1
|
Jomova K, Alomar SY, Nepovimova E, Kuca K, Valko M. Heavy metals: toxicity and human health effects. Arch Toxicol 2025; 99:153-209. [PMID: 39567405 PMCID: PMC11742009 DOI: 10.1007/s00204-024-03903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Heavy metals are naturally occurring components of the Earth's crust and persistent environmental pollutants. Human exposure to heavy metals occurs via various pathways, including inhalation of air/dust particles, ingesting contaminated water or soil, or through the food chain. Their bioaccumulation may lead to diverse toxic effects affecting different body tissues and organ systems. The toxicity of heavy metals depends on the properties of the given metal, dose, route, duration of exposure (acute or chronic), and extent of bioaccumulation. The detrimental impacts of heavy metals on human health are largely linked to their capacity to interfere with antioxidant defense mechanisms, primarily through their interaction with intracellular glutathione (GSH) or sulfhydryl groups (R-SH) of antioxidant enzymes such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR), and other enzyme systems. Although arsenic (As) is believed to bind directly to critical thiols, alternative hydrogen peroxide production processes have also been postulated. Heavy metals are known to interfere with signaling pathways and affect a variety of cellular processes, including cell growth, proliferation, survival, metabolism, and apoptosis. For example, cadmium can affect the BLC-2 family of proteins involved in mitochondrial death via the overexpression of antiapoptotic Bcl-2 and the suppression of proapoptotic (BAX, BAK) mechanisms, thus increasing the resistance of various cells to undergo malignant transformation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of antioxidant enzymes, the level of oxidative stress, and cellular resistance to oxidants and has been shown to act as a double-edged sword in response to arsenic-induced oxidative stress. Another mechanism of significant health threats and heavy metal (e.g., Pb) toxicity involves the substitution of essential metals (e.g., calcium (Ca), copper (Cu), and iron (Fe)) with structurally similar heavy metals (e.g., cadmium (Cd) and lead (Pb)) in the metal-binding sites of proteins. Displaced essential redox metals (copper, iron, manganese) from their natural metal-binding sites can catalyze the decomposition of hydrogen peroxide via the Fenton reaction and generate damaging ROS such as hydroxyl radicals, causing damage to lipids, proteins, and DNA. Conversely, some heavy metals, such as cadmium, can suppress the synthesis of nitric oxide radical (NO·), manifested by altered vasorelaxation and, consequently, blood pressure regulation. Pb-induced oxidative stress has been shown to be indirectly responsible for the depletion of nitric oxide due to its interaction with superoxide radical (O2·-), resulting in the formation of a potent biological oxidant, peroxynitrite (ONOO-). This review comprehensively discusses the mechanisms of heavy metal toxicity and their health effects. Aluminum (Al), cadmium (Cd), arsenic (As), mercury (Hg), lead (Pb), and chromium (Cr) and their roles in the development of gastrointestinal, pulmonary, kidney, reproductive, neurodegenerative (Alzheimer's and Parkinson's diseases), cardiovascular, and cancer (e.g. renal, lung, skin, stomach) diseases are discussed. A short account is devoted to the detoxification of heavy metals by chelation via the use of ethylenediaminetetraacetic acid (EDTA), dimercaprol (BAL), 2,3-dimercaptosuccinic acid (DMSA), 2,3-dimercapto-1-propane sulfonic acid (DMPS), and penicillamine chelators.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, 949 74, Nitra, Slovakia
| | - Suliman Y Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic
| | - Kamil Kuca
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
2
|
Min Y, Suminda GGD, Heo Y, Kim M, Ghosh M, Son YO. Metal-Based Nanoparticles and Their Relevant Consequences on Cytotoxicity Cascade and Induced Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12030703. [PMID: 36978951 PMCID: PMC10044810 DOI: 10.3390/antiox12030703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Emerging nanoscience allows us to take advantage of the improved evolutionary components and apply today’s advanced characterization and fabrication techniques to solve environmental and biological problems. Despite the promise that nanotechnology will improve our lives, the potential risks of technology remain largely uncertain. The lack of information on bio-impacts and the absence of consistent standards are the limitations of using metal-based nanoparticles (mNPs) for existing applications. To analyze the role played by the mNPs physicochemical characteristics and tactics to protect live beings, the field of nanotoxicology nowadays is focused on collecting and analyzing data from in vitro and in vivo investigations. The degree of reactive oxygen species (ROS) and oxidative stress caused by material nanoparticles (NPs) depends on many factors, such as size, shape, chemical composition, etc. These characteristics enable NPs to enter cells and interact with biological macromolecules and cell organelles, resulting in oxidative damage, an inflammatory response, the development of mitochondrial dysfunction, damage to genetic material, or cytotoxic effects. This report explored the mechanisms and cellular signaling cascades of mNPs-induced oxidative stress and the relevant health consequences.
Collapse
Affiliation(s)
- Yunhui Min
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea
| | | | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Mangeun Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
- Department of Biotechnology, School of Bio, Chemical and Processing Engineering (SBCE), Kalasalingam Academy of Research and Educational, Krishnankoil 626126, India
- Correspondence: (M.G.); (Y.-O.S.); Tel.: +82-10-6752-9677 (M.G.); +82-64-754-3331 (Y.-O.S.)
| | - Young-Ok Son
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
- Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si 63243, Republic of Korea
- Practical Translational Research Center, Jeju National University, Jeju-si 63243, Republic of Korea
- Correspondence: (M.G.); (Y.-O.S.); Tel.: +82-10-6752-9677 (M.G.); +82-64-754-3331 (Y.-O.S.)
| |
Collapse
|
3
|
Dutta S, Gorain B, Choudhury H, Roychoudhury S, Sengupta P. Environmental and occupational exposure of metals and female reproductive health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62067-62092. [PMID: 34558053 DOI: 10.1007/s11356-021-16581-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Untainted environment promotes health, but the last few decades experienced steep upsurge in environmental contaminants posing detrimental physiological impact. The responsible factors mainly include the exponential growth of human population, havoc rise in industrialization, poorly planned urbanization, and slapdash environment management. Environmental degradation can increase the likelihood of human exposure to heavy metals, resulting in health consequences such as reproductive problems. As a result, research into metal-induced causes of reproductive impairment at the genetic, epigenetic, and biochemical levels must be strengthened further. These metals impact upon the female reproduction at all strata of its regulation and functions, be it development, maturation, or endocrine functions, and are linked to an increase in the causes of infertility in women. Chronic exposures to the heavy metals may lead to breast cancer, endometriosis, endometrial cancer, menstrual disorders, and spontaneous abortions, as well as pre-term deliveries, stillbirths. For example, endometriosis, endometrial cancer, and spontaneous abortions are all caused by the metalloestrogen cadmium (Cd); lead (Pb) levels over a certain threshold can cause spontaneous abortion and have a teratogenic impact; toxic amounts of mercury (Hg) have an influence on the menstrual cycle, which can lead to infertility. Impact of environmental exposure to heavy metals on female fertility is therefore a well-known fact. Thus, the underlying mechanisms must be explained and periodically updated, given the growing evidence on the influence of increasing environmental heavy metal load on female fertility. The purpose of this review is to give a concise overview of how heavy metal affects female reproductive health.
Collapse
Affiliation(s)
- Sulagna Dutta
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Hira Choudhury
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | | | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia.
| |
Collapse
|
4
|
Saran U, Tyagi A, Chandrasekaran B, Ankem MK, Damodaran C. The role of autophagy in metal-induced urogenital carcinogenesis. Semin Cancer Biol 2021; 76:247-257. [PMID: 33798723 DOI: 10.1016/j.semcancer.2021.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Environmental and/or occupational exposure to metals such as Arsenic (As), Cadmium (Cd), and Chromium (Cr) have been shown to induce carcinogenesis in various organs, including the urogenital system. However, the mechanisms responsible for metal-induced carcinogenesis remain elusive. We and others have shown that metals are potent inducers of autophagy, which has been suggested to be an adaptive stress response to allow metal-exposed cells to survive in hostile environments. Albeit few, recent experimental studies have shown that As and Cd promote tumorigenesis via autophagy and that inhibition of autophagic signaling suppressed metal-induced carcinogenesis. In light of the newly emerging role of autophagic involvement in metal-induced carcinogenesis, the present review focuses explicitly on the mechanistic role of autophagy and potential signaling pathways involved in As-, Cd-, and Cr-induced urogenital carcinogenesis.
Collapse
Affiliation(s)
- Uttara Saran
- Department of Urology, University of Louisville, Louisville, KY, United States
| | - Ashish Tyagi
- Department of Urology, University of Louisville, Louisville, KY, United States
| | | | - Murali K Ankem
- Department of Urology, University of Louisville, Louisville, KY, United States
| | - Chendil Damodaran
- Department of Urology, University of Louisville, Louisville, KY, United States; College of Pharmacy, Department of Pharmaceutical Sciences, Texas A&M, College Station, TX, United States.
| |
Collapse
|
5
|
Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. CHEMOSPHERE 2021; 262:128350. [PMID: 33182141 DOI: 10.1016/j.chemosphere.2020.128350] [Citation(s) in RCA: 301] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 05/20/2023]
Abstract
Heavy metal-induced cellular and organismal toxicity have become a major health concern in biomedical science. Indiscriminate use of heavy metals in different sectors, such as, industrial-, agricultural-, healthcare-, cosmetics-, and domestic-sectors has contaminated environment matrices and poses a severe health concern. Xenobiotics mediated effect is a ubiquitous cellular response. Oxidative stress is one such prime cellular response, which is the result of an imbalance in the redox system. Further, oxidative stress is associated with macromolecular damages and activation of several cell survival and cell death pathways. Epidemiological as well as laboratory data suggest that oxidative stress-induced cellular response following heavy metal exposure is linked with an increased risk of neoplasm, neurological disorders, diabetes, infertility, developmental disorders, renal failure, and cardiovascular disease. During the recent past, a relation among heavy metal exposure, oxidative stress, and signaling pathways have been explored to understand the heavy metal-induced toxicity. Heavy metal-induced oxidative stress and its connection with different signaling pathways are complicated; therefore, the systemic summary is essential. Herein, an effort has been made to decipher the interplay among heavy metals/metalloids (Arsenic, Chromium, Cadmium, and Lead) exposures, oxidative stress, and signal transduction, which are essential to mount the cellular and organismal response. The signaling pathways involved in this interplay include NF-κB, NRF2, JAK-STAT, JNK, FOXO, and HIF.
