1
|
Demir AB, Baris E, Kaner UB, Alotaibi H, Atabey N, Koc A. Toll-interacting protein may affect doxorubicin resistance in hepatocellular carcinoma cell lines. Mol Biol Rep 2023; 50:8551-8563. [PMID: 37644370 DOI: 10.1007/s11033-023-08737-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Liver cancer is the third leading cause of cancer-related deaths worldwide, and hepatocellular carcinoma (HCC) is the most common type of liver cancer. Transarterial interventions are among the chemotherapeutic approaches used in hardly operable regions prior to transplantation, and in electrochemotherapy, where doxorubicin is used. However, the efficacy of treatment is affected by resistance mechanisms. Previously, we showed that overexpression of the CUE5 gene results in doxorubicin resistance in Saccharomyces cerevisiae (S. cerevisiae). In this study, the effect of Toll-interacting protein (TOLLIP), the human ortholog of CUE5, on doxorubicin resistance was evaluated in HCC cells to identify its possible role in increasing the efficacy of transarterial interventions. METHODS AND RESULTS The NIH Gene Expression Omnibus (GEO) and Oncomine datasets were analyzed for HCC cell lines with relatively low and high TOLLIP expression, and SNU449 and Hep3B cell lines were chosen, respectively. TOLLIP expression was increased by plasmid transfection and decreased by TOLLIP-siRNA in both cell lines and evaluated by RT-PCR and ELISA. Cell proliferation and viability were examined using xCELLigence and MTT assays after doxorubicin treatment, and growth inhibitory 50 (GI 50) concentrations were evaluated. Doxorubicin GI 50 concentrations decreased approximately 2-folds in both cell lines upon silencing TOLLIP after 48 h of drug treatment. CONCLUSIONS Our results showed for the first time that silencing TOLLIP in hepatocellular carcinoma cells may help sensitize these cells to doxorubicin and increase the efficacy of chemotherapeutic regimens where doxorubicin is used.
Collapse
Affiliation(s)
- Ayse Banu Demir
- Faculty of Medicine, Department of Medical Biology, Izmir University of Economics, Sakarya Street, No:156, Balcova, Izmir, 35330, Turkey.
| | - Elif Baris
- Faculty of Medicine, Department of Medical Pharmacology, Izmir University of Economics, Izmir, Turkey
| | - Umay Bengi Kaner
- Faculty of Medicine, Izmir University of Economics, Izmir, Turkey
| | - Hani Alotaibi
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University Health Campus, Izmir, Turkey
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Nese Atabey
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Faculty of Medicine, Department of Medical Biology & Galen Research Center, Izmir Tinaztepe University, Izmir, Turkey
| | - Ahmet Koc
- Faculty of Medicine, Department of Medical Genetics, Inonu University, Malatya, Turkey
| |
Collapse
|
2
|
Zhou J, Jiang G, Xu E, Zhou J, Liu L, Yang Q. Identification of SRXN1 and KRT6A as Key Genes in Smoking-Related Non-Small-Cell Lung Cancer Through Bioinformatics and Functional Analyses. Front Oncol 2022; 11:810301. [PMID: 35071014 PMCID: PMC8767109 DOI: 10.3389/fonc.2021.810301] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/14/2021] [Indexed: 11/15/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer-related mortality worldwide. Although cigarette smoking is an established risk factor for lung cancer, few reliable smoking-related biomarkers for non-small-cell lung cancer (NSCLC) are available. An improved understanding of these biomarkers would further the development of new biomarker-targeted therapies and lead to improvements in overall patient survival. Methods We performed bioinformatic analysis to screened potential target genes, then quantitative PCR, western, siRNA, CCK-8, flow cytometry, tumorigenicity assays in nude mice were performed to validated the function. Results In this study, we identified 83 smoking-related genes (SRGs) based on an integration analysis of two Gene Expression Omnibus (GEO) datasets, and 27 hub SRGs with potential carcinogenic effects by analyzing a dataset of smokers with NSCLC in The Cancer Genome Atlas (TCGA) database. A survival analysis revealed three genes with potential prognostic value, namely SRXN1, KRT6A and JAKMIP3. A univariate Cox analysis revealed significant associations of elevated SRXN1 and KRT6A expression with prognosis. A receiver operating characteristic (ROC) curve analysis indicated the high diagnostic value of SRXN1 and KRT6A for smoking and cancer. Quantitative PCR and western blotting validated the increased expression of SRXN1 and KRT6A mRNA and protein, respectively, in lung cancer cell lines and NSCLC tissues. In patients with NSCLC, SRXN1 and KRT6A expression was associated with the tumor–node–metastasis (TNM) stage, presence of metastasis, history of smoking and daily smoking consumption. Furthermore, inhibition of SRXN1 or KRT6A suppressed viability and enhanced apoptosis in the A549 human lung carcinoma cell line. Tumorigenicity assays in nude mice confirmed that the siRNA-mediated downregulation of SRXN1 and KRT6A expression inhibited tumor growth in vivo. Conclusions In summary, SRXN1 and KRT6A act as oncogenes in NSCLC and might be potential biomarkers of smoking exposure and the early diagnosis and prognosis of NSCLC in smokers, which is vital for lung cancer therapy.
Collapse
Affiliation(s)
- Jiazhen Zhou
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Guanqing Jiang
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Enwu Xu
- Department of Thoracic Surgery, General Hospital of Southern Theater Command, People's Liberation Army (PLA), Guangzhou, China
| | - Jiaxin Zhou
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Lili Liu
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Qiaoyuan Yang
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Nasr SA, Saad AAEM. Evaluation of the cytotoxic anticancer effect of polysaccharide of Nepeta septemcrenata. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Promoting cancer cells apoptosis is one of the effective methods to treat cancer. Human hepatocellular carcinoma (HepG2) and colorectal cancer (HCT-116) cell lines were used in the present study to evaluate the cytotoxic and anticancer properties of Nepeta septemcrenata Polysaccharide (NSP).
Result
Treatment of the two examined cells with NSP displayed a significant cytotoxicity towards HepG2 in a dose-dependent manner; meanwhile, its effect on HCT-116 was obtained under the influence of low doses. The quantitative real- time PCR (QRT-PCR) investigation revealed that NSP significantly up-regulated the expression levels of p53, p16, Fas, Fas-L, Bax, caspases-3, caspase-9, and TNF-α in association with down-regulation of cyclin D1, TERT, and BCL2. These findings declare the apoptotic characteristic of NSP.NSP, can also inhibit the development of cancer cells through the down-regulation of TGF-β and VEGF.
Conclusions
Our results suggested that the polysaccharides isolated from N. septemcrenata possess anticancer properties that could be explored for the development of novel anticancer agents.
