1
|
Chen W, Chen WM, Chen SX, Jiang L, Shu GG, Yin YX, Quan ZP, Zhou ZY, Shen MJ, Qin YT, Yang CL, Su XJ, Kang M. Establishment of a visualized mouse orthotopic xenograft model of nasopharyngeal carcinoma. Cancer Biol Ther 2024; 25:2382531. [PMID: 39206791 PMCID: PMC11364074 DOI: 10.1080/15384047.2024.2382531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 05/30/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Mouse orthotopic xenograft tumor models are commonly employed in studies investigating the mechanisms underlying the development and progression of tumors and their preclinical treatment. However, the unavailability of mature and visualized orthotopic xenograft models of nasopharyngeal carcinoma limits the development of treatment strategies for this cancer. The aim of this study was to provide a simple and reliable method for building an orthotopic xenograft model of nasopharyngeal carcinoma. Human nasopharyngeal carcinoma (C666-1-luc) cells, stably expressing the firefly luciferase gene, were injected subcutaneously into the right axilla of BALB/C nude mice. Four weeks later, the resulting subcutaneous tumors were cut into small blocks and grafted into the nasopharynx of immunodeficient BALB/C nude mice to induce tumor formation. Tumor growth was monitored by bioluminescence imaging and small animal magnetic resonance imaging (MRI). The expression of histological and immunological antigens associated with orthotopic xenograft nasopharyngeal carcinoma was analyzed by tissue section analysis and immunohistochemistry (IHC). A visualized orthotopic xenograft nasopharyngeal carcinoma model was successfully developed in this study. Luminescence signal detection, micro-MRI, and hematoxylin and eosin staining revealed the successful growth of tumors in the nasopharynx of the nude mice. Moreover, IHC analysis detected cytokeratin (CK), CK5/6, P40, and P63 expression in the orthotopic tumors, consistent with the reported expression of these antigens in human nasopharyngeal tumors. This study established a reproducible, visual, and less lethal orthotopic xenograft model of nasopharyngeal carcinoma, providing a platform for preclinical research.
Collapse
Affiliation(s)
- Wei Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Nanning, Guangxi, China
| | - Wei-Min Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Si-Xia Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Li Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Nanning, Guangxi, China
| | - Ge-Ge Shu
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Nanning, Guangxi, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuan-Xiu Yin
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Nanning, Guangxi, China
| | - Zhi-Peng Quan
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Nanning, Guangxi, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zi-Yan Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Nanning, Guangxi, China
| | - Ming-Jun Shen
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ya-Ting Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chao-Lin Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xue-Jin Su
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Nanning, Guangxi, China
| | - Min Kang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Nanning, Guangxi, China
| |
Collapse
|
2
|
Sajib MS, Zahra FT, Lamprou M, Akwii RG, Park JH, Osorio M, Tullar P, Doci CL, Zhang C, Huveneers S, Van Buul JD, Wang MH, Markiewski MM, Srivastava SK, Zheng Y, Gutkind JS, Hu J, Bickel U, Maeda DY, Zebala JA, Lionakis MS, Trasti S, Mikelis CM. Tumor-induced endothelial RhoA activation mediates tumor cell transendothelial migration and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614304. [PMID: 39372784 PMCID: PMC11451620 DOI: 10.1101/2024.09.22.614304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The endothelial barrier plays an active role in transendothelial tumor cell migration during metastasis, however, the endothelial regulatory elements of this step remain obscure. Here we show that endothelial RhoA activation is a determining factor during this process. Breast tumor cell-induced endothelial RhoA activation is the combined outcome of paracrine IL-8-dependent and cell-to-cell contact β 1 integrin-mediated mechanisms, with elements of this pathway correlating with clinical data. Endothelial-specific RhoA blockade or in vivo deficiency inhibited the transendothelial migration and metastatic potential of human breast tumor and three murine syngeneic tumor cell lines, similar to the pharmacological blockade of the downstream RhoA pathway. These findings highlight endothelial RhoA as a potent, universal target in the tumor microenvironment for anti-metastatic treatment of solid tumors.
Collapse
|
3
|
Choi WS, Kwon H, Yi E, Lee H, Kim JM, Park HJ, Choi EJ, Choi ME, Sung YH, Won CH, Sung CO, Kim HS. HPK1 Dysregulation-Associated NK Cell Dysfunction and Defective Expansion Promotes Metastatic Melanoma Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400920. [PMID: 38828677 PMCID: PMC11304315 DOI: 10.1002/advs.202400920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/10/2024] [Indexed: 06/05/2024]
Abstract
Distant metastasis, the leading cause of cancer death, is efficiently kept in check by immune surveillance. Studies have uncovered peripheral natural killer (NK) cells as key antimetastatic effectors and their dysregulation during metastasis. However, the molecular mechanism governing NK cell dysfunction links to metastasis remains elusive. Herein, MAP4K1 encoding HPK1 is aberrantly overexpressed in dysfunctional NK cells in the periphery and the metastatic site. Conditional HPK1 overexpression in NK cells suffices to exacerbate melanoma lung metastasis but not primary tumor growth. Conversely, MAP4K1-deficient mice are resistant to metastasis and further protected by combined immune-checkpoint inhibitors. Mechanistically, HPK1 restrains NK cell cytotoxicity and expansion via activating receptors. Likewise, HPK1 limits human NK cell activation and associates with melanoma NK cell dysfunction couples to TGF-β1 and patient response to immune checkpoint therapy. Thus, HPK1 is an intracellular checkpoint controlling NK-target cell responses, which is dysregulated and hijacked by tumors during metastatic progression.
Collapse
Affiliation(s)
- Woo Seon Choi
- Department of MicrobiologyStem Cell Immunomodulation Research CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Hyung‐Joon Kwon
- Department of MicrobiologyStem Cell Immunomodulation Research CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Eunbi Yi
- Department of MicrobiologyStem Cell Immunomodulation Research CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Haeun Lee
- Department of MicrobiologyStem Cell Immunomodulation Research CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Jung Min Kim
- Department of MicrobiologyStem Cell Immunomodulation Research CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Hyo Jin Park
- Department of MicrobiologyStem Cell Immunomodulation Research CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Eun Ji Choi
- Department of DermatologyAsan Institute for Life SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Myoung Eun Choi
- Department of DermatologyAsan Institute for Life SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Young Hoon Sung
- Department of Cell and Genetic EngineeringAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Chong Hyun Won
- Department of DermatologyAsan Institute for Life SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Chang Ohk Sung
- Department of PathologyAsan Medical Institute of Convergence Science and TechnologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Hun Sik Kim
- Department of MicrobiologyStem Cell Immunomodulation Research CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| |
Collapse
|
4
|
Yadav R, Mahajan S, Singh H, Mehra NK, Madan J, Doijad N, Singh PK, Guru SK. Emerging In Vitro and In Vivo Models: Hope for the Better Understanding of Cancer Progression and Treatment. Adv Biol (Weinh) 2024; 8:e2300487. [PMID: 38581078 DOI: 10.1002/adbi.202300487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Various cancer models have been developed to aid the understanding of the underlying mechanisms of tumor development and evaluate the effectiveness of various anticancer drugs in preclinical studies. These models accurately reproduce the critical stages of tumor initiation and development to mimic the tumor microenvironment better. Using these models for target validation, tumor response evaluation, resistance modeling, and toxicity comprehension can significantly enhance the drug development process. Herein, various in vivo or animal models are presented, typically consisting of several mice and in vitro models ranging in complexity from transwell models to spheroids and CRISPR-Cas9 technologies. While in vitro models have been used for decades and dominate the early stages of drug development, they are still limited primary to simplistic tests based on testing on a single cell type cultivated in Petri dishes. Recent advancements in developing new cancer therapies necessitate the generation of complicated animal models that accurately mimic the tumor's complexity and microenvironment. Mice make effective tumor models as they are affordable, have a short reproductive cycle, exhibit rapid tumor growth, and are simple to manipulate genetically. Human cancer mouse models are crucial to understanding the neoplastic process and basic and clinical research improvements. The following review summarizes different in vitro and in vivo metastasis models, their advantages and disadvantages, and their ability to serve as a model for cancer research.
Collapse
Affiliation(s)
- Rachana Yadav
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Hoshiyar Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Nandkumar Doijad
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
5
|
Kim G, Bhattarai PY, Lim SC, Lee KY, Choi HS. Sirtuin 5-mediated deacetylation of TAZ at K54 promotes melanoma development. Cell Oncol (Dordr) 2024; 47:967-985. [PMID: 38112979 DOI: 10.1007/s13402-023-00910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
PURPOSE Nuclear accumulation of YAP/TAZ promotes tumorigenesis in several cancers, including melanoma. Although the mechanisms underlying the nuclear retention of YAP are known, those underlying the retention of TAZ remain unclear. Our study investigates a novel acetylation/deacetylation switch in TAZ, governing its subcellular localization in melanoma tumorigenesis. METHODS Immunoprecipitation/Western blot assessed TAZ protein interactions and acetylation. SIRT5 activity was quantified with enzyme-linked immunosorbent assay. Immunofluorescence indicated TAZ nuclear localization. TEAD transcriptional activity was measured through luciferase reporter assays. ChIP detected TAZ binding to the CTGF promoter. Transwell and wound healing assays quantified melanoma cell invasiveness and migration. Metastasis was evaluated using a mouse model via tail vein injections. Clinical relevance was explored via immunohistochemical staining of patient tumors. RESULTS CBP facilitated TAZ acetylation at K54 in response to epidermal growth factor stimulation, while SIRT5 mediated deacetylation. Acetylation correlated with phosphorylation, regulating TAZ's binding with LATS2 or TEAD. TAZ K54 acetylation enhanced its S89 phosphorylation, promoting cytosolic retention via LATS2 interaction. SIRT5-mediated deacetylation enhanced TAZ-TEAD interaction and nuclear retention. Chromatin IP showed SIRT5-deacetylated TAZ recruited to CTGF promoter, boosting transcriptional activity. In a mouse model, SIRT5 overexpression induced melanoma metastasis to lung tissue following the injection of B16F10 melanocytes via the tail vein, and this effect was prevented by verteporfin treatment. CONCLUSIONS Our study revealed a novel mechanism of TAZ nuclear retention regulated by SIRT5-mediated K54 deacetylation and demonstrated the significance of TAZ deacetylation in CTGF expression. This study highlights the potential implications of the SIRT5/TAZ axis for treating metastatic melanoma.
