1
|
Elimam H, Eldeib MG, Kizilaslan EZ, Alhamshry NAA, Ashour AE, Elfar N, Abdel-Wahab MM, Zaki MB, Mohammed OA, Radwan AF, Abdel-Reheim MA, Moussa R, Doghish AS. Exploring the interplay of natural products and long non-coding RNAs in colorectal cancer: pathogenesis, diagnosis, and overcoming drug resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1243-1263. [PMID: 39287672 DOI: 10.1007/s00210-024-03425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Colorectal cancer (CRC) is recognized as one of the most prevalent malignancies, both in terms of incidence and mortality rates. Current research into CRC has shed light on the molecular mechanisms driving its development. Several factors, including lifestyle, environmental influences, genetics, and diet, play significant roles in its pathogenesis. Natural compounds such as curcumin, tanshinone, lycorine, sinomenine, kaempferol, verbascoside, quercetin, berberine, and fisetin have shown great promise in the prevention and treatment of CRC. Research has also highlighted the significance of non-coding RNAs (ncRNAs) as biomarkers and therapeutic targets in CRC. Among these, long non-coding RNAs (lncRNAs) have been found to regulate the transcription of genes involved in cancer. LncRNAs contribute to cancer stem cell (CSC) proliferation, angiogenesis, epithelial-mesenchymal transition (EMT), and chemoresistance. Specific lncRNAs, including GAS5, LNC00337, HOTAIR, TPT1-AS1, cCSC1, BCAR4, TUG1, and Solh2, play crucial roles in these processes. They hold potential as novel biomarkers, detectable in bodily fluids and tissues, and could serve as therapeutic targets due to their involvement in drug resistance and sensitivity. These insights could improve CRC treatment strategies, addressing resistance to chemotherapy and radiotherapy. This review article aims to provide a comprehensive analysis of the current knowledge regarding the effectiveness of natural anti-cancer agents in CRC treatment. Additionally, it offers an in-depth evaluation of lncRNAs in CRC, their role in the disease's progression, and their potential applications in its management.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Mahmoud Gomaa Eldeib
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11231, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, 41636, Egypt
| | | | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Abdelkader E Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Salman International University, Ras Sudr, South Sinai, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, 11578, Cairo, Egypt
- Egyptian Drug Authority, Ministry of Health and Population, Cairo, 11567, Egypt
| | - Maie M Abdel-Wahab
- Department of Biochemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, 41636, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmacology, College of Pharmacy, Shaqra University, 11961, Shaqra, Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62521, Egypt.
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo, Badr City, 11829, Cairo, Egypt
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
2
|
Xia J, Zhou C, Zhao H, Zhang J, Chai X. LINC01614 Accelerates CRC Progression via STAT1/LINC01614/miR-4443/PFKFB3-Mediated Aerobic Glycolysis. Dig Dis Sci 2025; 70:215-232. [PMID: 39641899 DOI: 10.1007/s10620-024-08756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is an aggressive malignancy among malignant tumours, with a high incidence globally. LINC01614, a long non-coding RNA, has been identified as an essential regulator in multiple cancer types. However, its biological functions and underlying molecular mechanisms in CRC remain largely unknown. METHODS In this study, we employed RT-qPCR to assess the expression levels of LINC01614 in CRC samples. In vitro, glucose metabolism experiments were conducted to evaluate glucose metabolism in cells. The binding relationship between miR-4443, PFKFB3, and LINC01614 was confirmed through fluorescence reporter gene detection. The subcellular localization of LINC01614 in CRC cells was determined using FISH and subcellular fractionation experiments. Additionally, a mouse subcutaneous tumor model was established for in vivo experiments. RESULTS Our findings reveal that LINC01614 is upregulated in CRC tissues. Silencing of LINC01614 suppresses the malignant behaviors of CRC cells, including cell proliferation, invasion, migration, and aerobic glycolysis. Furthermore, we discovered that LINC01614 promotes the expression of PFKFB3. Additional experiments demonstrated that LINC01614 binds to miR-4443, leading to the upregulation of PFKFB3 expression. Further experiments confirmed that the LINC01614/miR-4443/PFKFB3 axis promotes CRC cell malignancy by enhancing aerobic glycolysis. Additionally, we found that STAT1 promotes the transcription of LINC01614. CONCLUSION These findings uncover a novel regulatory pathway wherein STAT1-induced LINC01614 enhances PFKFB3 expression by sponging miR-4443, thereby accelerating CRC development. This understanding may lead to novel therapeutic strategies for CRC treatment.
Collapse
Affiliation(s)
- Jiangyan Xia
- Department of Anesthesiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Chenglin Zhou
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, Huaian, Jiangsu, China
| | - Heng Zhao
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, Huaian, Jiangsu, China
| | - Jun Zhang
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, Huaian, Jiangsu, China
| | - Xiaoming Chai
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, Huaian, Jiangsu, China.
| |
Collapse
|
3
|
Peng X, Li S, Zeng A, Song L. Regulatory function of glycolysis-related lncRNAs in tumor progression: Mechanism, facts, and perspectives. Biochem Pharmacol 2024; 229:116511. [PMID: 39222714 DOI: 10.1016/j.bcp.2024.116511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Altered metabolism is a hallmark of cancer, and reprogramming of energy metabolism, known as the "Warburg effect", has long been associated with cancer. Cancer cells use the process of glycolysis to quickly manufacture energy from glucose, pyruvic acid, and lactate, which in turn accelerates the growth of cancer and glycolysis becomes a key target for anti-cancer therapies. Recent groundbreaking discoveries regarding long noncoding RNAs (lncRNAs) have opened a new chapter in the mechanism of cancer occurrence. It is widely recognized that lncRNAs regulate energy metabolism through glycolysis in cancer cells. LncRNAs have been demonstrated to engage in several cancer processes such as proliferation, apoptosis, migration, invasion, and chemoresistance, whereas glycolysis is enhanced or inhibited by the dysregulation of lncRNAs. As a result, cancer survival and development are influenced by different signaling pathways. In this review, we summarize the roles of lncRNAs in a variety of cancers and describe the mechanisms underlying their role in glycolysis. Additionally, the predictive potential of glycolysis and lncRNAs in cancer therapy is discussed.
Collapse
Affiliation(s)
- Xinyi Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, PR China
| | - Shuhao Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, PR China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, P.R. China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, PR China.
| |
Collapse
|
4
|
Zhang X, Zhang Y, Liu Q, Zeng A, Song L. Glycolysis-associated lncRNAs in cancer energy metabolism and immune microenvironment: a magic key. Front Immunol 2024; 15:1456636. [PMID: 39346921 PMCID: PMC11437524 DOI: 10.3389/fimmu.2024.1456636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
The dependence of tumor cells on glycolysis provides essential energy and raw materials for their survival and growth. Recent research findings have indicated that long chain non-coding RNAs (LncRNAs) have a key regulatory function in the tumor glycolytic pathway and offer new opportunities for cancer therapy. LncRNAs are analogous to a regulatory key during glycolysis. In this paper, we review the mechanisms of LncRNA in the tumor glycolytic pathway and their potential therapeutic strategies, including current alterations in cancer-related energy metabolism with lncRNA mediating the expression of key enzymes, lactate production and transport, and the mechanism of interaction with transcription factors, miRNAs, and other molecules. Studies targeting LncRNA-regulated tumor glycolytic pathways also offer the possibility of developing new therapeutic strategies. By regulating LncRNA expression, the metabolic pathways of tumor cells can be interfered with to inhibit tumor growth and metastasis, thus affecting the immune and drug resistance mechanisms of tumor cells. In addition, lncRNAs have the capacity to function as molecular markers and target therapies, thereby contributing novel strategies and approaches to the field of personalized cancer therapy and prognosis evaluation. In conclusion, LncRNA, as key molecules regulating the tumor glycolysis pathway, reveals a new mechanism of abnormal metabolism in cancer cells. Future research will more thoroughly investigate the specific mechanisms of LncRNA glycolysis regulation and develop corresponding therapeutic strategies, thereby fostering new optimism for the realization of precision medicine.