Collapse
Affiliation(s)
- Jagdish Gopal Paithankar
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Sanjay Saini
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Shiwangi Dwivedi
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Anurag Sharma
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India.
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
6
|
Channegowda M. Recent advances in environmentally benign hierarchical inorganic nano-adsorbents for the removal of poisonous metal ions in water: a review with mechanistic insight into toxicity and adsorption. NANOSCALE ADVANCES 2020; 2:5529-5554. [PMID: 36133867 PMCID: PMC9418829 DOI: 10.1039/d0na00650e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/19/2020] [Indexed: 05/05/2023]
Abstract
Recent developments in nanoscience and technology have addressed many of the problems associated with water quality. Accordingly, using the technological outputs of the recent research on nanomaterials, the best solution for the purification of water is highlighted in this review. Herein, the main objective is to provide mechanistic insight into the synthesis of various inorganic nanoadsorbents and their adsorption chemistry for poisonous metal ions present in polluted water. Initially, the toxicity and carcinogenicity of As3+, Pb2+, Cr6+, Cd2+, and Hg2+ metal ions are highlighted. For the removal of these toxic ions, this review focuses on eco-friendly nanoadsorbents. The various preparation procedures utilized for the preparation of nanoadsorbents are briefly discussed. Generally, this is because of the adsorption capacity of nanoadsorbents depends on their morphology, shape, size, surface area, surface active sites, functional groups, and quantization effect. Also, due to the importance of their mechanism of action, the recent developments and challenges of novel nanoadsorbents such as metal oxides, core shell nanoparticles, magnetic nano ferrates, and functionalized core shell magnetic oxides and the processes for the treatment of water contaminated by toxic metal ions such as As3+, Pb2+, Cr6+, Cd2+, and Hg2+ are exclusively reviewed. Further, the adsorption efficiency of inorganic nanoadsorbents is also compared with that of activated carbon derived from various sources for all the above-mentioned metal ions.
Collapse
Affiliation(s)
- Manjunatha Channegowda
- Department of Chemistry, RV College of Engineering Bengaluru-560 059 Karnataka India +91 9036651277
- Visvesvaraya Technological University Belagavi-590018 India
| |
Collapse
|
7
|
Zhu Y, Costa M. Metals and molecular carcinogenesis. Carcinogenesis 2020; 41:1161-1172. [PMID: 32674145 PMCID: PMC7513952 DOI: 10.1093/carcin/bgaa076] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Many metals are essential for living organisms, but at higher doses they may be toxic and carcinogenic. Metal exposure occurs mainly in occupational settings and environmental contaminations in drinking water, air pollution and foods, which can result in serious health problems such as cancer. Arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr) and nickel (Ni) are classified as Group 1 carcinogens by the International Agency for Research on Cancer. This review provides a comprehensive summary of current concepts of the molecular mechanisms of metal-induced carcinogenesis and focusing on a variety of pathways, including genotoxicity, mutagenesis, oxidative stress, epigenetic modifications such as DNA methylation, histone post-translational modification and alteration in microRNA regulation, competition with essential metal ions and cancer-related signaling pathways. This review takes a broader perspective and aims to assist in guiding future research with respect to the prevention and therapy of metal exposure in human diseases including cancer.
Collapse
Affiliation(s)
- Yusha Zhu
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Max Costa
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
8
|
Baldwin WS. Phase 0 of the Xenobiotic Response: Nuclear Receptors and Other Transcription Factors as a First Step in Protection from Xenobiotics. NUCLEAR RECEPTOR RESEARCH 2019; 6:101447. [PMID: 31815118 PMCID: PMC6897393 DOI: 10.32527/2019/101447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This mini-review examines the crucial importance of transcription factors as a first line of defense in the detoxication of xenobiotics. Key transcription factors that recognize xenobiotics or xenobiotic-induced stress such as reactive oxygen species (ROS), include AhR, PXR, CAR, MTF, Nrf2, NF-κB, and AP-1. These transcription factors constitute a significant portion of the pathways induced by toxicants as they regulate phase I-III detoxication enzymes and transporters as well as other protective proteins such as heat shock proteins, chaperones, and anti-oxidants. Because they are often the first line of defense and induce phase I-III metabolism, could these transcription factors be considered the phase 0 of xenobiotic response?
Collapse
Affiliation(s)
- William S Baldwin
- Clemson University, Biological Sciences/Environmental Toxicology, 132 Long Hall, Clemson, SC 29634
| |
Collapse
|
9
|
Ferreira LMR, Cunha-Oliveira T, Sobral MC, Abreu PL, Alpoim MC, Urbano AM. Impact of Carcinogenic Chromium on the Cellular Response to Proteotoxic Stress. Int J Mol Sci 2019; 20:ijms20194901. [PMID: 31623305 PMCID: PMC6801751 DOI: 10.3390/ijms20194901] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
Worldwide, several million workers are employed in the various chromium (Cr) industries. These workers may suffer from a variety of adverse health effects produced by dusts, mists and fumes containing Cr in the hexavalent oxidation state, Cr(VI). Of major importance, occupational exposure to Cr(VI) compounds has been firmly associated with the development of lung cancer. Counterintuitively, Cr(VI) is mostly unreactive towards most biomolecules, including nucleic acids. However, its intracellular reduction produces several species that react extensively with biomolecules. The diversity and chemical versatility of these species add great complexity to the study of the molecular mechanisms underlying Cr(VI) toxicity and carcinogenicity. As a consequence, these mechanisms are still poorly understood, in spite of intensive research efforts. Here, we discuss the impact of Cr(VI) on the stress response—an intricate cellular system against proteotoxic stress which is increasingly viewed as playing a critical role in carcinogenesis. This discussion is preceded by information regarding applications, chemical properties and adverse health effects of Cr(VI). A summary of our current understanding of cancer initiation, promotion and progression is also provided, followed by a brief description of the stress response and its links to cancer and by an overview of potential molecular mechanisms of Cr(VI) carcinogenicity.
Collapse
Affiliation(s)
- Leonardo M R Ferreira
- Department of Surgery and Diabetes Center and Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Teresa Cunha-Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal.
| | - Margarida C Sobral
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| | - Patrícia L Abreu
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal.
| | - Maria Carmen Alpoim
- Department of Life Sciences, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO) and CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3000-456 Coimbra, Portugal.
| | - Ana M Urbano
- Department of Life Sciences, Molecular Physical Chemistry Research Unit and Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
10
|
Chen QY, Murphy A, Sun H, Costa M. Molecular and epigenetic mechanisms of Cr(VI)-induced carcinogenesis. Toxicol Appl Pharmacol 2019; 377:114636. [PMID: 31228494 DOI: 10.1016/j.taap.2019.114636] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
Chromium (Cr) is a naturally occurring metallic element found in the Earth's crust. While trivalent chromium ([Cr(III)] is considered non-carcinogenic, hexavalent chromium [Cr(VI)] has long been established as an IARC class I human carcinogen, known to induce cancers of the lung. Current literature suggests that Cr(VI) is capable of inducing carcinogenesis through both genetic and epigenetic mechanisms. Although much has been learned about the molecular etiology of Cr(VI)-induced lung carcinogenesis, more remains to be explored. In particular, the explicit epigenetic alterations induced by Cr(VI) in lung cancer including histone modifications and miRNAs, remain understudied. Through comprehensive review of available literature found between 1973 and 2019, this article provides a summary of updated understanding of the molecular mechanisms of Cr(VI)-carcinogenesis. In addition, this review identifies potential research gaps in the areas of histone modifications and miRNAs, which may prompt new niches for future research.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| | - Anthony Murphy
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| |
Collapse
|
11
|
VonHandorf A, Sánchez-Martín FJ, Biesiada J, Zhang H, Zhang X, Medvedovic M, Puga A. Chromium disrupts chromatin organization and CTCF access to its cognate sites in promoters of differentially expressed genes. Epigenetics 2018; 13:363-375. [PMID: 29561703 PMCID: PMC6140807 DOI: 10.1080/15592294.2018.1454243] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/22/2023] Open
Abstract
Hexavalent chromium compounds are well-established respiratory carcinogens used in industrial processes. While inhalation exposure constitutes an occupational risk affecting mostly chromium workers, environmental exposure from drinking water is a widespread gastrointestinal cancer risk, affecting millions of people throughout the world. Cr(VI) is genotoxic, forming protein-Cr-DNA adducts and silencing tumor suppressor genes, but its mechanism of action at the molecular level is poorly understood. Our prior work using FAIRE showed that Cr(VI) disrupted the binding of transcription factors CTCF and AP-1 to their cognate chromatin sites. Here, we used two complementary approaches to test the hypothesis that chromium perturbs chromatin organization and dynamics. DANPOS2 analyses of MNase-seq data identified several chromatin alterations induced by Cr(VI) affecting nucleosome architecture, including occupancy changes at specific genome locations; position shifts of 10 nucleotides or more; and changes in position amplitude or fuzziness. ATAC-seq analysis revealed that Cr(VI) disrupted the accessibility of chromatin regions enriched for CTCF and AP-1 binding motifs, with a significant co-occurrence of binding sites for both factors in the same region. Cr(VI)-enriched CTCF sites were confirmed by ChIP-seq and found to correlate with evolutionarily conserved sites occupied by CTCF in vivo, as determined by comparison with ENCODE-validated CTCF datasets from mouse liver. In addition, more than 30% of the Cr(VI)-enriched CTCF sites were located in promoters of genes differentially expressed from chromium treatment. Our results support the conclusion that Cr(VI) exposure promotes broad changes in chromatin accessibility and suggest that the subsequent effects on transcription regulation may result from disruption of CTCF binding and nucleosome spacing, implicating transcription regulatory mechanisms as primary Cr(VI) targets.
