1
|
Paustenbach DJ, Brown SE, Heywood JJ, Donnell MT, Eaton DL. Risk characterization of N-nitrosodimethylamine in pharmaceuticals. Food Chem Toxicol 2024; 186:114498. [PMID: 38341171 DOI: 10.1016/j.fct.2024.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Since 2018, N-nitrosodimethylamine (NDMA) has been a reported contaminant in numerous pharmaceutical products. To guide the pharmaceutical industry, FDA identified an acceptable intake (AI) of 96 ng/day NDMA. The approach assumed a linear extrapolation from the Carcinogenic Potency Database (CPDB) harmonic-mean TD50 identified in chronic studies in rats. Although NDMA has been thought to act as a mutagenic carcinogen in experimental animals, it has not been classified as a known human carcinogen by any regulatory agency. Humans are exposed to high daily exogenous and endogenous doses of NDMA. Due to the likelihood of a threshold dose for NDMA-related tumors in animals, we believe that there is ample scientific basis to utilize the threshold-based benchmark dose or point-of-departure (POD) approach when estimating a Permissible Daily Exposure limit (PDE) for NDMA. We estimated that 29,000 ng/kg/day was an appropriate POD for calculating a PDE. Assuming an average bodyweight of 50 kg, we expect that human exposures to NDMA at doses below 5800 ng/day in pharmaceuticals would not result in an increased risk of liver cancer, and that there is little, if any, risk for any other type of cancer, when accounting for the mode-of-action in humans.
Collapse
Affiliation(s)
- D J Paustenbach
- Paustenbach and Associates, 970 West Broadway, Suite E, Jackson, WY, USA
| | - S E Brown
- Paustenbach and Associates, 207 Canyon Blvd, Boulder, CO, USA.
| | - J J Heywood
- Paustenbach and Associates, 207 Canyon Blvd, Boulder, CO, USA
| | - M T Donnell
- Valeo Sciences LLC, 333 Corporate Drive, Suite 130, Ladera Ranch, CA, USA
| | - D L Eaton
- Professor Emeritus, Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Tessmer I, Margison GP. The DNA Alkyltransferase Family of DNA Repair Proteins: Common Mechanisms, Diverse Functions. Int J Mol Sci 2023; 25:463. [PMID: 38203633 PMCID: PMC10779285 DOI: 10.3390/ijms25010463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
DNA alkyltransferase and alkyltransferase-like family proteins are responsible for the repair of highly mutagenic and cytotoxic O6-alkylguanine and O4-alkylthymine bases in DNA. Their mechanism involves binding to the damaged DNA and flipping the base out of the DNA helix into the active site pocket in the protein. Alkyltransferases then directly and irreversibly transfer the alkyl group from the base to the active site cysteine residue. In contrast, alkyltransferase-like proteins recruit nucleotide excision repair components for O6-alkylguanine elimination. One or more of these proteins are found in all kingdoms of life, and where this has been determined, their overall DNA repair mechanism is strictly conserved between organisms. Nevertheless, between species, subtle as well as more extensive differences that affect target lesion preferences and/or introduce additional protein functions have evolved. Examining these differences and their functional consequences is intricately entwined with understanding the details of their DNA repair mechanism(s) and their biological roles. In this review, we will present and discuss various aspects of the current status of knowledge on this intriguing protein family.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Geoffrey P. Margison
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
3
|
Heydari SR, Ghahremani MH, Atyabi F, Bafkary R, Jaafari MR, Dinarvand R. Aptamer-modified chitosan-capped mesoporous silica nanoparticles for co-delivery of cytarabine and daunorubicin in leukemia. Int J Pharm 2023; 646:123495. [PMID: 37806507 DOI: 10.1016/j.ijpharm.2023.123495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/24/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
In this study, surface modified mesoporous silica nanoparticles (MSNs) were prepared for the targeted delivery of the anticancer agents, daunorubicin (DNR) and cytarabine (CTR), against K562 leukemia cancer cell lines. The MSNs were surface-modified with pH-sensitive chitosan (CS) to prevent the burst release of anticancer agents at the physiological pH of 7.4 and to enable a higher drug release at lower pH and higher concentration of glutathione. Finally, the MSNs were surface modified with KK1B10 aptamer (Apt) to enhance their uptake by K562 cells through ligand-receptor interactions. The MSNs were characterized using different methods and both in vitro and in vivo experiments were utilized to demonstrate their suitability as targeted anticancer agents. The resultant MSNs exhibited an average particle size of 295 nm, a surface area of 39.06 m2/g, and a cumulative pore volume of 0.09 cm3/g. Surface modification of MSNs with chitosan (CS) resulted in a more regulated and acceptable continuous release rate of DNR. The drug release rate was significantly higher at pH 5 media enriched with glutathione, compared to pH 7.4. Furthermore, MSNs coated with CS and conjugated with aptamer (MSN-DNR + CTR@CS-Apt) exhibited a lower IC50 value of 2.34 µg/ml, compared to MSNs without aptamer conjugation, which displayed an IC50 value of 12.27 µg/ml. The results of the cell cycle analysis indicated that the administration of MSN-DNR + CTR@CS-Apt led to a significant increase in the population of apoptotic cells in the sub-G1 phase. Additionally, the treatment arrested the remaining cells in various other phases of the cell cycle. Furthermore, the interactions between Apt-receptors were found to enhance the uptake of MSNs by cancer cells. The results of in vivo studies demonstrated that the administration of MSN-DNR + CTR@CS-Apt led to a significant reduction in the expression levels of CD71 and CD235a markers, as compared to MSN-DNR + CTR@CS (p < 0.001). In conclusion, the surface modified MSNs prepared in this study showed lower IC50 against cancer cell lines and higher anticancer activity in animal models.
Collapse
Affiliation(s)
- Seyed Reza Heydari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology-Toxicology, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Bafkary
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Jaafari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
4
|
Zhu X, Huo J, Zeng Z, Liu Y, Li R, Chen Y, Zhang L, Chen J. Determination of potential thresholds for N-ethyl-N-nitrosourea and ethyl methanesulfonate based on a multi-endpoint genotoxicity assessment platform in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85128-85142. [PMID: 35793016 PMCID: PMC9646607 DOI: 10.1007/s11356-022-21605-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The main goal of the study was to investigate the genotoxic response of N-ethyl-N-nitrosourea (ENU) and ethyl methanesulfonate (EMS) at low doses in a multi-endpoint genotoxicity assessment platform in rats and to derive potential thresholds and related metrics. Male Sprague-Dawley rats were treated by daily oral gavage for 28 consecutive days with ENU (0.25 ~ 8 mg/kg bw) and EMS (5 ~ 160 mg/kg bw), both with six closely spaced dose levels. Pig-a gene mutation assay, micronucleus test, and comet assay were performed in several timepoints. Then, the dose-response relationships were analyzed for possible points of departure (PoD) using the no observed genotoxic effect level and benchmark dose (BMD) protocols with different critical effect sizes (CES, 0.05, 0.1, 0.5, and 1SD). Overall, dose-dependent increases in all investigated endpoints were found for ENU and EMS. PoDs varied across genetic endpoints, timepoints, and statistical methods, and selecting an appropriate lower 95% confidence limit of BMD needs a comprehensive consideration of the mode of action of chemicals, the characteristics of tests, and the model fitting methods. Under the experimental conditions, the PoDs of ENU and EMS were 0.0036 mg/kg bw and 1.7 mg/kg bw, respectively.
Collapse
Affiliation(s)
- Xuejiao Zhu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jiao Huo
- Department of Nutrition and Food Safety, Chongqing Center for Disease Control and Prevention, Chongqing, China
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Zhu Zeng
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Chengdu Fifth People's Hospital, Chengdu, Sichuan, China
| | - Yunjie Liu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Ruirui Li
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Yiyi Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Lishi Zhang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Jinyao Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China.
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Fahmy MA, Farghaly AA, Hassan EE, Hassan ZM, Abd-Alla HI. Protective role of Codiaeum variegatum against genotoxicity induced by carmustine in somatic and germ cells of male mice. Mol Biol Rep 2022; 49:9543-9553. [PMID: 36053281 PMCID: PMC9515021 DOI: 10.1007/s11033-022-07845-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Carmustine (Cr) is an important chemotherapeutic drug, widely used in the treatment of brain tumors. Herein, the protective role of Codiaeum variegatum leaves ethyl acetate fraction was determined against genotoxicity of Cr. The technique HPLC-qTOF-MS/MS was used to identify the constituents in C. variegatum. MATERIALS 90 male mice were used to evaluate micronuclei (MPCEs) in bone marrow, chromosomal aberration (CAs) in bone marrow and mouse spermatocytes, sperm abnormalities, and gene expression (qRT-PCR). The following groups were included, I: Negative control (ethanol 30%), II: Positive control (i.p injected once with 30 mg/kg Cr), III: Control orally treated with C. variegatum at 500 mg/kg, four days. IV-VI: treated with 100, 300, and 500 mg/kg of the plant (4 days) plus a single dose of Cr. RESULTS In bone marrow, Cr induced significant increase in MPCEs and CAs by 3 and 7-folds respectively over the control. Cr also induced a significant percentage of CAs in spermatocytes in meiosis in the form of univalent (X-Y and autosomal univalent) and also a significant percentage of morphological sperm abnormalities was recorded. A large number of coiled tail abnormalities were detected indicating the effect of Cr in sperm motility. Cr induced an overexpression of p53 gene. C. variegatum mitigated all deleterious genotoxic effects of Cr. Chemical analysis showed that flavones (35.21%) and phenolic acids (17.62%) constitute the main components. CONCLUSIONS The results indicated that Cr is genotoxic in both somatic and germ cells. The active components in C. variegatum together participate in the obtained protective role.
