition, we outline considerations for current and future in vivo biomarkers of CALs, emphasizing the need for validation, standardization, and automation in their assessment.
Collapse
Affiliation(s)
- Assunta Dal-Bianco
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18–20, Vienna 1090, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Pascal Sati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Martina Absinta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Experimental Neuropathology Lab, Neuro Center, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
3
|
Lehto J, Aarnio R, Tuisku J, Sucksdorff M, Koivumäki EM, Nylund M, Helin S, Rajander J, Danon J, Gilchrist J, Kassiou M, Oikonen V, Airas L. P2X 7-receptor binding in new-onset and secondary progressive MS - a [ 11C]SMW139 PET study. EJNMMI Res 2024; 14:123. [PMID: 39636350 PMCID: PMC11621262 DOI: 10.1186/s13550-024-01186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND PET imaging of activated microglia has improved our understanding of the pathology behind disability progression in MS, and pro-inflammatory microglia at 'smoldering' lesion rims have been implicated as drivers of disability progression. The P2X 7R is upregulated in the cellular membranes of activated microglia. A single-tissue dual-input model was applied to quantify P2X 7R binding in the normal appearing white matter, perilesional areas and thalamus among progressive MS patients, healthy controls and newly diagnosed relapsing MS patients. RESULTS Overall, tracer uptake in the MS brain was not significantly higher compared to HCs. In the 3 mm perilesional rim of all T1 lesions, tracer binding was higher among relapsing patients compared to progressive patients. Tracer binding was higher in males compared to females. Disease duration correlated with tracer binding in the normal appearing white matter. Age correlated negatively with tracer binding in the perilesional rims. CONCLUSIONS Even as binding estimates obtained with the dual-input model were consistent with the expected distribution of P2X 7Rs in the MS brain, the small free fraction of the parent tracer may limit its accuracy and applicability, and binding estimates between subjects were highly variable. Conclusive evidence for the applicability of [11C]SMW139 to detect MS-related diffuse smoldering inflammation was not obtained.
Collapse
Affiliation(s)
- Jussi Lehto
- Turku PET Centre, Turku, Finland.
- Neurocenter, Turku University Hospital, Turku, Finland.
- InFLAMES Research Flagship, University of Turku, Turku, Finland.
| | | | | | - Marcus Sucksdorff
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | | | - Marjo Nylund
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | | | - Johan Rajander
- Turku PET Centre, Turku, Finland
- Åbo Akademi University, Turku, Finland
| | - Jonathan Danon
- School of Chemistry, The University of Sydney, Sydney, Australia
| | - Jayson Gilchrist
- School of Chemistry, The University of Sydney, Sydney, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, Australia
| | | | - Laura Airas
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Gaitán MI, Marquez RV, Ayerbe J, Reich DS. Imaging Outcomes for Phase 2 Trials Targeting Compartmentalized Inflammation. Mult Scler 2024; 30:48-60. [PMID: 39658905 PMCID: PMC11637223 DOI: 10.1177/13524585241301303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
This comprehensive review aims to explore imaging outcome measures targeting compartmentalized inflammation in Phase 2 clinical trials for multiple sclerosis (MS). The traditional primary imaging outcomes used in Phase 2 MS trials, new or enhancing white matter lesions on MRI, target the effects of peripheral inflammation, but the widespread inflammation behind a mostly closed blood-brain barrier is not captured. This review discusses several emerging imaging technologies that could be used as surrogate markers of compartmentalized inflammation, targeting chronic active lesions, meningeal inflammation, and innate immune activation within the normal-appearing white matter and gray matter. The integration of specific imaging outcomes into Phase 2 trials can provide a more accurate assessment of treatment efficacy, ultimately contributing to the development of more effective therapies for MS.