Collapse
Affiliation(s)
- Garam Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 501-759, Republic of Korea
| | - Poshan Yugal Bhattarai
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 501-759, Republic of Korea
| | - Sung-Chul Lim
- Department of Pathology, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Kwang Youl Lee
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hong Seok Choi
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 501-759, Republic of Korea.
| |
Collapse
|
6
|
Zhao Y, Zhang B, Ma Y, Guo M, Zhao F, Chen J, Wang B, Jin H, Zhou F, Guan J, Zhao Q, Liu Q, Wang H, Zhao F, Wang X. Distinct molecular profiles drive multifaceted characteristics of colorectal cancer metastatic seeds. J Exp Med 2024; 221:e20231359. [PMID: 38502057 PMCID: PMC10949939 DOI: 10.1084/jem.20231359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 02/08/2024] [Indexed: 03/20/2024] Open
Abstract
Metastasis of primary tumors remains a challenge for early diagnosis and prevention. The cellular properties and molecular drivers of metastatically competent clones within primary tumors remain unclear. Here, we generated 10-16 single cell-derived lines from each of three colorectal cancer (CRC) tumors to identify and characterize metastatic seeds. We found that intrinsic factors conferred clones with distinct metastatic potential and cellular communication capabilities, determining organ-specific metastasis. Poorly differentiated or highly metastatic clones, rather than drug-resistant clones, exhibited poor clinical prognostic impact. Personalized genetic alterations, instead of mutation burden, determined the occurrence of metastatic potential during clonal evolution. Additionally, we developed a gene signature for capturing metastatic potential of primary CRC tumors and demonstrated a strategy for identifying metastatic drivers using isogenic clones with distinct metastatic potential in primary tumors. This study provides insight into the origin and mechanisms of metastasis and will help develop potential anti-metastatic therapeutic targets for CRC patients.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, China
| | - Bing Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Fuqiang Zhao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianan Chen
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingzhi Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Jin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Fulai Zhou
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jiawei Guan
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Qian Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Qian Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Roweth HG. Platelet Contributions to the (Pre)metastatic Tumor Microenvironment. Semin Thromb Hemost 2024; 50:455-461. [PMID: 37832586 PMCID: PMC11177183 DOI: 10.1055/s-0043-1776005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Alongside their conventional roles in thrombosis and hemostasis, platelets have long been associated with nonhemostatic pathologies, including tumor cell metastasis. Numerous mechanistic studies have since demonstrated that the direct binding of platelets to intravascular tumor cells promotes key hallmarks of metastasis, including survival in circulation and tumor cell arrest at secondary sites. However, platelets also interact with nonmalignant cells that make up the stromal and immune compartments within both primary and metastatic tumors. This review will first provide a brief historical perspective on platelet contributions to metastatic disease before discussing the emerging roles that platelets play in creating microenvironments that likely support successful tumor cell metastasis.
Collapse
Affiliation(s)
- Harvey G. Roweth
- Hematology Division, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Jain M, Goel A. Current Insights in Murine Models for Breast Cancer: Present, Past and Future. Curr Pharm Des 2024; 30:2267-2275. [PMID: 38910416 DOI: 10.2174/0113816128306053240604074142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024]
Abstract
Breast cancer is an intricate disease that is increasing at a fast pace, and numerous heterogeneities within it further make it difficult to investigate. We have always used animal models to understand cancer pathology and create an in vivo microenvironment that closely resembles human cancer. They are considered an indispensable part of any clinical investigation regarding cancer. Animal models have a high potency in identifying the relevant biomarkers and genetic pathways involved in the course of disease prognosis. Researchers have previously explored a variety of organisms, including Drosophila melanogaster, zebrafish, and guinea pigs, to analyse breast cancer, but murine models have proven the most comprehensive due to their homologous nature with human chromosomes, easy availability, simple gene editing, and high adaptability. The available models have their pros and cons, and it depends on the researcher to select the one most relevant to their research question. Chemically induced models are cost-effective and simple to create. Transplantation models such as allografts and xenografts can mimic the human breast cancer environment reliably. Genetically engineered mouse models (GEMMs) help to underpin the genetic alterations involved and test novel immunotherapies. Virus-mediated models and gene knockout models have also provided new findings regarding breast cancer progression and metastasis. These mouse models have also enabled the visualization of breast cancer metastases. It is also imperative to consider the cost-effectiveness of these models. Despite loopholes, mouse models have evolved and are required for disease analysis.
Collapse
Affiliation(s)
- Mansi Jain
- Department of Biotechnology, GLA University, Mathura, India
| | - Anjana Goel
- Department of Biotechnology, GLA University, Mathura, India
| |
Collapse
|
9
|
Recouvreux MV, Grenier SF, Zhang Y, Esparza E, Lambies G, Galapate CM, Maganti S, Duong-Polk K, Bhullar D, Naeem R, Scott DA, Lowy AM, Tiriac H, Commisso C. Glutamine mimicry suppresses tumor progression through asparagine metabolism in pancreatic ductal adenocarcinoma. NATURE CANCER 2024; 5:100-113. [PMID: 37814011 PMCID: PMC10956382 DOI: 10.1038/s43018-023-00649-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), glutamine is a critical nutrient that drives a wide array of metabolic and biosynthetic processes that support tumor growth. Here, we elucidate how 6-diazo-5-oxo-L-norleucine (DON), a glutamine antagonist that broadly inhibits glutamine metabolism, blocks PDAC tumor growth and metastasis. We find that DON significantly reduces asparagine production by inhibiting asparagine synthetase (ASNS), and that the effects of DON are rescued by asparagine. As a metabolic adaptation, PDAC cells upregulate ASNS expression in response to DON, and we show that ASNS levels are inversely correlated with DON efficacy. We also show that L-asparaginase (ASNase) synergizes with DON to affect the viability of PDAC cells, and that DON and ASNase combination therapy has a significant impact on metastasis. These results shed light on the mechanisms that drive the effects of glutamine mimicry and point to the utility of cotargeting adaptive responses to control PDAC progression.
Collapse
Affiliation(s)
- Maria Victoria Recouvreux
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Shea F Grenier
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yijuan Zhang
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Edgar Esparza
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Surgical Sciences, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Guillem Lambies
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Cheska Marie Galapate
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Swetha Maganti
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Karen Duong-Polk
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Deepika Bhullar
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Razia Naeem
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - David A Scott
- Cancer Metabolism Core Resource, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Andrew M Lowy
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Hervé Tiriac
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Surgical Sciences, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Cosimo Commisso
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
10
|
Julson JR, Quinn CH, Butey S, Erwin MH, Marayati R, Nazam N, Stewart JE, Beierle EA. PIM Kinase Inhibition Attenuates the Malignant Progression of Metastatic Hepatoblastoma. Int J Mol Sci 2023; 25:427. [PMID: 38203596 PMCID: PMC10778668 DOI: 10.3390/ijms25010427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatoblastoma is the most common primary pediatric liver tumor. Children with pulmonary metastases at diagnosis experience survival rates as low as 25%. We have shown PIM kinases play a role in hepatoblastoma tumorigenesis. In this study, we assessed the role of PIM kinases in metastatic hepatoblastoma. We employed the metastatic hepatoblastoma cell line, HLM_2. PIM kinase inhibition was attained using PIM3 siRNA and the pan-PIM inhibitor, AZD1208. Effects of PIM inhibition on proliferation were evaluated via growth curve. Flow cytometry determined changes in cell cycle. AlamarBlue assay assessed effects of PIM kinase inhibition and cisplatin treatment on viability. The lethal dose 50% (LD50) of each drug and combination indices (CI) were calculated and isobolograms constructed to determine synergy. PIM kinase inhibition resulted in decreased HLM_2 proliferation, likely through cell cycle arrest mediated by p21. Combination therapy with AZD1208 and cisplatin resulted in synergy, potentially through downregulation of the ataxia-telangiectasia mutated (ATM) kinase DNA damage response pathway. When assessing the combined effects of pharmacologic PIM kinase inhibition with cisplatin on HLM_2 cells, we found the agents to be synergistic, potentially through inhibition of the ATM pathway. These findings support further exploration of PIM kinase inhibition as a therapeutic strategy for metastatic hepatoblastoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder Building, Suite 300, Birmingham, AL 35233, USA; (J.R.J.)
| |
Collapse
|
11
|
Ta L, Tsai BL, Deng W, Sha J, Varuzhanyan G, Tran W, Wohlschlegel JA, Carr-Ascher JR, Witte ON. Wild-type C-Raf gene dosage and dimerization drive prostate cancer metastasis. iScience 2023; 26:108480. [PMID: 38089570 PMCID: PMC10711388 DOI: 10.1016/j.isci.2023.108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/04/2023] [Accepted: 11/15/2023] [Indexed: 02/01/2024] Open
Abstract
Mutated Ras and Raf kinases are well-known to promote cancer metastasis via flux through the Ras/Raf/MEK/ERK (mitogen-activated protein kinase [MAPK]) pathway. A role for non-mutated Raf in metastasis is also emerging, but the key mechanisms remain unclear. Elevated expression of any of the three wild-type Raf family members (C, A, or B) can drive metastasis. We utilized an in vivo model to show that wild-type C-Raf overexpression can promote metastasis of immortalized prostate cells in a gene dosage-dependent manner. Analysis of the transcriptomic and phosphoproteomic landscape indicated that C-Raf-driven metastasis is accompanied by upregulated MAPK signaling. Use of C-Raf mutants demonstrated that the dimerization domain, but not its kinase activity, is essential for metastasis. Endogenous Raf monomer knockouts revealed that C-Raf's ability to form dimers with endogenous Raf molecules is important for promoting metastasis. These data identify wild-type C-Raf heterodimer signaling as a potential target for treating metastatic disease.
Collapse
Affiliation(s)
- Lisa Ta
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Brandon L. Tsai
- Department of Human Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Weixian Deng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Jihui Sha
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Grigor Varuzhanyan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Wendy Tran
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Janai R. Carr-Ascher
- Department of Internal Medicine, Division of Hematology/Oncology, University of California, Davis, Sacramento, CA 95817, USA
- Department of Orthopedic Surgery, University of California, Davis; Sacramento, CA 95817, USA
| | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles; Los Angeles, CA 90095, USA
| |
Collapse
|
12
|
Behera SP, Tyagi W, Saxena RK. Carboxyl nanodiamonds inhibit melanoma tumor metastases by blocking cellular motility and invasiveness. PNAS NEXUS 2023; 2:pgad359. [PMID: 38034091 PMCID: PMC10683945 DOI: 10.1093/pnasnexus/pgad359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Carboxyl nanodiamond (cND) nanoparticles are actively internalized by B16F10 melanoma cells in culture. Treatment of B16F10 tumor cells with cNDs in vitro inhibited their ability to (i) migrate and invade through porous membranes in a transwell culture system, (ii) secrete matrix metalloproteinases (MMPs) MMP-2 and MMP-9, and (iii) express selected epithelial-mesenchymal transition markers critical for cell migration and invasion. Administration of luciferase-transfected B16F10-Luc2 melanoma cells resulted in a rapid growth of the tumor and its metastasis to different organs that could be monitored by in vivo bioluminescence imaging as well as by ex vivo BLI of the mouse organs. After tumor cells were administered intravenously in C57Bl/6 mice, administration of cNDs (50 μg i.v. every alternate day) resulted in marked suppression of the tumor growth and metastasis in different organs of mice. Subcutaneous administration of B16F10 cells resulted in robust growth of the primary tumor subcutaneously as well as its metastasis to the lungs, liver, spleen, and kidneys. Intravenous treatment with cNDs did not affect the growth of the primary tumor mass but essentially blocked the metastasis of the tumor to different organs. Histological examination of mouse organs indicated that the administration of cNDs by itself was safe and did not cause toxic changes in mouse organs. These results indicate that the cND treatment may have an antimetastatic effect on the spread of B16F10 melanoma tumor cells in mice. Further exploration of cNDs as a possible antimetastatic therapeutic agent is suggested.