Collapse
Affiliation(s)
- Maha A Fahmy
- Department of Genetics and Cytology, National Research Centre, Giza, 12622, Egypt
| | - Ayman A Farghaly
- Department of Genetics and Cytology, National Research Centre, Giza, 12622, Egypt
| | - Entesar E Hassan
- Department of Genetics and Cytology, National Research Centre, Giza, 12622, Egypt
| | - Zeinab M Hassan
- Chemistry of Natural Compounds Department, National Research Centre, Giza, 12622, Egypt
| | - Howaida I Abd-Alla
- Chemistry of Natural Compounds Department, National Research Centre, Giza, 12622, Egypt.
| |
Collapse
|
6
|
Nath P, Maiti D. A review of the mutagenic potential of N-ethyl-N-nitrosourea (ENU) to induce hematological malignancies. J Biochem Mol Toxicol 2022; 36:e23067. [PMID: 35393684 DOI: 10.1002/jbt.23067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/05/2021] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
Abstract
This review is intended to summarize the existing literature on the mutagenicity of N-ethyl-N-nitrosourea (ENU) in inducing hematological malignancies, including acute myeloid leukemia (AML) in mice. Blood or hematological malignancies are the most common malignant disorders seen in people of all age groups. Driven by a number of genetic alterations, leukemia rule out the normal proliferation and differentiation of hematopoietic stem cells (HSCs) and their progenitors in the bone marrow (BM) and severely affects blood functions. Out of all hematological malignancies, AML is the most aggressive type, with a high incidence and mortality rate. AML is found as either de novo or secondary therapeutic AML (t-AML). t-AML is a serious adverse consequence of alkylator chemotherapy to the cancer patient and alone constitutes about 10%-20% of all reported AML cases. Cancer patients who received alkylator chemotherapy are at an elevated risk of developing t-AML. ENU has a long history of use as a potent carcinogen that induces blood malignancies in mice and rats that are pathologically similar to human AML and t-AML. ENU, once entered into the body, circulates all over the body tissues and reaches BM. It creates an overall state of suppression within the BM by damaging the marrow cells, alkylating the DNA, and forming DNA adducts within the early and late hematopoietic stem and progenitor cells. The BM holds a weak DNA repair mechanism due to low alkyltransferase, and poly [ADP-ribose] polymerase (PARP) enzyme content often fails to obliterate those adducts, acting as a catalyst to bring genetic abnormalities, including point gene mutations as well as chromosomal alterations, for example, translocation and inversion. Taking advantage of ENU-induced immune-suppressed state and weak immune surveillance, these mutations remain viable and slowly give rise to transformed HSCs. This review also highlights the carcinogenic nature of ENU and the complex relation between the ENU's overall toxicity in the induction of hematological malignancies.
Collapse
Affiliation(s)
- Priyatosh Nath
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Agartala, Tripura, India
| | - Debasish Maiti
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Agartala, Tripura, India
| |
Collapse
|
7
|
Zhang RK, Liu JL. Screening the genome for HCC-specific CpG methylation signatures as biomarkers for diagnosis and prognosis evaluation. BMC Med Genomics 2021; 14:163. [PMID: 34147096 PMCID: PMC8214801 DOI: 10.1186/s12920-021-01015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common and invasive malignant tumors in the world. The change in DNA methylation is a key event in HCC. METHODS Methylation datasets for HCC and 17 other types of cancer were downloaded from The Cancer Genome Atlas (TCGA). The CpG sites with large differences in methylation between tumor tissues and paracancerous tissues were identified. We used the HCC methylation dataset downloaded from the TCGA as the training set and removed the overlapping sites among all cancer datasets to ensure that only CpG sites specific to HCC remained. Logistic regression analysis was performed to select specific biomarkers that can be used to diagnose HCC, and two datasets-GSE157341 and GSE54503-downloaded from GEO as validation sets were used to validate our model. We also used a Cox regression model to select CpG sites related to patient prognosis. RESULTS We identified 6 HCC-specific methylated CpG sites as biomarkers for HCC diagnosis. In the training set, the area under the receiver operating characteristic (ROC) curve (AUC) for the model containing all these sites was 0.971. The AUCs were 0.8802 and 0.9711 for the two validation sets from the GEO database. In addition, 3 other CpG sites were analyzed and used to create a risk scoring model for patient prognosis and survival prediction. CONCLUSIONS Through the analysis of HCC methylation datasets from the TCGA and Gene Expression Omnibus (GEO) databases, potential biomarkers for HCC diagnosis and prognosis evaluation were ascertained.
Collapse
Affiliation(s)
- Rui-Kun Zhang
- Health Science Center, Shenzhen University, Shenzhen, China
| | - Jia-Lin Liu
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen Traditional Chinese Medicine Hospital, No.1 Fuhua Road, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
8
|
Bercu JP, Masuda-Herrera M, Johnson G, Czich A, Glowienke S, Kenyon M, Thomas R, Ponting DJ, White A, Cross K, Waechter F, Rodrigues MAC. Use of less-than-lifetime (LTL) durational limits for nitrosamines: Case study of N-Nitrosodiethylamine (NDEA). Regul Toxicol Pharmacol 2021; 123:104926. [PMID: 33862169 DOI: 10.1016/j.yrtph.2021.104926] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022]
Abstract
The ICH M7(R1) guideline describes a framework to assess the carcinogenic risk of mutagenic and carcinogenic pharmaceutical impurities following less-than-lifetime (LTL) exposures. This LTL framework is important as many pharmaceuticals are not administered for a patient's lifetime and as clinical trials typically involve LTL exposures. While there has been regulatory caution about applying LTL concepts to cohort of concern (COC) impurities such as N-nitrosamines, ICH M7 does not preclude this and indeed literature data suggests that the LTL framework will be protective of patient safety for N-nitrosamines. The goal was to investigate if applying the LTL framework in ICH M7 would control exposure to an acceptable excess cancer risk in humans. Using N-nitrosodiethylamine as a case study, empirical data correlating exposure duration (as a percentage of lifespan) and cancer incidence in rodent bioassays indicate that the LTL acceptable intake (AI) as derived using the ICH M7 framework would not exceed a negligible additional risk of cancer. Therefore, controlling N-nitrosamines to an LTL AI based on the ICH M7 framework is thus demonstrated to be protective for potential carcinogenic risk to patients over the exposure durations typical of clinical trials and many prescribed medicines.
Collapse
Affiliation(s)
- Joel P Bercu
- Gilead Sciences, Nonclinical Safety and Pathobiology (NSP), Foster City, CA, USA.
| | | | - George Johnson
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA3 5DE, UK
| | - Andreas Czich
- Sanofi, R&D Preclinical Safety, D-65926, Frankfurt, Germany
| | | | - Michelle Kenyon
- Pfizer Worldwide Research and Development, Genetic Toxicology, Eastern Point Road, Groton, CT, USA
| | - Rob Thomas
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - Angela White
- GlaxoSmithKline R&D, Park Road, Ware, Hertfordshire, SG12 0DP, UK
| | - Kevin Cross
- Leadscope Inc. an Instem Company, Columbus, OH, 43215, USA
| | - Fernanda Waechter
- Aché Laboratórios Farmacêuticos S.A., Rodovia Presidente Dutra, km 222,2, Porto da Igreja, 07034-904, Guarulhos, SP, Brazil
| | | |
Collapse
|
9
|
The Effects of O 6-methyl Guanine DNA-methyl Transferase Promotor Methylation and CpG1, CpG2, CpG3 and CpG4 Methylation on Treatment Response and their Prognostic Significance in Patients with Glioblastoma. Balkan J Med Genet 2020; 23:33-41. [PMID: 32953407 PMCID: PMC7474218 DOI: 10.2478/bjmg-2020-0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This retrospective study examined the prognostic significance and treatment effect of promoter methylation of O6- methyl guanine methyl transferase (MGMT) and meth-ylation of CpG 1, CpG2, CpG3 and CpG4 in glioblastoma (GB) patients received postoperative radiotherapy (PORT), with or without adjuvant temozolomide (TMZ). One hundred patients with GB who received PORT with concomitant TMZ plus adjuvant TMZ or PORT alone, were included. The MGMT promoter methylation of CpG1, CpG2, CpG3 and CpG4 islands were examined. Overall, MGMT-methylation emerged as a significant prognostic factor for better overall survival (OS) and progression-free survival (PFS) [odds ratio (OR): 0.609, 95% confidence interval (95% CI): 0.395-0.939, p = 0.02; OR: 0.662,95% CI: 0.430-1019, p = 0.5, respectively]. The methylation of each CpG1, CpG2, CpG3 and CpG4 islands was found to have no significant effects on OS and the methylation of each CpGl, CpG2 and CpG4 islands had no significant effect on PFS (p <0.05 for all). On the other hand, the methylation of CpG3 had a positive prognostic effect on PFS (OR: 2.1, 95% CI: 0.99-4.67, p = 0.04). In the group that only received radiotherapy (RT), CpG1 and CpC3 methylations were found to have a positive prognostic significance in terms of PFS (OR: 266, 95% CI: 1.05-6.75, p -0.03 for CpG1; OR: 2.4, 95% CI: 1.01-5.92, p = 0.04 for CpG3). The MGMT promoter methylation represents an important biomarker for predicting response to therapy. Individual islands, particularly CpG3, deserves further investigation as a prognostic marker. Further studies need to be done with larger sample sizes to clarify the results.
Collapse
|
10
|
N-Ethyl- n-Nitrosourea Induced Leukaemia in a Mouse Model through Upregulation of Vascular Endothelial Growth Factor and Evading Apoptosis. Cancers (Basel) 2020; 12:cancers12030678. [PMID: 32183192 PMCID: PMC7140055 DOI: 10.3390/cancers12030678] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 11/17/2022] Open
Abstract
Chemical carcinogens are commonly used to investigate the biology and prognoses of various cancers. This study investigated the mechanism of leukaemogenic effects of n-ethyl-n-nitrosourea (ENU) in a mouse model. A total of 14 3-week-old male Institute of Cancer Research (ICR)-mice were used for the study. The mice were divided into groups A and B with seven mice each. Group A served as the control while group B received intraperitoneal (IP) injections of 80 mg/kg ENU twice with a one-week interval and were monitored monthly for 3 months for the development of leukaemia via blood smear examination. The mice were sacrificed humanely using a CO2 chamber. Blood, spleen, lymph nodes, liver, kidney and lung samples were collected for blood smear examination and histopathological evaluation. The expression of angiogenic protein (VEGF), and pro and anti-apoptotic proteins (BCL2 and BAX), was detected and quantified using Western blot technique. Leukaemia was confirmed by the presence of numerous blast cells in the peripheral blood smear in group B. Similarly, the VEGF and BCL2 proteins were significantly (p < 0.05) upregulated in group B compared to A. It is concluded that IP administration of 80 mg/kg ENU induced leukaemia in ICR-mice 12 weeks post administration through upregulation of angiogenic and anti-apoptotic proteins: VEGF and BCL2.