Collapse
Affiliation(s)
- María I Gaitán
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Rocio V Marquez
- Department of Neurology, Italian Hospital of Buenos Aires, Argentina
| | - Jeremias Ayerbe
- Department of Neurology, Italian Hospital of Buenos Aires, Argentina
| | - Daniel S Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Treaba CA, Herranz E, Barletta VT, Mehndiratta A, Sloane JA, Granberg T, Miscioscia A, Bomprezzi R, Loggia ML, Mainero C. Phenotyping in vivo chronic inflammation in multiple sclerosis by combined 11C-PBR28 MR-PET and 7T susceptibility-weighted imaging. Mult Scler 2024; 30:1755-1764. [PMID: 39436837 PMCID: PMC11742271 DOI: 10.1177/13524585241284157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BACKGROUND 11C-PBR28 positron emission tomography (PET), targeting the translocator protein, and paramagnetic rim lesions (PRL) have emerged as promising imaging markers of MS chronic inflammation. No consensus on which is the optimal marker exists. OBJECTIVES To investigate the ability of 11C-PBR28 PET and PRL assessment to identify chronic inflammation in white matter (WM) MS lesions and their relation to neurological impairment. METHODS Based on 11C-PBR28 uptake, brain WM lesions from 30 MS patients were classified as PET active or inactive. The PRL presence was assessed on 7T phase reconstructions, T1/T2 ratio was calculated to measure WM microstructural integrity. RESULTS Less than half (44%) of non-PRL WM lesions were active on 11C-PBR28 imaging either throughout the lesion (whole active) or at its periphery. PET peripherally active lesions and PRL did not differ in T1/T2 ratio and 11C-PBR28 uptake. A positive correlation was observed between PRL and active PET lesion count. Whole active PET lesion volume was the strongest predictor (β = 0.97, p < 0.001) of increased Expanded Disability Status Scale scores. CONCLUSION 11C-PBR28 imaging reveals more active WM lesions than 7T PRL assessment. Although PRL and PET active lesion counts are related, neurological disability is better explained by PET whole active lesion volume.
Collapse
Affiliation(s)
- Constantina A Treaba
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elena Herranz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Valeria T Barletta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ambica Mehndiratta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jacob A Sloane
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Alessandro Miscioscia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Roberto Bomprezzi
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Comi G, Dalla Costa G, Stankoff B, Hartung HP, Soelberg Sørensen P, Vermersch P, Leocani L. Assessing disease progression and treatment response in progressive multiple sclerosis. Nat Rev Neurol 2024; 20:573-586. [PMID: 39251843 DOI: 10.1038/s41582-024-01006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Progressive multiple sclerosis poses a considerable challenge in the evaluation of disease progression and treatment response owing to its multifaceted pathophysiology. Traditional clinical measures such as the Expanded Disability Status Scale are limited in capturing the full scope of disease and treatment effects. Advanced imaging techniques, including MRI and PET scans, have emerged as valuable tools for the assessment of neurodegenerative processes, including the respective role of adaptive and innate immunity, detailed insights into brain and spinal cord atrophy, lesion dynamics and grey matter damage. The potential of cerebrospinal fluid and blood biomarkers is increasingly recognized, with neurofilament light chain levels being a notable indicator of neuro-axonal damage. Moreover, patient-reported outcomes are crucial for reflecting the subjective experience of disease progression and treatment efficacy, covering aspects such as fatigue, cognitive function and overall quality of life. The future incorporation of digital technologies and wearable devices in research and clinical practice promises to enhance our understanding of functional impairments and disease progression. This Review offers a comprehensive examination of these diverse evaluation tools, highlighting their combined use in accurately assessing disease progression and treatment efficacy in progressive multiple sclerosis, thereby guiding more effective therapeutic strategies.