Collapse
Affiliation(s)
| | - Witty Tyagi
- Molecular Oncology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Rajiv K Saxena
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| |
Collapse
|
13
|
Lima AGF, Mignone VW, Vardiero F, Kozlowski EO, Fernandes LR, Motta JM, Pavão MSG, Figueiredo CC, Mourão PAS, Morandi V. Direct antitumoral effects of sulfated fucans isolated from echinoderms: a possible role of neuropilin-1/β1 integrin endocytosis and focal adhesion kinase degradation. Glycobiology 2023; 33:715-731. [PMID: 37289485 PMCID: PMC10627248 DOI: 10.1093/glycob/cwad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Hypercoagulability, a major complication of metastatic cancers, has usually been treated with heparins from natural sources, or with their synthetic derivatives, which are under intense investigation in clinical oncology. However, the use of heparin has been challenging for patients with risk of severe bleeding. While the systemic administration of heparins, in preclinical models, has shown primarily attenuating effects on metastasis, their direct effect on established solid tumors has generated contradictory outcomes. We investigated the direct antitumoral properties of two sulfated fucans isolated from marine echinoderms, FucSulf1 and FucSulf2, which exhibit anticoagulant activity with mild hemorrhagic potential. Unlike heparin, sulfated fucans significantly inhibited tumor cell proliferation (by ~30-50%), and inhibited tumor migration and invasion in vitro. We found that FucSulf1 and FucSulf2 interacted with fibronectin as efficiently as heparin, leading to loss of prostate cancer and melanoma cell spreading. The sulfated fucans increased the endocytosis of β1 integrin and neuropilin-1 chains, two cell receptors implicated in fibronectin-dependent adhesion. The treatment of cancer cells with both sulfated fucans, but not with heparin, also triggered intracellular focal adhesion kinase (FAK) degradation, with a consequent overall decrease in activated focal adhesion kinase levels. Finally, only sulfated fucans inhibited the growth of B16-F10 melanoma cells implanted in the dermis of syngeneic C57/BL6 mice. FucSulf1 and FucSulf2 arise from this study as candidates for the design of possible alternatives to long-term treatments of cancer patients with heparins, with the advantage of also controlling local growth and invasion of malignant cells.
Collapse
Affiliation(s)
- Antonio G F Lima
- Laboratório de Biologia da Célula Endotelial e da Angiogênese (LabAngio), Departamento de Biologia Celular/IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
- Laboratório do Tecido Conjuntivo, Instituto de Bioquímica Médica (IBqM) - Universidade Federal do Rio de Janeiro (UFRJ), Hospital Universitário Clementino Fraga Filho, Rio de Janeiro, 21941-913, Brazil
| | - Viviane W Mignone
- Laboratório de Biologia da Célula Endotelial e da Angiogênese (LabAngio), Departamento de Biologia Celular/IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| | - Francisco Vardiero
- Laboratório de Biologia da Célula Endotelial e da Angiogênese (LabAngio), Departamento de Biologia Celular/IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| | - Eliene O Kozlowski
- Laboratório do Tecido Conjuntivo, Instituto de Bioquímica Médica (IBqM) - Universidade Federal do Rio de Janeiro (UFRJ), Hospital Universitário Clementino Fraga Filho, Rio de Janeiro, 21941-913, Brazil
| | - Laila R Fernandes
- Laboratório de Biologia da Célula Endotelial e da Angiogênese (LabAngio), Departamento de Biologia Celular/IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| | - Juliana M Motta
- Laboratório do Tecido Conjuntivo, Instituto de Bioquímica Médica (IBqM) - Universidade Federal do Rio de Janeiro (UFRJ), Hospital Universitário Clementino Fraga Filho, Rio de Janeiro, 21941-913, Brazil
| | - Mauro S G Pavão
- Laboratório do Tecido Conjuntivo, Instituto de Bioquímica Médica (IBqM) - Universidade Federal do Rio de Janeiro (UFRJ), Hospital Universitário Clementino Fraga Filho, Rio de Janeiro, 21941-913, Brazil
| | - Camila C Figueiredo
- Laboratório de Biologia da Célula Endotelial e da Angiogênese (LabAngio), Departamento de Biologia Celular/IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| | - Paulo A S Mourão
- Laboratório do Tecido Conjuntivo, Instituto de Bioquímica Médica (IBqM) - Universidade Federal do Rio de Janeiro (UFRJ), Hospital Universitário Clementino Fraga Filho, Rio de Janeiro, 21941-913, Brazil
| | - Verônica Morandi
- Laboratório de Biologia da Célula Endotelial e da Angiogênese (LabAngio), Departamento de Biologia Celular/IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| |
Collapse
|
14
|
Freeburg NF, Peterson N, Ruiz DA, Gladstein AC, Feldser DM. Metastatic Competency and Tumor Spheroid Formation Are Independent Cell States Governed by RB in Lung Adenocarcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:1992-2002. [PMID: 37728504 PMCID: PMC10545537 DOI: 10.1158/2767-9764.crc-23-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/08/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
Inactivation of the retinoblastoma (RB) tumor suppressor in lung adenocarcinoma is associated with the rapid acquisition of metastatic ability and the loss of lung cell lineage commitment. We previously showed that restoration of RB in advanced lung adenocarcinomas in the mouse was correlated with a decreased frequency of lineage decommitted tumors and overt metastases. To identify a causal relationship for RB and its role in reprogramming lineage commitment and reducing metastatic competency in lung adenocarcinoma, we developed multiple tumor spheroid forming lines where RB restoration could be achieved after characterization of the degree of each spheroid's lineage commitment and metastatic ability. Surprisingly, we discovered that RB inactivation dramatically promoted tumor spheroid forming potential in tumors that arise in the KrasLSL-G12D/+; p53flox/flox lung adenocarcinoma model. However, RB reactivation had no effect on the maintenance of tumor spheroid lines once established. In addition, we show that RB-deficient tumor spheroid lines are not uniformly metastatically competent but are equally likely to be nonmetastatic. Interestingly, unlike tumor spheroid maintenance, RB restoration could functionally revert metastatic tumor spheroids to a nonmetastatic cell state. Thus, strategies to reinstate RB pathway activity in lung cancer may reverse metastatic ability and have therapeutic potential. Finally, the acquisition of tumor spheroid forming potential reflects underlying cell state plasticity, which is often predictive of, or even conflated with metastatic ability. Our data support that each is a discrete cell state restricted by RB and question the suitability of tumor spheroid models for their predictive potential of advanced metastatic tumor cell states. SIGNIFICANCE Members of the RB pathway are frequently mutated in lung adenocarcinoma. We show that RB regulates cell state plasticity, tumor spheroid formation, and metastatic competency. Our data indicate that these are independent states where spheroid formation is distinct from metastatic competency. Thus, we caution against conflating spheroid formation and other signs of cell state plasticity with advanced metastatic cell states. Nevertheless, our work supports clinical strategies to reactivate RB pathways.
Collapse
Affiliation(s)
- Nelson F. Freeburg
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nia Peterson
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dain A. Ruiz
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amy C. Gladstein
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David M. Feldser
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Nasif S, Colombo M, Uldry AC, Schröder M, de Brot S, Mühlemann O. Inhibition of nonsense-mediated mRNA decay reduces the tumorigenicity of human fibrosarcoma cells. NAR Cancer 2023; 5:zcad048. [PMID: 37681034 PMCID: PMC10480688 DOI: 10.1093/narcan/zcad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic RNA decay pathway with roles in cellular stress responses, differentiation, and viral defense. It functions in both quality control and post-transcriptional regulation of gene expression. NMD has also emerged as a modulator of cancer progression, although available evidence supports both a tumor suppressor and a pro-tumorigenic role, depending on the model. To further investigate the role of NMD in cancer, we knocked out the NMD factor SMG7 in the HT1080 human fibrosarcoma cell line, resulting in suppression of NMD function. We then compared the oncogenic properties of the parental cell line, the SMG7-knockout, and a rescue cell line in which we re-introduced both isoforms of SMG7. We also tested the effect of a drug inhibiting the NMD factor SMG1 to distinguish NMD-dependent effects from putative NMD-independent functions of SMG7. Using cell-based assays and a mouse xenograft tumor model, we showed that suppression of NMD function severely compromises the oncogenic phenotype. Molecular pathway analysis revealed that NMD suppression strongly reduces matrix metalloprotease 9 (MMP9) expression and that MMP9 re-expression partially rescues the oncogenic phenotype. Since MMP9 promotes cancer cell migration and invasion, metastasis and angiogenesis, its downregulation may contribute to the reduced tumorigenicity of NMD-suppressed cells. Collectively, our results highlight the potential value of NMD inhibition as a therapeutic approach.
Collapse
Affiliation(s)
- Sofia Nasif
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Switzerland
| | - Martino Colombo
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Switzerland
| | - Markus S Schröder
- NCCR RNA & Disease Bioinformatics Support,Department of Biology, ETH Zürich, Switzerland
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Switzerland
| |
Collapse
|
16
|
Shi Z, Kaneda-Nakashima K, Ohgaki R, Xu M, Okanishi H, Endou H, Nagamori S, Kanai Y. Inhibition of cancer-type amino acid transporter LAT1 suppresses B16-F10 melanoma metastasis in mouse models. Sci Rep 2023; 13:13943. [PMID: 37626086 PMCID: PMC10457391 DOI: 10.1038/s41598-023-41096-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023] Open
Abstract
Metastasis is the leading cause of mortality in cancer patients. L-type amino acid transporter 1 (LAT1, SLC7A5) is a Na+-independent neutral amino acid transporter highly expressed in various cancers to support their growth. Although high LAT1 expression is closely associated with cancer metastasis, its role in this process remains unclear. This study aimed to investigate the effect of LAT1 inhibition on cancer metastasis using B16-F10 melanoma mouse models. Our results demonstrated that nanvuranlat (JPH203), a high-affinity LAT1-selective inhibitor, suppressed B16-F10 cell proliferation, migration, and invasion. Similarly, LAT1 knockdown reduced cell proliferation, migration, and invasion. LAT1 inhibitors and LAT1 knockdown diminished B16-F10 lung metastasis in a lung metastasis model. Furthermore, nanvuranlat and LAT1 knockdown suppressed lung, spleen, and lymph node metastasis in an orthotopic metastasis model. We discovered that the LAT1 inhibitor reduced the cell surface expression of integrin αvβ3. Our findings revealed that the downregulation of the mTOR signaling pathway, induced by LAT1 inhibitors, decreased the expression of integrin αvβ3, contributing to the suppression of metastasis. These results highlight the critical role of LAT1 in cancer metastasis and suggest that LAT1 inhibition may serve as a potential target for anti-metastasis cancer therapy.