Collapse
|
4
|
Deldar Abad Paskeh M, Mirzaei S, Ashrafizadeh M, Zarrabi A, Sethi G. Wnt/β-Catenin Signaling as a Driver of Hepatocellular Carcinoma Progression: An Emphasis on Molecular Pathways. J Hepatocell Carcinoma 2021; 8:1415-1444. [PMID: 34858888 PMCID: PMC8630469 DOI: 10.2147/jhc.s336858] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Liver cancers cause a high rate of death worldwide and hepatocellular carcinoma (HCC) is considered as the most common primary liver cancer. HCC remains a challenging disease to treat. Wnt/β-catenin signaling pathway is considered a tumor-promoting factor in various cancers; hence, the present review focused on the role of Wnt signaling in HCC, and its association with progression and therapy response based on pre-clinical and clinical evidence. The nuclear translocation of β-catenin enhances expression level of genes such as c-Myc and MMPs in increasing cancer progression. The mutation of CTNNB1 gene encoding β-catenin and its overexpression can lead to HCC progression. β-catenin signaling enhances cancer stem cell features of HCC and promotes their growth rate. Furthermore, β-catenin prevents apoptosis in HCC cells and increases their migration via triggering EMT and upregulating MMP levels. It is suggested that β-catenin signaling participates in mediating drug resistance and immuno-resistance in HCC. Upstream mediators including ncRNAs can regulate β-catenin signaling in HCC. Anti-cancer agents inhibit β-catenin signaling and mediate its proteasomal degradation in HCC therapy. Furthermore, clinical studies have revealed the role of β-catenin and its gene mutation (CTNBB1) in HCC progression. Based on these subjects, future experiments can focus on developing novel therapeutics targeting Wnt/β-catenin signaling in HCC therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
5
|
Jin F, Thaiparambil J, Donepudi SR, Vantaku V, Piyarathna DWB, Maity S, Krishnapuram R, Putluri V, Gu F, Purwaha P, Bhowmik SK, Ambati CR, von Rundstedt FC, Roghmann F, Berg S, Noldus J, Rajapakshe K, Gödde D, Roth S, Störkel S, Degener S, Michailidis G, Kaipparettu BA, Karanam B, Terris MK, Kavuri SM, Lerner SP, Kheradmand F, Coarfa C, Sreekumar A, Lotan Y, El-Zein R, Putluri N. Tobacco-Specific Carcinogens Induce Hypermethylation, DNA Adducts, and DNA Damage in Bladder Cancer. Cancer Prev Res (Phila) 2017; 10:588-597. [PMID: 28851690 PMCID: PMC5626664 DOI: 10.1158/1940-6207.capr-17-0198] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/11/2017] [Accepted: 08/21/2017] [Indexed: 01/10/2023]
Abstract
Smoking is a major risk factor for the development of bladder cancer; however, the functional consequences of the carcinogens in tobacco smoke and bladder cancer-associated metabolic alterations remain poorly defined. We assessed the metabolic profiles in bladder cancer smokers and non-smokers and identified the key alterations in their metabolism. LC/MS and bioinformatic analysis were performed to determine the metabolome associated with bladder cancer smokers and were further validated in cell line models. Smokers with bladder cancer were found to have elevated levels of methylated metabolites, polycyclic aromatic hydrocarbons, DNA adducts, and DNA damage. DNA methyltransferase 1 (DNMT1) expression was significantly higher in smokers than non-smokers with bladder cancer. An integromics approach, using multiple patient cohorts, revealed strong associations between smokers and high-grade bladder cancer. In vitro exposure to the tobacco smoke carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene (BaP) led to increase in levels of methylated metabolites, DNA adducts, and extensive DNA damage in bladder cancer cells. Cotreatment of bladder cancer cells with these carcinogens and the methylation inhibitor 5-aza-2'-deoxycytidine rewired the methylated metabolites, DNA adducts, and DNA damage. These findings were confirmed through the isotopic-labeled metabolic flux analysis. Screens using smoke-associated metabolites and DNA adducts could provide robust biomarkers and improve individual risk prediction in bladder cancer smokers. Noninvasive predictive biomarkers that can stratify the risk of developing bladder cancer in smokers could aid in early detection and treatment. Cancer Prev Res; 10(10); 588-97. ©2017 AACR.
Collapse
Affiliation(s)
- Feng Jin
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas
| | - Jose Thaiparambil
- Department of Radiology, Houston Methodist Research Institute, Houston, Texas
| | - Sri Ramya Donepudi
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas
| | - Venkatrao Vantaku
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
| | | | - Suman Maity
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas
| | - Rashmi Krishnapuram
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
| | - Vasanta Putluri
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas
| | - Franklin Gu
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas
| | - Preeti Purwaha
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
| | - Salil Kumar Bhowmik
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
| | - Chandrashekar R Ambati
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas
| | - Friedrich-Carl von Rundstedt
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas
- Department of Urology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Florian Roghmann
- Department of Urology, Marien Hospital, Ruhr-University Bochum, Herne, Germany
| | - Sebastian Berg
- Department of Urology, Marien Hospital, Ruhr-University Bochum, Herne, Germany
| | - Joachim Noldus
- Department of Urology, Marien Hospital, Ruhr-University Bochum, Herne, Germany
| | - Kimal Rajapakshe
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
| | - Daniel Gödde
- Department of Pathology, Witten-Herdecke University, Wuppertal, Germany
| | - Stephan Roth
- Department of Urology Helios Klinikum, Witten-Herdecke University, Wuppertal, Germany
| | - Stephan Störkel
- Department of Pathology, Witten-Herdecke University, Wuppertal, Germany
| | - Stephan Degener
- Department of Urology Helios Klinikum, Witten-Herdecke University, Wuppertal, Germany
| | | | | | - Balasubramanyam Karanam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, Alabama
| | | | - Shyam M Kavuri
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Seth P Lerner
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas
| | - Farrah Kheradmand
- Department of Medicine & Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, Baylor College of Medicine, Houston, Texas
| | - Cristian Coarfa
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
| | - Arun Sreekumar
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern, Dallas, Texas
| | - Randa El-Zein
- Department of Radiology, Houston Methodist Research Institute, Houston, Texas
| | - Nagireddy Putluri
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas.
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
6
|
Duruisseaux M, Esteller M. Lung cancer epigenetics: From knowledge to applications. Semin Cancer Biol 2017; 51:116-128. [PMID: 28919484 DOI: 10.1016/j.semcancer.2017.09.005] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Advances in our understanding of the genomics of lung cancer have led to substantial progress in the treatment of specific molecular subsets. Immunotherapy also emerges as a major breakthrough in lung cancer treatment. However, challenges remain as a consensual approach for early lung cancer detection remains elusive while primary or secondary drug resistance eventually leads to treatment failure in all patients with advanced disease. Furthermore, a large portion of patients are still treated with conventional chemotherapy that is only modestly effective. The last two decades have seen exponential developments in the epigenetic understanding of lung cancer. Epigenetic alterations in DNA methylation, non-coding RNA expression, chromatin modeling and post transcriptional regulators are key events in each step of lung cancer pathogenesis. Here, we review the central role epigenetic disruptions play in lung cancer carcinogenesis and the acquisition of cancerous phenotype and aggressive behavior as well as in the resistance to therapy. Epigenetic disruptions could represent reliable biomarkers for lung cancer risk assessment, early diagnosis, prognosis stratification, molecular classification and prediction of treatment efficacy. The therapeutic potential of epigenetics targeted drugs in combination with chemotherapy, targeted therapy and/or immunotherapy is currently being intensively investigated. We suggest that integration of tissue-derived or circulating epigenetic biomarkers and epidrugs in clinical trial design will translate epigenetic knowledge of lung cancer into the clinic and improve lung cancer patient outcomes.