Collapse
Affiliation(s)
- Andrew VonHandorf
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United State
| | - Francisco Javier Sánchez-Martín
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United State
| | - Jacek Biesiada
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United State
| | - Hongxia Zhang
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United State
| | - Xiang Zhang
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United State
| | - Mario Medvedovic
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United State
| | - Alvaro Puga
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United State
| |
Collapse
|
12
|
Xu J, Wise JTF, Wang L, Schumann K, Zhang Z, Shi X. Dual Roles of Oxidative Stress in Metal Carcinogenesis. J Environ Pathol Toxicol Oncol 2018; 36:345-376. [PMID: 29431065 DOI: 10.1615/jenvironpatholtoxicoloncol.2017025229] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It has been well established that environmental and occupational exposure to heavy metal causes cancer in several organs. Although the exact mechanism of heavy metal carcinogenesis remains elusive, metal-generated reactive oxygen species (ROS) are essential. ROS can play two roles in metal carcinogenesis; two stages in the process of metal carcinogenesis differ in the amounts of ROS activating a dual redox-mediated mechanism. In the early stage of metal carcinogenesis, ROS acts in an oncogenic role. However, in the late stage of metal carcinogenesis, ROS plays an antioncogenic role. Similarly, NF-E2-related factor 2 (Nrf2) also has two different roles, which makes it a key molecule for separating metal carcinogenesis into two different stages. In the early stage, inducible Nrf2 fights against elevated ROS to decrease cell transformation by its antioxidant protection property. In the late stage, constitutively activated Nrf2 manipulates reduced ROS to perform a comfortable environment for apoptosis resistance through an oncogenic role. Interestingly, a cunning carcinogenic mechanism takes advantage of the dual role of Nrf2 to implement the dual role of ROS through a series of redox adaption mechanisms. In this review, we discuss the paradox in the rationales behind the two opposite ROS roles and focus on their potential pharmacological application. The dual role of ROS represents a 'double-edged sword' with many possible novel ROS-mediated strategies in cancer therapy in metal carcinogenesis.
Collapse
Affiliation(s)
- Jie Xu
- Department of Anesthesiology, Beijing Chao Yang Hospital, Capital Medical University, No. 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing 100020, China
| | - James T F Wise
- Division of Nutritional Sciences, Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Kortney Schumann
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Zhuo Zhang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Xianglin Shi
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
13
|
Clementino M, Shi X, Zhang Z. Oxidative Stress and Metabolic Reprogramming in Cr(VI) Carcinogenesis. CURRENT OPINION IN TOXICOLOGY 2017; 8:20-27. [PMID: 29568811 DOI: 10.1016/j.cotox.2017.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cr(VI)-containing compounds are well-established lung carcinogens. Chronic exposure of the normal human epithelial cells is able to induce malignant cell transformation, the first stage of metal carcinogenesis. These Cr(VI)-transformed cells exhibit increased level of antioxidants, reduced capacity of generating reactive oxygen species (ROS), and development of apoptosis resistance, promoting tumorigenesis of Cr(VI)-transformed cells, the second stage of metal carcinogenesis. The mechanism of Cr(VI) induced carcinogenesis is still under investigation. Recent studies indicate that ROS play a positive role in the first stage while a negative role in the second stage. Transformed cells adapt metabolism to support tumor initiation and progression. Altered metabolic activities directly participate in the process of cell transformation or support a large requirement for nucleotides, amino acids, and lipids for tumor growth. In malignantly Cr(VI)-transformed cells, mitochondrial oxidative phosphorylation is defective, and pentose phosphate pathway, glycolysis, and glutaminolysis are upregulated. These metabolic reprogramming supports rapid cell proliferation and contributes to tumorigenesis of Cr(VI)-transformed cells. This article summarizes the current progress in the studies of metabolic reprogramming and Cr(VI) carcinogenesis with emphasis on the metabolic enzymes and oxidative stress related major oncogenic pathways.
Collapse
Affiliation(s)
- Marco Clementino
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536
| | - Xianglin Shi
- Center for Research on Environmental Diseases, University of Kentucky, Lexington, KY 40536
| | - Zhuo Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
14
|
Son YO, Pratheeshkumar P, Wang Y, Kim D, Zhang Z, Shi X. Protection from Cr(VI)-induced malignant cell transformation and tumorigenesis of Cr(VI)-transformed cells by luteolin through Nrf2 signaling. Toxicol Appl Pharmacol 2017; 331:24-32. [PMID: 28416455 PMCID: PMC5568479 DOI: 10.1016/j.taap.2017.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/09/2017] [Accepted: 04/13/2017] [Indexed: 11/19/2022]
Abstract
Cr(VI) is a well known environmental carcinogen, but its mechanism of action and the measures required to mitigate its effects remain to be investigated. Our previous studies showed that exposure of human bronchial epithelial (BEAS-2B) cells to Cr(VI) caused malignant transformation, that these transformed cells progressed through tumorigenesis, and that luteolin, a natural compound, inhibited both of these processes. The present study investigates the underlying mechanisms by which luteolin protects cells against Cr(VI)-induced transformation and tumorigenesis. The present study shows that luteolin activates inducible Nrf2 to inhibit Cr(VI)-generated reactive oxygen species (ROS) in normal BEAS-2B cells. The decreased ROS level is likely responsible for the protective effect of luteolin against Cr(VI)-induced malignant cell transformation in normal cells. By contrast, in cells that have been transformed by Cr(VI), Nrf2 is constitutively activated, and its target proteins, heme oxygenase 1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), and superoxide dismutase 1/2 (SOD1/SOD2) are all constitutively activated, and ROS levels are low. Bcl-2, an anti-apoptotic protein and target protein of Nrf2 is elevated. Cr(VI)-transformed BEAS-2B cells develop apoptosis resistance, increasing the survival of these transformed cells. Luteolin decreases interactions between Nrf2 and the antioxidant response element sites of its target anti-apoptotic and antioxidant proteins, Bcl-2, Bcl-XL, and HO-1, which results in decreased constitutive Nrf2 activation. The decreased constitutive Nrf2 activation, decrease in Nrf2 target proteins and consequent apoptosis resistance by luteolin are possible mechanisms that mediate the protective effect of luteolin in Cr(VI)-transformed cells.
Collapse
Affiliation(s)
- Young-Ok Son
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Poyil Pratheeshkumar
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Yuting Wang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Donghern Kim
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Zhuo Zhang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Xianglin Shi
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA.
| |
Collapse
|
15
|
Barik R, Sarkar R, Biswas P, Bera R, Sharma S, Nath S, Karmakar S, Sen T. 5,7-dihydroxy-2-(3-hydroxy-4, 5-dimethoxy-phenyl)-chromen-4-one-a flavone from Bruguiera gymnorrhiza displaying anti-inflammatory properties. Indian J Pharmacol 2017; 48:304-11. [PMID: 27298502 PMCID: PMC4900005 DOI: 10.4103/0253-7613.182890] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Objective: Bruguiera gymnorrhiza (BRG) (L.) Lamk (Rhizophoraceae), a mangrove species, is widely distributed in the Pacific region, eastern Africa, Indian subcontinent, and subtropical Australia. The leaves of this plant are traditionally used for treating burns and inflammatory lesions. This study isolates the bioactive compound from the methanol extract of BRG leaves and evaluates the possible mechanisms of anti-inflammatory activity involved. Materials and Methods: Bioassay-guided fractionation of BRG was performed to identify the bioactive fraction (displaying inhibition of cyclooxygenase 2 [COX2] - 5-lipoxygenase (5-LOX) activities and tumor necrosis factor-alpha (TNF-α) production at the tested concentrations of 100 and 10 μg/ml). The fractionation was performed by solvent extraction and preparative high-performance liquid chromatography. The bioactive compound was characterized by ultraviolet–visible, liquid chromatography–mass spectrometry and nuclear magnetic resonance spectroscopy. The antioxidant potential was evaluated by electron spin resonance spectrum of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical at 250 μM. The effect of the compound was also studied on TNF-α converting enzyme and nuclear factor kappa B (NF-κB) activities at the concentrations 100, 10 and 1 μg/ml. Results: Bioassay-guided purification of BRG revealed the presence of a flavone (5,7-dihydroxy-2- [3-hydroxy-4,5-dimethoxy-phenyl]-chromen-4-one) of molecular weight 330Da. It demonstrated more than 80% inhibition against COX2, 5-LOX activities and TNF-α production at 100 μg/ml. It also displayed 40% inhibition against DPPH radical at the tested concentration along with 23.1% inhibition of NF-κB activity at 100 μg/ml. Conclusions: The isolated methoxy-flavone may play a predominant role in the anti-inflammatory properties displayed by BRG leaves. Such activity may involve multiple mechanisms, namely (a) modulation of oxidative stress (b) inhibition of arachidonic acid metabolism and (c) downregulation of pro-inflammatory cytokines probably through NF-κB inhibition.