Collapse
Affiliation(s)
- Zitong Shi
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuko Kaneda-Nakashima
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- MS-CORE, FRC, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Division of Science, Institute for Radiation Sciences, Osaka University, 2-4, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryuichi Ohgaki
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Minhui Xu
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroki Okanishi
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Endou
- J-Pharma Co., Ltd, Yokohama, Kanagawa, 230-0046, Japan
| | - Shushi Nagamori
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato, Tokyo, 105-8461, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato, Tokyo, 105-8461, Japan
| | - Yoshikatsu Kanai
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
17
|
Wang J, Ocadiz-Ruiz R, Hall MS, Bushnell GG, Orbach SM, Decker JT, Raghani RM, Zhang Y, Morris AH, Jeruss JS, Shea LD. A synthetic metastatic niche reveals antitumor neutrophils drive breast cancer metastatic dormancy in the lungs. Nat Commun 2023; 14:4790. [PMID: 37553342 PMCID: PMC10409732 DOI: 10.1038/s41467-023-40478-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
Biomaterial scaffolds mimicking the environment in metastatic organs can deconstruct complex signals and facilitate the study of cancer progression and metastasis. Here we report that a subcutaneous scaffold implant in mouse models of metastatic breast cancer in female mice recruits lung-tropic circulating tumor cells yet suppresses their growth through potent in situ antitumor immunity. In contrast, the lung, the endogenous metastatic organ for these models, develops lethal metastases in aggressive breast cancer, with less aggressive tumor models developing dormant lungs suppressing tumor growth. Our study reveals multifaceted roles of neutrophils in regulating metastasis. Breast cancer-educated neutrophils infiltrate the scaffold implants and lungs, secreting the same signal to attract lung-tropic circulating tumor cells. Second, antitumor and pro-tumor neutrophils are selectively recruited to the dormant scaffolds and lungs, respectively, responding to distinct groups of chemoattractants to establish activated or suppressive immune environments that direct different fates of cancer cells.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Chemical and Biological Engineering Department, Iowa State University, Ames, IA, USA
| | - Ramon Ocadiz-Ruiz
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Matthew S Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Grace G Bushnell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sophia M Orbach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Joseph T Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Ravi M Raghani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yining Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aaron H Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
Serrano A, Weber T, Berthelet J, El-Saafin F, Gadipally S, Charafe-Jauffret E, Ginestier C, Mariadason JM, Oakes SR, Britt K, Naik SH, Merino D. Experimental and spontaneous metastasis assays can result in divergence in clonal architecture. Commun Biol 2023; 6:821. [PMID: 37550477 PMCID: PMC10406815 DOI: 10.1038/s42003-023-05167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
Intratumoural heterogeneity is associated with poor outcomes in breast cancer. To understand how malignant clones survive and grow in metastatic niches, in vivo models using cell lines and patient-derived xenografts (PDX) have become the gold standard. Injections of cancer cells in orthotopic sites (spontaneous metastasis assays) or into the vasculature (experimental metastasis assays) have been used interchangeably to study the metastatic cascade from early events or post-intravasation, respectively. However, less is known about how these different routes of injection impact heterogeneity. Herein we directly compared the clonality of spontaneous and experimental metastatic assays using the human cell line MDA-MB-231 and a PDX model. Genetic barcoding was used to study the fitness of the subclones in primary and metastatic sites. Using spontaneous assays, we found that intraductal injections resulted in less diverse tumours compared to other routes of injections. Using experimental metastasis assays via tail vein injection of barcoded MDA-MB-231 cells, we also observed an asymmetry in metastatic heterogeneity between lung and liver that was not observed using spontaneous metastasis assays. These results demonstrate that these assays can result in divergent clonal outputs in terms of metastatic heterogeneity and provide a better understanding of the biases inherent to each technique.
Collapse
Affiliation(s)
- Antonin Serrano
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Tom Weber
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jean Berthelet
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Farrah El-Saafin
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Sreeja Gadipally
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Emmanuelle Charafe-Jauffret
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Laboratory, Equipe labellisée LIGUE contre le cancer, Marseille, 13009, France
| | - Christophe Ginestier
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Laboratory, Equipe labellisée LIGUE contre le cancer, Marseille, 13009, France
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Samantha R Oakes
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, 2010, Australia
| | - Kara Britt
- Breast Cancer Risk and Prevention Lab, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Shalin H Naik
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Delphine Merino
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia.
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
19
|
Penny MK, Lerario AM, Basham KJ, Chukkapalli S, Mohan DR, LaPensee C, Converso-Baran K, Hoenerhoff MJ, Suárez-Fernández L, del Rey CG, Giordano TJ, Han R, Newman EA, Hammer GD. Targeting Oncogenic Wnt/β-Catenin Signaling in Adrenocortical Carcinoma Disrupts ECM Expression and Impairs Tumor Growth. Cancers (Basel) 2023; 15:3559. [PMID: 37509222 PMCID: PMC10377252 DOI: 10.3390/cancers15143559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/12/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare but highly aggressive cancer with limited treatment options and poor survival for patients with advanced disease. An improved understanding of the transcriptional programs engaged in ACC will help direct rational, targeted therapies. Whereas activating mutations in Wnt/β-catenin signaling are frequently observed, the β-catenin-dependent transcriptional targets that promote tumor progression are poorly understood. To address this question, we analyzed ACC transcriptome data and identified a novel Wnt/β-catenin-associated signature in ACC enriched for the extracellular matrix (ECM) and predictive of poor survival. This suggested an oncogenic role for Wnt/β-catenin in regulating the ACC microenvironment. We further investigated the minor fibrillar collagen, collagen XI alpha 1 (COL11A1), and found that COL11A1 expression originates specifically from cancer cells and is strongly correlated with both Wnt/β-catenin activation and poor patient survival. Inhibition of constitutively active Wnt/β-catenin signaling in the human ACC cell line, NCI-H295R, significantly reduced the expression of COL11A1 and other ECM components and decreased cancer cell viability. To investigate the preclinical potential of Wnt/β-catenin inhibition in the adrenal microenvironment, we developed a minimally invasive orthotopic xenograft model of ACC and demonstrated that treatment with the newly developed Wnt/β-catenin:TBL1 inhibitor Tegavivint significantly reduced tumor growth. Together, our data support that the inhibition of aberrantly active Wnt/β-catenin disrupts transcriptional reprogramming of the microenvironment and reduces ACC growth and survival. Furthermore, this β-catenin-dependent oncogenic program can be therapeutically targeted with a newly developed Wnt/β-catenin inhibitor. These results show promise for the further clinical development of Wnt/β-catenin inhibitors in ACC and unveil a novel Wnt/β-catenin-regulated transcriptome.
Collapse
Affiliation(s)
- Morgan K. Penny
- Doctoral Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Antonio M. Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kaitlin J. Basham
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sahiti Chukkapalli
- Mott Solid Tumor Oncology Program, C.S. Mott Children’s and Women’s Hospital, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dipika R. Mohan
- Doctoral Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Chris LaPensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kimber Converso-Baran
- UMH Frankel Cardiovascular Center Physiology and Phenotyping Core, Ann Arbor, MI 48109, USA
| | - Mark J. Hoenerhoff
- In Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Laura Suárez-Fernández
- Department Head and Neck Oncology, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
| | - Carmen González del Rey
- Department of Pathology, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
| | - Thomas J. Giordano
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Ruolan Han
- Iterion Therapeutics, Inc., Houston, TX 77021, USA
| | - Erika A. Newman
- Mott Solid Tumor Oncology Program, C.S. Mott Children’s and Women’s Hospital, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gary D. Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Endocrine Oncology Program, Rogel Cancer Center, University of Michigan Health System, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Parisi E, Hidalgo I, Montal R, Pallisé O, Tarragona J, Sorolla A, Novell A, Campbell K, Sorolla MA, Casali A, Salud A. PLA2G12A as a Novel Biomarker for Colorectal Cancer with Prognostic Relevance. Int J Mol Sci 2023; 24:10889. [PMID: 37446068 DOI: 10.3390/ijms241310889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Metastasis is the leading cause of colorectal cancer (CRC)-related deaths. Therefore, the identification of accurate biomarkers predictive of metastasis is needed to better stratify high-risk patients to provide preferred management and reduce mortality. In this study, we identified 13 new genes that modified circulating tumor cell numbers using a genome-wide genetic screen in a whole animal CRC model. Candidate genes were subsequently evaluated at the gene expression level in both an internal human CRC cohort of 153 patients and an independent cohort from the TCGA including 592 patients. Interestingly, the expression of one candidate, PLA2G12A, significantly correlated with both the time to recurrence and overall survival in our CRC cohort, with its low expression being an indicator of a poor clinical outcome. By examining the TCGA cohort, we also found that low expression of PLA2G12A was significantly enriched in epithelial-mesenchymal transition signatures. Finally, the candidate functionality was validated in vitro using three different colon cancer cell lines, revealing that PLA2G12A deficiency increases cell proliferation, migration, and invasion. Overall, our study identifies PLA2G12A as a prognostic biomarker of early-stage CRC, providing evidence that its deficiency promotes tumor growth and dissemination.
Collapse
Affiliation(s)
- Eva Parisi
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Experimental Medicine, University of Lleida, 25198 Lleida, Spain
| | - Ivan Hidalgo
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Robert Montal
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
- Department of Basic Medical Sciences, University of Lleida and IRBLleida, 25198 Lleida, Spain
| | - Ona Pallisé
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
| | - Jordi Tarragona
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Anna Novell
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Kyra Campbell
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Andreu Casali
- Department of Basic Medical Sciences, University of Lleida and IRBLleida, 25198 Lleida, Spain
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
- Department of Medicine, University of Lleida, 25198 Lleida, Spain
| |
Collapse
|
21
|
Ammons DT, MacDonald CR, Chow L, Repasky EA, Dow S. Chronic adrenergic stress and generation of myeloid-derived suppressor cells: Implications for cancer immunotherapy in dogs. Vet Comp Oncol 2023; 21:159-165. [PMID: 36876492 DOI: 10.1111/vco.12891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Recent studies have highlighted a key role played by the sympathetic nervous system (SNS) and adrenergic stress in mediating immune suppression associated with chronic inflammation in cancer and other diseases. The connection between chronic SNS activation, adrenergic stress and immune suppression is linked in part to the ability of catecholamines to stimulate the bone marrow release and differentiation of myeloid-derived suppressor cells (MDSC). Rodent model studies have revealed an important role for β-adrenergic receptor signalling in suppression of cancer immunity in mice subjected to chronic stresses, including thermal stress. Importantly, therapeutic blockade of beta-adrenergic responses by drugs such as propranolol can partially reverse the generation and differentiation of MDSC, and partly restore tumour immunity. Clinical trials in both humans and dogs with cancer have demonstrated that propranolol blockade can improve responses to radiation therapy, cancer vaccines and immune checkpoint inhibitors. Thus, the SNS stress response has become an important new target to relieve immune suppression in cancer and other chronic inflammatory conditions.