Collapse
Affiliation(s)
- Giancarlo Comi
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy.
| | | | - Bruno Stankoff
- Sorbonne Université, Paris Brain Institute, Institut du Cerveau et de la Moelle Épinière, Centre National de la Recherche Scientifique, Inserm, Paris, France
| | - Hans-Peter Hartung
- Brain and Mind Center, University of Sydney, Sydney, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Per Soelberg Sørensen
- Department of Neurology, Danish Multiple Sclerosis Center, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Patrick Vermersch
- University of Lille, Inserm U1172, Lille Neuroscience & Cognition, Centre Hospitalier Universitaire de Lille, Fédération Hospitalo-Universitaire Precision Medicine in Psychiatry, Lille, France
| | - Letizia Leocani
- Vita-Salute San Raffaele University, Milan, Italy
- Multiple Sclerosis Center, Casa di Cura Igea, Milan, Italy
| |
Collapse
|
7
|
Bagnato F, Sati P, Hemond CC, Elliott C, Gauthier SA, Harrison DM, Mainero C, Oh J, Pitt D, Shinohara RT, Smith SA, Trapp B, Azevedo CJ, Calabresi PA, Henry RG, Laule C, Ontaneda D, Rooney WD, Sicotte NL, Reich DS, Absinta M. Imaging chronic active lesions in multiple sclerosis: a consensus statement. Brain 2024; 147:2913-2933. [PMID: 38226694 PMCID: PMC11370808 DOI: 10.1093/brain/awae013] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
Chronic active lesions (CAL) are an important manifestation of chronic inflammation in multiple sclerosis and have implications for non-relapsing biological progression. In recent years, the discovery of innovative MRI and PET-derived biomarkers has made it possible to detect CAL, and to some extent quantify them, in the brain of persons with multiple sclerosis, in vivo. Paramagnetic rim lesions on susceptibility-sensitive MRI sequences, MRI-defined slowly expanding lesions on T1-weighted and T2-weighted scans, and 18-kDa translocator protein-positive lesions on PET are promising candidate biomarkers of CAL. While partially overlapping, these biomarkers do not have equivalent sensitivity and specificity to histopathological CAL. Standardization in the use of available imaging measures for CAL identification, quantification and monitoring is lacking. To fast-forward clinical translation of CAL, the North American Imaging in Multiple Sclerosis Cooperative developed a consensus statement, which provides guidance for the radiological definition and measurement of CAL. The proposed manuscript presents this consensus statement, summarizes the multistep process leading to it, and identifies the remaining major gaps in knowledge.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neurology, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Pascal Sati
- Neuroimaging Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christopher C Hemond
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | | | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, MD 21201, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5S, Canada
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Endeavor, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seth A Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Bruce Trapp
- Department on Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Christina J Azevedo
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90007, USA
| | - Peter A Calabresi
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Roland G Henry
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Cornelia Laule
- Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH 44195, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martina Absinta
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Translational Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| |
Collapse
|
8
|
Cagol A, Tsagkas C, Granziera C. Advanced Brain Imaging in Central Nervous System Demyelinating Diseases. Neuroimaging Clin N Am 2024; 34:335-357. [PMID: 38942520 DOI: 10.1016/j.nic.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
In recent decades, advances in neuroimaging have profoundly transformed our comprehension of central nervous system demyelinating diseases. Remarkable technological progress has enabled the integration of cutting-edge acquisition and postprocessing techniques, proving instrumental in characterizing subtle focal changes, diffuse microstructural alterations, and macroscopic pathologic processes. This review delves into state-of-the-art modalities applied to multiple sclerosis, neuromyelitis optica spectrum disorders, and myelin oligodendrocyte glycoprotein antibody-associated disease. Furthermore, it explores how this dynamic landscape holds significant promise for the development of effective and personalized clinical management strategies, encompassing support for differential diagnosis, prognosis, monitoring treatment response, and patient stratification.