Collapse
Affiliation(s)
- Xi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yunchao Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Hashemi M, Esbati N, Rashidi M, Gholami S, Raesi R, Bidoki SS, Goharrizi MASB, Motlagh YSM, Khorrami R, Tavakolpournegari A, Nabavi N, Zou R, Mohammadnahal L, Entezari M, Taheriazam A, Hushmandi K. Biological landscape and nanostructural view in development and reversal of oxaliplatin resistance in colorectal cancer. Transl Oncol 2024; 40:101846. [PMID: 38042134 PMCID: PMC10716031 DOI: 10.1016/j.tranon.2023.101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023] Open
Abstract
The treatment of cancer patients has been mainly followed using chemotherapy and it is a gold standard in improving prognosis and survival rate of patients. Oxaliplatin (OXA) is a third-platinum anti-cancer agent that reduces DNA synthesis in cancer cells to interfere with their growth and cell cycle progression. In spite of promising results of using OXA in cancer chemotherapy, the process of drug resistance has made some challenges. OXA is commonly applied in treatment of colorectal cancer (CRC) as a malignancy of gastrointestinal tract and when CRC cells increase their proliferation and metastasis, they can obtain resistance to OXA chemotherapy. A number of molecular factors such as CHK2, SIRT1, c-Myc, LATS2 and FOXC1 have been considered as regulators of OXA response in CRC cells. The non-coding RNAs are able to function as master regulator of other molecular pathways in modulating OXA resistance. There is a close association between molecular mechanisms such as apoptosis, autophagy, glycolysis and EMT with OXA resistance, so that apoptosis inhibition, pro-survival autophagy induction and stimulation of EMT and glycolysis can induce OXA resistance in CRC cells. A number of anti-tumor compounds including astragaloside IV, resveratrol and nobiletin are able to enhance OXA sensitivity in CRC cells. Nanoparticles for increasing potential of OXA in CRC suppression and reversing OXA resistance have been employed in cancer chemotherapy. These subjects are covered in this review article to shed light on molecular factors resulting in OXA resistance.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Nastaran Esbati
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Shahabadin Bidoki
- Faculty of medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Leila Mohammadnahal
- Department of Health Services Management, School of Health, Tehran University of Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
6
|
Li S, Peng M, Tan S, Oyang L, Lin J, Xia L, Wang J, Wu N, Jiang X, Peng Q, Zhou Y, Liao Q. The roles and molecular mechanisms of non-coding RNA in cancer metabolic reprogramming. Cancer Cell Int 2024; 24:37. [PMID: 38238756 PMCID: PMC10795359 DOI: 10.1186/s12935-023-03186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024] Open
Abstract
One of the key features of cancer is energy metabolic reprogramming which is tightly related to cancer proliferation, invasion, metastasis, and chemotherapy resistance. NcRNAs are a class of RNAs having no protein-coding potential and mainly include microRNAs, lncRNAs and circRNAs. Accumulated evidence has suggested that ncRNAs play an essential role in regulating cancer metabolic reprogramming, and the altered metabolic networks mediated by ncRNAs primarily drive carcinogenesis by regulating the expression of metabolic enzymes and transporter proteins. Importantly, accumulated research has revealed that dysregulated ncRNAs mediate metabolic reprogramming contributing to the generation of therapeutic tolerance. Elucidating the molecular mechanism of ncRNAs in cancer metabolic reprogramming can provide promising metabolism-related therapeutic targets for treatment as well as overcome therapeutic tolerance. In conclusion, this review updates the latest molecular mechanisms of ncRNAs related to cancer metabolic reprogramming.
Collapse
Affiliation(s)
- Shizhen Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiewen Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
7
|
Hou XR, Zhang ZD, Cao XL, Wang XP. Long noncoding RNAs, glucose metabolism and cancer (Review). Oncol Lett 2023; 26:340. [PMID: 37427347 PMCID: PMC10326653 DOI: 10.3892/ol.2023.13925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Cancer is a serious and potentially life-threatening disease, which, despite numerous advances over several decades, remains a challenge to treat that challenging to detect at an early stage or treat during the later stages. Long noncoding RNAs are >200 nucleotides long and do not possess protein-coding capacity, instead regulating cellular processes, such as proliferation, differentiation, maturation, apoptosis, metastasis, and sugar metabolism. Several studies have shown the role of lncRNAs and glucose metabolism in regulating several key glycolytic enzymes and the activity of multiple functional signaling pathways during tumor progression. Thus, it is possible to further learn about the effects of lncRNA and glycolytic metabolism on tumor diagnosis, treatment, and prognosis through a thorough investigation of the lncRNA expression profiles and glycolytic metabolism in tumors. This may provide a novel strategy for improving the management of several types of cancer.
Collapse
Affiliation(s)
- Xin-Rui Hou
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Zhen-Dong Zhang
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Xiao-Lan Cao
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Xiao-Ping Wang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| |
Collapse
|
8
|
Xiong B, Huang Q, Zheng H, Lin S, Xu J. Recent advances microRNAs and metabolic reprogramming in colorectal cancer research. Front Oncol 2023; 13:1165862. [PMID: 37576895 PMCID: PMC10415904 DOI: 10.3389/fonc.2023.1165862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/07/2023] [Indexed: 08/15/2023] Open
Abstract
Colorectal cancer (CRC) is a cancer with the highest incidence and mortality. Alteration of gene expression is the main pathophysiological mechanism of CRC, which results in disturbed signaling pathways and cellular metabolic processes. MicroRNAs are involved in almost all pathophysiological processes and are correlative with colorectal cancer metabolism, proliferation, and chemotherapy resistance. Metabolic reprogramming, an important feature of cancer, is strongly correlative with the development and prognosis of cancers, including colorectal cancer. MicroRNAs can target enzymes involved in metabolic processes, thus playing a regulatory role in tumor metabolism. The disorder of the signaling pathway is another characteristic of tumor, which induces the occurrence and proliferation of tumors, and is closely correlative with the prognosis and chemotherapy resistance of tumor patients. MicroRNAs can target the components of the signaling pathways to regulate their transduction. Understanding the function of microRNAs in the occurrence and proliferation of CRC provides novel insights into the optimal treatment strategies, prognosis, and development of diagnosis in CRC. This article reviews the relationship between CRC and microRNA expression and hopes to provide new options for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Bin Xiong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Qiaoyi Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Huida Zheng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jianhua Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
9
|
Jin N, Kan CM, Pei XM, Cheung WL, Ng SSM, Wong HT, Cheng HYL, Leung WW, Wong YN, Tsang HF, Chan AKC, Wong YKE, Cho WCS, Chan JKC, Tai WCS, Chan TF, Wong SCC, Yim AKY, Yu ACS. Cell-free circulating tumor RNAs in plasma as the potential prognostic biomarkers in colorectal cancer. Front Oncol 2023; 13:1134445. [PMID: 37091184 PMCID: PMC10115432 DOI: 10.3389/fonc.2023.1134445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
BackgroundCell free RNA (cfRNA) contains transcript fragments from multiple cell types, making it useful for cancer detection in clinical settings. However, the pathophysiological origins of cfRNAs in plasma from colorectal cancer (CRC) patients remain unclear.MethodsTo identify the tissue-specific contributions of cfRNAs transcriptomic profile, we used a published single-cell transcriptomics profile to deconvolute cell type abundance among paired plasma samples from CRC patients who underwent tumor-ablative surgery. We further validated the differentially expressed cfRNAs in 5 pairs of CRC tumor samples and adjacent tissue samples as well as 3 additional CRC tumor samples using RNA-sequencing.ResultsThe transcriptomic component from intestinal secretory cells was significantly decreased in the in-house post-surgical cfRNA. The HPGD, PACS1, and TDP2 expression was consistent across cfRNA and tissue samples. Using the Cancer Genome Atlas (TCGA) CRC datasets, we were able to classify the patients into two groups with significantly different survival outcomes.ConclusionsThe three-gene signature holds promise in applying minimal residual disease (MRD) testing, which involves profiling remnants of cancer cells after or during treatment. Biomarkers identified in the present study need to be validated in a larger cohort of samples in order to ascertain their possible use in early diagnosis of CRC.