Collapse
Affiliation(s)
- Dylan T Ammons
- Flint Animal Cancer Center, Fort Collins, Colorado, USA
- Department of Microbiology, Immunology, and Pathology, Fort Collins, Colorado, USA
| | - Cameron R MacDonald
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Lyndah Chow
- Flint Animal Cancer Center, Fort Collins, Colorado, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Steven Dow
- Flint Animal Cancer Center, Fort Collins, Colorado, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
22
|
Weizman OE, Luyten S, Krykbaeva I, Song E, Mao T, Bosenberg M, Iwasaki A. Type 2 Dendritic Cells Orchestrate a Local Immune Circuit to Confer Antimetastatic Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1146-1155. [PMID: 36881866 PMCID: PMC10067787 DOI: 10.4049/jimmunol.2200697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/11/2023] [Indexed: 03/09/2023]
Abstract
The progression of transformed primary tumors to metastatic colonization is a lethal determinant of disease outcome. Although circulating adaptive and innate lymphocyte effector responses are required for effective antimetastatic immunity, whether tissue-resident immune circuits confer initial immunity at sites of metastatic dissemination remains ill defined. Here we examine the nature of local immune cell responses during early metastatic seeding in the lung using intracardiac injection to mimic monodispersed metastatic spread. Using syngeneic murine melanoma and colon cancer models, we demonstrate that lung-resident conventional type 2 dendritic cells (DC2) orchestrate a local immune circuit to confer host antimetastatic immunity. Tissue-specific ablation of lung DC2, and not peripheral DC populations, led to increased metastatic burden in the presence of an intact T cell and NK cell compartment. We demonstrate that DC nucleic acid sensing and transcription factors IRF3 and IRF7 signaling are required for early metastatic control and that DC2 serve as a robust source of proinflammatory cytokines in the lung. Critically, DC2 direct the local production of IFN-γ by lung-resident NK cells, which limits the initial metastatic burden. Collectively, our results highlight, to our knowledge, a novel DC2-NK cell axis that colocalizes around pioneering metastatic cells to orchestrate an early innate immune response program to limit initial metastatic burden in the lung.
Collapse
Affiliation(s)
- Orr-El Weizman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Sophia Luyten
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Irina Krykbaeva
- Department of Dermatology, Yale University School of Medicine, New Haven, CT
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Eric Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Marcus Bosenberg
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Dermatology, Yale University School of Medicine, New Haven, CT
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Dermatology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
23
|
McDonald JA, Scott L, Van Zuylekom J, Holloway S, Blyth BJ, Sutherland KD. On Target: An Intrapulmonary Transplantation Method for Modelling Lung Tumor Development in its Native Microenvironment. Methods Mol Biol 2023; 2691:31-41. [PMID: 37355535 DOI: 10.1007/978-1-0716-3331-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
The development of in vivo lung cancer models that faithfully mimic the human disease is a crucial research tool for understanding the molecular mechanisms driving tumorigenesis. Subcutaneous transplantation assays are commonly employed, likely due to their amenability to easily monitor tumor growth and the simplistic nature of the technique to deliver tumor cells. Importantly however, subcutaneous tumors grow in a microenvironment that differs from that resident within the lung. To circumvent this limitation, here we describe the development of an intrapulmonary (iPUL) orthotopic transplantation method that enables the delivery of lung cancer cells, with precision, to the left lung lobe of recipient mice. Critically, this allows for the growth of lung cancer cells within their native microenvironment. The coupling of iPUL transplantation with position emission tomography (PET) imaging permits the serial detection of tumors in vivo and serves as a powerful tool to trace lung tumor growth and dissemination over time in mouse disease models.
Collapse
Affiliation(s)
- Jackson A McDonald
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Leanne Scott
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Jessica Van Zuylekom
- Models of Cancer Translational Research Centre, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
| | - Steven Holloway
- Bioservices Department, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Benjamin J Blyth
- Models of Cancer Translational Research Centre, Peter MacCallum Cancer Centre, Parkville, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.
| | - Kate D Sutherland
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
24
|
Koh EY, Kim KS, Park HB, Kim JS, Kim PH. Active Targeting of Versatile Nanocomplex Using the Novel Biomarker of Breast Cancer Stem Cells. Int J Mol Sci 2022; 24:ijms24010685. [PMID: 36614128 PMCID: PMC9821020 DOI: 10.3390/ijms24010685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Breast cancer in women is one of the most common life-threatening malignancies. Despite of the development for the improved treatment, there are still many limitations to overcome. Among them, cancer stem cells (CSCs) are well known for tumor formation, development, cellular heterogeneity, and cancer recurrence. Therefore, to completely cure breast cancer, treatment of both cancer and CSC is required. To selectively target CSCs, we generated a liposome-based smart nano complex using CEACAM 6 (CD66c) antibody (Ab), a novel cell-surface biomarker of breast-derived CSCs (BCSCs) discovered in our previous research. Selective and increased cellular uptake was observed in BCSCs treated with CD66c Ab-conjugated rhodamine-labeled liposomes (CDRHOL) depending on the expression level of CD66c. CD66c Ab-conjugated doxorubicin (DOX)-loaded liposomes (CDDOXL) selectively showed increased cell killing effects in BCSCs with high CD66c expression levels. In an in vivo animal study, CDRHOL showed enhanced accumulation in xenografted BCSC tumors with low delivery into non-target organs. Moreover, mice treated with CDDOXL have assessed the decreased induction ability of immune response by low expression levels of pro-inflammatory cytokines and reduced liver toxicity by histopathological analysis. Finally, the improved antitumor effect of CDDOXL was evaluated in a metastatic BCSC mouse model via systemic administration. Collectively, our study is the first to demonstrate that a multi-functional nano complex using a novel surface biomarker of BCSC may be a more effective therapeutic agent for the treatment of cancer and CSCs.
Collapse
Affiliation(s)
- Eun-Young Koh
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea
| | - Keun-Sik Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea
| | - Hee-Bin Park
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Pyung-Hwan Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea
- Correspondence: ; Tel.: +82-42-600-8436; Fax: +82-42-600-8408
| |
Collapse
|
25
|
Bouchalova P, Bouchal P. Current methods for studying metastatic potential of tumor cells. Cancer Cell Int 2022; 22:394. [PMID: 36494720 PMCID: PMC9733110 DOI: 10.1186/s12935-022-02801-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Cell migration and invasiveness significantly contribute to desirable physiological processes, such as wound healing or embryogenesis, as well as to serious pathological processes such as the spread of cancer cells to form tumor metastasis. The availability of appropriate methods for studying these processes is essential for understanding the molecular basis of cancer metastasis and for identifying suitable therapeutic targets for anti-metastatic treatment. This review summarizes the current status of these methods: In vitro methods for studying cell migration involve two-dimensional (2D) assays (wound-healing/scratch assay), and methods based on chemotaxis (the Dunn chamber). The analysis of both cell migration and invasiveness in vitro require more complex systems based on the Boyden chamber principle (Transwell migration/invasive test, xCELLigence system), or microfluidic devices with three-dimensional (3D) microscopy visualization. 3D culture techniques are rapidly becoming routine and involve multicellular spheroid invasion assays or array chip-based, spherical approaches, multi-layer/multi-zone culture, or organoid non-spherical models, including multi-organ microfluidic chips. The in vivo methods are mostly based on mice, allowing genetically engineered mice models and transplant models (syngeneic mice, cell line-derived xenografts and patient-derived xenografts including humanized mice models). These methods currently represent a solid basis for the state-of-the art research that is focused on understanding metastatic fundamentals as well as the development of targeted anti-metastatic therapies, and stratified treatment in oncology.
Collapse
Affiliation(s)
- Pavla Bouchalova
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Pavel Bouchal
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
26
|
Castaneda M, den Hollander P, Kuburich NA, Rosen JM, Mani SA. Mechanisms of cancer metastasis. Semin Cancer Biol 2022; 87:17-31. [PMID: 36354098 DOI: 10.1016/j.semcancer.2022.10.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Metastatic cancer is almost always terminal, and more than 90% of cancer deaths result from metastatic disease. Combating cancer metastasis and post-therapeutic recurrence successfully requires understanding each step of metastatic progression. This review describes the current state of knowledge of the etiology and mechanism of cancer progression from primary tumor growth to the formation of new tumors in other parts of the body. Open questions, avenues for future research, and therapeutic approaches with the potential to prevent or inhibit metastasis through personalization to each patient's mutation and/or immune profile are also highlighted.
Collapse
Affiliation(s)
- Maria Castaneda
- Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Petra den Hollander
- Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology and Lab Medicine, Brown University, Providence, RI 02912, USA; Legoretta Cancer Center, Brown University, Providence, RI 021912, USA
| | - Nick A Kuburich
- Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology and Lab Medicine, Brown University, Providence, RI 02912, USA; Legoretta Cancer Center, Brown University, Providence, RI 021912, USA
| | - Jeffrey M Rosen
- Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Sendurai A Mani
- Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology and Lab Medicine, Brown University, Providence, RI 02912, USA; Legoretta Cancer Center, Brown University, Providence, RI 021912, USA.
| |
Collapse
|
27
|
Wang L, Wang X, Guo E, Mao X, Miao S. Emerging roles of platelets in cancer biology and their potential as therapeutic targets. Front Oncol 2022; 12:939089. [PMID: 35936717 PMCID: PMC9355257 DOI: 10.3389/fonc.2022.939089] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022] Open
Abstract
The main role of platelets is to control bleeding and repair vascular damage via thrombosis. They have also been implicated to promote tumor metastasis through platelet-tumor cell interactions. Platelet-tumor cell interactions promote tumor cell survival and dissemination in blood circulation. Tumor cells are known to induce platelet activation and alter platelet RNA profiles. Liquid biopsies based on tumor-educated platelet biomarkers can detect tumors and correlate with prognosis, personalized therapy, treatment monitoring, and recurrence prediction. Platelet-based strategies for cancer prevention and tumor-targeted therapy include developing drugs that target platelet receptors, interfere with the release of platelet particles, inhibit platelet-specific enzymes, and utilize platelet-derived “nano-platelets” as a targeted drug delivery platform for tumor therapy. This review elaborates on platelet-tumor cell interactions and the molecular mechanisms and discusses future research directions for platelet-based liquid biopsy techniques and platelet-targeted anti-tumor strategies.
Collapse
Affiliation(s)
- Lei Wang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Erliang Guo
- Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xionghui Mao
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Xionghui Mao, ; Susheng Miao,
| | - Susheng Miao
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Xionghui Mao, ; Susheng Miao,
| |
Collapse
|
28
|
Beyond Genetics: Metastasis as an Adaptive Response in Breast Cancer. Int J Mol Sci 2022; 23:ijms23116271. [PMID: 35682953 PMCID: PMC9181003 DOI: 10.3390/ijms23116271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023] Open
Abstract
Metastatic disease represents the primary cause of breast cancer (BC) mortality, yet it is still one of the most enigmatic processes in the biology of this tumor. Metastatic progression includes distinct phases: invasion, intravasation, hematogenous dissemination, extravasation and seeding at distant sites, micro-metastasis formation and metastatic outgrowth. Whole-genome sequencing analyses of primary BC and metastases revealed that BC metastatization is a non-genetically selected trait, rather the result of transcriptional and metabolic adaptation to the unfavorable microenvironmental conditions which cancer cells are exposed to (e.g., hypoxia, low nutrients, endoplasmic reticulum stress and chemotherapy administration). In this regard, the latest multi-omics analyses unveiled intra-tumor phenotypic heterogeneity, which determines the polyclonal nature of breast tumors and constitutes a challenge for clinicians, correlating with patient poor prognosis. The present work reviews BC classification and epidemiology, focusing on the impact of metastatic disease on patient prognosis and survival, while describing general principles and current in vitro/in vivo models of the BC metastatic cascade. The authors address here both genetic and phenotypic intrinsic heterogeneity of breast tumors, reporting the latest studies that support the role of the latter in metastatic spreading. Finally, the review illustrates the mechanisms underlying adaptive stress responses during BC metastatic progression.