Collapse
Affiliation(s)
- Alessandro Cagol
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Department of Neurology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Spitalstrasse 2, 4031 Basel, Switzerland; Department of Health Sciences, University of Genova, Via A. Pastore, 1 16132 Genova, Italy. https://twitter.com/CagolAlessandr0
| | - Charidimos Tsagkas
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Department of Neurology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Spitalstrasse 2, 4031 Basel, Switzerland.
| |
Collapse
|
9
|
Hemond CC, Gaitán MI, Absinta M, Reich DS. New Imaging Markers in Multiple Sclerosis and Related Disorders: Smoldering Inflammation and the Central Vein Sign. Neuroimaging Clin N Am 2024; 34:359-373. [PMID: 38942521 PMCID: PMC11213979 DOI: 10.1016/j.nic.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Concepts of multiple sclerosis (MS) biology continue to evolve, with observations such as "progression independent of disease activity" challenging traditional phenotypic categorization. Iron-sensitive, susceptibility-based imaging techniques are emerging as highly translatable MR imaging sequences that allow for visualization of at least 2 clinically useful biomarkers: the central vein sign and the paramagnetic rim lesion (PRL). Both biomarkers demonstrate high specificity in the discrimination of MS from other mimics and can be seen at 1.5 T and 3 T field strengths. Additionally, PRLs represent a subset of chronic active lesions engaged in "smoldering" compartmentalized inflammation behind an intact blood-brain barrier.
Collapse
Affiliation(s)
- Christopher C Hemond
- Department of Neurology, University of Massachusetts Memorial Medical Center and University of Massachusetts Chan Medical School, Worcester, MA, USA; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - María I Gaitán
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Martina Absinta
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Calabrese M, Preziosa P, Scalfari A, Colato E, Marastoni D, Absinta M, Battaglini M, De Stefano N, Di Filippo M, Hametner S, Howell OW, Inglese M, Lassmann H, Martin R, Nicholas R, Reynolds R, Rocca MA, Tamanti A, Vercellino M, Villar LM, Filippi M, Magliozzi R. Determinants and Biomarkers of Progression Independent of Relapses in Multiple Sclerosis. Ann Neurol 2024; 96:1-20. [PMID: 38568026 DOI: 10.1002/ana.26913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 06/20/2024]
Abstract
Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relentlessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving "chronic" worsening is likely linked with the early accumulation of compartmentalized inflammation within the central nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an overview of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical practice. ANN NEUROL 2024;96:1-20.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine, Imperial College, London, UK
| | - Elisa Colato
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Damiano Marastoni
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battaglini
- Siena Imaging S.r.l., Siena, Italy
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Owain W Howell
- Institute of Life Sciences, Swansea University Medical School, Swansea, UK
| | - Matilde Inglese
- Dipartimento di neuroscienze, riabilitazione, oftalmologia, genetica e scienze materno-infantili - DINOGMI, University of Genova, Genoa, Italy
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Therapeutic Design Unit, Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
- Cellerys AG, Schlieren, Switzerland
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Burlington Danes, Imperial College London, London, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Agnese Tamanti
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Marco Vercellino
- Multiple Sclerosis Center & Neurologia I U, Department of Neuroscience, University Hospital AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisa Maria Villar
- Department of Immunology, Ramon y Cajal University Hospital. IRYCIS. REI, Madrid, Spain
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Magliozzi
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| |
Collapse
|
11
|
Chertcoff A, Schneider R, Azevedo CJ, Sicotte N, Oh J. Recent Advances in Diagnostic, Prognostic, and Disease-Monitoring Biomarkers in Multiple Sclerosis. Neurol Clin 2024; 42:15-38. [PMID: 37980112 DOI: 10.1016/j.ncl.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Multiple sclerosis (MS) is a highly heterogeneous disease. Currently, a combination of clinical features, MRI, and cerebrospinal fluid markers are used in clinical practice for diagnosis and treatment decisions. In recent years, there has been considerable effort to develop novel biomarkers that better reflect the pathologic substrates of the disease to aid in diagnosis and early prognosis, evaluation of ongoing inflammatory activity, detection and monitoring of disease progression, prediction of treatment response, and monitoring of disease-modifying treatment safety. In this review, the authors provide an overview of promising recent developments in diagnostic, prognostic, and disease-monitoring/treatment-response biomarkers in MS.