Collapse
Affiliation(s)
- Nana Jin
- R&D, Codex Genetics Limited, Hong Kong, Hong Kong SAR, China
| | - Chau-Ming Kan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Xiao Meng Pei
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Wing Lam Cheung
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Simon Siu Man Ng
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Heong Ting Wong
- Department of Pathology, Kiang Wu Hospital, Macau, Macau SAR, China
| | - Hennie Yuk-Lin Cheng
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Wing Wa Leung
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yee Ni Wong
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | | | - Yin Kwan Evelyn Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR, China
| | | | - William Chi Shing Tai
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- *Correspondence: Allen Chi-Shing Yu, ; Aldrin Kay-Yuen Yim, ; Sze Chuen Cesar Wong,
| | - Aldrin Kay-Yuen Yim
- R&D, Codex Genetics Limited, Hong Kong, Hong Kong SAR, China
- *Correspondence: Allen Chi-Shing Yu, ; Aldrin Kay-Yuen Yim, ; Sze Chuen Cesar Wong,
| | - Allen Chi-Shing Yu
- R&D, Codex Genetics Limited, Hong Kong, Hong Kong SAR, China
- *Correspondence: Allen Chi-Shing Yu, ; Aldrin Kay-Yuen Yim, ; Sze Chuen Cesar Wong,
| |
Collapse
|
10
|
Yang H, Wang Z, Hu S, Chen L, Li W, Yang Z. miRNA-874-3p inhibits the migration, invasion and proliferation of breast cancer cells by targeting VDAC1. Aging (Albany NY) 2023; 15:705-717. [PMID: 36750173 PMCID: PMC9970320 DOI: 10.18632/aging.204474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/27/2022] [Indexed: 02/09/2023]
Abstract
Breast cancer is an important cause of crisis for women's life and health. Voltage-dependent anion channel 1 (VDAC1) is mainly localized in the outer mitochondrial membrane of all eukaryotes, and it plays a crucial role in the cell as the main interface between mitochondria and cellular metabolism. Through bioinformatics, we found that VDAC1 is abnormally highly expressed in breast cancer, and the prognosis of breast cancer patients with high VDAC1 expression is poor. Through in vivo and in vitro experiments, we found that VDAC1 can promote the proliferation, migration and invasion of breast cancer cells. Further research we found that VDAC1 can activate the wnt signaling pathway. Through analysis, we found that miR-874-3p can regulate the expression of VDAC1, and the expression of miR-874-3p is decreased in breast cancer, resulting in the increase of VDAC1 expression. Our findings will provide new targets and ideas for the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Housheng Yang
- School of Medicine, Hunan Normal University, Changsha 414006, Hunan, P.R. China
| | - Zhiwen Wang
- Key Laboratory of Chronic Noncommunicable Diseases, Yueyang Vocational Technical College, Yueyang 414006, Hunan, P.R. China
| | - Shuang Hu
- Yueyang Engineering Technology Research Center of Breast Disease Diagnosis and Treatment, Yueyang People’s Hospital, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang 414006, Hunan, P.R. China
| | - Lu Chen
- College of Health, Dongguan Polytechnic, Dongguan 523808, Guangdong, P.R. China
| | - Wei Li
- Yueyang Engineering Technology Research Center of Breast Disease Diagnosis and Treatment, Yueyang People’s Hospital, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang 414006, Hunan, P.R. China
| | - Zhongyi Yang
- Yueyang Engineering Technology Research Center of Breast Disease Diagnosis and Treatment, Yueyang People’s Hospital, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang 414006, Hunan, P.R. China
| |
Collapse
|
11
|
Entezari M, Taheriazam A, Orouei S, Fallah S, Sanaei A, Hejazi ES, Kakavand A, Rezaei S, Heidari H, Behroozaghdam M, Daneshi S, Salimimoghadam S, Mirzaei S, Hashemi M, Samarghandian S. LncRNA-miRNA axis in tumor progression and therapy response: An emphasis on molecular interactions and therapeutic interventions. Biomed Pharmacother 2022; 154:113609. [PMID: 36037786 DOI: 10.1016/j.biopha.2022.113609] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic factors are critical regulators of biological and pathological mechanisms and they could interact with different molecular pathways. Targeting epigenetic factors has been an idea approach in disease therapy, especially cancer. Accumulating evidence has highlighted function of long non-coding RNAs (lncRNAs) as epigenetic factors in cancer initiation and development and has focused on their association with downstream targets. microRNAs (miRNAs) are the most well-known targets of lncRNAs and present review focuses on lncRNA-miRNA axis in malignancy and therapy resistance of tumors. LncRNA-miRNA regulates cell death mechanisms such as apoptosis and autophagy in cancers. This axis affects tumor metastasis via regulating EMT and MMPs. Besides, lncRNA-miRNA axis determines sensitivity of tumor cells to chemotherapy, radiotherapy and immunotherapy. Based on the studies, lncRNAs can be affected by drugs and genetic tools in cancer therapy and this may affect expression level of miRNAs as their downstream targets, leading to cancer suppression/progression. LncRNAs have both tumor-promoting and tumor-suppressor functions in cancer and this unique function of lncRNAs has complicated their implication in tumor therapy. LncRNA-miRNA axis can also affect other signaling networks in cancer such as PI3K/Akt, STAT3, Wnt/β-catenin and EZH2 among others. Notably, lncRNA/miRNA axis can be considered as a signature for diagnosis and prognosis in cancers.