Collapse
|
29
|
Xiao J, McGill JR, Nasir A, Lekan A, Johnson B, Wilkins DJ, Pearson GW, Tanner K, Goodarzi H, Glasgow E, Schlegel R, Agarwal S. Identifying drivers of breast cancer metastasis in progressively invasive subpopulations of zebrafish-xenografted MDA-MB-231. MOLECULAR BIOMEDICINE 2022; 3:16. [PMID: 35614362 PMCID: PMC9133282 DOI: 10.1186/s43556-022-00080-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer metastasis is the primary cause of the high mortality rate among human cancers. Efforts to identify therapeutic agents targeting cancer metastasis frequently fail to demonstrate efficacy in clinical trials despite strong preclinical evidence. Until recently, most preclinical studies used mouse models to evaluate anti-metastatic agents. Mouse models are time-consuming and expensive. In addition, an important drawback is that mouse models inadequately model the early stages of metastasis which plausibly leads to the poor correlation with clinical outcomes. Here, we report an in vivo model based on xenografted zebrafish embryos where we select for progressively invasive subpopulations of MDA-MB-231 breast cancer cells. A subpopulation analogous to circulating tumor cells found in human cancers was selected by injection of MDA-MB-231 cells into the yolk sacs of 2 days post-fertilized zebrafish embryos and selecting cells that migrated to the tail. The selected subpopulation derived from MDA-MB-231 cells were increasingly invasive in zebrafish. Isolation of these subpopulations and propagation in vitro revealed morphological changes consistent with activation of an epithelial-mesenchymal transition program. Differential gene analysis and knockdown of genes identified gene-candidates (DDIT4, MT1X, CTSD, and SERPINE1) as potential targets for anti-metastasis therapeutics. Furthermore, RNA-splicing analysis reinforced the importance of BIRC5 splice variants in breast cancer metastasis. This is the first report using zebrafish to isolate and expand progressively invasive populations of human cancer cells. The model has potential applications in understanding the metastatic process, identification and/or development of therapeutics that specifically target metastatic cells and formulating personalized treatment strategies for individual cancer patients.
Collapse
Affiliation(s)
- Jerry Xiao
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA.,Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Joseph R McGill
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Apsra Nasir
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Alexander Lekan
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA
| | - Bailey Johnson
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Devan J Wilkins
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA.,Eastern Virginia Medical School, Norfolk, VA, USA
| | - Gray W Pearson
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Eric Glasgow
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Richard Schlegel
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA.
| |
Collapse
|
30
|
Analysis of the metabolic proteome of lung adenocarcinomas by reverse-phase protein arrays (RPPA) emphasizes mitochondria as targets for therapy. Oncogenesis 2022; 11:24. [PMID: 35534478 PMCID: PMC9085865 DOI: 10.1038/s41389-022-00400-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022] Open
Abstract
AbstractLung cancer is the leading cause of cancer-related death worldwide despite the success of therapies targeting oncogenic drivers and immune-checkpoint inhibitors. Although metabolic enzymes offer additional targets for therapy, the precise metabolic proteome of lung adenocarcinomas is unknown, hampering its clinical translation. Herein, we used Reverse Phase Protein Arrays to quantify the changes in enzymes of glycolysis, oxidation of pyruvate, fatty acid metabolism, oxidative phosphorylation, antioxidant response and protein oxidative damage in 128 tumors and paired non-tumor adjacent tissue of lung adenocarcinomas to profile the proteome of metabolism. Steady-state levels of mitochondrial proteins of fatty acid oxidation, oxidative phosphorylation and of the antioxidant response are independent predictors of survival and/or of disease recurrence in lung adenocarcinoma patients. Next, we addressed the mechanisms by which the overexpression of ATPase Inhibitory Factor 1, the physiological inhibitor of oxidative phosphorylation, which is an independent predictor of disease recurrence, prevents metastatic disease. We highlight that IF1 overexpression promotes a more vulnerable and less invasive phenotype in lung adenocarcinoma cells. Finally, and as proof of concept, the therapeutic potential of targeting fatty acid assimilation or oxidation in combination with an inhibitor of oxidative phosphorylation was studied in mice bearing lung adenocarcinomas. The results revealed that this therapeutic approach significantly extended the lifespan and provided better welfare to mice than cisplatin treatments, supporting mitochondrial activities as targets of therapy in lung adenocarcinoma patients.
Collapse
|
31
|
Zou C, Lv X, Wei H, Wu S, Song J, Tang Z, Liu S, Li X, Ai Y. Long non-coding RNA LINC00472 inhibits oral squamous cell carcinoma via miR-4311/GNG7 axis. Bioengineered 2022; 13:6371-6382. [PMID: 35240924 PMCID: PMC8974029 DOI: 10.1080/21655979.2022.2040768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Emerging studies indicate that long non-coding RNAs play important roles in oral squamous cell carcinoma (OSCC). However, the function of the majority of long non-coding RNAs is still unclear. Recently, LINC00472 has been reported to play crucial roles in multiple cancers. However, the role of LINC00472 in oral squamous cell carcinoma (OSCC) is still not clear. This study found that LncRNA LINC00472 was significantly down-regulated in several squamous cell carcinoma cancer tissues and OSCC cell lines. Over-expression of LINC00472 in OSCC cells inhibited OSCC progression and alleviated OSCC immune responses. Additionally, we confirmed that LINC00472 functioned as an hsa-miR-4311 sponge and regulated the expression of GNG7 (guanine nucleotide-binding protein, gamma 7). Also, we found that LINC00472 over-expression could suppress xenograft tumor growth in vivo. Our study provides evidence that LINC00472 plays an essential role in inhibiting oral squamous cell carcinoma progression and affecting immune responses by directly binding to hsa-miR-4311 to regulate the expression of GNG7 positively.
Collapse
Affiliation(s)
- Chen Zou
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Xiaozhi Lv
- Department of Oral and Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Haigang Wei
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Siyuan Wu
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Jing Song
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Zhe Tang
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Shiwei Liu
- Department of Stomatology, Foshan First People's Hospital, Foshan, Guangdong, China
| | - Xia Li
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Yilong Ai
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
32
|
Li H, Prever L, Hsu MY, Lo W, Margaria JP, De Santis MC, Zanini C, Forni M, Novelli F, Pece S, Di Fiore PP, Porporato PE, Martini M, Belabed H, Nazare M, Haucke V, Gulluni F, Hirsch E. Phosphoinositide Conversion Inactivates R-RAS and Drives Metastases in Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103249. [PMID: 35098698 PMCID: PMC8948670 DOI: 10.1002/advs.202103249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/03/2021] [Indexed: 05/05/2023]
Abstract
Breast cancer is the most prevalent cancer and a major cause of death in women worldwide. Although early diagnosis and therapeutic intervention significantly improve patient survival rate, metastasis still accounts for most deaths. Here it is reported that, in a cohort of more than 2000 patients with breast cancer, overexpression of PI3KC2α occurs in 52% of cases and correlates with high tumor grade as well as increased probability of distant metastatic events, irrespective of the subtype. Mechanistically, it is demonstrated that PI3KC2α synthetizes a pool of PI(3,4)P2 at focal adhesions that lowers their stability and directs breast cancer cell migration, invasion, and metastasis. PI(3,4)P2 locally produced by PI3KC2α at focal adhesions recruits the Ras GTPase activating protein 3 (RASA3), which inactivates R-RAS, leading to increased focal adhesion turnover, migration, and invasion both in vitro and in vivo. Proof-of-concept is eventually provided that inhibiting PI3KC2α or lowering RASA3 activity at focal adhesions significantly reduces the metastatic burden in PI3KC2α-overexpressing breast cancer, thereby suggesting a novel strategy for anti-breast cancer therapy.
Collapse
Affiliation(s)
- Huayi Li
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Lorenzo Prever
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Myriam Y. Hsu
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Wen‐Ting Lo
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)Berlin13125Germany
| | - Jean Piero Margaria
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Maria Chiara De Santis
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Cristina Zanini
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Marco Forni
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Salvatore Pece
- IEOEuropean Institute of Oncology IRCCSVia Ripamonti 435Milan20141Italy
- Department of Oncology and Hemato‐OncologyUniversità degli Studi di MilanoMilano20142Italy
| | - Pier Paolo Di Fiore
- IEOEuropean Institute of Oncology IRCCSVia Ripamonti 435Milan20141Italy
- Department of Oncology and Hemato‐OncologyUniversità degli Studi di MilanoMilano20142Italy
| | - Paolo Ettore Porporato
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Hassane Belabed
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)Berlin13125Germany
| | - Marc Nazare
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)Berlin13125Germany
| | - Volker Haucke
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)Berlin13125Germany
- Faculty of Biology, Chemistry and PharmacyFreie Universität BerlinBerlin14195Germany
| | - Federico Gulluni
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| |
Collapse
|
33
|
Seely KD, Morgan AD, Hagenstein LD, Florey GM, Small JM. Bacterial Involvement in Progression and Metastasis of Colorectal Neoplasia. Cancers (Basel) 2022; 14:1019. [PMID: 35205767 PMCID: PMC8870662 DOI: 10.3390/cancers14041019] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
While the gut microbiome is composed of numerous bacteria, specific bacteria within the gut may play a significant role in carcinogenesis, progression, and metastasis of colorectal carcinoma (CRC). Certain microbial species are known to be associated with specific cancers; however, the interrelationship between bacteria and metastasis is still enigmatic. Mounting evidence suggests that bacteria participate in cancer organotropism during solid tumor metastasis. A critical review of the literature was conducted to better characterize what is known about bacteria populating a distant site and whether a tumor depends upon the same microenvironment during or after metastasis. The processes of carcinogenesis, tumor growth and metastatic spread in the setting of bacterial infection were examined in detail. The literature was scrutinized to discover the role of the lymphatic and venous systems in tumor metastasis and how microbes affect these processes. Some bacteria have a potent ability to enhance epithelial-mesenchymal transition, a critical step in the metastatic cascade. Bacteria also can modify the microenvironment and the local immune profile at a metastatic site. Early targeted antibiotic therapy should be further investigated as a measure to prevent metastatic spread in the setting of bacterial infection.