Collapse
Affiliation(s)
- Anibal Chertcoff
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, 30 Bond Street, PGT 17-742, Toronto, Ontario M5B 1W8, Canada
| | - Raphael Schneider
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, 30 Bond Street, PGT 17-742, Toronto, Ontario M5B 1W8, Canada
| | - Christina J Azevedo
- Department of Neurology, Keck School of Medicine, University of Southern California, HCT 1520 San Pablo Street, Health Sciences Campus, Los Angeles, CA 90033, USA
| | - Nancy Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, 127 S San Vicente Boulevard, 6th floor, Suite A6600, Los Angeles, CA 90048, USA
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, 30 Bond Street, PGT 17-742, Toronto, Ontario M5B 1W8, Canada; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
12
|
Selmaj K, Cree BAC, Barnett M, Thompson A, Hartung HP. Multiple sclerosis: time for early treatment with high-efficacy drugs. J Neurol 2024; 271:105-115. [PMID: 37851189 PMCID: PMC10769939 DOI: 10.1007/s00415-023-11969-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 10/19/2023]
Abstract
This review addresses current changes in the approach to treating patients with multiple sclerosis (MS). The widely practiced approach of utilizing agents with lower treatment efficacy (LETA) at onset with subsequent escalation has been challenged by new data suggesting that MS patients derive greater benefit when therapy is initiated with high-efficacy treatment agents (HETA). Several recent studies compared treatment efficacy and safety of early administration of HETA versus LETA. The results of randomized, double blind, phase III studies with LETA as a control arm and population-based larger and longer studies using propensity scoring, marginal structural modeling and weighted cumulative exposure analysis support the benefit of early treatment with HETA. Patients initiating their treatment with HETA, regardless of prognostic factors and MRI burden at baseline, showed significantly lower annualized relapse rate (ARR) and reduced disability progression in follow-up periods of up to 10-15 years. Moreover, the safety profile of recently approved HETA ameliorates concerns about off-target effects associated with a number of earlier high-efficacy drugs. Patient perception has also changed with an increasing preference for medication profiles that both improve symptoms and prevent disease progression. Accumulating data from randomized studies and the results of large population-based studies demonstrating short-term and longer-term patient benefits support the view that HETA should be more widely used. The adoption of early treatment with HETA capitalizes on a window of opportunity for anti-inflammatory drugs to maximally impact disease pathology and heralds a sea change in clinical practice toward pro-active management and away from a philosophy routed in generating clinical benefit as a consequence of treatment failure.
Collapse
Affiliation(s)
- Krzysztof Selmaj
- Department of Neurology, University of Warmia and Mazury, 30 Warszawska Ave, 10-082, Olsztyn, Poland.
- Center of Neurology, Lodz, Poland.
| | - Bruce A C Cree
- Department of Neurology, Weill Neurosciences Institute, UCSF, San Francisco, USA
| | - Michael Barnett
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Alan Thompson
- Faculty of Brain Sciences, University College, London, London, UK
| | - Hans-Peter Hartung
- Brain and Mind Centre, University of Sydney, Sydney, Australia
- Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Palacky University, Olomouc, Olomouc, Czech Republic
| |
Collapse
|
13
|
Oh J, Airas L, Harrison D, Järvinen E, Livingston T, Lanker S, Malik RA, Okuda DT, Villoslada P, de Vries HE. Neuroimaging to monitor worsening of multiple sclerosis: advances supported by the grant for multiple sclerosis innovation. Front Neurol 2023; 14:1319869. [PMID: 38107636 PMCID: PMC10722910 DOI: 10.3389/fneur.2023.1319869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Key unmet needs in multiple sclerosis (MS) include detection of early pathology, disability worsening independent of relapses, and accurate monitoring of treatment response. Collaborative approaches to address these unmet needs have been driven in part by industry-academic networks and initiatives such as the Grant for Multiple Sclerosis Innovation (GMSI) and Multiple Sclerosis Leadership and Innovation Network (MS-LINK™) programs. We review the application of recent advances, supported by the GMSI and MS-LINK™ programs, in neuroimaging technology to quantify pathology related to central pathology and disease worsening, and potential for their translation into clinical practice/trials. GMSI-supported advances in neuroimaging methods and biomarkers include developments in magnetic resonance imaging, positron emission tomography, ocular imaging, and machine learning. However, longitudinal studies are required to facilitate translation of these measures to the clinic and to justify their inclusion as endpoints in clinical trials of new therapeutics for MS. Novel neuroimaging measures and other biomarkers, combined with artificial intelligence, may enable accurate prediction and monitoring of MS worsening in the clinic, and may also be used as endpoints in clinical trials of new therapies for MS targeting relapse-independent disease pathology.