Collapse
Affiliation(s)
- Michaël Duruisseaux
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC); Department of Respiratory Medecine, Hôpital Louis-Pradel, Hospices civils de Lyon, 28 avenue du Doyen Lépine, 69677, Lyon cedex, France.
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC); Instituciò Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Catalonia, Spain; Department of Physiological Sciences II, School of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain.
| |
Collapse
|
7
|
Zhao H, Zhang Y, Sun J, Zhan C, Zhao L. Raltitrexed Inhibits HepG2 Cell Proliferation via G0/G1 Cell Cycle Arrest. Oncol Res 2017; 23:237-48. [PMID: 27098147 PMCID: PMC7838684 DOI: 10.3727/096504016x14562725373671] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Raltitrexed (RTX) is an antimetabolite drug used as a chemotherapeutic agent for treating colorectal cancer, malignant mesothelioma, and gastric cancer. The antitumor capacity of RTX is attributed to its inhibitory activity on thymidylate synthase (TS), a key enzyme in the synthesis of DNA precursors. The current study is aimed at investigating the potential antitumor effects of RTX in liver cancer. Using the HepG2 cell line as an in vitro model of liver cancer, we evaluated the effects of RTX on cell proliferation employing both a WST-8 assay and a clone formation efficiency assay. In addition, we monitored the ultrastructure changes of HepG2 cells in response to RTX with transmission electric microscopy. To investigate the mechanism underlying the regulation of cell proliferation by RTX, we analyzed cell cycle using cell flow cytometry. Moreover, real-time PCR and Western blot analyses were conducted to examine expression levels of cell cycle regulatory proteins cyclin A and cyclin-dependent kinase 2 (CDK2), as well as their mediators tumor suppressor genes p53 and p16. Our results demonstrate that RTX inhibits HepG2 proliferation by arresting the cell cycle at G0/G1. This cell cycle arrest function was mediated via downregulation of cyclin A and CDK2. The observed elevated expression of p53 and p16 by RTX may contribute to the reduction of cyclin A/CDK2. Our study indicates that RTX could serve as a potential chemotherapeutic agent in the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hongwei Zhao
- Department of Hepatopancreatobiliary Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | | | | | | | | |
Collapse
|
8
|
Ma K, Cao B, Guo M. The detective, prognostic, and predictive value of DNA methylation in human esophageal squamous cell carcinoma. Clin Epigenetics 2016; 8:43. [PMID: 27110300 PMCID: PMC4840959 DOI: 10.1186/s13148-016-0210-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/14/2016] [Indexed: 12/17/2022] Open
Abstract
Esophageal cancer is one of the most common malignancies in the world. Squamous cell carcinoma accounts for approximately 90 % of esophageal cancer cases. Genetic and epigenetic changes have been found to accumulate during the development of various cancers, including esophageal squamous carcinoma (ESCC). Tobacco smoking and alcohol consumption are two major risk factors for ESCC, and both tobacco and alcohol were found to induce methylation changes in ESCC. Growing evidence demonstrates that aberrant epigenetic changes play important roles in the multiple-step processes of carcinogenesis and tumor progression. DNA methylation may occur in the key components of cancer-related signaling pathways. Aberrant DNA methylation affects genes involved in cell cycle, DNA damage repair, Wnt, TGF-β, and NF-κB signaling pathways, including P16, MGMT, SFRP2, DACH1, and ZNF382. Certain genes methylated in precursor lesions of the esophagus demonstrate that DNA methylation may serve as esophageal cancer early detection marker, such as methylation of HIN1, TFPI-2, DACH1, and SOX17. CHFR methylation is a late stage event in ESCC and is a sensitive marker for taxanes in human ESCC. FHIT methylation is associated with poor prognosis in ESCC. Aberrant DNA methylation changes may serve as diagnostic, prognostic, and chemo-sensitive markers. Characterization of the DNA methylome in ESCC will help to better understand its mechanisms and develop improved therapies.
Collapse
Affiliation(s)
- Kai Ma
- />Department of Thoracic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Baoping Cao
- />Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Mingzhou Guo
- />Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| |
Collapse
|
9
|
Ge GZ, Xu TR, Chen C. Tobacco carcinogen NNK-induced lung cancer animal models and associated carcinogenic mechanisms. Acta Biochim Biophys Sin (Shanghai) 2015; 47:477-87. [PMID: 26040315 DOI: 10.1093/abbs/gmv041] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/11/2015] [Indexed: 12/18/2022] Open
Abstract
Tobacco usage is a major risk factor in the development, progression, and outcomes for lung cancer. Of the carcinogens associated with lung cancer, tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is among the most potent ones. The oncogenic mechanisms of NNK are not entirely understood, hindering the development of effective strategies for preventing and treating smoking-associated lung cancers. Here, we introduce the NNK-induced lung cancer animal models in different species and its potential mechanisms. Finally, we summarize several chemopreventive agents developed from these animal models.
Collapse
Affiliation(s)
- Guang-Zhe Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
10
|
Zabala V, Tong M, Yu R, Ramirez T, Yalcin EB, Balbo S, Silbermann E, Deochand C, Nunez K, Hecht S, de la Monte SM. Potential contributions of the tobacco nicotine-derived nitrosamine ketone (NNK) in the pathogenesis of steatohepatitis in a chronic plus binge rat model of alcoholic liver disease. Alcohol Alcohol 2015; 50:118-31. [PMID: 25618784 DOI: 10.1093/alcalc/agu083] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIMS Alcoholic liver disease (ALD) is linked to binge drinking and cigarette smoking. Heavy chronic ± binge alcohol, or low-level exposures to dietary nitrosamines cause steatohepatitis with insulin resistance and oxidative stress in animal models. This study examines hepatotoxic effects of sub-mutagenic exposures to tobacco-specific nitrosamine (NNK) in relation to ALD. METHODS Long Evans rats were fed liquid diets containing 0 or 26% (caloric) ethanol (EtOH) for 8 weeks. In Weeks 3 through 8, rats were treated with NNK (2 mg/kg) or saline by i.p. injection, 3×/week, and in Weeks 7 and 8, EtOH-fed rats were binge-administered 2 g/kg EtOH 3×/week; controls were given saline. RESULTS EtOH ± NNK caused steatohepatitis with necrosis, disruption of the hepatic cord architecture, ballooning degeneration, early fibrosis, mitochondrial cytopathy and ER disruption. Severity of lesions was highest in the EtOH+NNK group. EtOH and NNK inhibited insulin/IGF signaling through Akt and activated pro-inflammatory cytokines, while EtOH promoted lipid peroxidation, and NNK increased apoptosis. O(6)-methyl-Guanine adducts were only detected in NNK-exposed livers. CONCLUSION Both alcohol and NNK exposures contribute to ALD pathogenesis, including insulin/IGF resistance and inflammation. The differential effects of EtOH and NNK on adduct formation are critical to ALD progression among alcoholics who smoke.