Collapse
Affiliation(s)
- Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Sima Orouei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran
| | - Shayan Fallah
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Arezoo Sanaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Hajar Heidari
- Department of Biomedical Sciences School of Public Health University at Albany State University of New York, Albany, NY 12208, USA
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Islamic Republic of Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran
| | - Sepideh Mirzaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Islamic Republic of Iran.
| |
Collapse
|
12
|
Yan S, Wang S, Wang X, Dai W, Chu J, Cheng M, Guo Z, Xu D. Emerging role of non-coding RNAs in glucose metabolic reprogramming and chemoresistance in colorectal cancer. Front Oncol 2022; 12:954329. [PMID: 35978828 PMCID: PMC9376248 DOI: 10.3389/fonc.2022.954329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Metabolic reprogramming plays a critical role in colorectal cancer (CRC). It contributes to CRC by shaping metabolic phenotypes and causing uncontrolled proliferation of CRC cells. Glucose metabolic reprogramming is common in carcinogenesis and cancer progression. Growing evidence has implicated the modifying effects of non-coding RNAs (ncRNAs) in glucose metabolic reprogramming and chemoresistance in CRC. In this review, we have summarized currently published studies investigating the role of ncRNAs in glucose metabolic alterations and chemoresistance in CRC. Elucidating the interplay between ncRNAs and glucose metabolic reprogramming provides insight into exploring novel biomarkers for the diagnosis and prognosis prediction of CRC.
Collapse
Affiliation(s)
- Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery of the Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Shufeng Wang
- Medical Experimental Training Center, Weifang Medical University, Weifang, China
| | - Xinyi Wang
- Clinical Medicine of Basic Medical School, Shandong First Medical University, Jinan, China
| | - Wenqing Dai
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Jinjin Chu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang, China
| | - Zhiliang Guo
- Department of Spine Surgery, The 80th Group Army Hospital of Chinese People’s Liberation Army (PLA), Weifang, China
- *Correspondence: Zhiliang Guo, ; Donghua Xu,
| | - Donghua Xu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
- Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, China
- *Correspondence: Zhiliang Guo, ; Donghua Xu,
| |
Collapse
|
13
|
Goel A, Ward DG, Noyvert B, Yu M, Gordon NS, Abbotts B, Colbourne JK, Kissane S, James ND, Zeegers MP, Cheng KK, Cazier JB, Whalley CM, Beggs AD, Palles C, Arnold R, Bryan RT. Combined exome and transcriptome sequencing of non-muscle-invasive bladder cancer: associations between genomic changes, expression subtypes, and clinical outcomes. Genome Med 2022; 14:59. [PMID: 35655252 PMCID: PMC9164468 DOI: 10.1186/s13073-022-01056-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Three-quarters of bladder cancer patients present with early-stage disease (non-muscle-invasive bladder cancer, NMIBC, UICC TNM stages Ta, T1 and Tis); however, most next-generation sequencing studies to date have concentrated on later-stage disease (muscle-invasive BC, stages T2+). We used exome and transcriptome sequencing to comprehensively characterise NMIBCs of all grades and stages to identify prognostic genes and pathways that could facilitate treatment decisions. Tumour grading is based upon microscopy and cellular appearances (grade 1 BCs are less aggressive, and grade 3 BCs are most aggressive), and we chose to also focus on the most clinically complex NMIBC subgroup, those patients with grade 3 pathological stage T1 (G3 pT1) disease. METHODS Whole-exome and RNA sequencing were performed in total on 96 primary NMIBCs including 22 G1 pTa, 14 G3 pTa and 53 G3 pT1s, with both exome and RNA sequencing data generated from 75 of these individual samples. Associations between genomic alterations, expression profiles and progression-free survival (PFS) were investigated. RESULTS NMIBCs clustered into 3 expression subtypes with different somatic alteration characteristics. Amplifications of ARNT and ERBB2 were significant indicators of worse PFS across all NMIBCs. High APOBEC mutagenesis and high tumour mutation burden were both potential indicators of better PFS in G3pT1 NMIBCs. The expression of individual genes was not prognostic in BCG-treated G3pT1 NMIBCs; however, downregulated interferon-alpha and gamma response pathways were significantly associated with worse PFS (adjusted p-value < 0.005). CONCLUSIONS Multi-omic data may facilitate better prognostication and selection of therapeutic interventions in patients with G3pT1 NMIBC. These findings demonstrate the potential for improving the management of high-risk NMIBC patients and warrant further prospective validation.
Collapse
Affiliation(s)
- Anshita Goel
- Bladder Cancer Research Centre, University of Birmingham, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Douglas G Ward
- Bladder Cancer Research Centre, University of Birmingham, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Boris Noyvert
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Centre for Computational Biology, University of Birmingham, Birmingham, UK
- CRUK Birmingham Centre, University of Birmingham, Birmingham, UK
| | - Minghao Yu
- Bladder Cancer Research Centre, University of Birmingham, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Naheema S Gordon
- Bladder Cancer Research Centre, University of Birmingham, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Ben Abbotts
- Bladder Cancer Research Centre, University of Birmingham, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Stephen Kissane
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Nicholas D James
- Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Maurice P Zeegers
- Department of Complex Genetics and Epidemiology, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- CAPHRI School for Public Health and Primary Care, University of Maastricht, Maastricht, The Netherlands
| | - Kar Keung Cheng
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Jean-Baptiste Cazier
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Centre for Computational Biology, University of Birmingham, Birmingham, UK
| | | | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Genomics Birmingham, University of Birmingham, Birmingham, UK
| | - Claire Palles
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Roland Arnold
- Bladder Cancer Research Centre, University of Birmingham, Birmingham, UK.
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | - Richard T Bryan
- Bladder Cancer Research Centre, University of Birmingham, Birmingham, UK.
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
14
|
She Q, Chen Y, Liu H, Tan J, Li Y. A high level of the long non-coding RNA MCF2L-AS1 is associated with poor prognosis in breast cancer and MCF2L-AS1 activates YAP transcriptional activity to enhance breast cancer proliferation and metastasis. Bioengineered 2022; 13:13437-13451. [PMID: 36700469 PMCID: PMC9276029 DOI: 10.1080/21655979.2022.2074108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Breast cancer (BC) is one of the most prevalent gynecologic malignant tumors with a poor prognosis and the second leading cause of cancer-related deaths in women worldwide. In recent years, it has been shown that long non-coding RNA (lncRNA) plays an important role in the development of breast cancer (BC). An antisense lncRNA from the MCF2 cell line (MCF2L-AS1) has been discovered recently and has been shown to function in a variety of malignancies. However, its function as a regulator of BC development has yet to be determined. Herein, the bioinformatics study analysis showed that MCF2L-AS1 was frequently highly expressed in BC tumors, and this overexpression was associated with worse patient outcomes. BC cells' proliferation, migration, and invasion are inhibited when MCF2L-AS1 is silenced, whereas the inverse is evident when MCF2L-AS1 is overexpressed. It was also observed that MCF2L-AS1 knockdown decreased carcinogenesis in xenograft tumor models. Furthermore, we discovered that MCF2L-AS1 could bind to and improve the transcription activity of the yes-associated protein (YAP). However, following YAP knockdown, this lncRNA's ability to drive BC malignancy was considerably reduced. In conclusion, MCF2L-AS1 may represent a potential predictive biomarker in BC patients, as well as a key regulator of BC cell proliferation. It works through positive feedback processes involving direct YAP binding and subsequent modulation of intracellular gene expression. Our findings add to our understanding of MCF2L-AS1 regulation and its potential as a therapeutic target in patients with this fatal cancer type.