Collapse
Affiliation(s)
- Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Laura Airas
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Daniel Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
- Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, MD, United States
| | - Elina Järvinen
- Neurology and Immunology, Medical Unit N&I, Merck OY (an affiliate of Merck KGaA), Espoo, Finland
| | - Terrie Livingston
- Patient Solutions and Center of Excellence Strategic Engagement, EMD Serono, Inc., Rockland, MA, United States
| | - Stefan Lanker
- Neurology & Immunology, US Medical Affairs, EMD Serono Research & Development Institute, Inc., (an affiliate of Merck KGaA), Billerica, MA, United States
| | - Rayaz A. Malik
- Weill Cornell Medicine-Qatar, Research Division, Doha, Qatar
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Darin T. Okuda
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis and Neuroimmunology Imaging Program, Clinical Center for Multiple Sclerosis, UT Southwestern Medical Center, Dallas, TX, United States
| | - Pablo Villoslada
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Helga E. de Vries
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers (Amsterdam UMC), Location VUmc, Amsterdam, Netherlands
| |
Collapse
|
14
|
Saraste M, Matilainen M, Vuorimaa A, Laaksonen S, Sucksdorff M, Leppert D, Kuhle J, Airas L. Association of serum neurofilament light with microglial activation in multiple sclerosis. J Neurol Neurosurg Psychiatry 2023; 94:698-706. [PMID: 37130728 PMCID: PMC10447382 DOI: 10.1136/jnnp-2023-331051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/09/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Translocator protein (TSPO)-PET and neurofilament light (NfL) both report on brain pathology, but their potential association has not yet been studied in multiple sclerosis (MS) in vivo. We aimed to evaluate the association between serum NfL (sNfL) and TSPO-PET-measurable microglial activation in the brain of patients with MS. METHODS Microglial activation was detected using PET and the TSPO-binding radioligand [11C]PK11195. Distribution volume ratio (DVR) was used to evaluate specific [11C]PK11195-binding. sNfL levels were measured using single molecule array (Simoa). The associations between [11C]PK11195 DVR and sNfL were evaluated using correlation analyses and false discovery rate (FDR) corrected linear regression modelling. RESULTS 44 patients with MS (40 relapsing-remitting and 4 secondary progressive) and 24 age-matched and sex-matched healthy controls were included. In the patient group with elevated brain [11C]PK11195 DVR (n=19), increased sNfL associated with higher DVR in the lesion rim (estimate (95% CI) 0.49 (0.15 to 0.83), p(FDR)=0.04) and perilesional normal appearing white matter (0.48 (0.14 to 0.83), p(FDR)=0.04), and with a higher number and larger volume of TSPO-PET-detectable rim-active lesions defined by microglial activation at the plaque edge (0.46 (0.10 to 0.81), p(FDR)=0.04 and 0.50 (0.17 to 0.84), p(FDR)=0.04, respectively). Based on the multivariate stepwise linear regression model, the volume of rim-active lesions was the most relevant factor affecting sNfL. CONCLUSIONS Our demonstration of an association between microglial activation as measured by increased TSPO-PET signal, and elevated sNfL emphasises the significance of smouldering inflammation for progression-promoting pathology in MS and highlights the role of rim-active lesions in promoting neuroaxonal damage.