Collapse
Affiliation(s)
- Valerie Zabala
- Department of Medicine, Division of Gastroenterology, and The Liver Research Center, Rhode Island Hospital, Providence, RI, USA Department of Molecular Pharmacology and Physiology, Brown University, Providence, RI, USA
| | - Ming Tong
- Department of Medicine, Division of Gastroenterology, and The Liver Research Center, Rhode Island Hospital, Providence, RI, USA Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Rosa Yu
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Teresa Ramirez
- Department of Molecular Pharmacology and Physiology, Brown University, Providence, RI, USA
| | - Emine B Yalcin
- Department of Medicine, Division of Gastroenterology, and The Liver Research Center, Rhode Island Hospital, Providence, RI, USA Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Cancer and Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | | | - Chetram Deochand
- Biotechnology Graduate Program, Brown University, Providence, RI, USA
| | - Kavin Nunez
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Stephen Hecht
- Masonic Cancer Center, University of Minnesota, Cancer and Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Suzanne M de la Monte
- Department of Medicine, Division of Gastroenterology, and The Liver Research Center, Rhode Island Hospital, Providence, RI, USA Warren Alpert Medical School of Brown University, Providence, RI, USA Departments of Pathology and Neurology, and the Division of Neuropathology, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
11
|
Jin H, Chen JX, Wang H, Lu G, Liu A, Li G, Tu S, Lin Y, Yang CS. NNK-induced DNA methyltransferase 1 in lung tumorigenesis in A/J mice and inhibitory effects of (-)-epigallocatechin-3-gallate. Nutr Cancer 2014; 67:167-76. [PMID: 25437343 DOI: 10.1080/01635581.2015.976314] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
DNA methyltransferase 1 (DNMT1), a key enzyme mediating DNA methylation, is known to be elevated in various cancers, including the mouse lung tumors induced by the tobacco-specific carcinogen 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). However, it is not known whether DNMT1 expression is induced right after NNK treatment and how DNMT1 expression varies throughout lung tumorigenesis. In the present study, we found that administration of NNK to A/J mice caused elevation of DNMT1 in bronchial epithelial cells at Days 1, 3, and 14 after NNK treatment. DNMT1 elevation at Day 1 was accompanied by an increase in phospho-histone H2AX (γ-H2AX) and phospho-AKT (p-AKT). At Weeks 5 to 20, NNK-induced DNMT1 in lung tissues was in lower levels than the early stages, but was highly elevated in lung tumors at Week 20. In addition, the early induction of p-AKT and γ-H2AX as well as cleaved caspase-3 in NNK-treated lung tissues was not detected at Weeks 5 to 20 but was elevated in lung tumors. In concordance with DNMT1 elevation, promoter hypermethylation of tumor suppressor genes Cdh13, Prdm2, and Runx3 was observed in lung tissues at Day 3 and in lung tumors. Treatment by EGCG attenuated DNMT1, p-AKT, and γ-H2AX inductions at Days 1 and 3 and inhibited lung tumorigenesis.
Collapse
Affiliation(s)
- Huanyu Jin
- a Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers , The State University of New Jersey , Piscataway , New Jersey , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Epigenetic, genetic and environmental interactions in esophageal squamous cell carcinoma from northeast India. PLoS One 2013; 8:e60996. [PMID: 23596512 PMCID: PMC3626640 DOI: 10.1371/journal.pone.0060996] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/05/2013] [Indexed: 12/11/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) develops as a result of complex epigenetic, genetic and environmental interactions. Epigenetic changes like, promoter hypermethylation of multiple tumour suppressor genes are frequent events in cancer, and certain habit-related carcinogens are thought to be capable of inducing aberrant methylation. However, the effects of environmental carcinogens depend upon the level of metabolism by carcinogen metabolizing enzymes. As such key interactions between habits related factors and carcinogen metabolizing gene polymorphisms towards modulating promoter methylation of genes are likely. However, this remains largely unexplored in ESCC. Here, we studied the interaction of various habits related factors and polymorphism of GSTM1/GSTT1 genes towards inducing promoter hypermethylation of multiple tumour suppressor genes. Methodology/Principal Findings The study included 112 ESCC cases and 130 age and gender matched controls. Conditional logistic regression was used to calculate odds ratios (OR) and multifactor dimensionality reduction (MDR) was used to explore high order interactions. Tobacco chewing and smoking were the major individual risk factors of ESCC after adjusting for all potential confounding factors. With regards to methylation status, significantly higher methylation frequencies were observed in tobacco chewers than non chewers for all the four genes under study (p<0.01). In logistic regression analysis, betel quid chewing, alcohol consumption and null GSTT1 genotypes imparted maximum risk for ESCC without promoter hypermethylation. Whereas, tobacco chewing, smoking and GSTT1 null variants were the most important risk factors for ESCC with promoter hypermethylation. MDR analysis revealed two predictor models for ESCC with promoter hypermethylation (Tobacco chewing/Smoking/Betel quid chewing/GSTT1 null) and ESCC without promoter hypermethylation (Betel quid chewing/Alcohol/GSTT1) with TBA of 0.69 and 0.75 respectively and CVC of 10/10 in both models. Conclusion Our study identified a possible interaction between tobacco consumption and carcinogen metabolizing gene polymorphisms towards modulating promoter methylation of tumour suppressor genes in ESCC.