Collapse
|
11
|
Head RJ, Fay MF, Cosgrove L, Y. C. Fung K, Rundle-Thiele D, Martin JH. Persistence of DNA adducts, hypermutation and acquisition of cellular resistance to alkylating agents in glioblastoma. Cancer Biol Ther 2017; 18:917-926. [PMID: 29020502 PMCID: PMC5718815 DOI: 10.1080/15384047.2017.1385680] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/01/2017] [Accepted: 09/24/2017] [Indexed: 01/13/2023] Open
Abstract
Glioblastoma is a lethal form of brain tumour usually treated by surgical resection followed by radiotherapy and an alkylating chemotherapeutic agent. Key to the success of this multimodal approach is maintaining apoptotic sensitivity of tumour cells to the alkylating agent. This initial treatment likely establishes conditions contributing to development of drug resistance as alkylating agents form the O6-methylguanine adduct. This activates the mismatch repair (MMR) process inducing apoptosis and mutagenesis. This review describes key juxtaposed drivers in the balance between alkylation induced mutagenesis and apoptosis. Mutations in MMR genes are the probable drivers for alkylation based drug resistance. Critical to this interaction are the dose-response and temporal interactions between adduct formation and MMR mutations. The precision in dose interval, dose-responses and temporal relationships dictate a role for alkylating agents in either promoting experimental tumour formation or inducing tumour cell death with chemotherapy. Importantly, this resultant loss of chemotherapeutic selective pressure provides opportunity to explore novel therapeutics and appropriate combinations to minimise alkylation based drug resistance and tumour relapse.
Collapse
Affiliation(s)
- R. J. Head
- University of South Australia, Adelaide, SA, Australia
| | - M. F. Fay
- University of Newcastle, Newcastle, NSW, Australia
- Genesis Cancer Care, NSW, Australia
- University of Queensland, Brisbane, QLD, Australia
| | - L. Cosgrove
- CSIRO Health & Biosecurity, Adelaide, SA, Australia
| | | | - D. Rundle-Thiele
- School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - J. H. Martin
- University of Newcastle, Newcastle, NSW, Australia
- University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Applicable advances in the molecular pathology of glioblastoma. Brain Tumor Pathol 2015; 32:153-62. [PMID: 26078107 DOI: 10.1007/s10014-015-0224-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/01/2015] [Indexed: 12/21/2022]
Abstract
Comprising more than 80% of malignant brain tumors, glioma has proven to be a daunting cause of mortality in a vast majority of the human population. Progressive and extensive research on malignant glioma has substantially enhanced our understanding of glioma cell biology and molecular pathology. Subtypes of glioma such as astrocytoma and oligodendroglioma are currently grouped together into one pathological class, where they show many differences in histology and molecular etiology. This indicates that it may be beneficial to consider a new and radical subclassification. Thus, we summarize recent developments in glioblastoma multiforme (GBM) subtypes, immunohistochemical analyses useful for diagnoses and the biological evaluation and therapeutic implications of gliomas in this review.
Collapse
|
13
|
Shyam K, Penketh PG, Baumann RP, Finch RA, Zhu R, Zhu YL, Sartorelli AC. Antitumor sulfonylhydrazines: design, structure-activity relationships, resistance mechanisms, and strategies for improving therapeutic utility. J Med Chem 2015; 58:3639-71. [PMID: 25612194 DOI: 10.1021/jm501459c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
1,2-Bis(sulfonyl)-1-alkylhydrazines (BSHs) were conceived as more specific DNA guanine O-6 methylating and chloroethylating agents lacking many of the undesirable toxicophores contained in antitumor nitrosoureas. O(6)-Alkylguanine-DNA alkyltransferase (MGMT) is the sole repair protein for O(6)-alkylguanine lesions in DNA and has been reported to be absent in 5-20% of most tumor types. Many BSHs exhibit highly selective cytotoxicity toward cells deficient in MGMT activity. The development of clinically useful MGMT assays should permit the identification of tumors with this vulnerability and allow for the preselection of patient subpopulations with a high probability of responding. The BSH system is highly versatile, permitting the synthesis of many prodrug types with the ability to incorporate an additional level of tumor-targeting due to preferential activation by tumor cells. Furthermore, it may be possible to expand the spectrum of activity of these agents to include tumors with MGMT activity by combining them with tumor-targeted MGMT inhibitors.
Collapse
Affiliation(s)
- Krishnamurthy Shyam
- †Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-8066, United States
| | - Philip G Penketh
- †Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-8066, United States
| | - Raymond P Baumann
- †Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-8066, United States
| | - Rick A Finch
- ‡Department of Veterinary Sciences, The University of Texas M.D. Anderson Cancer Center, 650 Cool Water Drive, Bastrop, Texas 78602, United States
| | - Rui Zhu
- †Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-8066, United States
| | - Yong-Lian Zhu
- †Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-8066, United States
| | - Alan C Sartorelli
- †Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-8066, United States
| |
Collapse
|
14
|
Arozarena I, Goicoechea I, Erice O, Ferguson J, Margison GP, Wellbrock C. Differential chemosensitivity to antifolate drugs between RAS and BRAF melanoma cells. Mol Cancer 2014; 13:154. [PMID: 24941944 PMCID: PMC4079649 DOI: 10.1186/1476-4598-13-154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 06/11/2014] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The importance of the genetic background of cancer cells for the individual susceptibility to cancer treatments is increasingly apparent. In melanoma, the existence of a BRAF mutation is a main predictor for successful BRAF-targeted therapy. However, despite initial successes with these therapies, patients relapse within a year and have to move on to other therapies. Moreover, patients harbouring a wild type BRAF gene (including 25% with NRAS mutations) still require alternative treatment such as chemotherapy. Multiple genetic parameters have been associated with response to chemotherapy, but despite their high frequency in melanoma nothing is known about the impact of BRAF or NRAS mutations on the response to chemotherapeutic agents. METHODS Using cell proliferation and DNA methylation assays, FACS analysis and quantitative-RT-PCR we have characterised the response of a panel of NRAS and BRAF mutant melanoma cell lines to various chemotherapy drugs, amongst them dacarbazine (DTIC) and temozolomide (TMZ) and DNA synthesis inhibitors. RESULTS Although both, DTIC and TMZ act as alkylating agents through the same intermediate, NRAS and BRAF mutant cells responded differentially only to DTIC. Further analysis revealed that the growth-inhibitory effects mediated by DTIC were rather due to interference with nucleotide salvaging, and that NRAS mutant melanoma cells exhibit higher activity of the nucleotide synthesis enzymes IMPDH and TK1. Importantly, the enhanced ability of RAS mutant cells to use nucleotide salvaging resulted in resistance to DHFR inhibitors. CONCLUSION In summary, our data suggest that the genetic background in melanoma cells influences the response to inhibitors blocking de novo DNA synthesis, and that defining the RAS mutation status could be used to stratify patients for the use of antifolate drugs.
Collapse
Affiliation(s)
- Imanol Arozarena
- Manchester Cancer Research Centre, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Ibai Goicoechea
- Oncology area, Biodonostia Research Institute, Calle Doctor Begiristain, San Sebastian 20014, Spain
| | - Oihane Erice
- Division of Hepatology and Gastroenterology, Biodonostia Research Institute, Calle Doctor Begiristain, San Sebastian 20014, Spain
| | - Jennnifer Ferguson
- Manchester Cancer Research Centre, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Geoffrey P Margison
- Centre for Occupational and Environmental Health, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PL, UK
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
15
|
Matsuno A, Murakami M, Hoya K, Yamada SM, Miyamoto S, Yamada S, Son JH, Nishido H, Ide F, Nagashima H, Sugaya M, Hirohata T, Mizutani A, Okinaga H, Ishii Y, Tahara S, Teramoto A, Osamura RY. Molecular status of pituitary carcinoma and atypical adenoma that contributes the effectiveness of temozolomide. Med Mol Morphol 2013; 47:1-7. [PMID: 23955641 DOI: 10.1007/s00795-013-0050-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/02/2013] [Indexed: 01/16/2023]
Abstract
There have been several reports of temozolomide (TMZ) treatment of pituitary carcinomas and atypical adenomas. O(6)-methyl-guanine-DNA methyltransferase is not the sole molecule determining the sensitivity to TMZ in pituitary carcinomas and atypical adenomas. The Japan Society of Hypothalamic and Pituitary Tumors study suggests that MSH6, one of mismatch repair pathway enzyme, fulfills a contributory role to the efficacy of TMZ treatment for pituitary carcinomas and atypical adenomas. The preserved MSH6 function might be essential for the responsiveness to TMZ treatment in pituitary carcinomas and atypical adenomas.
Collapse
Affiliation(s)
- Akira Matsuno
- Department of Neurosurgery, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara, Chiba, 299-0111, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ma C, Armstrong AW. Severe adverse events from the treatment of advanced melanoma: a systematic review of severe side effects associated with ipilimumab, vemurafenib, interferon alfa-2b, dacarbazine and interleukin-2. J DERMATOL TREAT 2013; 25:401-8. [PMID: 23763243 DOI: 10.3109/09546634.2013.813897] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Current immunomodulatory agents for stage III and IV melanoma exert different mechanisms of action that manifest in distinct adverse events. OBJECTIVE This systematic review aims to synthesize safety data from clinical trials on ipilimumab, vemurafenib, interferon (IFN) alfa-2b, dacarbazine and interleukin (IL)-2 to elucidate the severe adverse events associated with each melanoma therapy. METHODS Through a systematic search using MEDLINE, EMBASE and the Cochrane Central Register between January 1, 2010 and June 1, 2012, we identified 32 clinical trials with 5802 subjects that met the inclusion criteria. RESULTS Ipilimumab was associated with immune-mediated diarrhea and colitis, with an incidence rate of 0.0017 cases per 100 person-years. Patients receiving vemurafenib developed keratoacanthomas and cutaneous squamous cell carcinoma at an incidence rate of 0.0025 cases per 100 person-years. Treatment with IFN alfa-2b precipitated depression at an incidence rate of 0.0002 cases per 100 person-years. Dacarbazine was associated with respiratory toxicity and dyspnea, with incidence rates of 0.0001 and 0.00008 cases per 100 person-years, respectively. IL-2 treatment induced vascular leak syndrome (VLS), with symptoms of hypotension and oliguria, was observed at incidence rates of 0.17 and 0.15 cases per 100 person-years, respectively. Findings may serve as a foundation for future research in this area and guide clinical recommendations.