Collapse
Affiliation(s)
- Qing She
- Department of Breast Surgery, Baoji Municipal Central Hospital, Baoji, China
| | - Yuanyuan Chen
- Department of Breast Surgery, Baoji Municipal Central Hospital, Baoji, China
| | - Hong Liu
- Department of Breast Surgery, Baoji Municipal Central Hospital, Baoji, China
| | - Jichao Tan
- Department of Breast Surgery, Baoji Municipal Central Hospital, Baoji, China
| | - Youhuai Li
- Department of Breast Surgery, Baoji Municipal Central Hospital, Baoji, China,CONTACT Youhuai Li Department of Breast Surgery, Baoji Municipal Central Hospital, 8 Jiangtan Road, Weibin District, Baoji, Shaanxi721008, China
| |
Collapse
|
15
|
Zhang Q, Zhong C, Yan Q, Zeng LH, Gao W, Duan S. miR-874: An Important Regulator in Human Diseases. Front Cell Dev Biol 2022; 10:784968. [PMID: 35465322 PMCID: PMC9019486 DOI: 10.3389/fcell.2022.784968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/23/2022] [Indexed: 11/23/2022] Open
Abstract
miR-874 is located at 5q31.2, which is frequently deleted in cancer. miR-874 is downregulated in 22 types of cancers and aberrantly expressed in 18 types of non-cancer diseases. The dysfunction of miR-874 is not only closely related to the diagnosis and prognosis of tumor patients but also plays an important role in the efficacy of tumor chemotherapy drugs. miR-874 participates in the ceRNA network of long non-coding RNAs or circular RNAs, which is closely related to the occurrence and development of cancer and other non-cancer diseases. In addition, miR-874 is also involved in the regulation of multiple signaling pathways, including the Wnt/β-catenin signaling pathway, Hippo signaling pathway, PI3K/AKT signaling pathway, JAK/STAT signaling pathway, and Hedgehog signaling pathway. This review summarizes the molecular functions of miR-874 in the biological processes of tumor cell survival, apoptosis, differentiation, and tumorigenesis, and reveal the value of miR-874 as a cancer biomarker in tumor diagnosis and prognosis. Future work is necessary to explore the potential clinical application of miR-874 in chemotherapy resistance.
Collapse
Affiliation(s)
- Qiudan Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, China
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Chenming Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Qianqian Yan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Ling-hui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Wei Gao
- School of Medicine, Zhejiang University City College, Hangzhou, China
- *Correspondence: Wei Gao, ; Shiwei Duan,
| | - Shiwei Duan
- School of Medicine, Zhejiang University City College, Hangzhou, China
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
- *Correspondence: Wei Gao, ; Shiwei Duan,
| |
Collapse
|
16
|
Jia Z, An J, Liu Z, Zhang F. Non-Coding RNAs in Colorectal Cancer: Their Functions and Mechanisms. Front Oncol 2022; 12:783079. [PMID: 35186731 PMCID: PMC8847166 DOI: 10.3389/fonc.2022.783079] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignancy with high mortality. However, the molecular mechanisms underlying CRC remain unclear. Controversies over the exact functions of non-coding RNAs (ncRNAs) in the progression of CRC have been prevailing for multiple years. Recently, accumulating evidence has demonstrated the regulatory roles of ncRNAs in various human cancers, including CRC. The intracellular signaling pathways by which ncRNAs act on tumor cells have been explored, and in CRC, various studies have identified numerous dysregulated ncRNAs that serve as oncogenes or tumor suppressors in the process of tumorigenesis through diverse mechanisms. In this review, we have summarized the functions and mechanisms of ncRNAs (mainly lncRNAs, miRNAs, and circRNAs) in the tumorigenesis of CRC. We also discuss the potential applications of ncRNAs as diagnostic and prognostic tools, as well as therapeutic targets in CRC. This review details strategies that trigger the recognition of CRC-related ncRNAs, as well as the methodologies and challenges of studying these molecules, and the forthcoming clinical applications of these findings.
Collapse
Affiliation(s)
- Zimo Jia
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Jiaqi An
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Ziyuan Liu
- School of Medicine, Shihezi University, Shihezi, China
| | - Fan Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| |
Collapse
|
17
|
Zhu Y, Yang L, Wang J, Li Y, Chen Y. SP1-induced lncRNA MCF2L-AS1 promotes cisplatin resistance in ovarian cancer by regulating IGF2BP1/IGF2/MEK/ERK axis. J Gynecol Oncol 2022; 33:e75. [DOI: 10.3802/jgo.2022.33.e75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/28/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Yan Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- The Fouth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China
| | - Lijuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- The Fouth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China
| | - Jianqing Wang
- The Fouth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China
| | - Yan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- The Fouth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
18
|
Cai M, Hu W, Huang C, Zhou C, Li J, Chen Y, Yu Y. lncRNA MCF2L-AS1/miR-105/ IL-1β Axis Regulates Colorectal Cancer Cell Oxaliplatin Resistance. Cancer Manag Res 2021; 13:8685-8694. [PMID: 34824551 PMCID: PMC8610381 DOI: 10.2147/cmar.s313905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022] Open
Abstract
Background Interactions between non-coding RNAs and mRNAs have been shown to play key roles in colorectal cancer (CRC) resistance to chemotherapeutic drugs, but the regulatory network of these ncRNA/mRNA interactions in the context of CRC cell resistance to oxaliplatin has yet to be fully defined. Methods MCF2L-AS1, miR-105, and IL-1β expression levels were measured in cells and serum samples via qPCR, while ELISAs were additionally used to quantify IL-1β levels in these samples. Interactions between MCF2L-AS1, miR-105, and IL-1β were detected through pull-down, RNA immunoprecipitation, and luciferase reporter assays. Cellular viability and OXA IC50 values were established through MTT assays, while in vivo OXA resistance was assessed using a tumor xenograft model system. Results MCF2L-AS1 levels were significantly elevated in CRC patients that did not respond to chemotherapy and in CRC/OXA cells relative to responders and chemosensitive CRC cells. From a mechanistic perspective, miR-105 was identified as a MCF2L-AS1 target, with this miRNA, in turn, suppressing the expression of IL-1β. Knocking down MCF2L-AS1 or overexpressing miR-105 was sufficient to alleviate CRC/OXA cell chemoresistance, while overexpressing IL-1β reversed this effect. Conclusion The MCF2L-AS1/miR-105/IL-1β regulatory axis regulates the resistance of CRC cells to OXA treatment.