Collapse
|
13
|
Wang J, Zhao SL, Li Y, Meng M, Qin CY. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone induces retinoic acid receptor β hypermethylation through DNA methyltransferase 1 accumulation in esophageal squamous epithelial cells. Asian Pac J Cancer Prev 2013; 13:2207-12. [PMID: 22901195 DOI: 10.7314/apjcp.2012.13.5.2207] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Overexpression of DNA methyltransferase 1 (DNMT1) has been detected in many cancers. Tobacco exposure is known to induce genetic and epigenetic changes in the pathogenesis of malignancy. 4-(Methylnitrosamino)- 1-(3-pyridyl)-1-butanone (NNK) is an important carcinogen present in tobacco smoke; however the detailed molecular mechanism of how NNK induces esophageal carcinogenesis is still unclear. We found that DNMT1 was overexpressed in ESCC tissues compared with paired non-cancerous tissues, the overexpression being correlated with smoking status and low expression of RARβ. The latter could be upregulated by NNK treatment in Het-1A cells, and the increased DNMT1 expression level reflected promoter hypermethylation and downregulation of retinoic acid receptor β (RARβ). RNA interference mediated knockdown of DNMT1 resulted in promoter demethylation and upregulation of RARβ in KYSE30 and TE-1 cells. 3-(4,5-Dimethyl-thiazol-2yl)- 2,5-diphenyltetrazolium bromide (MTT) and flow cytometric analysis demonstrated that NNK treatment in Het- 1A cells could enhance cell proliferation and inhibit cell apoptosis in a dose-dependent manner. In conclusion, DNMT1 overexpression is correlated with smoking status and low expression of RARβ in esophageal SCC patients. NNK could induce RARβ promoter hypermethylation through upregulation of DNMT1 in esophageal squamous epithelial cells, finally leading to enhancement of cell proliferation and inhibition of apoptosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | | | | | | | | |
Collapse
|
14
|
Shih WL, Chang HC, Liaw YF, Lin SM, Lee SD, Chen PJ, Liu CJ, Lin CL, Yu MW. Influences of tobacco and alcohol use on hepatocellular carcinoma survival. Int J Cancer 2012; 131:2612-21. [PMID: 22362517 DOI: 10.1002/ijc.27508] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 02/15/2012] [Indexed: 12/14/2022]
Abstract
Prognosis of hepatocellular carcinoma (HCC) is generally poor. The role of modifiable lifestyle factors on HCC survival has been less studied. To examine whether prediagnosis smoking and alcohol affected HCC survival stratified by viral etiology, we conducted a prospective cohort study of 2,273 (1990 with viral hepatitis and 283 without) incident HCC cases aged 20-75 years who were enrolled between 1997 and 2004 from a Taiwanese multicenter study, and followed up through 2007. Information on habitual smoking and alcohol consumption was obtained at baseline through personal interview. After follow-up to a maximum of 10 years, 1,757 participants died and 1,488 (84.7%) were attributed to HCC. Prediagnosis smoking and alcohol worsened prognosis independent of each other and clinical predictors. The effects of both risky behaviors were limited to viral hepatitis-related HCC and more profound among those with early-stage HCC. Risk for HCC-specific mortality increased with increasing pack-years smoked and ethanol intake (all p < 0.001 for trend), with an additive effect shown for the two habits [hazard ratio (HR) for alcohol ≥ 46.2 g/day and ≥ 10 pack-years = 1.72, 95% confidence interval (CI) = 1.45-2.05]. For either habit, cessation reduced HCC-specific mortality, but a significant mortality benefit occurred 10 years after abstinence (quitting smoking ≥ 10 years vs. continuing smokers: HR = 0.77, 95% CI = 0.61-0.97; quitting drinking ≥ 10 years vs. continuing drinkers: HR = 0.74, 95% CI = 0.56-0.98). In conclusion, among patients with viral hepatitis-related HCC, prediagnosis smoking and alcohol have a deleterious effect on HCC survival. Quitting smoking or drinking alcohol could reduce the excess risk, but only after a long interval of cessation.
Collapse
Affiliation(s)
- Wei-Liang Shih
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Huang RY, Chen GG. Cigarette smoking, cyclooxygenase-2 pathway and cancer. Biochim Biophys Acta Rev Cancer 2010; 1815:158-69. [PMID: 21147199 DOI: 10.1016/j.bbcan.2010.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/23/2010] [Accepted: 11/29/2010] [Indexed: 12/16/2022]
Abstract
Cigarette smoking is a major cause of mortality and morbidity worldwide. Cyclooxygenase (COX) and its derived prostanoids, mainly including prostaglandin E2 (PGE2), thromboxane A2 (TxA2) and prostacyclin (PGI2), have well-known roles in cardiovascular disease and cancer, both of which are associated with cigarette smoking. This article is focused on the role of COX-2 pathway in smoke-related pathologies and cancer. Cigarette smoke exposure can induce COX-2 expression and activity, increase PGE2 and TxA2 release, and lead to an imbalance in PGI2 and TxA2 production in favor of the latter. It exerts pro-inflammatory effects in a PGE2-dependent manner, which contributes to carcinogenesis and tumor progression. TxA2 mediates other diverse biologic effects of cigarette smoking, such as platelet activation, cell contraction and angiogenesis, which may facilitate tumor growth and metastasis in smokers. Among cigarette smoke components, nicotine and its derived nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are the most potent carcinogens. COX-2 and PGE2 have been shown to play a pivotal role in many cancers associated with cigarette smoking, including cancers of lung, gastric and bladder, while the information for the role of TxA2 and PGI2 in smoke-associated cancers is limited. Recent findings from our group have revealed how NNK influences the TxA2 to promote the tumor growth. Better understanding in the above areas may help to generate new therapeutic protocols or to optimize the existing treatment strategy.
Collapse
Affiliation(s)
- Run-Yue Huang
- Department of Surgery, The Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | |
Collapse
|
16
|
Frau M, Biasi F, Feo F, Pascale RM. Prognostic markers and putative therapeutic targets for hepatocellular carcinoma. Mol Aspects Med 2010; 31:179-93. [PMID: 20176048 DOI: 10.1016/j.mam.2010.02.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 02/16/2010] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most frequent human cancer and a fatal disease. Therapies with pharmacological agents do not improve the prognosis of patients with unresectable HCC. This emphasizes the need to identify new targets for early diagnosis, chemoprevention, and treatment of the disease. Available evidence indicates that clinical outcome of HCC could reflect the genetic predisposition to cancer development and progression. Numerous loci controlling HCC progression have been identified in rodents. In this review, we describe results of recent studies on effector mechanisms of susceptibility/resistance genes, responsible for HCC progression, aimed at identifying new putative prognostic markers and therapeutic targets of this tumor. Highest c-myc amplification and overexpression, alterations of iNOS crosstalk with IKK/NF-kB and RAS/ERK signaling, ubiquitination of ERK and cell cycle inhibitors, and deregulation of FOXM1 and cell cycle key genes occur in rapidly progressing dysplastic nodules and HCC, induced in genetic susceptible rat strains, compared to the lesions of resistant rats. Notably, alterations of these mechanisms in human HCC subtypes with poorer or better prognosis, are similar to those present in genetically susceptible and resistant rats, respectively, and function as prognostic markers and therapeutic targets. Attempts to cure advanced HCC by molecular therapy directed against specific targets led to modest survival benefit. Thus, efforts are necessary to identify and test, in pre-clinical and clinical studies, new therapeutic targets for combined molecular treatments of HCC. They may take advantage from the comparative analysis of signal transduction in HCCs differently prone to progress, in rats and humans.