Collapse
Affiliation(s)
- Rajib Barik
- Demaceutical Technology, Jadavpur University, Salt Lake, Kolkata, West Bengal, India; TCG Life Sciences Ltd., Salt Lake, Kolkata, West Bengal, India
| | - Ratul Sarkar
- Demaceutical Technology, Jadavpur University, Salt Lake, Kolkata, West Bengal, India
| | - Prova Biswas
- Demaceutical Technology, Jadavpur University, Salt Lake, Kolkata, West Bengal, India
| | - Rammohan Bera
- Demaceutical Technology, Jadavpur University, Salt Lake, Kolkata, West Bengal, India; TCG Life Sciences Ltd., Salt Lake, Kolkata, West Bengal, India
| | - Soma Sharma
- TCG Life Sciences Ltd., Salt Lake, Kolkata, West Bengal, India
| | - Suvadeep Nath
- TCG Life Sciences Ltd., Salt Lake, Kolkata, West Bengal, India
| | - Sanmoy Karmakar
- Demaceutical Technology, Jadavpur University, Salt Lake, Kolkata, West Bengal, India
| | - Tuhinadri Sen
- Demaceutical Technology, Jadavpur University, Salt Lake, Kolkata, West Bengal, India
| |
Collapse
|
16
|
Khanna P, Ong C, Bay BH, Baeg GH. Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death. NANOMATERIALS 2015; 5:1163-1180. [PMID: 28347058 PMCID: PMC5304638 DOI: 10.3390/nano5031163] [Citation(s) in RCA: 294] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/16/2015] [Accepted: 06/23/2015] [Indexed: 11/16/2022]
Abstract
Nanoparticles are emerging as a useful tool for a wide variety of biomedical, consumer and instrumental applications that include drug delivery systems, biosensors and environmental sensors. In particular, nanoparticles have been shown to offer greater specificity with enhanced bioavailability and less detrimental side effects as compared to the existing conventional therapies in nanomedicine. Hence, bionanotechnology has been receiving immense attention in recent years. However, despite the extensive use of nanoparticles today, there is still a limited understanding of nanoparticle-mediated toxicity. Both in vivo and in vitro studies have shown that nanoparticles are closely associated with toxicity by increasing intracellular reactive oxygen species (ROS) levels and/or the levels of pro-inflammatory mediators. The homeostatic redox state of the host becomes disrupted upon ROS induction by nanoparticles. Nanoparticles are also known to up-regulate the transcription of various pro-inflammatory genes, including tumor necrosis factor-α and IL (interleukins)-1, IL-6 and IL-8, by activating nuclear factor-kappa B (NF-κB) signaling. These sequential molecular and cellular events are known to cause oxidative stress, followed by severe cellular genotoxicity and then programmed cell death. However, the exact molecular mechanisms underlying nanotoxicity are not fully understood. This lack of knowledge is a significant impediment in the use of nanoparticles in vivo. In this review, we will provide an assessment of signaling pathways that are involved in the nanoparticle- induced oxidative stress and propose possible strategies to circumvent nanotoxicity.
Collapse
Affiliation(s)
- Puja Khanna
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, MD10, Singapore 117 597, Singapore.
| | - Cynthia Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, MD10, Singapore 117 597, Singapore.
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, MD10, Singapore 117 597, Singapore.
| | - Gyeong Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, MD10, Singapore 117 597, Singapore.
| |
Collapse
|
17
|
Functional role of inorganic trace elements in angiogenesis-Part II: Cr, Si, Zn, Cu, and S. Crit Rev Oncol Hematol 2015; 96:143-55. [PMID: 26088455 DOI: 10.1016/j.critrevonc.2015.05.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/15/2015] [Accepted: 05/12/2015] [Indexed: 02/07/2023] Open
Abstract
Trace elements play critical roles in angiogenesis events. The effects of nitrogen, iron, selenium, phosphorus, gold, and calcium were discussed in part I. In part II, we evaluated the effect of chromium, silicon, zinc, copper, and sulfur on different aspects of angiogenesis, with critical roles in healing and regeneration processes, and undeniable roles in tumor growth and cancer therapy. This review is the second of series that serves as an overview of the role of inorganic elements in regulation of angiogenesis and vascular function. The methods of exposure, structure, mechanism, and potential activity of these trace elements are briefly discussed. An electronic search was performed on the role of these trace elements in angiogenesis from January 2005 to April 2014. The recent aspects of the relationship between five different trace elements and their role in regulation of angiogenesis, and homeostasis of pro- and anti-angiogenic factors were assessed. Many studies have investigated the effects and importance of these elements in angiogenesis events. Both stimulatory and inhibitory effects on angiogenesis are observed for the evaluated elements. Chromium can promote angiogenesis in pathological manners. Silicon as silica nanoparticles is anti-angiogenic, while in calcium silicate extracts and bioactive silicate glasses promote angiogenesis. Zinc is an anti-angiogenic agent acting on important genes and growth factors. Copper and sulfur compositions have pro-angiogenic functions by activating pro-angiogenic growth factors and promoting endothelial cells migration, growth, and tube formation. Thus, utilization of these elements may provide a unique opportunity to modulate angiogenesis under various setting.
Collapse
|
18
|
Sahu BD, Koneru M, Bijargi SR, Kota A, Sistla R. Chromium-induced nephrotoxicity and ameliorative effect of carvedilol in rats: Involvement of oxidative stress, apoptosis and inflammation. Chem Biol Interact 2014; 223:69-79. [DOI: 10.1016/j.cbi.2014.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/05/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
|
19
|
Zhao L, Song Y, Pu J, Guo J, Wang Y, Chen Z, Chen T, Gu Y, Jia G. Effects of repeated Cr(VI) intratracheal instillation on club (Clara) cells and activation of nuclear factor-kappa B pathway via oxidative stress. Toxicol Lett 2014; 231:72-81. [DOI: 10.1016/j.toxlet.2014.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/06/2014] [Accepted: 09/15/2014] [Indexed: 11/25/2022]
|
20
|
Abreu PL, Ferreira LMR, Alpoim MC, Urbano AM. Impact of hexavalent chromium on mammalian cell bioenergetics: phenotypic changes, molecular basis and potential relevance to chromate-induced lung cancer. Biometals 2014; 27:409-43. [DOI: 10.1007/s10534-014-9726-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/06/2014] [Indexed: 12/19/2022]
|
21
|
Son YO, Pratheeshkumar P, Lei W, Wang X, Kim DH, Lee JY, Zhang Z, Lee JC, Shi X. Reactive oxygen species mediate Cr(VI)-induced carcinogenesis through PI3K/AKT-dependent activation of GSK-3β/β-catenin signaling. Toxicol Appl Pharmacol 2013; 271:239-48. [PMID: 23707771 PMCID: PMC3742697 DOI: 10.1016/j.taap.2013.04.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/19/2013] [Accepted: 04/20/2013] [Indexed: 01/07/2023]
Abstract
Cr(VI) compounds are known human carcinogens that primarily target the lungs. Cr(VI) produces reactive oxygen species (ROS), but the exact effects of ROS on the signaling molecules involved in Cr(VI)-induced carcinogenesis have not been extensively studied. Chronic exposure of human bronchial epithelial cells to Cr(VI) at nanomolar concentrations (10-100nM) for 3months not only induced cell transformation, but also increased the potential of these cells to invade and migrate. Injection of Cr(VI)-stimulated cells into nude mice resulted in the formation of tumors. Chronic exposure to Cr(VI) increased levels of intracellular ROS and antiapoptotic proteins. Transfection with catalase or superoxide dismutase (SOD) prevented Cr(VI)-mediated increases in colony formation, cell invasion, migration, and xenograft tumors. While chronic Cr(VI) exposure led to activation of signaling cascades involving PI3K/AKT/GSK-3β/β-catenin and PI3K/AKT/mTOR, transfection with catalase or SOD markedly inhibited Cr(VI)-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the Cr(VI)-mediated increase in total and active β-catenin proteins and colony formation. In particular, Cr(VI) suppressed autophagy of epithelial cells under nutrition deprivation. Furthermore, there was a marked induction of AKT, GSK-3β, β-catenin, mTOR, and carcinogenic markers in tumor tissues formed in mice after injection with Cr(VI)-stimulated cells. Collectively, our findings suggest that ROS is a key mediator of Cr(VI)-induced carcinogenesis through the activation of PI3K/AKT-dependent GSK-3β/β-catenin signaling and the promotion of cell survival mechanisms via the inhibition of apoptosis and autophagy.
Collapse
Affiliation(s)
- Young-Ok Son
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| | - Poyil Pratheeshkumar
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| | - Wang Lei
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| | - Xin Wang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| | - Dong-Hern Kim
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| | - Ju-Yeon Lee
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| | - Zhuo Zhang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| | - Jeong-Chae Lee
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
- School of Dentistry and Institute of Oral Biosciences, Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756, South Korea
| | - Xianglin Shi
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| |
Collapse
|
22
|
Mechanisms of nanoparticle-induced oxidative stress and toxicity. BIOMED RESEARCH INTERNATIONAL 2013; 2013:942916. [PMID: 24027766 PMCID: PMC3762079 DOI: 10.1155/2013/942916] [Citation(s) in RCA: 851] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/16/2013] [Indexed: 12/14/2022]
Abstract
The rapidly emerging field of nanotechnology has offered innovative discoveries in the medical, industrial, and consumer sectors. The unique physicochemical and electrical properties of engineered nanoparticles (NP) make them highly desirable in a variety of applications. However, these novel properties of NP are fraught with concerns for environmental and occupational exposure. Changes in structural and physicochemical properties of NP can lead to changes in biological activities including ROS generation, one of the most frequently reported NP-associated toxicities. Oxidative stress induced by engineered NP is due to acellular factors such as particle surface, size, composition, and presence of metals, while cellular responses such as mitochondrial respiration, NP-cell interaction, and immune cell activation are responsible for ROS-mediated damage. NP-induced oxidative stress responses are torch bearers for further pathophysiological effects including genotoxicity, inflammation, and fibrosis as demonstrated by activation of associated cell signaling pathways. Since oxidative stress is a key determinant of NP-induced injury, it is necessary to characterize the ROS response resulting from NP. Through physicochemical characterization and understanding of the multiple signaling cascades activated by NP-induced ROS, a systemic toxicity screen with oxidative stress as a predictive model for NP-induced injury can be developed.