Collapse
Affiliation(s)
- Mao Cai
- Department of Anorectal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Wanle Hu
- Department of Anorectal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Chongjie Huang
- Department of Anorectal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Chongjun Zhou
- Department of Anorectal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Jiante Li
- Department of Anorectal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Yanyu Chen
- Department of Anorectal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Yaojun Yu
- Department of Anorectal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China
| |
Collapse
|
19
|
Shi Y, Liu JB, Deng J, Zou DZ, Wu JJ, Cao YH, Yin J, Ma YS, Da F, Li W. The role of ceRNA-mediated diagnosis and therapy in hepatocellular carcinoma. Hereditas 2021; 158:44. [PMID: 34758879 PMCID: PMC8582193 DOI: 10.1186/s41065-021-00208-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/12/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide due to its high degree of malignancy, high incidence, and low survival rate. However, the underlying mechanisms of hepatocarcinogenesis remain unclear. Long non coding RNA (lncRNA) has been shown as a novel type of RNA. lncRNA by acting as ceRNA can participate in various biological processes of HCC cells, such as tumor cell proliferation, migration, invasion, apoptosis and drug resistance by regulating downstream target gene expression and cancer-related signaling pathways. Meanwhile, lncRNA can predict the efficacy of treatment strategies for HCC and serve as a potential target for the diagnosis and treatment of HCC. Therefore, lncRNA serving as ceRNA may become a vital candidate biomarker for clinical diagnosis and treatment. In this review, the epidemiology of HCC, including morbidity, mortality, regional distribution, risk factors, and current treatment advances, was briefly discussed, and some biological functions of lncRNA in HCC were summarized with emphasis on the molecular mechanism and clinical application of lncRNA-mediated ceRNA regulatory network in HCC. This paper can contribute to the better understanding of the mechanism of the influence of lncRNA-mediated ceRNA networks (ceRNETs) on HCC and provide directions and strategies for future studies.
Collapse
Affiliation(s)
- Yi Shi
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China.,Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China.,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Ji-Bin Liu
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Da-Zhi Zou
- Department of Spine Surgery, Longhui County People's Hospital, Longhui, 422200, Hunan, China
| | - Jian-Jun Wu
- Nantong Haimen Yuelai Health Centre, Haimen, 226100, China
| | - Ya-Hong Cao
- Department of Respiratory, Nantong Traditional Chinese Medicine Hospital, Nantong, 226019, Jiangsu Province, China
| | - Jie Yin
- Department of General Surgery, Haian people's Hospital, Haian, 226600, Jiangsu, China
| | - Yu-Shui Ma
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China.
| | - Fu Da
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China. .,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Wen Li
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China. .,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
20
|
Jiang Z, Hu H, Hu W, Hou Z, Liu W, Yu Z, Liang Z, Chen S. Circ-RNF121 regulates tumor progression and glucose metabolism by miR-1224-5p/FOXM1 axis in colorectal cancer. Cancer Cell Int 2021; 21:596. [PMID: 34742305 PMCID: PMC8572430 DOI: 10.1186/s12935-021-02290-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/20/2021] [Indexed: 01/05/2023] Open
Abstract
Aim Previous studies have reported that circular RNA (circRNA) is associated with the pathogenesis of CRC. This study was designed to reveal the mechanism of circ-ring finger protein 121 (circ-RNF121) in colorectal cancer (CRC). Materials and methods The levels of circ-RNF121, microRNA-1224-5p (miR-1224-5p) and forkhead box M1 (FOXM1) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Protein level was detected by western blot. Cell proliferation was analyzed by 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and cell colony formation assays. Flow cytometry analysis was performed to investigate cell apoptosis. Cell migration and invasion were investigated by transwell and wound-healing assays. Cell glycolysis was detected using glucose, lactate and ADP/ATP ratio assay kits. The binding relationship between miR-1224-5p and circ-RNF121 or FOXM1 was predicted by starBase online database, and identified by dual-luciferase reporter assay. The impacts of circ-RNF121 silencing on tumor formation in vivo were disclosed by in vivo tumor formation assay. Key findings Circ-RNF121 and FOXM1 expression were dramatically upregulated, while miR-1224-5p expression was downregulated in CRC tissues or cells compared with control groups. Circ-RNF121 silencing repressed cell proliferation, migration, invasion and glycolysis but induced cell apoptosis in CRC, which were attenuated by miR-1224-5p inhibitor. Additionally, circ-RNF121 acted as a sponge of miR-1224-5p and miR-1224-5p bound to FOXM1. Circ-RNF121 silencing inhibited tumor growth in vivo. Furthermore, circ-RNF121 was secreted through being packaged into exosomes. Significance The finding provided a novel insight into studying circRNA-mediated CRC therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02290-3.
Collapse
Affiliation(s)
- Zhipeng Jiang
- Department of Gastrointestinal Surgery, Laboratory of Colorectal and Pelvic Floor Diseases, Supported By National Key Clinical Discipline, Guangdong Institute of Gastroenterology, Guangdong Provincial Key, The Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26 YuanCun, 2nd Heng Road, Guangzhou, 510655, Guangdong Province, China
| | - Hao Hu
- Department of General Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Wenli Hu
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zehui Hou
- Department of Gastrointestinal Surgery, Laboratory of Colorectal and Pelvic Floor Diseases, Supported By National Key Clinical Discipline, Guangdong Institute of Gastroenterology, Guangdong Provincial Key, The Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26 YuanCun, 2nd Heng Road, Guangzhou, 510655, Guangdong Province, China
| | - Wei Liu
- Department of Gastrointestinal Surgery, Laboratory of Colorectal and Pelvic Floor Diseases, Supported By National Key Clinical Discipline, Guangdong Institute of Gastroenterology, Guangdong Provincial Key, The Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26 YuanCun, 2nd Heng Road, Guangzhou, 510655, Guangdong Province, China
| | - Zhuomin Yu
- Department of Gastrointestinal Surgery, Laboratory of Colorectal and Pelvic Floor Diseases, Supported By National Key Clinical Discipline, Guangdong Institute of Gastroenterology, Guangdong Provincial Key, The Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26 YuanCun, 2nd Heng Road, Guangzhou, 510655, Guangdong Province, China
| | - Zhiqiang Liang
- Department of Gastrointestinal Surgery, Laboratory of Colorectal and Pelvic Floor Diseases, Supported By National Key Clinical Discipline, Guangdong Institute of Gastroenterology, Guangdong Provincial Key, The Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26 YuanCun, 2nd Heng Road, Guangzhou, 510655, Guangdong Province, China
| | - Shuang Chen
- Department of Gastrointestinal Surgery, Laboratory of Colorectal and Pelvic Floor Diseases, Supported By National Key Clinical Discipline, Guangdong Institute of Gastroenterology, Guangdong Provincial Key, The Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26 YuanCun, 2nd Heng Road, Guangzhou, 510655, Guangdong Province, China.
| |
Collapse
|
21
|
Xiao H, Huang W, Li Y, Zhang R, Yang L. Targeting Long Non-Coding RNA TTN-AS1 Suppresses Bladder Cancer Progression. Front Genet 2021; 12:704712. [PMID: 34671381 PMCID: PMC8522982 DOI: 10.3389/fgene.2021.704712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background: To explore the biological and clinical effects of titin-antisense RNA1 (TTN-AS1) in bladder cancer (BC) and the association between TTN-AS1 and activating transcription factor 2 (ATF2) in BC. Methods: The Kaplan-Meier method was performed to analyze the association between the expression of TTN-AS1 and prognosis of BC patients from TCGA data set and our institution. Quantitative real-time PCR (RT-PCR) was conducted to explore the expression of TTN-AS1 between the patients who underwent TURBT and Re-TURBT. MTT, colony formation, and tumor formation assays were conducted to evaluate the effect of TTN-AS1 on the ability of proliferation in BC cell lines. Transwell assay was performed to evaluate the effect of TTN-AS1 on the ability of invasion in BC cell lines. Bioinfomatics and immunohistochemical staining was used to identify the relationship between TTN-AS1 and ATF2. Results: The higher expression of TTN-AS1 was related to poorer disease-free survival (DFS) in patients with BC. The expression of TTN-AS1 was higher in BC patients who underwent Re-TURBT compared with BC patients who underwent TURBT. Knocking down TTN-AS1 resulted in inhibiting the ability of proliferation and invasion of BC cells. ATF2 may serve as a downstream target of TTN-AS1 in BC, and the high expression of ATF2 is also related to adverse DFS. Conclusion: Our study reveals that TTN-AS1 serves as an oncogene by activating ATF2 in BC. The findings suggest that TTN-AS1 may act as a novel therapeutic target for patients with BC.