Collapse
Affiliation(s)
- Maddalena Frau
- Department of Biomedical Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy
| | | | | | | |
Collapse
|
17
|
Lin RK, Hsieh YS, Lin P, Hsu HS, Chen CY, Tang YA, Lee CF, Wang YC. The tobacco-specific carcinogen NNK induces DNA methyltransferase 1 accumulation and tumor suppressor gene hypermethylation in mice and lung cancer patients. J Clin Invest 2010; 120:521-32. [PMID: 20093774 DOI: 10.1172/jci40706] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 12/02/2009] [Indexed: 12/28/2022] Open
Abstract
DNA methyltransferase 1 (DNMT1) catalyzes DNA methylation and is overexpressed in many human diseases, including cancer. The tobacco-specific carcinogen NNK also induces DNA methylation. However, the role of DNMT1-mediated methylation in tobacco carcinogenesis remains unclear. Here we used human and mouse lung cancer samples and cell lines to determine a mechanism whereby NNK induced DNMT1 expression and activity. We determined that in a human lung cell line, glycogen synthase kinase 3beta (GSK3beta) phosphorylated DNMT1 to recruit beta-transducin repeat-containing protein (betaTrCP), resulting in DNMT1 degradation, and that NNK activated AKT, inhibiting GSK3beta function and thereby attenuating DNMT1 degradation. NNK also induced betaTrCP translocation to the cytoplasm via the heterogeneous nuclear ribonucleoprotein U (hnRNP-U) shuttling protein, resulting in DNMT1 nuclear accumulation and hypermethylation of the promoters of tumor suppressor genes. Fluorescence immunohistochemistry (IHC) of lung adenomas from NNK-treated mice and tumors from lung cancer patients that were smokers were characterized by disruption of the DNMT1/betaTrCP interaction and DNMT1 nuclear accumulation. Importantly, DNMT1 overexpression in lung cancer patients who smoked continuously correlated with poor prognosis. We believe that the NNK-induced DNMT1 accumulation and subsequent hypermethylation of the promoter of tumor suppressor genes may lead to tumorigenesis and poor prognosis and provide an important link between tobacco smoking and lung cancer. Furthermore, this mechanism may also be involved in other smoking-related human diseases.
Collapse
Affiliation(s)
- Ruo-Kai Lin
- Department of Pharmacology, National Cheng Kung University, Tainan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Miyoshi H, Deguchi A, Nakau M, Kojima Y, Mori A, Oshima M, Aoki M, Taketo MM. Hepatocellular carcinoma development induced by conditional beta-catenin activation in Lkb1+/- mice. Cancer Sci 2009; 100:2046-53. [PMID: 19671058 PMCID: PMC11159713 DOI: 10.1111/j.1349-7006.2009.01284.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/04/2009] [Accepted: 07/06/2009] [Indexed: 12/26/2022] Open
Abstract
The development of hepatocellular carcinomas (HCC) appears to be a multistep process that takes several decades in humans. However, the identities of specific gene alterations and their contribution to HCC pathogenesis remain poorly understood. We previously reported that Lkb1(+/-) mice spontaneously develop multiple hepatic nodular foci (NdFc) followed by HCC, and that the conditional activation of beta-catenin in Catnb(lox(ex3)) mouse livers alone does not cause tumor formation. We show here that the conditional activation of beta-catenin accelerates HCC development in Catnb(+/lox(ex3))Lkb1(+/-) compound mutant mice, affecting displastic hepatocytes in NdFc that suffered LOH at the Lkb1 locus. We further show that beta-catnin activation provides HCC with a growth advantage as well as transplantability. These results suggest that the loss of Lkb1 contributes to the formation of dysplastic NdFc, and that Wnt signaling activation is involved in ensuing progression toward HCC. A combination of these sequential changes can be a practical model for a subset of human HCC.
Collapse
Affiliation(s)
- Hiroyuki Miyoshi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu S, Ma L, Huang W, Shai Y, Ji X, Ding L, Liu Y, Yu L, Zhao S. Decreased expression of the human carbonyl reductase 2 gene HCR2 in hepatocellular carcinoma. Cell Mol Biol Lett 2007; 11:230-41. [PMID: 16847567 PMCID: PMC6275738 DOI: 10.2478/s11658-006-0022-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 03/01/2006] [Indexed: 11/30/2022] Open
Abstract
Altered gene expression was associated with the induction and maintenance of hepatocellular carcinoma (HCC). To determine the significance of HCR2 in HCC, here we compare the expression levels of HCR2 in carcinoma and in paired non-carcinoma tissues using semiquantitative reverse-transcription polymerase chain reaction (RT-PCR), Western blot analysis, and immunohistochemical staining. The expression ratio (ER) of HCR2 between the tumor and paired tumor-free tissues was calculated for each case and the data was clinicopathologically analyzed. The expression of HCR2 mRNA was found to be significantly decreased in HCC tissues compared with paired normal tissues (P < 0.001). HCR2 was downregulated in 58% (n = 22) of 38 HCC patients. The ER of HCR2 was higher in Edmondson’s grade I/II carcinomas than that in Edmondson’s grade III/IV carcinomas (P < 0.05). Western blot analysis showed HCR2 to be notably depressed in carcinoma tissues in 3 out of 4 HCC patients. Immunohistochemical staining indicated most HCR2 protein accumulated in non-carcinoma cells. These results suggested that altered HCR2 expression might play roles in the carcinogenesis and progression of HCC, and it could be a clinical marker for prognosis, and a molecular target for screening potential anti-HCC drugs.
Collapse
Affiliation(s)
- Shan Liu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433 People’s Republic of China
| | - Lijie Ma
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433 People’s Republic of China
| | - Weixue Huang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433 People’s Republic of China
| | - Yin Shai
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433 People’s Republic of China
| | - Xiaona Ji
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433 People’s Republic of China
| | - Liya Ding
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433 People’s Republic of China
| | - Yinkun Liu
- Institute of Liver Cancer, Shanghai Zhongshan Hospital, 136 Yixueyuan Road, Shanghai, 200032 People’s Republic of China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433 People’s Republic of China
| | - Shouyuan Zhao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433 People’s Republic of China
| |
Collapse
|
20
|
Marsit CJ, Karagas MR, Schned A, Kelsey KT. Carcinogen exposure and epigenetic silencing in bladder cancer. Ann N Y Acad Sci 2006; 1076:810-21. [PMID: 17119258 DOI: 10.1196/annals.1371.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tobacco smoking, certain occupational exposures, and exposure to inorganic arsenic in drinking water have been associated with the occurrence of bladder cancer. However, in these tumors the exposure-associated pattern of somatic alterations in genes in the causal pathway for disease has been poorly characterized. Animal and in vitro studies have suggested that arsenic, tobacco carcinogens, and other exposures may act through epigenetic mechanisms. We, therefore, examined, in a population-based study of human bladder cancer (n = 351), the relationship between epigenetic silencing of the tumor-suppressor genes, p16(INK4A), RASSF1A, PRSS3, and the four SFRP genes and exposure to both tobacco and arsenic in bladder cancer. Promotor methylation silencing of each of these genes occurred in approximately 30-50% of bladder cancers. Epigenetic silencing of RASSF1A and PRSS3 and any of the SFRP genes were each significantly associated with advanced tumor stage (P < 0.001, P < 0.04, and P < 0.005, respectively). Arsenic exposure, measured as toenail arsenic, was associated with RASSF1A (P < 0.02) and PRSS3 (P < 0.1) but not p16(INK4A) or SFRP promotor methylation, in models adjusted for stage and other risk factors. Cigarette smoking was associated with a greater than twofold increased risk of promotor methylation of the p16(INK4A) gene, with greater risk seen in patients with exposures more recent to disease diagnosis, and smoking was also significantly associated with any SFRP gene methylation (P < 0.01). These results from human bladder tumors, add to the body of animal and in vitro evidence that suggests bladder carcinogens play a crucial role in the induction of important epigenetic alterations.