Collapse
Affiliation(s)
- Kevin D. Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (A.D.M.); (L.D.H.)
| | - Amanda D. Morgan
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (A.D.M.); (L.D.H.)
| | - Lauren D. Hagenstein
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (A.D.M.); (L.D.H.)
| | - Garrett M. Florey
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA;
| | - James M. Small
- Department of Biomedical Sciences, Rocky Vista University, Parker, CO 80134, USA;
| |
Collapse
|
34
|
Impact of limb amputation and cisplatin chemotherapy on metastatic progression in mouse models of osteosarcoma. Sci Rep 2021; 11:24435. [PMID: 34952927 PMCID: PMC8709858 DOI: 10.1038/s41598-021-04018-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/08/2021] [Indexed: 12/23/2022] Open
Abstract
Development of animal models that accurately recapitulate human cancer is an ongoing challenge. This is particularly relevant in the study of osteosarcoma (OS), a highly malignant bone tumor diagnosed in approximately 1000 pediatric/adolescent patients each year. Metastasis is the leading cause of patient death underscoring the need for relevant animal models of metastatic OS. In this study, we describe how existing OS mouse models can be interrogated in a time-course context to determine the kinetics of spontaneous metastasis from an orthotopically implanted primary tumor. We evaluated four highly metastatic OS cell lines (3 human, 1 mouse) to establish a timeline for metastatic progression in immune deficient NSG mice. To discern the effects of therapy on tumor development and metastasis in these models, we investigated cisplatin therapy and surgical limb amputation at early and late timepoints. These data help define the appropriate observational periods for studies of metastatic progression in OS and further our understanding of existing mouse models. Efforts to advance the study of metastatic OS are critical for facilitating the identification of novel therapeutics and for improving patient survival.
Collapse
|
35
|
Chick Embryo Experimental Platform for Micrometastases Research in a 3D Tissue Engineering Model: Cancer Biology, Drug Development, and Nanotechnology Applications. Biomedicines 2021; 9:biomedicines9111578. [PMID: 34829808 PMCID: PMC8615510 DOI: 10.3390/biomedicines9111578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/06/2021] [Accepted: 10/16/2021] [Indexed: 12/31/2022] Open
Abstract
Colonization of distant organs by tumor cells is a critical step of cancer progression. The initial avascular stage of this process (micrometastasis) remains almost inaccessible to study due to the lack of relevant experimental approaches. Herein, we introduce an in vitro/in vivo model of organ-specific micrometastases of triple-negative breast cancer (TNBC) that is fully implemented in a cost-efficient chick embryo (CE) experimental platform. The model was built as three-dimensional (3D) tissue engineering constructs (TECs) combining human MDA-MB-231 cells and decellularized CE organ-specific scaffolds. TNBC cells colonized CE organ-specific scaffolds in 2–3 weeks, forming tissue-like structures. The feasibility of this methodology for basic cancer research, drug development, and nanomedicine was demonstrated on a model of hepatic micrometastasis of TNBC. We revealed that MDA-MB-231 differentially colonize parenchymal and stromal compartments of the liver-specific extracellular matrix (LS-ECM) and become more resistant to the treatment with molecular doxorubicin (Dox) and Dox-loaded mesoporous silica nanoparticles than in monolayer cultures. When grafted on CE chorioallantoic membrane, LS-ECM-based TECs induced angiogenic switch. These findings may have important implications for the diagnosis and treatment of TNBC. The methodology established here is scalable and adaptable for pharmacological testing and cancer biology research of various metastatic and primary tumors.
Collapse
|
36
|
Miquel M, Zhang S, Pilarsky C. Pre-clinical Models of Metastasis in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:748631. [PMID: 34778259 PMCID: PMC8578999 DOI: 10.3389/fcell.2021.748631] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a hostile solid malignancy coupled with an extremely high mortality rate. Metastatic disease is already found in most patients at the time of diagnosis, resulting in a 5-year survival rate below 5%. Improved comprehension of the mechanisms leading to metastasis is pivotal for the development of new targeted therapies. A key field to be improved are modeling strategies applied in assessing cancer progression, since traditional platforms fail in recapitulating the complexity of PDAC. Consequently, there is a compelling demand for new preclinical models that mirror tumor progression incorporating the pressure of the immune system, tumor microenvironment, as well as molecular aspects of PDAC. We suggest the incorporation of 3D organoids derived from genetically engineered mouse models or patients as promising new tools capable to transform PDAC pre-clinical modeling and access new frontiers in personalized medicine.
Collapse
Affiliation(s)
- Maria Miquel
- Department of Surgery, University Hospital, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Shuman Zhang
- Department of Surgery, University Hospital, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Pilarsky
- Department of Surgery, University Hospital, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
37
|
Tang S, Yang X, Zhou C, Mei Y, Ye J, Zhang X, Feng G, Zhang W, Zhang X, Fan W. Sodium Pump Na + /K + ATPase Subunit α1-Targeted Positron Emission Tomography Imaging of Hepatocellular Carcinoma in Mouse Models. Mol Imaging Biol 2021; 24:384-393. [PMID: 34622423 DOI: 10.1007/s11307-021-01659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Positron emission tomography (PET) imaging was not efficiently used in the early diagnosis of hepatocellular carcinoma (HCC) due to the lack of appropriate tracers. Sodium pump Na + /K + ATPase subunit α1 (NKAα1) emerges to be a potential diagnostic biomarker of HCC. Here, we investigated the feasibility of 18F-ALF-NOTA-S3, a PET tracer based on an NKAα1 peptide, to detect small HCC. PROCEDURES GEPIA database was searched to obtain the expression characteristics of NKAα1 in HCC and its relationship with the prognosis. PET/CT was performed in orthotopic, diethylnitrosamine (DEN)-induced and genetically engineered HCC mouse models to evaluate the use of 18F-ALF-NOTA-S3 to detect HCC lesions. RESULTS NKAα1 is overexpressed in early HCC with a high positive rate and may correlate with poor survival. In orthotopic, DEN-induced and genetically engineered HCC mouse models, PET/CT imaging showed a high accumulation of 18F-ALF-NOTA-S3 in the tumor. The tumor-to-liver ratios are 2.56 ± 1.02, 4.41 ± 1.09, and 4.59 ± 0.65, respectively. Upregulated NKAα1 expression in tumors were verified by immunohistochemistry. Furthermore, 18F-ALF-NOTA-S3 has the ability to detect small HCC lesions with diameters of 2-5 mm. CONCLUSIONS NKAα1 may serve as a suitable diagnostic biomarker for HCC. 18F-ALF-NOTA-S3 shows great potential for PET imaging of HCC.
Collapse
Affiliation(s)
- Si Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - XiaoChun Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Chao Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yan Mei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - JiaCong Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - XiaoFei Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - GuoKai Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - WeiGuang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Xu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Wei Fan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
38
|
Tanaka T, Nishie R, Ueda S, Miyamoto S, Hashida S, Konishi H, Terada S, Kogata Y, Sasaki H, Tsunetoh S, Taniguchi K, Komura K, Ohmichi M. Patient-Derived Xenograft Models in Cervical Cancer: A Systematic Review. Int J Mol Sci 2021; 22:9369. [PMID: 34502278 PMCID: PMC8431521 DOI: 10.3390/ijms22179369] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Patient-derived xenograft (PDX) models have been a focus of attention because they closely resemble the tumor features of patients and retain the molecular and histological features of diseases. They are promising tools for translational research. In the current systematic review, we identify publications on PDX models of cervical cancer (CC-PDX) with descriptions of main methodological characteristics and outcomes to identify the most suitable method for CC-PDX. METHODS We searched on PubMed to identify articles reporting CC-PDX. Briefly, the main inclusion criterion for papers was description of PDX created with fragments obtained from human cervical cancer specimens, and the exclusion criterion was the creation of xenograft with established cell lines. RESULTS After the search process, 10 studies were found and included in the systematic review. Among 98 donor patients, 61 CC-PDX were established, and the overall success rate was 62.2%. The success rate in each article ranged from 0% to 75% and was higher when using severe immunodeficient mice such as severe combined immunodeficient (SCID), nonobese diabetic (NOD) SCID, and NOD SCID gamma (NSG) mice than nude mice. Subrenal capsule implantation led to a higher engraftment rate than orthotopic and subcutaneous implantation. Fragments with a size of 1-3 mm3 were suitable for CC-PDX. No relationship was found between the engraftment rate and characteristics of the tumor and donor patient, including histology, staging, and metastasis. The latency period varied from 10 days to 12 months. Most studies showed a strong similarity in pathological and immunohistochemical features between the original tumor and the PDX model. CONCLUSION Severe immunodeficient mice and subrenal capsule implantation led to a higher engraftment rate; however, orthotopic and subcutaneous implantation were alternatives. When using nude mice, subrenal implantation may be better. Fragments with a size of 1-3 mm3 were suitable for CC-PDX. Few reports have been published about CC-PDX; the results were not confirmed because of the small sample size.
Collapse
Affiliation(s)
- Tomohito Tanaka
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (R.N.); (S.U.); (S.M.); (S.H.); (H.K.); (S.T.); (Y.K.); (H.S.); (S.T.); (M.O.)
- Translational Research Program, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (K.T.); (K.K.)
| | - Ruri Nishie
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (R.N.); (S.U.); (S.M.); (S.H.); (H.K.); (S.T.); (Y.K.); (H.S.); (S.T.); (M.O.)
| | - Shoko Ueda
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (R.N.); (S.U.); (S.M.); (S.H.); (H.K.); (S.T.); (Y.K.); (H.S.); (S.T.); (M.O.)
| | - Shunsuke Miyamoto
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (R.N.); (S.U.); (S.M.); (S.H.); (H.K.); (S.T.); (Y.K.); (H.S.); (S.T.); (M.O.)
| | - Sousuke Hashida
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (R.N.); (S.U.); (S.M.); (S.H.); (H.K.); (S.T.); (Y.K.); (H.S.); (S.T.); (M.O.)
| | - Hiromi Konishi
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (R.N.); (S.U.); (S.M.); (S.H.); (H.K.); (S.T.); (Y.K.); (H.S.); (S.T.); (M.O.)
| | - Shinichi Terada
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (R.N.); (S.U.); (S.M.); (S.H.); (H.K.); (S.T.); (Y.K.); (H.S.); (S.T.); (M.O.)
| | - Yuhei Kogata
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (R.N.); (S.U.); (S.M.); (S.H.); (H.K.); (S.T.); (Y.K.); (H.S.); (S.T.); (M.O.)
| | - Hiroshi Sasaki
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (R.N.); (S.U.); (S.M.); (S.H.); (H.K.); (S.T.); (Y.K.); (H.S.); (S.T.); (M.O.)
| | - Satoshi Tsunetoh
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (R.N.); (S.U.); (S.M.); (S.H.); (H.K.); (S.T.); (Y.K.); (H.S.); (S.T.); (M.O.)
| | - Kohei Taniguchi
- Translational Research Program, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (K.T.); (K.K.)
| | - Kazumasa Komura
- Translational Research Program, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (K.T.); (K.K.)