Collapse
|
23
|
Mulware SJ. Comparative Trace Elemental Analysis in Cancerous and Noncancerous Human Tissues Using PIXE. JOURNAL OF BIOPHYSICS (HINDAWI PUBLISHING CORPORATION : ONLINE) 2013; 2013:192026. [PMID: 23762045 PMCID: PMC3671537 DOI: 10.1155/2013/192026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 04/29/2013] [Indexed: 11/17/2022]
Abstract
The effect of high or low levels of trace metals in human tissues has been studied widely. There have been detectable significant variations in the concentrations of trace metals in normal and cancerous tissues suggesting that these variations could be a causative factor to various cancers. Even though essential trace metals play an important role such as stabilizers, enzyme cofactors, elements of structure, and essential elements for normal hormonal functions, their imbalanced toxic effects contribute to the rate of the reactive oxygen species (ROS) and formation of complexities in the body cells which may lead to DNA damage. The induction of oxidative-induced DNA damage by ROS may lead to isolated base lesions or single-strand breaks, complex lesions like double-strand breaks, and some oxidative generated clustered DNA lesions (OCDLs) which are linked to cell apoptosis and mutagenesis. The difference in published works on the level of variations of trace metals in different cancer tissues can be attributed to the accuracy of the analytical techniques, sample preparation methods, and inability of taking uniform samples from the affected tissues. This paper reviews comparative trace elemental concentrations of cancerous and noncancerous tissues using PIXE that has been reported in the published literature.
Collapse
Affiliation(s)
- Stephen Juma Mulware
- Ion Beam Modification and Analysis Laboratory, Physics Department, University of North Texas, 1155 Union Circle, No. 311427, Denton, TX 76203, USA
| |
Collapse
|
24
|
Abstract
The carcinogenicity of cadmium, arsenic, and chromium(VI) compounds has been recognized for some decades. However, the underlying molecular mechanisms seem to be complex and are not completely understood at present. Although, with the exception of chromium(VI), direct DNA damage seems to be of minor importance, interactions with DNA repair processes, tumor suppressor functions, and signal transduction pathways have been described in diverse biological systems. In addition to the induction of damage to cellular macromolecules by reactive oxygen species, the interference with cellular redox regulation by reaction with redox-sensitive protein domains or amino acids may provide one plausible mechanism involved in metal carcinogenicity. Consequences are the distortion of zinc-binding structures and the activation or inactivation of redox-regulated signal transduction pathways, provoking metal-induced genomic instability. Nevertheless, the relevance of the respective mechanisms depends on the actual metal or metal species under consideration and more research is needed to further strengthen this hypothesis.
Collapse
Affiliation(s)
- Andrea Hartwig
- Institute of Applied Biosciences, Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
| |
Collapse
|
25
|
Lee JC, Son YO, Pratheeshkumar P, Shi X. Oxidative stress and metal carcinogenesis. Free Radic Biol Med 2012; 53:742-57. [PMID: 22705365 DOI: 10.1016/j.freeradbiomed.2012.06.002] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/31/2012] [Accepted: 06/02/2012] [Indexed: 01/18/2023]
Abstract
Occupational and environmental exposures to metals are closely associated with an increased risk of various cancers. Although carcinogenesis caused by metals has been intensively investigated, the exact mechanisms of action are still unclear. Accumulating evidence indicates that reactive oxygen species (ROS) generated by metals play important roles in the etiology of degenerative and chronic diseases. This review covers recent advances in (1) metal-induced generation of ROS and the related mechanisms; (2) the relationship between metal-mediated ROS generation and carcinogenesis; and (3) the signaling proteins involved in metal-induced carcinogenesis, especially intracellular reduction-oxidation-sensitive molecules.
Collapse
Affiliation(s)
- Jeong-Chae Lee
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Haeme oxygenase-1 (HO-1) is often viewed as a cytoprotective gene. Toxic heavy metals induce HO-1, but it is unclear whether particular metal micronutrients also induce HO-1. Hence, the ability of exogenously-added copper, iron and zinc to influence HO-1 expression in HCT-116 cells was evaluated. Under the chosen experimental conditions, only zinc noticeably increased the expression of HO-1 mRNA and protein. Concurrently, zinc decreased non-protein thiol levels to a certain extent, but zinc did not increase the production of reactive oxygen species (ROS). Moreover, ascorbate and Trolox did not inhibit zinc-induced HO-1 upregulation. In contrast, deferoxamine blunted the induction of HO-1 mRNA, protein, and enzymatic activity caused by zinc. Additionally, N-acetylcysteine and Tiron inhibited zinc-induced HO-1 upregulation and also nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). Collectively, these findings suggest that zinc at above normal levels upregulates HO-1 expression in HCT-116 cells in a ROS-independent manner.
Collapse
Affiliation(s)
- Abigail F Smith
- Cellular and Molecular Nutrition Research Laboratory, Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | | |
Collapse
|
27
|
Fan Y, Ovesen JL, Puga A. Long-term exposure to hexavalent chromium inhibits expression of tumor suppressor genes in cultured cells and in mice. J Trace Elem Med Biol 2012; 26:188-91. [PMID: 22613061 PMCID: PMC3380135 DOI: 10.1016/j.jtemb.2012.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have used mouse hepatoma cells in culture to study acute, short-term high-dose effects of hexavalent chromium on gene regulation directed by the polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP). We find that the mixture engages three major signaling pathways: (i) activation of detoxification genes; (ii) induction of signal transduction effectors; and (iii) epigenetic modification of chromatin marks. Preliminary results in mice exposed to mixtures of low doses of Cr(VI) plus BaP indicate that all three pathways are likely to be engaged also in long-term effects resulting from exposure to environmentally relevant doses of the mixture that inhibit the expression of tumor suppressor genes. Given the toxicity and carcinogenicity of these mixtures, we expect that a two-way analytical approach, from cells in culture to biological effects in vivo and vice versa, will provide a better understanding of the molecular mechanisms responsible for the biological effects of mixtures. By focusing both the in vivo and the in vitro work into long-term, low-dose, environmentally relevant exposures, we expect to develop much needed information pertinent to the type of diseases found in human populations exposed to mixtures of environmental toxicants.
Collapse
Affiliation(s)
- Yunxia Fan
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati, College of Medicine, 3223 Eden Ave. Cincinnati, OH 45267
| | - Jerald L. Ovesen
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati, College of Medicine, 3223 Eden Ave. Cincinnati, OH 45267
| | - Alvaro Puga
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati, College of Medicine, 3223 Eden Ave. Cincinnati, OH 45267
| |
Collapse
|
28
|
Myers CR. The effects of chromium(VI) on the thioredoxin system: implications for redox regulation. Free Radic Biol Med 2012; 52:2091-107. [PMID: 22542445 PMCID: PMC3955998 DOI: 10.1016/j.freeradbiomed.2012.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/09/2012] [Accepted: 03/09/2012] [Indexed: 01/01/2023]
Abstract
Hexavalent chromium [Cr(VI)] compounds are highly redox active and have long been recognized as potent cytotoxins and carcinogens. The intracellular reduction of Cr(VI) generates reactive Cr intermediates, which are themselves strong oxidants, as well as superoxide, hydrogen peroxide, and hydroxyl radical. These probably contribute to the oxidative damage and effects on redox-sensitive transcription factors that have been reported. However, the identification of events that initiate these signaling changes has been elusive. More recent studies show that Cr(VI) causes irreversible inhibition of thioredoxin reductase (TrxR) and oxidation of thioredoxin (Trx) and peroxiredoxin (Prx). Mitochondrial Trx2/Prx3 are more sensitive to Cr(VI) treatment than cytosolic Trx1/Prx1, although both compartments show thiol oxidation with higher doses or longer treatments. Thiol redox proteomics demonstrate that Trx2, Prx3, and Trx1 are among the most sensitive proteins in cells to Cr(VI) treatment. Their oxidation could therefore represent initiating events that have widespread implications for protein thiol redox control and for multiple aspects of redox signaling. This review summarizes the effects of Cr(VI) on the TrxR/Trx system and how these events could influence a number of downstream redox signaling systems that are influenced by Cr(VI) exposure. Some of the signaling events discussed include the activation of apoptosis signal regulating kinase and MAP kinases (p38 and JNK) and the modulation of a number of redox-sensitive transcription factors including AP-1, NF-κB, p53, and Nrf2.
Collapse
Affiliation(s)
- Charles R Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
29
|
Kanno T, Nakamura K, Ikai H, Kikuchi K, Sasaki K, Niwano Y. Literature review of the role of hydroxyl radicals in chemically-induced mutagenicity and carcinogenicity for the risk assessment of a disinfection system utilizing photolysis of hydrogen peroxide. J Clin Biochem Nutr 2012; 51:9-14. [PMID: 22798706 PMCID: PMC3391867 DOI: 10.3164/jcbn.11-105] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 09/26/2011] [Indexed: 11/22/2022] Open
Abstract
We have developed a new disinfection system for oral hygiene, proving that hydroxyl radicals generated by the photolysis of 1 M hydrogen peroxide could effectively kill oral pathogenic microorganisms. Prior to any clinical testing, the safety of the system especially in terms of the risk of carcinogenicity is examined by reviewing the literature. Previous studies have investigated indirectly the kinds of reactive oxygen species involved in some sort of chemically-induced mutagenicity in vitro by using reactive oxygen species scavengers, suggesting the possible involvement of hydroxyl radicals. Similarly, possible involvement of hydroxyl radicals in some sort of chemically-induced carcinogenicity has been proposed. Notably, it is suggested that the hydroxyl radical can play a role in heavy metal-induced carcinogenicity that requires chronic exposure to the carcinogen. In these cases, hydroxyl radicals produced by Fenton-like reactions may be involved in the carcinogenicity. Meanwhile, potential advantages have been reported on the use of the hydroxyl radical, being included in host immune defense by polymorphonuclear leukocytes, and medical applications such as for cancer treatment and antibiotics. From these, we conclude that there would seem to be little to no risk in using the hydroxyl radical as a disinfectant for short-term treatment of the oral cavity.