Collapse
Affiliation(s)
- Carmen J Marsit
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
21
|
Pascale RM, Simile MM, Calvisi DF, Frau M, Muroni MR, Seddaiu MA, Daino L, Muntoni MD, De Miglio MR, Thorgeirsson SS, Feo F. Role of HSP90, CDC37, and CRM1 as modulators of P16(INK4A) activity in rat liver carcinogenesis and human liver cancer. Hepatology 2005; 42:1310-9. [PMID: 16317707 DOI: 10.1002/hep.20962] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Current evidence indicates that neoplastic nodules induced in liver of Brown Norway (BN) rats genetically resistant to hepatocarcinogenesis are not prone to evolve into hepatocellular carcinoma. We show that BN rats subjected to diethylnitrosamine/2-acetylaminofluorene/partial hepatectomy treatment with a "resistant hepatocyte" protocol displayed higher number of glutathione-S-transferase 7-7(+) hepatocytes when compared with susceptible Fisher 344 (F344) rats, both during and at the end of 2-acetylaminofluorene treatment. However, DNA synthesis declined in BN but not F344 rats after completion of reparative growth. Upregulation of p16(INK4A), Hsp90, and Cdc37 genes; an increase in Cdc37-Cdk4 complexes; and a decrease in p16(INK4A)-Cdk4 complexes occurred in preneoplastic liver, nodules, and hepatocellular carcinoma of F344 rats. These parameters did not change significantly in BN rats. E2f4 was equally expressed in the lesions of both strains, but Crm1 expression and levels of E2f4-Crm1 complex were higher in F344 rats. Marked upregulation of P16(INK4A) was associated with moderate overexpression of HSP90, CDC37, E2F4, and CRM1 in human hepatocellular carcinomas with a better prognosis. In contrast, strong induction of HSP90, CDC37, and E2F4 was paralleled by P16(INK4A) downregulation and high levels of HSP90-CDK4 and CDC37-CDK4 complexes in hepatocellular carcinomas with poorer prognosis. CDC37 downregulation by small interfering RNA inhibited in vitro growth of HepG2 cells. In conclusion, our findings underline the role of Hsp90/Cdc37 and E2f4/Crm1 systems in the acquisition of a susceptible or resistant carcinogenic phenotype. The results also suggest that protection by CDC37 and CRM1 against growth restraint by P16(INK4A) influences the prognosis of human hepatocellular carcinoma.
Collapse
Affiliation(s)
- Rosa M Pascale
- Department of Biomedical Sciences, Division of Experimental Pathology and Oncology, University of Sassari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Melanie B Thomas
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
23
|
Hayashi SM, Ton TV, Hong HHL, Irwin RD, Haseman JK, Devereux TR, Sills RC. Genetic alterations in the Catnb gene but not the H-ras gene in hepatocellular neoplasms and hepatoblastomas of B6C3F(1) mice following exposure to diethanolamine for 2 years. Chem Biol Interact 2004; 146:251-61. [PMID: 14642737 DOI: 10.1016/j.cbi.2003.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study characterized the immunohistochemical localization of beta-catenin protein in hepatocellular neoplasms and hepatoblastomas in B6C3F(1) mice exposed to diethanolamine (DEA) for 2 years and evaluated genetic alterations in the Catnb and H-ras genes which are known to play important roles in the pathogenesis of liver malignancies. Genomic DNA was isolated from paraffin sections of each liver tumor. Catnb exon 2 (corresponds to exon 3 in human) genetic alterations were identified in 18/18 (100%) hepatoblastomas from DEA exposed mice. Deletion mutations (15/18, 83%) were identified more frequently than point mutations (6/18, 33%) in hepatoblastomas. Eleven of 34 (32%) hepatocellular adenomas and carcinomas from DEA treated mice had mutations in exon 2 of the beta-catenin gene, while only 1 of 10 spontaneous neoplasms had a deletion mutation of codon 5-6. Common to all liver neoplasms (hepatocellular adenomas, carcinomas and hepatoblastomas) was membrane staining for the beta-catenin protein, while cytoplasmic and nuclear staining was observed only in hepatoblastomas. The lack of H-ras mutations in hepatocellular neoplasms and hepatoblastomas suggests that the ras signal transduction pathway is not involved in the development of liver tumors following DEA exposure which is different from that of spontaneous liver tumors that often contain H-ras mutations.
Collapse
MESH Headings
- Adenoma, Liver Cell/chemically induced
- Adenoma, Liver Cell/genetics
- Adenoma, Liver Cell/metabolism
- Animals
- Carcinogens/toxicity
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- DNA, Neoplasm/drug effects
- DNA, Neoplasm/genetics
- Ethanolamines/toxicity
- Female
- Genes, ras/drug effects
- Immunohistochemistry
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Male
- Mice
- Mutation
- Polymorphism, Single-Stranded Conformational
- Time Factors
- Trans-Activators/genetics
- Trans-Activators/metabolism
- beta Catenin
Collapse
Affiliation(s)
- Shim-mo Hayashi
- Laboratory of Experimental Pathology, National Institute of Environmental Health Sciences, PO Box 12233, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Honoki K, Tsujiuchi T, Mori T, Yoshitani K, Tsutsumi M, Takakura Y, Mii Y. Expression of the p16INK4a gene and methylation pattern of CpG sites in the promoter region in rat tumor cell lines. Mol Carcinog 2004; 39:10-4. [PMID: 14694443 DOI: 10.1002/mc.10165] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Loss of p16(INK4a) protein expression has frequently been related to DNA methylation in association with gene silencing. Although the methylation status of exon1alpha for p16(INK4a) involvement in various cancers has been extensively analyzed, it has been pointed out that some inconsistencies existed in its relationship to gene silencing of p16(INK4a). In this study, we focused on the expression and methylation status in the regions of nt -478 to -201, containing a putative TATA box (nt -401 to -396), and nt -233 to 26, both in a recently cloned 5' upstream region of rat p16(INK4a). We showed that rat lung adenocarcinoma RLCNR did not express the p16(INK4a) gene, whereas rat osteosarcoma COS1NR and malignant fibrous histiocytoma MFH1NR both expressed it at levels similar to normal fibroblasts, even though the region of nt -233 to 26 was hypermethylated in COS1NR rather than RLCNR. In contrast, the CpG islands near the putative TATA box region were consistently methylated in RLCNR, but not in COS1NR and MFH1NR, as well as in normal fibroblasts. Treatment with 5-aza 2'-deoxycytidine induced expression of p16(INK4a) gene in RLCNR after 48 h, but no changes were observed in COS1NR and MFH1NR. The results indicated that methylation of CpG islands near a TATA box region played a critical role for gene silencing of the rat p16(INK4a) gene, rather than that of other regions.