Collapse
Affiliation(s)
- Chelsea Ma
- Department of Dermatology, University of California Davis , Sacramento, CA , USA
| | | |
Collapse
|
17
|
Ishiguro K, Shyam K, Penketh PG, Baumann RP, Sartorelli AC, Rutherford TJ, Ratner ES. Expression of O6-Methylguanine-DNA Methyltransferase Examined by Alkyl-Transfer Assays, Methylation-Specific PCR and Western Blots in Tumors and Matched Normal Tissue. ACTA ACUST UNITED AC 2013; 4:919-931. [PMID: 23946891 DOI: 10.4236/jct.2013.44103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The tumor selectivity of alkylating agents that produce guanine O6-chloroethyl (laromustine and carmustine) and O6-methyl (temozolomide) lesions, depends upon O6-methylguanine-DNA methyltransferase (MGMT) activity being lower in tumor than in host tissue. Despite the established role of MGMT as a tumor resistance factor, consensus on how to assess MGMT expression in clinical samples is unsettled. The aim of this study is to examine the relationship between the values derived from distinctive MGMT measurements in 13, 12, 6 and 2 pairs of human tumors and matched normal adjacent tissue from the colon, kidney, lung and liver, respectively, and in human cell lines. The MGMT measurements included (a) alkyl-transfer assays using [benzene-3H]O6-benzylguanine as a substrate to assess functional MGMT activity, (b) methylation-specific PCR (MSP) to probe MGMT gene promoter CpG methylations as a measure of gene silencing, and (c) western immunoblots to analyze the MGMT protein. In human cell lines, a strict negative correlation existed between MGMT activity and the extent of promoter methylation. In tissue specimens, by contrast, the correlation between these two variables was low. Moreover, alkyl-transfer assays identified 3 pairs of tumors and normal tissue with tumor-selective reduction in MGMT activity in the absence of promoter methylation. Cell line MGMT migrated as a single band in western analyses, whereas tissue MGMT was heterogeneous around its molecular size and at much higher molecular masses, indicative of multi-layered post-translational modifications. Malignancy is occasionally associated with a mobility shift in MGMT. Contrary to the prevalent expectation that MGMT expression is governed at the level of gene silencing, these data suggest that other mechanisms that can lead to tumor-selective reduction in MGMT activity exist in human tissue.
Collapse
Affiliation(s)
- Kimiko Ishiguro
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Müller MR, Thomale J, Rajewsky MF, Seeber S. Drug resistance and DNA repair in leukaemia. Cytotechnology 2012; 27:175-85. [PMID: 19002791 DOI: 10.1023/a:1008064804678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most cytotoxic agents exert their action via damage of DNA. Therefore, the repair of such lesions is of major importance for the sensitivity of malignant cells to chemotherapeutic agents. The underlying mechanisms of various DNA repair pathways have extensively been studied in yeast, bacteria and mammalian cells. Sensitive and drug resistant cancer cell lines have provided models for analysis of the contribution of DNA repair to chemosensitivity. However, the validity of results obtained by laboratory experiments with regard to the clinical situation is limited. In both acute and chronic leukaemias, the emergence of drug resistant cells is a major cause for treatment failure. Recently, assays have become available to measure cellular DNA repair capacity in clinical specimens at the single-cell level. Application of these assays to isolated lymphocytes from patients with chronic lymphatic leukaemia (CLL) revealed large interindividual differences in DNA repair rates. Accelerated O(6)-ethylguanine elimination from DNA and faster processing of repair-induced single-strand breaks were found in CLL lymphocytes from patients nonresponsive to chemotherapy with alkylating agents compared to untreated or treated sensitive patients. Moreover, modulators of DNA repair with different target mechanisms were identified which also influence the sensitivity of cancer cells to alkylating agents. In this article, we review the current knowledge about the contribution of DNA repair to drug resistance in human leukaemia.
Collapse
|
19
|
Urban AM, Upadhyaya P, Cao Q, Peterson LA. Formation and repair of pyridyloxobutyl DNA adducts and their relationship to tumor yield in A/J mice. Chem Res Toxicol 2012; 25:2167-78. [PMID: 22928598 DOI: 10.1021/tx300245w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a known human carcinogen. It generates methyl and pyridyloxobutyl DNA adducts. The role of the methyl DNA adducts has been well-established in the tumorigenic properties of NNK. However, the role of the pyridyloxobutyl DNA adducts is unclear. Four pyridyloxobutyl DNA adducts have been characterized: 7-[4-3-(pyridyl)-4-oxobut-1-yl]guanine (7-pobG), O²-[4-3-(pyridyl)-4-oxobut-1-yl]-cytodine (O²-pobC), O²-[4-3-(pyridyl)-4-oxobut-1yl]thymidine (O²-pobdT), and O⁶-[4-3-(pyridyl)-4-oxobut-1-yl]-2'-deoxyguanosine (O⁶-pobdG). Mutagenic O⁶-pobdG is thought to contribute to the tumorigenic properties of the pyridyloxobutylation pathway. It is repaired by O⁶-alkylguanine-DNA alkyltransferase (AGT). To explore the role of O⁶-pobdG formation and repair in the tumorigenic properties of NNK, A/J mice were given single or multiple doses of the model pyridyloxobutylating agent 4-(acetoxymethyl-nitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc) in the presence or absence of the AGT depletor, O⁶-benzylguanine. Levels of the four pyridyloxobutyl DNA adducts were measured in the lung at 8, 48, or 96 h following treatment and compared to the lung tumorigenic activity of these treatments. AGT depletion had only a modest effect on the levels of O⁶-pobdG and did not increase tumor formation. Three pyridyloxobutyl DNA adducts, 7-pobG, O²-pobdT, and O⁶-pobdG, persisted in lung DNA at significant levels for up to 96 h post-treatment, suggesting that all three adducts may contribute to the tumorigenic properties of NNK.
Collapse
Affiliation(s)
- Anna M Urban
- Division of Environmental Health Sciences and ‡Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
20
|
Christmann M, Verbeek B, Roos WP, Kaina B. O(6)-Methylguanine-DNA methyltransferase (MGMT) in normal tissues and tumors: enzyme activity, promoter methylation and immunohistochemistry. Biochim Biophys Acta Rev Cancer 2011; 1816:179-90. [PMID: 21745538 DOI: 10.1016/j.bbcan.2011.06.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 12/29/2022]
Abstract
O(6)-Methylguanine-DNA methyltransferase (MGMT) is a suicide enzyme that repairs the pre-mutagenic, pre-carcinogenic and pre-toxic DNA damage O(6)-methylguanine. It also repairs larger adducts on the O(6)-position of guanine, such as O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine and O(6)-chloroethylguanine. These adducts are formed in response to alkylating environmental pollutants, tobacco-specific carcinogens and methylating (procarbazine, dacarbazine, streptozotocine, and temozolomide) as well as chloroethylating (lomustine, nimustine, carmustine, and fotemustine) anticancer drugs. MGMT is therefore a key node in the defense against commonly found carcinogens, and a marker of resistance of normal and cancer cells exposed to alkylating therapeutics. MGMT also likely protects against therapy-related tumor formation caused by these highly mutagenic drugs. Since the amount of MGMT determines the level of repair of toxic DNA alkylation adducts, the MGMT expression level provides important information as to cancer susceptibility and the success of therapy. In this article, we describe the methods employed for detecting MGMT and review the literature with special focus on MGMT activity in normal and neoplastic tissues. The available data show that the expression of MGMT varies greatly in normal tissues and in some cases this has been related to cancer predisposition. MGMT silencing in tumors is mainly regulated epigenetically and in brain tumors this correlates with a better therapeutic response. Conversely, up-regulation of MGMT during cancer treatment limits the therapeutic response. In malignant melanoma, MGMT is not related to the therapeutic response, which is due to other mechanisms of inherent drug resistance. For most cancers, studies that relate MGMT activity to therapeutic outcome following O(6)-alkylating drugs are still lacking.
Collapse
Affiliation(s)
- Markus Christmann
- Insitute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | | | | | |
Collapse
|
21
|
Dobo KL, Fiedler RD, Gunther WC, Thiffeault CJ, Cammerer Z, Coffing SL, Shutsky T, Schuler M. Defining EMS and ENU dose-response relationships using the Pig-a mutation assay in rats. Mutat Res 2011; 725:13-21. [PMID: 21729764 DOI: 10.1016/j.mrgentox.2011.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 11/25/2022]
Abstract
In recent years, experimental evidence has accumulated that supports the existence of sublinear dose-response relationships at low doses of DNA reactive mutagens. However, creating the in vivo data necessary to allow for a more detailed dose-response modeling with the currently available tools might not always be practical. The purpose of the current work was to evaluate the utility of the Pig-a gene mutation assay to rapidly identify dose-response relationships for direct acting genotoxicants. The induction of mutations in the peripheral blood of rats was evaluated following 28 days of exposure down to low doses of the direct acting alkylating agents ethyl methane sulfonate (EMS) and ethylnitrosourea (ENU). Using statistical modeling based on the 28-day studies, a threshold for mutation induction for EMS was estimated to be 21.9mg/kg, whereas for the more potent ENU, the threshold was estimated to be 0.88mg/kg. Comparing mutation frequencies from acute and sub-chronic dosing indicated less than additive dose-response relationships, further confirming the possibility of a threshold dose-response relationship for both compounds. In conclusion, the work presented provides evidence that the Pig-a assay might be a practical alternative to other in vivo mutation assays when assessing dose-response relationships for direct acting mutagens and that an experimental approach using fractionated dosing could be used to substantiate a biological mechanism responsible for the observation of a sublinear dose-response relationship.
Collapse
Affiliation(s)
- Krista L Dobo
- Pfizer Global Research and Development, Genetic Toxicology Center of Emphasis, Eastern Point Road, Groton, CT 06340, United States.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
El-Sayed ESM, Abdel-Aziz AAH, Saleh S, Saad AS. The chemopreventive effect of dimethylthiourea against carmustine-induced myelotoxicity in rats. Food Chem Toxicol 2011; 49:1965-9. [PMID: 21620922 DOI: 10.1016/j.fct.2011.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 04/29/2011] [Accepted: 05/06/2011] [Indexed: 11/24/2022]
Abstract
The possible chemopreventive role of dimethylthiourea (DMTU) against carmustine (1,3-bis(2-chloroethyl)-1-nitrosourea, BCNU)-induced myelotoxicity was assessed through evaluation of apoptosis, lipid peroxidation, glutathione (GSH) content and some antioxidant enzymes activities in bone marrow cells of rats. Thirty-six rats were randomly classified into four groups. The first group was injected i.p. with ethanol and served as a control. The second group was treated with BCNU. The third group was given DMTU, while the fourth group was co-administered with DMTU prior to BCNU administration. BCNU treatment in a single dose of 30 mg/kg significantly decreased the normal counts of RBCs, WBCs and platelets as well as hemoglobin level. In addition, BCNU exhibited marked apoptotic effect associated with significant alterations in the oxidative cascade parameters. Treatment of animals with DMTU in a single dose of 500 mg/kg 1h before BCNU injection, followed by 125 mg/kg twice daily for 5 consecutive days significantly mitigated the induced changes in the hematological parameters. The induced alterations in the oxidant and antioxidant parameters as well as apoptosis were also improved. Conclusively, DMTU treatment exhibited marked chemopreventive effect against BCNU-induced myelotoxicity; an effect which may be partially attributed to its inherently antioxidant potential.