Collapse
Affiliation(s)
- Taro Kanno
- Tohoku University Graduate School of Dentistry, Seiryo-machi 4-1, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Son YO, Hitron JA, Cheng S, Budhraja A, Zhang Z, Lan Guo N, Lee JC, Shi X. The dual roles of c-Jun NH2-terminal kinase signaling in Cr(VI)-induced apoptosis in JB6 cells. Toxicol Sci 2010; 119:335-45. [PMID: 21047991 DOI: 10.1093/toxsci/kfq335] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Occupational exposure to chromium (Cr) compounds has been shown to cause serious toxic and carcinogenic effects. The skin is an important target for the compounds in industrially exposed Cr workers. c-Jun NH(2)-terminal kinase (JNK) regulates cell proliferation, apoptosis, and differentiation. This protein's effects on cellular response depend upon the cell type and stimuli. The mechanisms by which hexavalent chromium (Cr(VI)) leads to apoptosis in the skin are unclear at present. The aim of this study is to examine whether JNK regulates apoptosis in Cr(VI)-exposed mouse JB6 epidermal cells. The present study showed that Cr(VI) induced apoptotic cell death through JNK activation. The blockage of JNK by small interference RNA (si-RNA) transfection suppressed Cr(VI)-induced apoptotic cell death with the concomitant downregulation of antiapoptotic Bcl-2 family proteins, mitochondrial membrane depolarization (Δψm), caspase activation, and poly (ADP-ribose) polymerase cleavage. However, inhibition of c-Jun expression by si-RNA transfection enhanced cytotoxicity, which corresponded to increasing apoptosis and Δψm. This phenomenon is associated with p53 activation caused by increasing reactive oxygen species (ROS) levels because of the downregulation of superoxide dismutase expression in si-c-Jun-transfected cells. Taken together, Cr(VI) induces apoptosis via JNK-mediated signaling, whereas c-Jun activation acts as an inhibitor of apoptotic signaling. Additionally, ROS generated by Cr(VI) is a pivotal regulator of JNK.
Collapse
Affiliation(s)
- Young-Ok Son
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0305, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang BJ, Sheu HM, Guo YL, Lee YH, Lai CS, Pan MH, Wang YJ. Hexavalent chromium induced ROS formation, Akt, NF-kappaB, and MAPK activation, and TNF-alpha and IL-1alpha production in keratinocytes. Toxicol Lett 2010; 198:216-24. [PMID: 20619327 DOI: 10.1016/j.toxlet.2010.06.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/26/2010] [Accepted: 06/29/2010] [Indexed: 01/26/2023]
Abstract
In certain cell types, it has been found that, hexavalent chromium could increase ROS formation, activate cell signaling and stimulate the release of cytokines. But, in keratinocytes, these effects have not yet fully been demonstrated. Our aim is to observe the above effects of hexavalent chromium on keratinocytes. By utilizing HaCaT cells and the skin of albino guinea pigs, we showed that hexavalent chromium could increase ROS formation, activate the Akt, NF-kB, and MAPK pathways as well as increase the production of cytokines, including TNF-alpha and IL-1alpha. The release of these cytokines from keratinocytes is considered to be a key participant in the pathogenesis of contact hypersensitivity. Among cement workers, chromium hypersensitivity is an important occupational skin disease issue. Therefore, the observations of our study help us better understand the role of hexavalent chromium on the development of chromium hypersensitivity, which might provide clues for clinicians in the development of chemopreventative agents for the prevention of chromium hypersensitivity among cement workers.
Collapse
Affiliation(s)
- Bour-Jr Wang
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, 138 Sheng-Li Road, Tainan 70428, Taiwan
| | | | | | | | | | | | | |
Collapse
|
32
|
Henkler F, Brinkmann J, Luch A. The role of oxidative stress in carcinogenesis induced by metals and xenobiotics. Cancers (Basel) 2010; 2:376-96. [PMID: 24281075 PMCID: PMC3835083 DOI: 10.3390/cancers2020376] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 12/21/2022] Open
Abstract
In addition to a wide range of adverse effects on human health, toxic metals such as cadmium, arsenic and nickel can also promote carcinogenesis. The toxicological properties of these metals are partly related to generation of reactive oxygen species (ROS) that can induce DNA damage and trigger redox-dependent transcription factors. The precise mechanisms that induce oxidative stress are not fully understood. Further, it is not yet known whether chronic exposures to low doses of arsenic, cadmium or other metals are sufficient to induce mutations in vivo, leading to DNA repair responses and/or tumorigenesis. Oxidative stress can also be induced by environmental xenobiotics, when certain metabolites are generated that lead to the continuous release of superoxide, as long as the capacity to reduce the resulting dions (quinones) into hydroquinones is maintained. However, the specific significance of superoxide-dependent pathways to carcinogenesis is often difficult to address, because formation of DNA adducts by mutagenic metabolites can occur in parallel. Here, we will review both mechanisms and toxicological consequences of oxidative stress triggered by metals and dietary or environmental pollutants in general. Besides causing DNA damage, ROS may further induce multiple intracellular signaling pathways, notably NF-kB, JNK/SAPK/p38, as well as Erk/MAPK. These signaling routes can lead to transcriptional induction of target genes that could promote proliferation or confer apoptosis resistance to exposed cells. The significance of these additional modes depends on tissue, cell-type and is often masked by alternate oncogenic mechanisms being activated in parallel.
Collapse
Affiliation(s)
- Frank Henkler
- German Federal Institute for Risk Assessment, Thielallee 88-92, 14195 Berlin, Germany; E-Mail:
| | | | - Andreas Luch
- German Federal Institute for Risk Assessment, Thielallee 88-92, 14195 Berlin, Germany; E-Mail:
| |
Collapse
|
33
|
Son YO, Hitron JA, Wang X, Chang Q, Pan J, Zhang Z, Liu J, Wang S, Lee JC, Shi X. Cr(VI) induces mitochondrial-mediated and caspase-dependent apoptosis through reactive oxygen species-mediated p53 activation in JB6 Cl41 cells. Toxicol Appl Pharmacol 2010; 245:226-35. [PMID: 20298709 DOI: 10.1016/j.taap.2010.03.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/26/2010] [Accepted: 03/02/2010] [Indexed: 11/28/2022]
Abstract
Cr(VI) compounds are known to cause serious toxic and carcinogenic effects. Cr(VI) exposure can lead to a severe damage to the skin, but the mechanisms involved in the Cr(VI)-mediated toxicity in the skin are unclear. The present study examined whether Cr(VI) induces cell death by apoptosis or necrosis using mouse skin epidermal cell line, JB6 Cl41 cells. We also investigated the cellular mechanisms of Cr(VI)-induced cell death. This study showed that Cr(VI) induced apoptotic cell death in a dose-dependent manner, as demonstrated by the appearance of cell shrinkage, the migration of cells into the sub-G1 phase, the increase of Annexin V positively stained cells, and the formation of nuclear DNA ladders. Cr(VI) treatment resulted in the increases of mitochondrial membrane depolarization and caspases activation. Electron spin resonance (ESR) and fluorescence analysis revealed that Cr(VI) increased intracellular levels of reactive oxygen species (ROS) such as hydrogen peroxide and superoxide anion radical in dose-dependent manner. Blockage of p53 by si-RNA transfection suppressed mitochondrial changes of Bcl-2 family composition, mitochondrial membrane depolarization, caspase activation and PARP cleavage, leading to the inhibition of Cr(VI)-induced apoptosis. Further, catalase treatment prevented p53 phosphorylation stimulated by Cr(VI) with the concomitant inhibition of caspase activation. These results suggest that Cr(VI) induced a mitochondrial-mediated and caspase-dependent apoptosis in skin epidermal cells through activation of p53, which are mainly mediated by reactive oxidants generated by the chemical.
Collapse
Affiliation(s)
- Young-Ok Son
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
McCarroll N, Keshava N, Chen J, Akerman G, Kligerman A, Rinde E. An evaluation of the mode of action framework for mutagenic carcinogens case study II: chromium (VI). ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:89-111. [PMID: 19708067 DOI: 10.1002/em.20525] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In response to the 2005 revised U.S Environmental Protection Agency's (EPA) Cancer Guidelines, a strategy is being developed to include all mutagenicity and other genotoxicity data with additional information to determine whether the initiating step in carcinogenesis is through a mutagenic mode of action (MOA). This information is necessary to decide if age-dependent adjustment factors (ADAFs) should be applied to the risk assessment. Chromium (VI) [Cr (VI)], a carcinogen in animals and humans via inhalation, was reassessed by the National Toxicology Program (NTP) in 2-year drinking water studies in rodents. From these data, NTP concluded that the results with Cr (VI) showed clear evidence of carcinogenicity in male and female mice and rats. Cr (VI) is also mutagenic, in numerous in vitro assays, in animals (mice and rats) and in humans. Accordingly, Cr (VI) was processed through the MOA framework; postulated key steps in tumor formation were interaction of DNA with Cr (VI) and reduction to Cr (III), mutagenesis, cell proliferation, and tumor formation. Within the timeframe and tumorigenic dose range for early events, genetic changes in mice (single/double-stranded DNA breaks) commence within 24 hr. Mechanistic evidence was also found for oxidative damage and DNA adduct formation contributing to the tumor response. The weight of evidence supports the plausibility that Cr (VI) may act through a mutagenic MOA. Therefore, the Cancer Guidelines recommend a linear extrapolation for the oral risk assessment. Cr (VI) also induces germ cell mutagenicity and causes DNA deletions in developing embryos; thus, it is recommended that the ADAFs be applied.