Collapse
Affiliation(s)
- Maija Saraste
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Markus Matilainen
- Turku PET Centre, Turku, Finland
- Faculty of Science and Engineering, Åbo Akademi University, Abo, Finland
| | - Anna Vuorimaa
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Sini Laaksonen
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Marcus Sucksdorff
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - David Leppert
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Laura Airas
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| |
Collapse
|
15
|
Nieuwland JM, Nutma E, Philippens IHCHM, Böszörményi KP, Remarque EJ, Bakker J, Meijer L, Woerdman N, Fagrouch ZC, Verstrepen BE, Langermans JAM, Verschoor EJ, Windhorst AD, Bontrop RE, de Vries HE, Stammes MA, Middeldorp J. Longitudinal positron emission tomography and postmortem analysis reveals widespread neuroinflammation in SARS-CoV-2 infected rhesus macaques. J Neuroinflammation 2023; 20:179. [PMID: 37516868 PMCID: PMC10387202 DOI: 10.1186/s12974-023-02857-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) patients initially develop respiratory symptoms, but they may also suffer from neurological symptoms. People with long-lasting effects after acute infections with severe respiratory syndrome coronavirus 2 (SARS-CoV-2), i.e., post-COVID syndrome or long COVID, may experience a variety of neurological manifestations. Although we do not fully understand how SARS-CoV-2 affects the brain, neuroinflammation likely plays a role. METHODS To investigate neuroinflammatory processes longitudinally after SARS-CoV-2 infection, four experimentally SARS-CoV-2 infected rhesus macaques were monitored for 7 weeks with 18-kDa translocator protein (TSPO) positron emission tomography (PET) using [18F]DPA714, together with computed tomography (CT). The baseline scan was compared to weekly PET-CTs obtained post-infection (pi). Brain tissue was collected following euthanasia (50 days pi) to correlate the PET signal with TSPO expression, and glial and endothelial cell markers. Expression of these markers was compared to brain tissue from uninfected animals of comparable age, allowing the examination of the contribution of these cells to the neuroinflammatory response following SARS-CoV-2 infection. RESULTS TSPO PET revealed an increased tracer uptake throughout the brain of all infected animals already from the first scan obtained post-infection (day 2), which increased to approximately twofold until day 30 pi. Postmortem immunohistochemical analysis of the hippocampus and pons showed TSPO expression in cells expressing ionized calcium-binding adaptor molecule 1 (IBA1), glial fibrillary acidic protein (GFAP), and collagen IV. In the hippocampus of SARS-CoV-2 infected animals the TSPO+ area and number of TSPO+ cells were significantly increased compared to control animals. This increase was not cell type specific, since both the number of IBA1+TSPO+ and GFAP+TSPO+ cells was increased, as well as the TSPO+ area within collagen IV+ blood vessels. CONCLUSIONS This study manifests [18F]DPA714 as a powerful radiotracer to visualize SARS-CoV-2 induced neuroinflammation. The increased uptake of [18F]DPA714 over time implies an active neuroinflammatory response following SARS-CoV-2 infection. This inflammatory signal coincides with an increased number of TSPO expressing cells, including glial and endothelial cells, suggesting neuroinflammation and vascular dysregulation. These results demonstrate the long-term neuroinflammatory response following a mild SARS-CoV-2 infection, which potentially precedes long-lasting neurological symptoms.
Collapse
Affiliation(s)
- Juliana M Nieuwland
- Department of Neurobiology and Aging, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands
| | - Erik Nutma
- Department of Neurobiology and Aging, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands
| | - Ingrid H C H M Philippens
- Department of Neurobiology and Aging, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands
| | - Kinga P Böszörményi
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Edmond J Remarque
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Jaco Bakker
- Department of Radiology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Lisette Meijer
- Department of Radiology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Noor Woerdman
- Department of Radiology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Zahra C Fagrouch
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Babs E Verstrepen
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Jan A M Langermans
- Department of Animal Sciences, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
- Department Population Health Sciences, Unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ernst J Verschoor
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, Tracer Center Amsterdam (TCA), Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
- Department of Biology, Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Marieke A Stammes
- Department of Radiology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Jinte Middeldorp
- Department of Neurobiology and Aging, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands.