Collapse
Affiliation(s)
- El-Sayed M El-Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | | | | | | |
Collapse
|
23
|
Is the tissue persistence of O6-methyl-2′-deoxyguanosine an indicator of tumour formation in the gastrointestinal tract? MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 721:119-26. [DOI: 10.1016/j.mrgentox.2010.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/09/2010] [Accepted: 12/23/2010] [Indexed: 11/21/2022]
|
24
|
Rhee JS, Kim RO, Chang HH, Lee J, Lee YM, Lee JS. Endocrine disrupting chemicals modulate expression of O⁶-methylguanine DNA methyltransferase (O⁶-MGMT) gene in the hermaphroditic fish, Kryptolebias marmoratus. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:141-9. [PMID: 20965277 DOI: 10.1016/j.cbpc.2010.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 11/29/2022]
Abstract
O⁶-methylguanine-DNA methyltransferase (O⁶-MGMT; EC 2.1.1.63) is a key repair enzyme that helps to protect the cell against alkylation on DNA by removing a methyl group from the O⁶-position of guanine. Here, we cloned and sequenced the full-length O⁶-MGMT cDNA from the hermaphroditic fish, Kryptolebias marmoratus. Complete Km-O⁶-MGMT cDNA was 1324 bp in length, and the open reading frame of 567 bp encoded a polypeptide of 188 amino acid residues. Phylogenetic analysis revealed that Km-O⁶-MGMT was clustered with those of other fish species. Embryo, juveniles, and aged secondary fish had low levels of Km-O⁶-MGMT mRNA than adults, indicating more susceptibility to DNA damage by alkylating agent exposure during these developmental stages. Km-O⁶-MGMT mRNA levels differed according to tissue type and was highest in the liver. Exposure to an alkylating agent, N-methyl-N-nitrosourea (MNU) exposure increased the mRNA expression of tumor suppressor gene such as p53 and oncogenes such as R-ras1, R-ras3, N-ras, c-fos as well as Km-O⁶-MGMT mRNA in a time-dependent manner. On the contrary, several (anti)estrogenic compounds (17β-estradiol 100 ng/L, tamoxifen 10 μg/L, bisphenol A 600 μg/L, and 4-tert-octylphenol 300 μg/L) suppressed mRNA expression of Km-O⁶-MGMT in most tissues, especially the liver. In juvenile fish, 17β-estradiol, bisphenol A, and 4-tert-octylphenol also decreased the expression of Km-O⁶-MGMT mRNA in a time-dependent manner. Overall, our finding shows that Km-O⁶-MGMT mRNA levels can be modulated by environmental estrogenic compounds as well as alkylating agents. This finding will be helpful to improve our knowledge of the effects of estrogenic compounds that contain the genotoxic ability to inhibit the DNA repair process in aquatic animals.
Collapse
Affiliation(s)
- Jae-Sung Rhee
- Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | |
Collapse
|
25
|
Robinson CG, Palomo JM, Rahmathulla G, McGraw M, Donze J, Liu L, Vogelbaum MA. Effect of alternative temozolomide schedules on glioblastoma O(6)-methylguanine-DNA methyltransferase activity and survival. Br J Cancer 2010; 103:498-504. [PMID: 20628383 PMCID: PMC2939788 DOI: 10.1038/sj.bjc.6605792] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: O6-methylguanine-DNA methyltransferase (MGMT) expression in glioblastoma correlates with temozolomide resistance. Dose-intense temozolomide schedules deplete MGMT activity in peripheral blood mononuclear cells; however, no published data exist evaluating the effect of temozolomide schedules on intracranial tumour MGMT activity. Methods: Human glioblastoma cells (GBM43) with an unmethylated MGMT promoter were implanted intracranially in immunodeficient rodents. Three weeks later, animals received temozolomide 200 mg m−2 for 5 days (schedule A, standard dose) or 100 mg m−2 for 21 days (schedule B, dose intense). Results: Tumour MGMT activity was depleted by day 6 in both treatment groups compared with baseline. O6-methylguanine-DNA methyltransferase activity returned to baseline by day 22 in the schedule A group, but remained suppressed in the schedule B group. By day 29, MGMT activity had returned to baseline in both groups. Mean tumour volume was significantly decreased compared with untreated controls with either schedule (P<0.01), although neither schedule was superior (P=0.60). Median survival was 64, 42, and 28 days for schedule A, schedule B, and no drug, respectively (P<0.001 A or B vs control, P=NS A vs B). Conclusions: Dose-intense temozolomide prolongs tumour MGMT activity depletion compared with standard dosing, however, survival was not improved in this model.
Collapse
Affiliation(s)
- C G Robinson
- Department of Radiation Oncology, Washington University in St Louis, 4921 Parkview Place, St Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Protective effect of N-acetylcysteine against carmustine-induced myelotoxicity in rats. Food Chem Toxicol 2010; 48:1576-80. [DOI: 10.1016/j.fct.2010.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/10/2010] [Accepted: 03/17/2010] [Indexed: 11/18/2022]
|
27
|
Selection of genetically modified hematopoietic cells in vitro and in vivo using alkylating agent lysomustine. Anal Biochem 2010; 404:149-54. [PMID: 20450874 DOI: 10.1016/j.ab.2010.04.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 04/19/2010] [Accepted: 04/30/2010] [Indexed: 11/23/2022]
Abstract
Efficient gene transfer into hematopoietic stem cells is vital for the success of gene therapy of hematopoietic and immune system disorders. An in vivo selection system based on a mutant form of the O(6)-methylguanine-DNA-methyltransferase gene (MGMTm) is considered one of the more promising strategies for expansion of hematopoietic cells transduced with viral vectors. Here we demonstrate that MGMTm-expressing cells can be efficiently selected using lysomustine, a nitrosourea derivative of lysine. K562 and murine bone marrow cells expressing MGMTm are protected from the cytotoxic action of lysomustine in vitro. We also show in a murine model that MGMTm-transduced hematopoietic cells can be expanded in vivo on transplantation into sublethally irradiated recipients followed by lysomustine treatment. These results indicate that lysomustine can be used as a potent novel chemoselection drug applicable for gene therapy of hematopoietic and immune system disorders.
Collapse
|
28
|
Hamilton JP. Epigenetic mechanisms involved in the pathogenesis of hepatobiliary malignancies. Epigenomics 2010; 2:233-243. [PMID: 20556199 PMCID: PMC2884160 DOI: 10.2217/epi.10.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Primary tumors of the liver and biliary tree are increasing in frequency and portend a miserable prognosis. Epigenetic regulation of gene expression has emerged as a fundamental aspect of cancer development and progression. The molecular mechanisms of carcinogenesis in hepatocellular carcinoma and cholangiocarcinoma involve a complex interplay of both genetic and epigenetic factors. Recent studies investigating the possible epigenetic mechanisms induced in the disease have shed new light on the molecular underpinnings of hepatobiliary cancers. In addition, epigenetic modifications of DNA in cancer and precancerous lesions offer hope and the promise of novel biomarkers for early cancer detection, prediction, prognosis and response to treatment. Furthermore, the reversal of epigenetic changes represents a potential target for novel therapeutic strategies and medication design.
Collapse
Affiliation(s)
- James P Hamilton
- Division of Gastroenterology and Hepatology, The Johns Hopkins School of Medicine, Baltimore, MD, USA, Tel.: +1 410 614 3530, Fax: +1 410 955 9677
| |
Collapse
|
29
|
Abstract
Chemotherapy often causes damage to hematopoietic tissues, leading to acute bone marrow suppression and the long term development of leukemias. Niacin deficiency, which is common in cancer patients, causes dramatic genomic instability in bone marrow cells in an in vivo rat model. From a mechanistic perspective, niacin deficiency delays excision repair and causes double strand break accumulation, which in turn favors chromosome breaks and translocations. Niacin deficiency also impairs cell cycle arrest and apoptosis in response to DNA damage, which combine to encourage the survival of cells with leukemogenic potential. Conversely, pharmacological supplementation of rats with niacin increases bone marrow poly(ADP-ribose) formation and apoptosis. Improvement of niacin status in rats significantly decreased nitrosourea-induced leukemia incidence. The data from our rat model suggest that niacin supplementation of cancer patients may decrease the severity of short- and long-term side effects of chemotherapy, and could improve tumor cell killing through activation of poly(ADP-ribose)-dependent apoptosis pathways.
Collapse
|
30
|
Lohri A, Hille B, Bacchi M, Fopp M, Joncourt F, Reuter J, Cerny T, Fey MF, Herrmann R. Five putative drug resistance parameters (MDR1/P-glycoprotein, MDR-associated protein, glutathione-S-transferase, bcl-2 and topoisomerase IIα) in 57 newly diagnosed acute myeloid leukaemias. Eur J Haematol 2009. [DOI: 10.1111/j.1600-0609.1997.tb00979.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Tischoff I, Tannapfel A. Barrett's esophagus: can biomarkers predict progression to malignancy? Expert Rev Gastroenterol Hepatol 2008; 2:653-63. [PMID: 19072343 DOI: 10.1586/17474124.2.5.653] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Barrett's esophagus (BE) is one of the most common premalignant lesions and can progress to esophageal adenocarcinoma. It is characterized histologically by a specialized intestinal metaplasia that replaces the squamous epithelium of the distal esophagus, and is associated with chronic gastroesophageal reflux disease and obesity. Similar to the adenoma-carcinoma sequence of colorectal carcinomas, esophageal adenocarcinoma develops through progression from BE to low- and high-grade dysplasia, then to adenocarcinoma with accumulation of genetic and epigenetic abnormalities. The exact malignancy potential of BE is uncertain. Dysplasia is the most predictive marker for risk of esophageal adenocarcinoma, whereas endoscopic and histological diagnoses are still the gold standard for surveillance of patients with BE. However, both are limited, either by sampling errors in biopsies or by differences in histological interpretation. Several studies have identified candidate biomarkers that may have predictive value and may serve as additional factors for the risk assessment of esophageal adenocarcinoma. This review discusses the role of biomarkers in the progression from BE to adenocarcinoma, focusing on clinical and molecular markers.