Collapse
Affiliation(s)
- Nancy McCarroll
- Health Effects Division, Office of Pesticide Programs (OPP), US Environmental Protection Agency, Washington, DC 20460, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Leonard SS, Hogans VJ, Coppes-Petricorena Z, Peer CJ, Vining TA, Fleming DW, Harris GK. Analysis of Free-Radical Scavenging of Yerba Mate (Ilex paraguriensis) using Electron Spin Resonance and Radical-Induced DNA Damage. J Food Sci 2010; 75:C14-20. [DOI: 10.1111/j.1750-3841.2009.01394.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Anwar-Mohamed A, Elbekai RH, El-Kadi AOS. Regulation of CYP1A1 by heavy metals and consequences for drug metabolism. Expert Opin Drug Metab Toxicol 2009; 5:501-21. [DOI: 10.1517/17425250902918302] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
37
|
Lei T, He QY, Cai Z, Zhou Y, Wang YL, Si LS, Cai Z, Chiu JF. Proteomic analysis of chromium cytotoxicity in cultured rat lung epithelial cells. Proteomics 2008; 8:2420-9. [DOI: 10.1002/pmic.200701050] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 2008; 82:493-512. [PMID: 18496671 DOI: 10.1007/s00204-008-0313-y] [Citation(s) in RCA: 689] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 04/30/2008] [Indexed: 02/07/2023]
Abstract
Mechanisms of carcinogenicity are discussed for metals and their compounds, classified as carcinogenic to humans or considered to be carcinogenic to humans: arsenic, antimony, beryllium, cadmium, chromium, cobalt, lead, nickel and vanadium. Physicochemical properties govern uptake, intracellular distribution and binding of metal compounds. Interactions with proteins (e.g., with zinc finger structures) appear to be more relevant for metal carcinogenicity than binding to DNA. In general, metal genotoxicity is caused by indirect mechanisms. In spite of diverse physicochemical properties of metal compounds, three predominant mechanisms emerge: (1) interference with cellular redox regulation and induction of oxidative stress, which may cause oxidative DNA damage or trigger signaling cascades leading to stimulation of cell growth; (2) inhibition of major DNA repair systems resulting in genomic instability and accumulation of critical mutations; (3) deregulation of cell proliferation by induction of signaling pathways or inactivation of growth controls such as tumor suppressor genes. In addition, specific metal compounds exhibit unique mechanisms such as interruption of cell-cell adhesion by cadmium, direct DNA binding of trivalent chromium, and interaction of vanadate with phosphate binding sites of protein phosphatases.
Collapse
|
39
|
O'hara K, Vaghjiani R, Nemec A, Klei L, Barchowsky A. Cr(VI)-stimulated STAT3 tyrosine phosphorylation and nuclear translocation in human airway epithelial cells requires Lck. Biochem J 2007; 402:261-9. [PMID: 17078813 PMCID: PMC1798428 DOI: 10.1042/bj20061427] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic inhalation of low amounts of Cr(VI) promotes pulmonary diseases and cancers through poorly defined mechanisms. SFKs (Src family kinases) in pulmonary airway cells may mediate Cr(VI) signalling for lung injury, although the downstream effectors of Cr(VI)-stimulated SFKs and how they relate to pathogenic gene induction are unknown. Therefore SFK-dependent activation of transcription factors by non-cytotoxic exposure of human bronchial epithelial cells to Cr(VI) was determined. Protein-DNA binding arrays demonstrated that exposing BEAS 2B cells to 5 microM Cr(VI) for 4 and 24 h resulted in increased protein binding to 25 and 43 cis-elements respectively, while binding to 12 and 16 cis-elements decreased. Of note, Cr(VI) increased protein binding to several STAT (signal transducer and activator of transcription) cis-elements. Cr(VI) stimulated acute tyrosine phosphorylation and nuclear translocation of STAT1 over a 4 h period and a prolonged activation of STAT3 that reached a peak between 48 and 72 h. This prolonged activation was observed for both STAT3alpha and STAT3beta. Immunofluorescent confocal microscopy confirmed that Cr(VI) increased nuclear localization of phosphorylated STAT3 for more than 72 h in both primary and BEAS 2B human airway cells. Cr(VI) induced transactivation of both a STAT3-driven luciferase reporter construct and the endogenous inflammatory gene IL-6 (interleukin-6). Inhibition with siRNA (small interfering RNA) targeting the SFK Lck, but not dominant-negative JAK (Janus kinase), prevented Cr(VI)-stimulated phosphorylation of both STAT3 isoforms and induction of IL-6. The results suggest that Cr(VI) activates epithelial cell Lck to signal for prolonged STAT3 activation and transactivation of IL-6, an important immunomodulator of lung disease progression.
Collapse
Affiliation(s)
- Kimberley A. O'hara
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, 100 Technology Dr, Suite 350, Pittsburgh, PA 15219, U.S.A
| | - Rasilaben J. Vaghjiani
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, 100 Technology Dr, Suite 350, Pittsburgh, PA 15219, U.S.A
| | - Antonia A. Nemec
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, 100 Technology Dr, Suite 350, Pittsburgh, PA 15219, U.S.A
| | - Linda R. Klei
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, 100 Technology Dr, Suite 350, Pittsburgh, PA 15219, U.S.A
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, 100 Technology Dr, Suite 350, Pittsburgh, PA 15219, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
40
|
O’HARA KIMBERLEYA, NEMEC ANTONIAA, ALAM JAWED, KLEI LINDAR, MOSSMAN BROOKET, BARCHOWSKY AARON. Chromium (VI) inhibits heme oxygenase-1 expression in vivo and in arsenic-exposed human airway epithelial cells. J Cell Physiol 2006; 209:113-21. [PMID: 16775837 PMCID: PMC4288750 DOI: 10.1002/jcp.20710] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inhaled hexavalent chromium (Cr(VI)) promotes lung injury and pulmonary diseases through poorly defined mechanisms. One hypothesis for this lung pathogenesis is that Cr(VI) silences induction of cytoprotective genes, such as heme oxygenase-1 (HO-1), whose total lung mRNA levels were reduced 21 days after nasal instillation of potassium dichromate in C57BL/6 mice. To investigate the mechanisms for this inhibition, Cr(VI) effects on basal and arsenic (As(III))-induced HO-1 expression were examined in cultured human bronchial epithelial (BEAS-2B) cells. An effect of Cr(VI) on the low basal HO-1 mRNA and protein levels in BEAS-2B cells was not detectible. In contrast, Cr(VI) added to the cells before As(III), but not simultaneously with As(III), attenuated As(III)-induced HO-1 expression. Transient transfection with luciferase reporter gene constructs controlled by the full length ho-1 promoter or deletion mutants demonstrated that this inhibition occurred in the E1 enhancer region containing critical antioxidant response elements (ARE). Cr(VI) pretreatment inhibited As(III)-induced activity of a transiently expressed reporter construct regulated by three ARE tandem repeats. The mechanism for this Cr(VI)-attenuated transactivation appeared to be Cr(VI) reduction of the nuclear levels of the transcription factor Nrf2 and As(III)-stimulated Nrf2 transcriptional complex binding to the ARE cis element. Finally, exposing cells to Cr(VI) prior to co-exposure with As(III) synergized for apoptosis and loss of membrane integrity. These data suggest that Cr(VI) silences induction of ARE-driven genes required for protection from secondary insults. The data also have important implications for understanding the toxic mechanisms of low level, mixed metal exposures in the lung.
Collapse
Affiliation(s)
- KIMBERLEY A. O’HARA
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - ANTONIA A. NEMEC
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - JAWED ALAM
- Department of Molecular Genetics, Ochsner Medical Foundation, New Orleans, Louisiana
| | - LINDA R. KLEI
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | | | - AARON BARCHOWSKY
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
- Correspondence to: Aaron Barchowsky, PhD, Department of Environmental and Occupational Health, University of Pitts-burgh, 100 Technology Drive, Cellomics Building, Room 332, Pittsburgh, PA 15260.
| |
Collapse
|
41
|
Stavrides JC. Lung carcinogenesis: pivotal role of metals in tobacco smoke. Free Radic Biol Med 2006; 41:1017-30. [PMID: 16962926 DOI: 10.1016/j.freeradbiomed.2006.06.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 06/28/2006] [Accepted: 06/29/2006] [Indexed: 12/21/2022]
Abstract
Although significant progress has been made in unraveling the molecular mechanisms responsible for tobacco smoke toxicity and carcinogenicity, only limited information is available concerning the mechanisms by which tar particles and the gaseous phase constituents of tobacco smoke participate and contribute to carcinogenic processes in lung cancer. The present review critically evaluates how metals contained in the tar particles and the gaseous phase of tobacco smoke play a leading role in the carcinogenic process, taking into consideration the physiology and pathophysiology of the bronchial epithelium. Overwhelmingly, the published data indicate that the bronchopulmonary epithelial cells may represent the first and most critical line of defense against cigarette smoke.
Collapse
Affiliation(s)
- John C Stavrides
- Institute of Biomedical Research and Biotechnology, 104 32 Athens, Greece.
| |
Collapse
|
42
|
Gambelunghe A, Piccinini R, Abbritti G, Ambrogi M, Ugolini B, Marchetti C, Migliorati G, Balducci C, Muzi G. Chromium VI-induced apoptosis in a human bronchial epithelial cell line (BEAS-2B) and a lymphoblastic leukemia cell line (MOLT-4). J Occup Environ Med 2006; 48:319-25. [PMID: 16531837 DOI: 10.1097/01.jom.0000197859.46894.7d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hexavalent chromium compounds are well-documented human carcinogens. In vitro experiments show Cr (VI) induces cell death by apoptosis by activating p53 protein. The aim of this study was to evaluate Cr (VI)-induced apoptosis in a human bronchial epithelial cell line (BEAS-2B) and in a lymphoblastic leukemia cell line (MOLT-4). Cr (VI) caused a dose- and time-dependent increase in the apoptosis rate in both cell lines. Western blotting showed increased p53 protein expression in MOLT-4 cells, but not in BEAS-2B cells, after exposure to 0.5 and 3 muM hexavalent chromium for 12 hours and 4 hours, respectively. Apoptotic cell death induced by Cr (VI) was not decreased by pretreatment with caspase-3, -8, and -9 inhibitors. These preliminary results provide evidence of Cr (VI)-induced apoptosis, which deserves further investigation in occupationally exposed workers.