Collapse
Affiliation(s)
- Huiyuan Xiao
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen Huang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Rongxin Zhang
- Department of Radiotherapy, Tianjin Medical University General Hospital, Tianjin, China
| | - Long Yang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
22
|
Kong W, Li H, Xie L, Cui G, Gu W, Zhang H, Ma W, Zhou Y. LncRNA MCF2L-AS1 aggravates the malignant development of colorectal cancer via targeting miR-105-5p/RAB22A axis. BMC Cancer 2021; 21:1069. [PMID: 34592939 PMCID: PMC8482615 DOI: 10.1186/s12885-021-08668-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 08/03/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) represents one of the major malignant cancers in the world. It has been demonstrated that long non-coding RNAs (lncRNAs) can cause great influences on various human cancers. Though MCF.2 cell line derived transforming sequence like antisense RNA 1 (MCF2L-AS1) and its carcinogenic effect in CRC has been elucidated by several previous researches, the underlying mechanism remains unknown. AIM We aimed at exploring the function and regulatory mechanism of MCF2L-AS1 in CRC. METHODS MCF2L-AS1 expression in CRC cells was tested via RT-qPCR assay. The effects of MCF2L-AS1 on the biological properties of CRC cells were testified through functional experiments. The molecular mechanism of MCF2L-AS1 was verified through mechanism experiments. RESULTS MCF2L-AS1 was highly expressed in CRC cells, and it could enhance the proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) process of CRC cells. MiR-105-5p was sponged by MCF2L-AS1 in CRC cells and Ras-related protein Rab-22A (RAB22A) was verified to be the downstream target of miR-105-5p. It was verified through rescue assays that RAB22A overexpression or miR-105-5p silencing could reverse the repressive impact of MCF2L-AS1 silencing on CRC progression. CONCLUSION MCF2L-AS1 accelerated the malignant development of CRC cells by targeting the miR-105-5p/RAB22A axis.
Collapse
Affiliation(s)
- Wencheng Kong
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Hui Li
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huanshan Road, Hangzhou, 310006, Zhejiang, China
| | - Lesi Xie
- Department of Pathology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Guangxing Cui
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huanshan Road, Hangzhou, 310006, Zhejiang, China
| | - Weigang Gu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huanshan Road, Hangzhou, 310006, Zhejiang, China
| | - Hongchen Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huanshan Road, Hangzhou, 310006, Zhejiang, China
| | - Wencong Ma
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huanshan Road, Hangzhou, 310006, Zhejiang, China
| | - Yifeng Zhou
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huanshan Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
23
|
Interplay between Epigenetics and Cellular Metabolism in Colorectal Cancer. Biomolecules 2021; 11:biom11101406. [PMID: 34680038 PMCID: PMC8533383 DOI: 10.3390/biom11101406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/30/2023] Open
Abstract
Cellular metabolism alterations have been recognized as one of the most predominant hallmarks of colorectal cancers (CRCs). It is precisely regulated by many oncogenic signaling pathways in all kinds of regulatory levels, including transcriptional, post-transcriptional, translational and post-translational levels. Among these regulatory factors, epigenetics play an essential role in the modulation of cellular metabolism. On the one hand, epigenetics can regulate cellular metabolism via directly controlling the transcription of genes encoding metabolic enzymes of transporters. On the other hand, epigenetics can regulate major transcriptional factors and signaling pathways that control the transcription of genes encoding metabolic enzymes or transporters, or affecting the translation, activation, stabilization, or translocation of metabolic enzymes or transporters. Interestingly, epigenetics can also be controlled by cellular metabolism. Metabolites not only directly influence epigenetic processes, but also affect the activity of epigenetic enzymes. Actually, both cellular metabolism pathways and epigenetic processes are controlled by enzymes. They are highly intertwined and are essential for oncogenesis and tumor development of CRCs. Therefore, they are potential therapeutic targets for the treatment of CRCs. In recent years, both epigenetic and metabolism inhibitors are studied for clinical use to treat CRCs. In this review, we depict the interplay between epigenetics and cellular metabolism in CRCs and summarize the underlying molecular mechanisms and their potential applications for clinical therapy.
Collapse
|
24
|
Shaath H, Toor SM, Nada MA, Elkord E, Alajez NM. Integrated whole transcriptome and small RNA analysis revealed multiple regulatory networks in colorectal cancer. Sci Rep 2021; 11:14456. [PMID: 34262080 PMCID: PMC8280114 DOI: 10.1038/s41598-021-93531-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/21/2021] [Indexed: 01/16/2023] Open
Abstract
Colorectal cancer (CRC) remains a global disease burden and a leading cause of cancer related deaths worldwide. The identification of aberrantly expressed messenger RNA (mRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), and the resulting molecular interactions and signaling networks is essential for better understanding of CRC, identification of novel diagnostic biomarkers and potential development of therapeutic interventions. Herein, we performed microRNA (miRNA) sequencing on fifteen CRC and their non-tumor adjacent tissues and whole transcriptome RNA-Seq on six paired samples from the same cohort and identified alterations in miRNA, mRNA, and lncRNA expression. Computational analyses using Ingenuity Pathway Analysis (IPA) identified multiple activated signaling networks in CRC, including ERBB2, RABL6, FOXM1, and NFKB networks, while functional annotation highlighted activation of cell proliferation and migration as the hallmark of CRC. IPA in combination with in silico prediction algorithms and experimentally validated databases gave insight into the complex associations and interactions between downregulated miRNAs and upregulated mRNAs in CRC and vice versa. Additionally, potential interaction between differentially expressed lncRNAs such as H19, SNHG5, and GATA2-AS1 with multiple miRNAs has been revealed. Taken together, our data provides thorough analysis of dysregulated protein-coding and non-coding RNAs in CRC highlighting numerous associations and regulatory networks thus providing better understanding of CRC.