Collapse
Affiliation(s)
- Iris Tischoff
- Institute of Pathology, Ruhr-University of Bochum, Bürkle-de-la-Camp-Platz, Bochum 44789, Germany.
| | | |
Collapse
|
32
|
Hegi ME, Liu L, Herman JG, Stupp R, Wick W, Weller M, Mehta MP, Gilbert MR. Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 2008; 26:4189-99. [PMID: 18757334 DOI: 10.1200/jco.2007.11.5964] [Citation(s) in RCA: 618] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance to alkylating agents via direct DNA repair by O(6)-methylguanine methyltransferase (MGMT) remains a significant barrier to the successful treatment of patients with malignant glioma. The relative expression of MGMT in the tumor may determine response to alkylating agents, and epigenetic silencing of the MGMT gene by promoter methylation plays an important role in regulating MGMT expression in gliomas. MGMT promoter methylation is correlated with improved progression-free and overall survival in patients treated with alkylating agents. Strategies to overcome MGMT-mediated chemoresistance are being actively investigated. These include treatment with nontoxic pseudosubstrate inhibitors of MGMT, such as O(6)-benzylguanine, or RNA interference-mediated gene silencing of MGMT. However, systemic application of MGMT inhibitors is limited by an increase in hematologic toxicity. Another strategy is to deplete MGMT activity in tumor tissue using a dose-dense temozolomide schedule. These alternative schedules are well tolerated; however, it remains unclear whether they are more effective than the standard dosing regimen or whether they effectively deplete MGMT activity in tumor tissue. Of note, not all patients with glioblastoma having MGMT promoter methylation respond to alkylating agents, and even those who respond will inevitably experience relapse. Herein we review the data supporting MGMT as a major mechanism of chemotherapy resistance in malignant gliomas and describe ongoing studies that are testing resistance-modulating strategies.
Collapse
Affiliation(s)
- Monika E Hegi
- Laboratory of Tumor Biology and Genetics, Department of Neurosurgery BH-19-110, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ishiguro K, Shyam K, Penketh PG, Sartorelli AC. Development of an O(6)-alkylguanine-DNA alkyltransferase assay based on covalent transfer of the benzyl moiety from [benzene-3H]O(6)-benzylguanine to the protein. Anal Biochem 2008; 383:44-51. [PMID: 18783719 DOI: 10.1016/j.ab.2008.08.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/12/2008] [Accepted: 08/13/2008] [Indexed: 11/15/2022]
Abstract
Although it is known that (i) O(6)-alkylguanine-DNA alkyltransferase (AGT) confers tumor cell resistance to guanine O(6)-targeting drugs such as cloretazine, carmustine, and temozolomide and that (ii) AGT levels in tumors are highly variable, measurement of AGT activity in tumors before treatment is not a routine clinical practice. This derives in part from the lack of a reliable clinical AGT assay; therefore, a simple AGT assay was devised based on transfer of radioactive benzyl residues from [benzene-3H]O(6)-benzylguanine ([3H]BG) to AGT. The assay involves incubation of intact cells or cell homogenates with [3H]BG and measurement of radioactivity in a 70% methanol precipitable fraction. Approximately 85% of AGT in intact cells was recovered in cell homogenates. Accuracy of the AGT assay was confirmed by examination of AGT levels by Western blot analysis with the exception of false-positive results in melanin-containing cells due to [3H]BG binding to melanin. Second-order kinetic constants for human and murine AGT were 1100 and 380 M(-1)s(-1), respectively. AGT levels in various human cell lines ranged from less than 500 molecules/cell (detection limit) to 45,000 molecules/cell. Rodent cell lines frequently lacked AGT expression, and AGT levels in rodent cells were much lower than in human cells.
Collapse
Affiliation(s)
- Kimiko Ishiguro
- Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
34
|
Abstract
As for many other tumors, development of hepatocellular carcinoma (HCC) must be understood as a multistep process with accumulation of genetic and epigenetic alterations in regulatory genes, leading to activation of oncogenes and inactivation or loss of tumor suppressor genes (TSG). In the last decades, in addition to genetic alterations, epigenetic inactivation of (tumor suppressor) genes by promoter hypermethylation has been recognized as an important and alternative mechanism in tumorigenesis. In HCC, aberrant methylation of promoter sequences occurs not only in advanced tumors, it has been also observed in premalignant conditions just as chronic viral hepatitis B or C and cirrhotic liver. This review discusses the epigenetic alterations in hepatocellular carcinoma focusing DNA methylation.
Collapse
|
35
|
Alterations in S-adenosylhomocysteine metabolism decrease O6-methylguanine DNA methyltransferase gene expression without affecting promoter methylation. Biochem Pharmacol 2008; 75:2100-11. [PMID: 18395186 DOI: 10.1016/j.bcp.2008.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 01/22/2023]
Abstract
The DNA repair enzyme O(6)-methylguanine DNA methyltransferase (MGMT) protects cells against the cytotoxic effects of alkylating agents. Therefore, modulation of MGMT expression in tumors is a possible strategy for improving the efficiency of cancer therapy. MGMT expression and activity is lost frequently in association with DNA hypermethylation of the MGMT promoter region. Since DNA and mRNA methylation are controlled by intracellular S-adenosylmethionine (AdoMet) and S-adenosylhomocysteine (AdoHcy) levels, we hypothesized a role for AdoMet/AdoHcy ratio in the regulation of MGMT promoter methylation and mRNA expression. Our initial studies showed that AdoMet/AdoHcy ratios vary over a wide range (7.0-50) in different glioblastoma and hepatoma cell lines. The studied cell lines exhibit distinct MGMT promoter methylation patterns: MGMT promoter was completely unmethylated in LN-18 and Tu 132 cells, hypermethylated in LN-229, U87-MG, and Tu 113 cells, and partially methylated in HepG2 cells. Furthermore, MGMT promoter methylation patterns and global DNA methylation are not related to intracellular AdoMet/AdoHcy ratio under control conditions. To lower AdoMet/AdoHcy ratio to values <1 we used AdoHcy hydrolase inhibitor adenosine-2',3'-dialdehyde (30 microM) and found that neither short-term (24 h) nor long-term changes (7 weeks) in AdoMet/AdoHcy ratio altered global or MGMT promoter methylation. However, experimentally elevated AdoHcy levels significantly decreased MGMT mRNA levels by >50% in all MGMT-expressing cell lines, which is most likely the result of impaired mRNA methylation. Thus, the present study suggests elevation of AdoHcy levels by AdoHcy hydrolase inhibition as a novel pharmacological approach to modulate MGMT expression and to increase the responsiveness to alkylating agents.
Collapse
|
36
|
Sandercock LE, Hahn JN, Li L, Luchman H, Giesbrecht JL, Peterson LA, Jirik FR. Mgmt deficiency alters the in vivo mutational spectrum of tissues exposed to the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Carcinogenesis 2008; 29:866-74. [DOI: 10.1093/carcin/bgn030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
37
|
Chargé SB, Brack AS, Bayol SA, Hughes SM. MyoD- and nerve-dependent maintenance of MyoD expression in mature muscle fibres acts through the DRR/PRR element. BMC DEVELOPMENTAL BIOLOGY 2008; 8:5. [PMID: 18215268 PMCID: PMC2259323 DOI: 10.1186/1471-213x-8-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 01/23/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND MyoD is a transcription factor implicated in the regulation of adult muscle gene expression. Distinguishing the expression of MyoD in satellite myoblasts and muscle fibres has proved difficult in vivo leading to controversy over the significance of MyoD expression within adult innervated muscle fibres. Here we employ the MD6.0-lacZ transgenic mouse, in which the 6 kb proximal enhancer/promoter (DRR/PRR) of MyoD drives lacZ, to show that MyoD is present and transcriptionally active in many adult muscle fibres. RESULTS In culture, MD6.0-lacZ expresses in myotubes but not myogenic cells, unlike endogenous MyoD. Reporter expression in vivo is in muscle fibre nuclei and is reduced in MyoD null mice. The MD6.0-lacZ reporter is down-regulated both in adult muscle fibres by denervation or muscle disuse and in cultured myotubes by inhibition of activity. Activity induces and represses MyoD through the DRR and PRR, respectively. During the postnatal period, accumulation of beta-galactosidase correlates with maturation of innervation. Strikingly, endogenous MyoD expression is up-regulated in fibres by complete denervation, arguing for a separate activity-dependent suppression of MyoD requiring regulatory elements outside the DRR/PRR. CONCLUSION The data show that MyoD regulation is more complex than previously supposed. Two factors, MyoD protein itself and fibre activity are required for essentially all expression of the 6 kb proximal enhancer/promoter (DRR/PRR) of MyoD in adult fibres. We propose that modulation of MyoD positive feedback by electrical activity determines the set point of MyoD expression in innervated fibres through the DRR/PRR element.
Collapse
Affiliation(s)
- Sophie B Chargé
- Randall Division for Cell and Molecular Biophysics and the MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Campus, King's College London, London, UK.
| | | | | | | |
Collapse
|
38
|
van Zeeland AA, de Groot AJL, Mohn GR, van Steeg H, van Oostrom C, van Duijn-Goedhart AM, Mullenders LFH, Jansen JG. Reduced methylation-induced mutagenesis in rat splenocytes in vivo by sub-chronic low dose exposure to N-metyl-N-nitrosourea. Mutat Res 2007; 640:131-8. [PMID: 18249417 DOI: 10.1016/j.mrfmmm.2007.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 12/18/2007] [Accepted: 12/19/2007] [Indexed: 10/22/2022]
Abstract
Estimates of genotoxic effects of mutagens at low and protracted doses are often based on linear extrapolation of data obtained at relatively high doses. To test the validity of such an approach, a comparison was made between the mutagenicity of N-methyl-N-nitrosourea (MNU) in T-lymphocytes of the rat following two treatment protocols, i.e. sub-chronic exposure to a low dose (15-45 repeated exposures to 1mg/kg of MNU) or acute exposure to a single high dose (15, 30 or 45 mg/kg of MNU). Mutation induction appeared dramatically lower following sub-chronic treatment compared to treatment with a single high exposure. Furthermore, DNA sequence analysis of the coding region of the hprt gene in MNU-induced mutants showed that acute high dose treatment causes mainly GC-->AT base pair changes, whereas sub-chronic treatment results in a significant contribution of AT base pair changes to mutation induction. We hypothesize that O(6)-methylguanine-DNA methyltransferase is saturated after acute treatments, while after sub-chronic treatment most O(6)-methylguanine is efficiently repaired. These data suggest (i) that risk estimations at low and protracted doses of MNU on the basis of linear extrapolation of effects measured at high dose are too high and (ii) that the protective effects of DNA repair processes are relatively strong at low sub-chronic exposure.