Collapse
Affiliation(s)
- Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhou H, Calaf GM, Hei TK. Malignant transformation of human bronchial epithelial cells with the tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Int J Cancer 2003; 106:821-6. [PMID: 12918058 DOI: 10.1002/ijc.11319] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sufficient evidence has demonstrated that cigarette smoking is causally associated with various types of human cancers. In the United States, about 90% of deaths from lung cancer among men and 79% of those among women are associated with smoking. Tobacco-specific nitrosamines are formed from nicotine and related tobacco alkaloids and are the most carcinogenic compounds of tobacco smoke. The most potent N-nitrosamine contained in tobacco smoke is 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, NNK. In the our study, the oncogenic transforming effects of graded doses of NNK were examined using papillomavirus-immortalized human bronchial epithelial cells. Growth kinetics, saturation density, resistance to serum-induced terminal differentiation, anchorage independent growth and tumorigenicity in nude mice were used to investigate the various stages of transformation in bronchial epithelial cells. We show here that immortalized human bronchial epithelial cells in culture can be malignantly transformed by treatment with NNK (100 microg/ml or 400 microg/ml) for 7 days. Transformed cells produced progressively growing subcutaneous tumors upon inoculation into nude mice. Immunofluorescence staining for keratin expression confirmed the epithelial nature of the tumor cells. Increased expression of p16, beta-catenin and PCNA in the established cell lines were detected by immunofluorescence staining and quantified by confocal microscopy. These data suggested that NNK can induce malignant transformation of human bronchial epithelial cells, and the tumor cell lines established are useful models in investigating the carcinogenic mechanism(s) of NNK.
Collapse
Affiliation(s)
- Hongning Zhou
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
26
|
Pogribny IP, James SJ. De novo methylation of the p16INK4A gene in early preneoplastic liver and tumors induced by folate/methyl deficiency in rats. Cancer Lett 2002; 187:69-75. [PMID: 12359353 DOI: 10.1016/s0304-3835(02)00408-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies have established that chronic dietary insufficiency of the lipotropic nutrients choline and methionine with or without chemical initiation is hepatocarcinogenic in the rat and certain mouse strains. In the present study, the folate/methyl-deficient model of multistage hepatocarcinogenesis was used to evaluate progressive in vivo changes in p16 promoter methylation in both preneoplastic and tumor tissues. Previous studies using this model have demonstrated stage-dependent alterations in genome-wide and p53 gene-specific methylation. In the present study, we used highly sensitive methylation specific PCR (MSP) to determine time of appearance of methylated sequences within p16 promoter. In addition, methylation-sensitive single nucleotide primer extension methodology was applied to determine methylation status of the remaining CpG sites within amplified methylated alleles. Using this approach, extensive methylation in p16 promoter was found in 100% of tumors, but the pattern of methylation varied depending on tumor type. The incidence and extent of de novo methylation in the CpG island of the p16 promoter increased with tumor progression. To further explore the evolution of p16 gene hypermethylation, we examined the appearance and progression of site-specific de novo methylation during early preneoplasia. Our data show that site-specific de novo methylation of 5' CpG island of p16 gene precedes tumor development and undergoes dynamic expansion during tumor progression.
Collapse
Affiliation(s)
- Igor P Pogribny
- Division of Biochemical Toxicology, Federal Drug Administration, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA.
| | | |
Collapse
|
27
|
Abe M, Okochi E, Kuramoto T, Kaneda A, Takato T, Sugimura T, Ushijima T. Cloning of the 5' upstream region of the rat p16 gene and its role in silencing. Jpn J Cancer Res 2002; 93:1100-6. [PMID: 12417039 PMCID: PMC5926886 DOI: 10.1111/j.1349-7006.2002.tb01211.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Hypermethylation of the 5' upstream region (5' region) of the human p16(CDKN2A) (p16) gene is known to cause silencing, which is involved in a wide range of human cancers. For the rat p16 gene, its 5' region has not been cloned, and it is uncertain whether surrogate use of exon 1 alpha is adequate for analysis of p16 silencing. In this study, we observed that methylation analysis of exon 1 alpha gave false positive results in three samples of normal rat mammary epithelia and in two of six primary mammary carcinomas. Therefore, we determined the nucleotide sequence of the 5' region of the rat p16 gene. To confirm that methylation status of the 5' region is correlated with p16 expression, the methylation status was analyzed by bisulfite sequencing and methylation-specific PCR in three samples of normal mammary glands, six samples of mammary carcinomas and four cell lines. The 5' region was demethylated in all of the three normal and six carcinoma samples that fully expressed p16. On the other hand, the 5' region was highly methylated in the 3Y1 cell line, which lacked p16 expression, but without deletion. These results showed that the methylation status of the 5' region was more closely correlated with p16 expression than that of the exon 1 alpha and analysis of the methylation status is useful in examining p16 silencing in various rat tumors.
Collapse
Affiliation(s)
- Masanobu Abe
- Carcinogenesis Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Mizesko MC, Grewe C, Grabner A, Miller MS. Alterations at the Ink4a locus in transplacentally induced murine lung tumors. Cancer Lett 2001; 172:59-66. [PMID: 11595130 DOI: 10.1016/s0304-3835(01)00647-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The malignant phenotype results from multiple genetic alterations, including the activation of oncogenes and inactivation of tumor suppressor genes. Activation of the Ki-ras oncogene has been implicated as an early event in the pathogenesis of lung adenocarcinomas in humans and experimental animal models. Previous studies from this laboratory have shown that, following treatment of pregnant [D2 x B6D2F(1)]F(2) or Balb/c mice with the polycyclic aromatic hydrocarbon, 3-methylcholanthrene (MC), lung tumors from the transplacentally exposed offspring exhibited a high incidence of mutations in the Ki-ras gene. The role of genetic alterations at other oncogenic or tumor suppressor loci that can mediate lung tumor initiation and/or progression have not been well characterized in either human or murine models. Using the transplacental carcinogenesis model, which results in the induction of both lung and liver tumors following in utero exposure to MC, the results of this and our previous studies show that alterations in the Ink4a locus occur in only 15 and 27% of the lung and liver tumors, respectively. Preliminary data also suggests that the type of mutation induced in the Ki-ras gene following the initial exposure to MC may influence lung tumor progression. These results imply that damage to the Ink4a gene is not a frequent pathway to malignant progression in mouse lung and liver tumors following in utero exposure to environmental carcinogens.
Collapse
Affiliation(s)
- M C Mizesko
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1082, USA
| | | | | | | |
Collapse
|