Collapse
Affiliation(s)
- Angela Gambelunghe
- Department of Clinical and Experimental Medicine, Division of Occupational Medicine, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gwinn MR, Vallyathan V. Respiratory burst: role in signal transduction in alveolar macrophages. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2006; 9:27-39. [PMID: 16393868 DOI: 10.1080/15287390500196081] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Alveolar macrophages play an important role in defense against airborne pathogens and particles. These macrophages respond through both the adaptive and acquired immune responses, and through the activation of a multitude of signaling pathways. One major macrophage defense mechanism is respiratory burst, the production of reactive oxygen species (ROS). While the ROS produced may act directly in pathogen killing, they may also be involved as secondary signaling messengers. This review focuses on the activation of four main signaling pathways following the production of reactive oxygen species. These pathways include the nuclear factor kappa beta (NFkB), activating protein-1 (AP-1), mitogen-activating protein kinase (MAPK), and phosphotidyl inositol-3 kinase (PI3K) pathways. This review also briefly examines the role of ROS in DNA damage, in particular looking at the base excision repair pathway (BER), the main pathway involved in repair of oxidative DNA damage. This review highlights many of the studies in the field of ROS, signal transduction, and DNA damage; however, work still remains to further elucidate the role of ROS in disease.
Collapse
Affiliation(s)
- Maureen R Gwinn
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | | |
Collapse
|
44
|
Leonard SS, Harris GK, Shi X. Metal-induced oxidative stress and signal transduction. Free Radic Biol Med 2004; 37:1921-42. [PMID: 15544913 DOI: 10.1016/j.freeradbiomed.2004.09.010] [Citation(s) in RCA: 400] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 08/24/2004] [Accepted: 09/10/2004] [Indexed: 01/08/2023]
Abstract
Occupational and environmental exposures to metals are associated with the development of various cancers. Although carcinogenesis caused by metals has been intensively investigated, the mechanisms of action, especially at the molecular level, are still unclear. Accumulating evidence indicates that reactive oxygen species generated by metals may play an important role in the etiology of disease. This review covers recent advances in (1) metal-induced generation of reactive oxygen species; (2) the receptors, kinases, and nuclear transcription factors affected by metals and metal-induced oxidative stress, including growth factor receptors, src kinase, ras signaling, mitogen-activated protein kinases, the phosphoinositide 3-phosphate/Akt pathway, nuclear transcription factor kappaB, activator protein 1, p53, nuclear factor of activated T cells, and hypoxia-inducible factor 1; and (3) global cellular phenomena (signal transduction, cell cycle regulation, and apoptosis) associated with metal-induced ROS production and gene expression.
Collapse
Affiliation(s)
- Stephen S Leonard
- National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, Health Effects Laboratory Division, 1095 Willowdale Road, MS/2015, Morgantown, WV 26505, USA.
| | | | | |
Collapse
|
45
|
Chiu A, Katz AJ, Beaubier J, Chiu N, Shi X. Genetic and cellular mechanisms in chromium and nickel carcinogenesis considering epidemiologic findings. Mol Cell Biochem 2004; 255:181-94. [PMID: 14971659 DOI: 10.1023/b:mcbi.0000007274.25052.82] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Genetic and environmental interactions determine cancer risks but some cancer incidence is primarily a result of inherited genetic deficits alone. Most cancers have an occupational, viral, nutritional, behavioral or iatrogenic etiology. Cancer can sometimes be controlled through broad public health interventions including industrial hygiene and engineering controls. Chromium and nickel are two human carcinogens associated with industrial exposures where public health measures apparently work. Carcinogenic mechanisms of these metals are examined by electron-spin-resonance-spectroscopy and somatic-mutation-and-recombination in Drosophila melanogaster in this report. Both metals primarily affect initiation processes in cancer development suggesting important theoretical approaches to prevention and followup.
Collapse
Affiliation(s)
- Arthur Chiu
- National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Washington, DC 20460, USA.
| | | | | | | | | |
Collapse
|
46
|
Wang S, Chen F, Zhang Z, Jiang BH, Jia L, Shi X. NF-kappaB prevents cells from undergoing Cr(VI)-induced apoptosis. Mol Cell Biochem 2004; 255:129-37. [PMID: 14971654 DOI: 10.1023/b:mcbi.0000007269.74532.98] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The transcription factor NF-kappaB has been reported to prevent cells from undergoing apoptosis as well as promote cell apoptosis. To investigate the role of NF-kappaB in Cr(VI)-induced apoptosis, two cell lines were developed from human bronchial epithelial BEAS-2B cells: IKK cells, which were stably transfected with IkappaBalpha expression vector, that have normal NF-kappaB activity, and KM cells, which were stably transfected with mutated IkappaBalpha kinase expression vector, that exhibit very little NF-kappaB activity. With Cr(VI) stimulation, KM cells, but not IKK cells, exhibited substantial cell death. Cell morphological and TUNEL analyses indicated that the KM cells showed apoptotic features. These results suggest that NF-kappaB activation is required to prevent the cells from undergoing Cr(VI)-induced apoptosis.
Collapse
Affiliation(s)
- Suwei Wang
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | | | | | | | | | | |
Collapse
|
47
|
Shi H, Hudson LG, Liu KJ. Oxidative stress and apoptosis in metal ion-induced carcinogenesis. Free Radic Biol Med 2004; 37:582-93. [PMID: 15288116 DOI: 10.1016/j.freeradbiomed.2004.03.012] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 03/19/2004] [Indexed: 12/25/2022]
Abstract
Epidemiological evidence suggests that exposure to certain metals causes carcinogenesis. The mechanisms of metal-induced carcinogenesis have been pursued in chemical, biochemical, cellular, and animal models. Significant evidence has accumulated that oxidative stress may be a common pathway in cellular responses to exposure to different metals. For example, in the last few years evidence in support of a correlation between the generation of reactive oxygen species, DNA damage, tumor promotion, and arsenic exposure has strengthened. This article summarizes the current literature on metal-mediated oxidative stress, apoptosis, and their relation to metal-mediated carcinogenesis, concentrating on arsenic and chromium.
Collapse
Affiliation(s)
- Honglian Shi
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
48
|
Chapman LM, Roling JA, Bingham LK, Herald MR, Baldwin WS. Construction of a subtractive library from hexavalent chromium treated winter flounder (Pseudopleuronectes americanus) reveals alterations in non-selenium glutathione peroxidases. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2004; 67:181-94. [PMID: 15003702 DOI: 10.1016/j.aquatox.2003.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2003] [Revised: 12/05/2003] [Accepted: 12/12/2003] [Indexed: 05/24/2023]
Abstract
Chromium is released during several industrial processes and has accumulated in some estuarine areas. Its effects on mammals have been widely studied, but relatively little information is available on its effects on fish. Gene expression changes are useful biomarkers that can provide information about toxicant exposure and effects, as well as the health of an organism and its ability to adapt to its surroundings. Therefore, we investigated the effects of Cr(VI) on gene expression in the sediment dwelling fish, winter flounder (Pseudopleuronectes americanus). Winter flounder ranging from 300 to 360 g were injected i.p. with Cr(VI) as chromium oxide at 25 microg/kg chromium in 0.15N KCl. Twenty-four hours following injections, winter flounder were euthanized with MS-222 and the livers were excised. Half of the livers were used to make cytosol and the other half were used to isolate mRNA for subtractive hybridization. Subtractive clones obtained were spotted onto nylon filters, which revealed several genes with potentially altered expression due to Cr(VI), including an alpha class GST, 1-Cys peroxiredoxin (a non-selenium glutathione peroxidase), a P-450 2X subfamily member, two elongation factors (EF-1 gamma and EF-2), and complement component C3. Semi-quantitative RT-PCR was performed and confirmed that Cr(VI) down-regulated complement component C3, an EST, and two potential glutathione peroxidases, GSTA3 and 1-Cys peroxiredoxin. In addition, cytosolic GSH peroxidase activity was reduced, and silver stained SDS-PAGE gels from glutathione-affinity purified cytosol demonstrated that a 27.1 kDa GSH-binding protein was down-regulated greater than 50%. Taken together, Cr(VI) significantly altered the expression of several genes including two potential glutathione peroxidases in winter flounder.
Collapse
Affiliation(s)
- Laura M Chapman
- Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA
| | | | | | | | | |
Collapse
|
49
|
Chen F. Reactive Oxygen Species in the Activation and Regulation of Intracellular Signaling Events. OXYGEN/NITROGEN RADICALS 2004. [DOI: 10.1201/b14147-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
50
|
Hodges NJ, Smart D, Lee AJ, Lewis NA, Chipman JK. Activation of c-Jun N-terminal kinase in A549 lung carcinoma cells by sodium dichromate: role of dissociation of apoptosis signal regulating kinase-1 from its physiological inhibitor thioredoxin. Toxicology 2004; 197:101-12. [PMID: 15003321 DOI: 10.1016/j.tox.2003.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/08/2003] [Accepted: 12/08/2003] [Indexed: 11/30/2022]
Abstract
Changes in the components of the Jun N-terminal kinase (JNK) signalling pathway were investigated in human A549 lung carcinoma cells treated with sodium dichromate. Sodium dichromate (100 microM, 0-6h) failed to activate nuclear factor kappa B (NF-kappaB) as determined by a lack of nuclear translocation of p65 but resulted in Jun N-terminal kinase activation as assessed by phospho-Jun N-terminal kinase Western blotting in a dose-dependent (>25 microM) and time-dependent (>1h) manner. In addition, c-Jun, a downstream target of Jun N-terminal kinase signalling was also activated with a similar dose- and time-dependency at the level of both protein expression and degree of phosphorylation. In contrast, sodium dichromate treatment had no effect on levels of phospho-p38. Immunoprecipitation demonstrated that apoptosis signal regulating kinase-1 (ASK-1), an upstream activator of Jun N-terminal kinase was dissociated from its inhibitory partner thioredoxin (Trx) in response to sodium dichromate (100 microM, 4h) treatment. This treatment was also associated with a transient (2h) increase in cytosolic levels of thioredoxin but no nuclear translocation of thioredoxin was observed. In conclusion, sodium dichromate had a stimulatory effect on the Jun N-terminal kinase signalling pathway in A549 cells, resulting in activation of downstream effector molecules. We hypothesise that dissociation of apoptosis signal regulating kinase-1 from thioredoxin may be at least partially responsible for Jun N-terminal kinase activation.
Collapse
Affiliation(s)
- N J Hodges
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | |
Collapse
|