Collapse
Affiliation(s)
- Albert A van Zeeland
- Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kostecki LM, Thomas M, Linford G, Lizotte M, Toxopeus L, Bartleman AP, Kirkland JB. Niacin deficiency delays DNA excision repair and increases spontaneous and nitrosourea-induced chromosomal instability in rat bone marrow. Mutat Res 2007; 625:50-61. [PMID: 17618655 DOI: 10.1016/j.mrfmmm.2007.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 05/07/2007] [Accepted: 05/10/2007] [Indexed: 05/16/2023]
Abstract
We have shown that niacin deficiency impairs poly(ADP-ribose) formation and enhances sister chromatid exchanges and micronuclei formation in rat bone marrow. We designed the current study to investigate the effects of niacin deficiency on the kinetics of DNA repair following ethylation, and the accumulation of double strand breaks, micronuclei (MN) and chromosomal aberrations (CA). Weanling male Long-Evans rats were fed niacin deficient (ND), or pair fed (PF) control diets for 3 weeks. We examined repair kinetics by comet assay in the 36h following a single dose of ethylnitrosourea (ENU) (30mg/kg bw). There was no effect of ND on mean tail moment (MTM) before ENU treatment, or on the development of strand breaks between 0 and 8h after ENU. Repair kinetics between 12 and 30h were significantly delayed by ND, with a doubling of area under the MTM curve during this period. O(6)-ethylation of guanine peaked by 1.5h, was largely repaired by 15h, and was also delayed in bone marrow cells from ND rats. ND significantly enhanced double strand break accumulation at 24h after ENU. ND alone increased chromosome and chromatid breaks (four- and two-fold). ND alone caused a large increase in MN, and this was amplified by ENU treatment. While repair kinetics suggest that ND may be acting by creating catalytically inactive PARP molecules with a dominant-negative effect on repair processes, the effect of ND alone on O(6)-ethylation, MN and CA, in the absence of altered comet results, suggests additional mechanisms are also leading to chromosomal instability. These data support the idea that the bone marrow cells of niacin deficient cancer patients may be more sensitive to the side effects of genotoxic chemotherapy, resulting in acute bone marrow suppression and chronic development of secondary leukemias.
Collapse
Affiliation(s)
- Lisa M Kostecki
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | | | | | |
Collapse
|
40
|
Parkinson JF, Wheeler HR, Clarkson A, McKenzie CA, Biggs MT, Little NS, Cook RJ, Messina M, Robinson BG, McDonald KL. Variation of O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation in serial samples in glioblastoma. J Neurooncol 2007; 87:71-8. [PMID: 18004504 DOI: 10.1007/s11060-007-9486-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 10/17/2007] [Indexed: 11/25/2022]
Abstract
Methylation of the promoter region of the O ( 6 ) -methylguanine-DNA methyltransferase (MGMT) gene is known to be predictive of response to temozolomide treatment in patients with glioblastoma. Contrastingly, little is known about variation in the methylation status of the MGMT promoter after treatment or across different regions of the same tumor. About 22 samples from 10 patients who had undergone multiple resections of a glioblastoma were examined with promoter sequencing. Of these, 20 were also analyzed using Methylation Specific PCR (MSP). The methylation status of the MGMT promoter was altered in the specimens obtained pre and post treatment in 2 of 9 samples as assessed by MSP and 7 out of 10 patients as assessed by promoter sequencing. In four patients, the MGMT promoter was unmethylated at primary surgery, but displayed some methylation (32, 44, 12, and 4%) on post-treatment sampling. Alteration in MSP status from unmethylated to methylated was also observed in 2 of these 4 patients. In another patient, methylation increased from 40% on initial sampling to 68% on the second sample. The remaining two patients initially demonstrated some degree of methylation (72% and 12%); subsequent sampling showed no methylation of the MGMT promoter. To ensure variable methylation status was not due to intra-tumoral variability, three to four specimens were sampled from different regions of large glioblastomas (n = 7). Promoter sequencing revealed minimal variation in methylation in all but two sites examined. Immunohistochemistry also demonstrated minimal change in MGMT expression across the tumors. This suggests that variation in MGMT promoter methylation can occur within the same tumor after treatment, necessitating caution in clinical decision-making based on this analysis.
Collapse
Affiliation(s)
- Jonathon F Parkinson
- Cancer Genetics Group, Kolling Institute of Medical Research, University of Sydney, St Leonards, NSW 2065, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Povey AC, Margison GP, Santibáñez-Koref MF. Lung cancer risk and variation in MGMT activity and sequence. DNA Repair (Amst) 2007; 6:1134-44. [PMID: 17569600 DOI: 10.1016/j.dnarep.2007.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
O(6)-Alkylguanine-DNA alkyltransferase (MGMT) repairs DNA adducts that result from alkylation at the O(6) position of guanine. These lesions are mutagenic and toxic and can be produced by a variety of agents including the tobacco-specific nitrosamines, carcinogens present in cigarette smoke. Here, we review some of our work in the context of inter-individual differences in MGMT expression and their potential influence on lung cancer risk. In humans there are marked inter-individual differences in not only levels of DNA damage in the lung (N7-methylguanine) that can arise from exposure to methylating agents but also in MGMT activity in lung tissues. In the presence of such exposure, this variability in MGMT activity may alter cancer susceptibility, particularly as animal models have demonstrated that the complete absence of MGMT activity predisposes to alkylating-agent induced cancer while overexpression is protective. Recent studies have uncovered a series of polymorphisms that affect protein activity or are associated with differences in expression levels. The associations between these (and other) polymorphisms and cancer risk are inconsistent, possibly because of small sample sizes and inter-study differences in lung cancer histology. We have recently analysed a consecutive series of case-control studies and found evidence that lung cancer risk was lower in subjects with the R178 allele.
Collapse
Affiliation(s)
- Andrew C Povey
- Centre for Occupational and Environmental Health, University of Manchester, United Kingdom.
| | | | | |
Collapse
|
42
|
Abstract
Alkylation of DNA at the O(6)-position of guanine is one of the most critical events leading to mutation, cancer, and cell death. O(6)-alkylguanine-DNA alkyltransferase (AGT), also known as O(6)-methylguanine-DNA methyltransferase (MGMT), is the DNA repair protein responsible for removing alkylation adducts from the O(6)-position of guanine in DNA. The promoter CpG island hypermethylation-associated gene silencing of MGMT is associated with a wide spectrum of human tumors. This epigenetic inactivation of MGMT has two main consequences in human cancer. First, it uncovers a new mutator pathway that causes the accumulation of G-to-A transition mutations that can affect genes required for genomic stability. Second, there is a strong and significant positive correlation between MGMT promoter hypermethylation and increased tumor sensitivity to alkylating drugs. These findings underline the importance of MGMT promoter hypermethylation in basic and translational cancer research.
Collapse
Affiliation(s)
- Filipe V Jacinto
- Cancer Epigenetics Laboratory, Molecular Pathology Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | | |
Collapse
|
43
|
Kaina B, Christmann M, Naumann S, Roos WP. MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst) 2007; 6:1079-99. [PMID: 17485253 DOI: 10.1016/j.dnarep.2007.03.008] [Citation(s) in RCA: 456] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
O(6)-methylguanine-DNA methyltransferase (MGMT) plays a crucial role in the defense against alkylating agents that generate, among other lesions, O(6)-alkylguanine in DNA (collectively termed O(6)-alkylating agents [O(6)AA]). The defense is highly important, since O(6)AA are common environmental carcinogens, are formed endogenously during normal cellular metabolism and possibly inflammation, and are being used in cancer therapy. O(6)AA induced DNA damage is subject to repair, which is executed by MGMT, AlkB homologous proteins (ABH) and base excision repair (BER). Although this review focuses on MGMT, the mechanism of repair by ABH and BER will also be discussed. Experimental systems, in which MGMT has been modulated, revealed that O(6)-methylguanine (O(6)MeG) and O(6)-chloroethylguanine are major mutagenic, carcinogenic, recombinogenic, clastogenic and killing lesions. O(6)MeG-induced clastogenicity and cell death require MutS alpha-dependent mismatch repair (MMR), whereas O(6)-chloroethylguanine-induced killing occurs independently of MMR. Extensive DNA replication is required for O(6)MeG to provoke cytotoxicity. In MGMT depleted cells, O(6)MeG induces apoptosis almost exclusively, barely any necrosis, which is presumably due to the remarkable ability of secondarily formed DNA double-strand breaks (DSBs) to trigger apoptosis via ATM/ATR, Chk1, Chk2, p53 and p73. Depending on the cellular background, O(6)MeG activates both the death receptor and the mitochondrial apoptotic pathway. The inter-individual expression of MGMT in human lymphocytes is highly variable. Given the key role of MGMT in cellular defense, determination of MGMT activity could be useful for assessing a patient's drug sensitivity. MGMT is expressed at highly variable amounts in human tumors. In gliomas, a correlation was found between MGMT activity, MGMT promoter methylation and response to O(6)AA. Although the human MGMT gene is inducible by glucocorticoids and genotoxins such as radiation and alkylating agents, the role of this induction in the protection against carcinogens and the development of chemotherapeutic alkylating drug resistance are still unclear. Modulation of MGMT expression in tumors and normal tissue is currently being investigated as a possible strategy for improving cancer therapy.