| |
Collapse
|
16
|
Lehto J, Sucksdorff M, Nylund M, Raitanen R, Matilainen M, Airas L. PET-measurable innate immune cell activation reduction in chronic active lesions in PPMS brain after rituximab treatment: a case report. J Neurol 2023; 270:2329-2332. [PMID: 36576574 DOI: 10.1007/s00415-022-11539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To evaluate the effects of rituximab treatment on innate immune cell activation in primary progressive multiple sclerosis (PPMS). METHODS A 48-year-old woman with PPMS was started on rituximab shortly after diagnosis. [11C]PK11195 PET imaging was employed to assess innate immune cell activation with special interest in the white matter around chronic lesions. PET, MRI, and disability measurements were performed at baseline and after 18 months of rituximab treatment. Specific binding of [11C]PK11195 was quantified using mean distribution volume ratios (DVRs), and at voxel-level based on proportions of active voxels. RESULTS The PPMS patient had higher PK11195 DVRs and higher proportions of active voxels in the thalamus and the normal appearing white matter compared to the healthy control group. The thalamic and perilesional white matter DVRs and the proportions of active voxels decreased after rituximab treatment. The patient remained clinically stable during the 5-years follow-up. CONCLUSIONS This case suggests that while a degree of smoldering activity persists, high efficacy B-cell-targeting therapy may contribute to reduced innate immune cell activation in PPMS brain areas relevant for disease progression. This case supports the therapeutic concept that controlling smoldering brain inflammation is beneficial for slowing down progression independent of relapses.
Collapse
Affiliation(s)
- Jussi Lehto
- Turku PET Centre, Turku University Hospital, Po Box 52, 20521, Turku, Finland.
- Neurocenter, Turku University Hospital, Turku, Finland.
| | - Marcus Sucksdorff
- Turku PET Centre, Turku University Hospital, Po Box 52, 20521, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Marjo Nylund
- Turku PET Centre, Turku University Hospital, Po Box 52, 20521, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Roope Raitanen
- Turku PET Centre, Turku University Hospital, Po Box 52, 20521, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Markus Matilainen
- Turku PET Centre, Turku University Hospital, Po Box 52, 20521, Turku, Finland
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Laura Airas
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
17
|
Kolb H, Al-Louzi O, Beck ES, Sati P, Absinta M, Reich DS. From pathology to MRI and back: Clinically relevant biomarkers of multiple sclerosis lesions. Neuroimage Clin 2022; 36:103194. [PMID: 36170753 PMCID: PMC9668624 DOI: 10.1016/j.nicl.2022.103194] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Focal lesions in both white and gray matter are characteristic of multiple sclerosis (MS). Histopathological studies have helped define the main underlying pathological processes involved in lesion formation and evolution, serving as a gold standard for many years. However, histopathology suffers from an intrinsic bias resulting from over-reliance on tissue samples from late stages of the disease or atypical cases and is inadequate for routine patient assessment. Pathological-radiological correlative studies have established advanced MRI's sensitivity to several relevant MS-pathological substrates and its practicality for assessing dynamic changes and following lesions over time. This review focuses on novel imaging techniques that serve as biomarkers of critical pathological substrates of MS lesions: the central vein, chronic inflammation, remyelination and repair, and cortical lesions. For each pathological process, we address the correlative value of MRI to MS pathology, its contribution in elucidating MS pathology in vivo, and the clinical utility of the imaging biomarker.
Collapse
Affiliation(s)
- Hadar Kolb
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv-Yaffo, Israel,Corresponding author at: Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv-Yaffo, Israel.
| | - Omar Al-Louzi
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erin S. Beck
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Martina Absinta
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Institute of Experimental Neurology (INSPE), IRCSS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy,Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|