Collapse
Affiliation(s)
- Hibah Shaath
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Salman M Toor
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | | | - Eyad Elkord
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK
| | - Nehad M Alajez
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
25
|
Li S, Lin L. Long noncoding RNA MCF2L-AS1 promotes the cancer stem cell-like traits in non-small cell lung cancer cells through regulating miR-873-5p level. ENVIRONMENTAL TOXICOLOGY 2021; 36:1457-1465. [PMID: 33783940 DOI: 10.1002/tox.23142] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/09/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
The roles of long noncoding RNA (lncRNA) MCF2L-AS1 have been identified in colorectal cancer, however, its roles in lung cancer progression have never been revealed. Here, we found that lncRNA MCF2L-AS1 was highly expressed in lung cancer tissues and cells, especially in non-small cell lung cancer (NSCLC). Functional experiments showed that MCF2L-AS1 knockdown suppressed the cancer stem cell (CSC)-like traits of NSCLC cells through qRT-PCR, western blot, tumor-sphere formation, and ALDH activity detection. Additionally, bioinformatic assay combined with RNA pull down and luciferase reporter analysis confirmed that MCF2L-AS1 downregulated miR-873-5p level. Furthermore, miR-873-5p expression exhibited a lower level in lung cancer tissues and cells, and a negative correlation with MCF2L-AS1 expression in lung cancer tissues. Moreover, miR-873-5p inhibition partially reversed the suppression of MCF2L-AS1 on the CSC-like traits on NSCLC cells. Thus, this work identifies a novel MCF2L-AS1/miR-873-5p regulatory axis responsible for the CSC-like traits of NSCLC cells.
Collapse
Affiliation(s)
- Shouguo Li
- Department of Cancer Radiotherapy, Zhongshan Hospital Xiamen University, Xiamen, Fujian, China
| | - Liancheng Lin
- The Third Departments of Thoracic Tumor, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| |
Collapse
|
26
|
Xu D, Yang F, Fan Y, Jing W, Wen J, Miao W, Ding X, Yang H. LncRNA DLEU1 Contributes to the Growth and Invasion of Colorectal Cancer via Targeting miR-320b/PRPS1. Front Oncol 2021; 11:640276. [PMID: 34113562 PMCID: PMC8185642 DOI: 10.3389/fonc.2021.640276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Growing evidences suggest that long non-coding RNAs (lncRNAs) are closely correlated to the development of human cancer, such as colorectal cancer (CRC). A previous report suggested that DLEU1 accelerated CRC development. However, DLEU1's underlying mechanism in CRC remains unclear. In our study, the level of DLEU1 in CRC tissues is investigated by qRT-PCR. Our data exhibited that DLEU1 level was observably increased in CRC tissues and CRC cell lines and was closely associated with bad prognosis of CRC patients. CRC cell proliferation was repressed by sh-LncRNA DLEU1, whereas cell apoptosis was markedly stimulated. Moreover, knockdown of DLEU1 inhibited cell migration and invasion. Mechanistically, through interacting with miR-320b in CRC, DLEU1 promoted the level of PRPS1 which was a target of miR-320b. The rescue experiment confirmed that knockdown of DLEU1 repressed cell proliferation, migration and invasion while stimulated cell apoptosis via miR-320b/phosphoribosyl pyrophosphate synthetase 1 (PRPS1) axis. Meanwhile, the data of xenograft model exhibited that inhibition of DLEU1 suppressed tumor growth in vivo. In summary, DLEU1 knockdown may repress PRPS1 expression via miR-320b, and then repress cell proliferation, migration and invasion while stimulate cell apoptosis. Our research may provide a novel target for the treatment of CRC.
Collapse
Affiliation(s)
- Dong Xu
- Department of General Surgery, Gaochun People's Hospital, Nanjing, China
| | - Fei Yang
- Department of Internal Medicine, Gaochun People's Hospital, Nanjing, China
| | - Yongchao Fan
- Center for New Drug Safety Evaluation and Research, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Wanling Jing
- Center for New Drug Safety Evaluation and Research, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Jianfei Wen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Miao
- Center for New Drug Safety Evaluation and Research, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Xiaoyan Ding
- Center for New Drug Safety Evaluation and Research, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Hongbao Yang
- Center for New Drug Safety Evaluation and Research, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
27
|
Cao H, Tong H, Zhu J, Xie C, Qin Z, Li T, Liu X, He W. A Glycolysis-Based Long Non-coding RNA Signature Accurately Predicts Prognosis in Renal Carcinoma Patients. Front Genet 2021; 12:638980. [PMID: 33868376 PMCID: PMC8047215 DOI: 10.3389/fgene.2021.638980] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
Background The prognosis of renal cell carcinoma (RCC) varies greatly among different risk groups, and the traditional indicators have limited effect in the identification of risk grade in patients with RCC. The purpose of our study is to explore a glycolysis-based long non-coding RNAs (lncRNAs) signature and verify its potential clinical significance in prognostic prediction of RCC patients. Methods In this study, RNA data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) database. Univariate and multivariate cox regression displayed six significantly related lncRNAs (AC124854.1, AC078778.1, EMX2OS, DLGAP1-AS2, AC084876.1, and AC026401.3) which were utilized in construction of risk score by a formula. The accuracy of risk score was verified by a series of statistical methods such as receiver operating characteristic (ROC) curves, nomogram and Kaplan-Meier curves. Its potential clinical significance was excavated by gene enrichment analysis. Results Kaplan-Meier curves and ROC curves showed reliability of the risk score to predict the prognosis of RCC patients. Stratification analysis indicated that the risk score was independent predictor compare to other traditional clinical parameters. The clinical nomogram showed highly rigorous with index of 0.73 and precisely predicted 1-, 3-, and 5-year survival time of RCC patients. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene set enrichment analysis (GSEA) depicted the top ten correlated pathways in both high-risk group and low-risk group. There are 6 lncRNAs and 25 related mRNAs including 36 lncRNA-mRNA links in lncRNA-mRNA co-expression network. Conclusion This research demonstrated that glycolysis-based lncRNAs possessed an important value in survival prediction of RCC patients, which would be a potential target for future treatment.
Collapse
Affiliation(s)
- Honghao Cao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Urology, Rongchang Traditional Chinese Medicine Hospital, Chongqing, China
| | - Hang Tong
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junlong Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chenchen Xie
- Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zijia Qin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tinghao Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xudong Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Toden S, Zumwalt TJ, Goel A. Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188491. [PMID: 33316377 PMCID: PMC7856203 DOI: 10.1016/j.bbcan.2020.188491] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
Recent advances have begun to clarify the physiological and pathological roles of non-coding RNAs (ncRNAs) in various diseases, including cancer. Among these, microRNAs (miRNAs) have been the most studied and have emerged as key players that are involved in the regulation of important growth regulatory pathways in cancer pathogenesis. The ability of a single ncRNA to modulate the expression of multiple downstream gene targets and associated pathways, have provided a rationale to pursue them for therapeutic drug development in cancer. In this context, early data from pre-clinical studies have demonstrated that synthetic miRNA-based therapeutic molecules, along with various protective coating approaches, has allowed for their efficient delivery and anti-tumor activity. In fact, some of the miRNA-based cancer therapeutic strategies have shown promising results even in early-phase human clinical trials. While the enthusiasm for ncRNA-based cancer therapeutics continue to evolve, the field is still in the midst of unraveling a more precise understanding of the molecular mechanisms and specific downstream therapeutic targets of other lesser studied ncRNAs such as the long-non-coding RNAs, transfer RNAs, circular RNAs, small nucleolar RNAs, and piwi-interacting RNAs. This review article provides the current state of knowledge and the evolving principles for ncRNA-based therapeutic approaches in cancer, and specifically highlights the importance of data to date and the approaches that are being developed to overcome the challenges associated with their delivery and mitigating the off-target effects in human cancers.
Collapse
Affiliation(s)
- Shusuke Toden
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Timothy J Zumwalt
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA; Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|