Collapse
Affiliation(s)
- Bernd Kaina
- Department of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | | | | | | |
Collapse
|
44
|
Valentini AM, Armentano R, Pirrelli M, Caruso ML. Chemotherapeutic agents for colorectal cancer with a defective mismatch repair system: The state of the art. Cancer Treat Rev 2006; 32:607-18. [PMID: 17055172 DOI: 10.1016/j.ctrv.2006.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 07/27/2006] [Accepted: 08/14/2006] [Indexed: 01/09/2023]
Abstract
Mismatch repair (MMR) proteins are capable of recognizing and processing not only single base-pair mismatches and insertion-deletion loops that occur during DNA replication, but also adducts in DNA resulting from treatment with cancer chemotherapy agents. MMR deficiency leads to microsatellite instability (MSI) and results in resistance to antimetabolites, alkylating and platinating agents, DNA minor groove binders, and inhibitors of topoisomerases. Therefore, anticancer agents that can be recommended for use in MMR deficient colorectal cancers are those that exert their cytotoxicity regardless of the MMR status. These include some alkylating drugs, brostacillin, gemcytabine, photodynamic therapy, taxanes. An approach that is currently receiving much attention is the use of agents such as 5-azacytidine, an inhibitor of the DNA methyltransferases, in combination with inhibitors of histone de-acetylation, to restore the MMR function. A strong anti-proliferative efficacy with a relatively low direct cytotoxicity, obtainable with oloumicine and roscovitine (selective cyclin-dependent kinases inhibitors) can represent a new expedient for the therapeutic treatment of MMR deficient colorectal cancers. The question of how MMR defects modulate the response to chemotherapeutics deserves further investigation, to enable a more aware choice of cancer treatment.
Collapse
Affiliation(s)
- Anna Maria Valentini
- IRCCS, Pathology, via della resistenza, 70013 Castellana Grotte, Castellana Grotte, Italy.
| | | | | | | |
Collapse
|
45
|
Ishiguro K, Seow HA, Penketh PG, Shyam K, Sartorelli AC. Mode of action of the chloroethylating and carbamoylating moieties of the prodrug cloretazine. Mol Cancer Ther 2006; 5:969-76. [PMID: 16648568 PMCID: PMC2680221 DOI: 10.1158/1535-7163.mct-05-0532] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cloretazine is an antitumor sulfonylhydrazine prodrug that generates both chloroethylating and carbamoylating species. The cytotoxic potency of these species was analyzed in L1210 leukemia cells using analogues with chloroethylating or carbamoylating function only. Clonogenic assays showed that the chloroethylating-only agent 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) produced marked differential cytotoxicity against wild-type and O6-alkylguanine-DNA alkyltransferase-transfected L1210 cells (LC10, 1.4 versus 31 micromol/L), indicating that a large portion of the cytotoxicity was due to alkylation of DNA at the O-6 position of guanine. Consistent with the concept that O-6 chloroethylation of DNA guanine progresses to interstrand cross-links, the comet assay, in which DNA cross-links were measured by a reduction in DNA migration induced by strand breaks, showed that cloretazine and 90CE, but not the carbamoylating-only agent 1,2-bis(methylsulfonyl)-1-[(methylamino)carbonyl]hydrazine (101MDCE), produced DNA cross-links and that cloretazine caused more DNA cross-links than 90CE at equimolar concentrations. Cell cycle analyses showed that 90CE and 101MDCE at concentrations of 5 and 80 micromol/L, respectively, produced similar degrees of G2-M arrest. 90CE produced selective inhibition of DNA synthesis after overnight incubation, whereas 101MDCE caused rapid and nonselective inhibition of RNA, DNA, and protein syntheses. Both 90CE and 101MDCE induced phosphorylation of histone H2AX, albeit with distinct kinetics. These results indicate that (a) differential expression of O6-alkylguanine-DNA alkyltransferase in tumor and host cells seems to be responsible for tumor selectivity exerted by cloretazine; (b) 101MDCE enhances DNA cross-linking activity; and (c) 90CE induces cell death at concentrations lower than those causing alterations in the cell cycle and macromolecular syntheses.
Collapse
Affiliation(s)
- Kimiko Ishiguro
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
46
|
Mounetou E, Cussac C, Mathieu F, Maurizis JC, Labarre P, Moreau MF, Veyre A, Madelmont JC. Synthesis of three no-carrier-added O6-4-[125I] iodobenzylguanosine derivatives, new reagents for the assay of O6-alkylguanine-DNA alkyltransferase activity. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.2580361212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Rabik CA, Njoku MC, Dolan ME. Inactivation of O6-alkylguanine DNA alkyltransferase as a means to enhance chemotherapy. Cancer Treat Rev 2006; 32:261-76. [PMID: 16698182 DOI: 10.1016/j.ctrv.2006.03.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 03/14/2006] [Accepted: 03/15/2006] [Indexed: 10/24/2022]
Abstract
DNA adducts at the O6-position of guanine are a result of the carcinogenic, mutagenic and cytotoxic actions of methylating and chloroethylating agents. The presence of the DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT) renders cells resistant to the biological effects induced by agents that attack at this position. O6-Benzylguanine (O6-BG) is a low molecular weight substrate of AGT and therefore, results in sensitizing cells and tumors to alkylating agent-induced cytotoxicity and antitumor activity. Presently, chemotherapy regimens of O6-BG in combination with BCNU, temozolomide and Gliadel are in clinical development. Other ongoing clinical trials include expression of mutant AGT proteins that confer resistance to O6-BG in bone marrow stem cells, in an effort to reduce the potential enhanced toxicity and mutagenicity of alkylating agents in the bone marrow. O6-BG has also been found to enhance the cytotoxicity of agents that do not form adducts at the O6-position of DNA, including platinating agents. O6-BG's mechanism of action with these agents is not fully understood; however, it is independent of AGT activity or AGT inactivation. A better understanding of the effects of this agent will contribute to its clinical usefulness and the design of better analogs to further improve cancer chemotherapy.
Collapse
Affiliation(s)
- Cara A Rabik
- Department of Medicine, Committee on Cancer Biology, Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
48
|
Ishiguro K, Shyam K, Penketh PG, Sartorelli AC. Role of O6-alkylguanine-DNA alkyltransferase in the cytotoxic activity of cloretazine. Mol Cancer Ther 2006; 4:1755-63. [PMID: 16275997 DOI: 10.1158/1535-7163.mct-05-0169] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cloretazine (VNP40101M; 101M; 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(methylamino)carbonyl]hydrazine) is a sulfonylhydrazine prodrug that generates both chloroethylating and carbamoylating species on activation. To explore the molecular mechanisms underlying the broad anticancer activity observed in preclinical studies, cloretazine and chloroethylating-only [i.e., 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine] and carbamoylating-only (i.e., 1,2-bis(methylsulfonyl)-1-[(methylamino)carbonyl]hydrazine) analogues were evaluated in five murine hematopoietic cell lines. These cell lines were separable into two groups by virtue of their sensitivity to 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine; the sensitive group included L1210, P388, and F-MEL leukemias (IC50s, 6-8 micromol/L) and the resistant group consisted of Ba/F3 bone marrow and WEHI-3B leukemia cells (IC50s, 50-70 micromol/L). Resistant cells expressed O6-alkylguanine-DNA alkyltransferase (AGT), whereas sensitive cells did not. A correlation existed between AGT expression and the functional status of p53; AGT- cells possessed defective p53, whereas AGT+ cells contained wild-type p53. Based on recent findings on regulation of AGT gene expression by others, we suspect that silencing of the AGT gene by promoter hypermethylation frequently occurs during tumor progression involving p53 inactivation. O6-Chloroethylguanine is the initial DNA lesion that progresses to lethal interstrand DNA cross-links. Cloretazine exhibited a much higher preference toward the O6-chloroethylation of guanine, as measured by the difference in IC50s to wild-type and AGT-transfected L1210 cells, than 1,3-bis(2-chloroethyl)-1-nitrosourea, which targets the same site in DNA. Preferential toxicity of cloretazine against AGT- tumor cells coupled with decreased toxicity to AGT+ cells in host tissues constitute the therapeutic basis for cloretazine.
Collapse
Affiliation(s)
- Kimiko Ishiguro
- Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
49
|
Abstract
O(6)-Methylguanine DNA methyltransferase (MGMT) has been studied for >20 years as a gene that is associated with the mutagenicity and cytotoxicity induced by either methylating carcinogens or alkylating (methylating and chloroethylating) therapeutic agents. Pioneering studies of alkylating agents identified alkylated guanine at the O(6) position, the substrate of MGMT, as a potentially promutagenic and lethal toxic DNA lesion. MGMT plays a prominent role in DNA adduct repair that limits the mutagenic and cytotoxic effect of alkylating agents. Because of its role in cancer etiology and chemotherapy resistance, MGMT is of particular interest. In this article, the clinical effect of MGMT expression and targeted modulation of MGMT will be summarized.
Collapse
Affiliation(s)
- Lili Liu
- Department of Medicine, Division of Hematology/Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
50
|
Povey AC, O'Donnell P, Barber P, Watson M, Margison GP, Santibáñez Koref MF. Smoking is associated with a decrease ofO6-alkylguanine-DNA alkyltransferase activity in bronchial epithelial cells. Int J Cancer 2006; 119:463-6. [PMID: 16477630 DOI: 10.1002/ijc.21790] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
O6-alkylguanine-DNA alkyltransferase (MGMT) represents the first line of defense against the toxic, mutagenic and carcinogenic effects of O6-alkylguanine adducts in DNA. These adducts mediate the biological activity from a series of alkylating agents, such as the tobacco-specific nitrosamines, believed to contribute to the carcinogenicity of tobacco smoke. There have been conflicting reports on the effects of smoking on MGMT activity in lung and other tissues. Here, we investigate MGMT activity in peripheral blood mononuclear cells (PBMC) and lung bronchial epithelial cells (BEC), extracted by lung brushings, from smokers and nonsmokers attending a bronchoscopy clinic. MGMT activity was significantly lower in BECs (geometric mean; 95% confidence interval 1.02; 0.86-1.20 fmol/microg DNA) than in PBMCs (7.86; 6.70-9.59 fmol/microg DNA; p < 0.001), suggesting that bronchial epithelia may be particularly sensitive to alkylation damage. More importantly our results indicate that activity in BECs is significantly decreased in samples from current smokers (0.71; 0.54-0.93 fmol/microg DNA) compared to nonsmokers (1.25; 1.03-1.51 fmol/microg DNA; p = 0.002). This could represent an important contribution to the carcinogenicity of tobacco smoke.
Collapse
Affiliation(s)
- Andrew C Povey
- Centre for Occupational and Environmental Health, University of Manchester, Manchester, United Kingdom.
| | | | | | | | | | | |
Collapse
|