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (R.N.); (S.U.); (S.M.); (S.H.); (H.K.); (S.T.); (Y.K.); (H.S.); (S.T.); (M.O.)
| |
Collapse
|
39
|
Price MJ, Baëta C, Dalton TE, Nguyen A, Lavau C, Pennington Z, Sciubba DM, Goodwin CR. Animal Models of Metastatic Lesions to the Spine: a Focus on Epidural Spinal Cord Compression. World Neurosurg 2021; 155:122-134. [PMID: 34343682 DOI: 10.1016/j.wneu.2021.07.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/19/2022]
Abstract
Epidural spinal cord compression (ESCC) secondary to spine metastases is one of the most devastating sequelae of primary cancer as it may lead to muscle weakness, paresthesia, pain, and paralysis. Spine metastases occur through a multi-step process that can result in eventual ESCC; however, the lack of a preclinical model to effectively recapitulate each step of this metastatic cascade and the symptom burden of ESCC has limited our understanding of this disease process. In this review, we discuss animal models that best recapitulate ESCC; we start with a broad discussion of commonly used models of bone metastasis and end with a focused discussion of models used to specifically study ESCC. Orthotopic models offer the most authentic recapitulation of metastasis development; however, they rarely result in symptomatic ESCC and are challenging to replicate. Conversely, models that involve injection of tumor cells directly into the bloodstream or bone better mimic the symptoms of ESCC; however, they provide limited insight into the epithelial to mesenchymal transition (EMT) and natural hematogenous spread of tumor cell. Therefore, until an ideal model is created, it is critical to select an animal model that is specifically designed to answer the scientific question of interest.
Collapse
Affiliation(s)
- Meghan J Price
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - César Baëta
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Tara E Dalton
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Annee Nguyen
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Catherine Lavau
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Zach Pennington
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel M Sciubba
- Department of Neurosurgery, Zucker School of Medicine at Hofstra, Long Island Jewish Medical Center and North Shore University Hospital, Northwell Health, Manhasset, New York, USA
| | - C Rory Goodwin
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
40
|
Ahmad S, Abbas M, Ullah MF, Aziz MH, Beylerli O, Alam MA, Syed MA, Uddin S, Ahmad A. Long non-coding RNAs regulated NF-κB signaling in cancer metastasis: Micromanaging by not so small non-coding RNAs. Semin Cancer Biol 2021; 85:155-163. [PMID: 34314819 DOI: 10.1016/j.semcancer.2021.07.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
Cancer metastasis is a major reason for the cancer-associated deaths and a role of long non-coding RNAs (lncRNAs) in cancer metastasis is increasingly being realized. Among the many oncogenic pathways, NF-κB signalling's involvement in cancer metastasis as a key inflammation-regulatory transcription factor has been a subject of interest for long time. Accumulating data from in vitro as well as in vivo studies along with analysis of clinical cancer tissues points to regulation of NF-κB signalling by lncRNAs with implications toward the onset of cancer metastasis. LncRNAs FOXD2-AS1, KRT19P3 and the NF-κB interacting lncRNA (NKILA) associate with lymph node metastasis and poor prognosis of individual cancers. The role of epithelial-mesenchymal transition (EMT) in cancer metastasis is well known. EMT is regulated by NF-κB and regulation of NF-κB/EMT-induced metastasis by lncRNAs remains a hot topic of research with indications for such roles of lncRNAs MALAT1, SNHG15, CRNDE and AC007271.3. Among the many lncRNAs, NKILA stands out as the most investigated lncRNA for its regulation of NF-κB. This tumor suppressive lncRNA has been reported downregulated in clinical samples representing different human cancers. Mechanistically, NKILA has been consistently shown to inhibit NF-κB activation via inhibition of IκBα phosphorylation and the resulting suppression of EMT. NKILA is also a target of natural anticancer compounds. Given the importance of NF-κB as a master regulatory transcription factor, lncRNAs, as the modulators of NF-κB signaling, can provide alternate targets for metastatic cancers with constitutively active NF-κB.
Collapse
Affiliation(s)
- Shaniya Ahmad
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Madiha Abbas
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohammad Fahad Ullah
- Prince Fahd Research Chair, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Tabuk, Saudi Arabia
| | - Moammir H Aziz
- James H. Quillen VA Medical Center, Johnson City, TN, 37604, USA
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Majid Ali Alam
- Dermatology Institute and Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shahab Uddin
- Dermatology Institute and Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory of Animal Center, Qatar University, Doha, Qatar
| | - Aamir Ahmad
- Dermatology Institute and Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
41
|
Giacobbe A, Abate-Shen C. Modeling metastasis in mice: a closer look. Trends Cancer 2021; 7:916-929. [PMID: 34303648 DOI: 10.1016/j.trecan.2021.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Unraveling the multifaceted cellular and physiological processes associated with metastasis is best achieved by using in vivo models that recapitulate the requisite tumor cell-intrinsic and -extrinsic mechanisms at the organismal level. We discuss the current status of mouse models of metastasis. We consider how mouse models can refine our understanding of the underlying biological and molecular processes that promote metastasis, and we envisage how the application of new technologies will further enhance investigations of metastasis at single-cell resolution in the context of the whole organism. Our view is that investigations based on state-of-the-art mouse models can propel a holistic understanding of the biology of metastasis, which will ultimately lead to the discovery of new therapeutic opportunities.
Collapse
Affiliation(s)
- Arianna Giacobbe
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cory Abate-Shen
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, 1130 Saint Nicholas Avenue, New York, NY10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, 1130 Saint Nicholas Avenue, New York, NY 10032, USA.
| |
Collapse
|
42
|
Clark AM, Allbritton NL, Wells A. Integrative microphysiological tissue systems of cancer metastasis to the liver. Semin Cancer Biol 2021; 71:157-169. [PMID: 32580025 PMCID: PMC7750290 DOI: 10.1016/j.semcancer.2020.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
The liver is the most commonly involved organ in metastases from a wide variety of solid tumors. The use of biologically and cellularly complex liver tissue systems have shown that tumor cell behavior and therapeutic responses are modulated within the liver microenvironment and in ways distinct from the behaviors in the primary locations. These microphysiological systems have provided unexpected and powerful insights into the tumor cell biology of metastasis. However, neither the tumor nor the liver exist in an isolated tissue situation, having to function within a complete body and respond to systemic events as well as those in other organs. To examine the influence of one organ on the function of other tissues, microphysiological systems are being linked. Herein, we discuss extending this concept to tumor metastases by integrating complex models of the primary tumor with the liver metastatic environment. In addition, inflammatory organs and the immune system can be incorporated into these multi-organ systems to probe the effects on tumor behavior and cancer treatments.
Collapse
Affiliation(s)
- Amanda M Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
43
|
Albuquerque C, Manguinhas R, Costa JG, Gil N, Codony-Servat J, Castro M, Miranda JP, Fernandes AS, Rosell R, Oliveira NG. A narrative review of the migration and invasion features of non-small cell lung cancer cells upon xenobiotic exposure: insights from in vitro studies. Transl Lung Cancer Res 2021; 10:2698-2714. [PMID: 34295671 PMCID: PMC8264350 DOI: 10.21037/tlcr-21-121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023]
Abstract
Lung cancer (LC) is the leading cause of cancer deaths worldwide, being non-small lung cancer (NSCLC) sub-types the most prevalent. Since most LC cases are only detected during the last stage of the disease the high mortality rate is strongly associated with metastases. For this reason, the migratory and invasive capacity of these cancer cells as well as the mechanisms involved have long been studied to uncover novel strategies to prevent metastases and improve the patients’ prognosis. This narrative review provides an overview of the main in vitro migration and invasion assays employed in NSCLC research. While several methods have been developed, experiments using conventional cell culture models prevailed, specifically the wound-healing and the transwell migration and invasion assays. Moreover, it is provided herewith a summary of the available information concerning chemical contaminants that may promote the migratory/invasive properties of NSCLC cells in vitro, shedding some light on possible LC risk factors. Most of the reported agents with pro-migration/invasion effects derive from cigarette smoking [e.g., Benzo(a)pyrene and cadmium] and air pollution. This review further presents several studies in which different dietary/plant-derived compounds demonstrated to impair migration/invasion processes in NSCLC cells in vitro. These chemicals that have been proposed as anti-migratory consisted mainly of natural bioactive substances, including polyphenols non-flavonoids, flavonoids, bibenzyls, terpenes, alkaloids, and steroids. Some of these compounds may eventually represent novel therapeutic strategies to be considered in the future to prevent metastasis formation in LC, which highlights the need for additional in vitro methodologies that more closely resemble the in vivo tumor microenvironment and cancer cell interactions. These studies along with adequate in vivo models should be further explored as proof of concept for the most promising compounds.
Collapse
Affiliation(s)
- Catarina Albuquerque
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Manguinhas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - João G Costa
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Nuno Gil
- Lung Cancer Unit, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Jordi Codony-Servat
- Laboratory of Oncology/Pangaea Oncology S.L., Quirón-Dexeus University Institute, Barcelona, Spain
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Joana P Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Rafael Rosell
- Laboratory of Oncology/Pangaea Oncology S.L., Quirón-Dexeus University Institute, Barcelona, Spain.,Laboratory of Cellular and Molecular Biology, Institute for Health Science Research Germans Trias i Pujol (IGTP), Campus Can Ruti, Barcelona, Spain.,Internal Medicine Department, Universitat Autónoma de Barcelona, Campus de la UAB, Barcelona, Spain
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
44
|
Chateau-Joubert S, Hopfe M, Richon S, Decaudin D, Roman-Roman S, Reyes-Gomez E, Bieche I, Nemati F, Dangles-Marie V. Spontaneous mouse lymphoma in patient-derived tumor xenografts: The importance of systematic analysis of xenografted human tumor tissues in preclinical efficacy trials. Transl Oncol 2021; 14:101133. [PMID: 34051622 PMCID: PMC8170170 DOI: 10.1016/j.tranon.2021.101133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 05/19/2021] [Indexed: 11/18/2022] Open
Abstract
Patient-derived tumor xenograft (PDX) is now largely recognized as a key preclinical model for cancer research, mimicking patient tumor phenotype and genotype. Immunodeficient mice, well-known to develop spontaneous lymphoma, are required for PDX growth. As for all animal models used for further clinical translation, a robust experimental design is strongly required to lead to conclusive results. Here we briefly report unintentional co-engraftment of mouse lymphoma during expansion of well-established PDXs to illustrate the importance of systematic check of the PDX identity to avoid misinterpretation. Besides, this quality control based on complementary approaches deserves a more detailed description in materials and methods section to ensure experimental validity and reproducibility.
Collapse
Affiliation(s)
- Sophie Chateau-Joubert
- Unité d'Histologie et d'Anatomie Pathologique, Ecole Nationale Vétérinaire d'Alfort, 94704 Maisons-Alfort, France; Laboratoire d'anatomo-cytopathologie, BioPôle Alfort, Ecole Nationale Vétérinaire d'Alfort, 94704 Maisons-Alfort, France
| | - Miriam Hopfe
- Biologics Testing Solutions, Charles River Biopharmaceutical Services GmbH, Max-Planck-Str. 15A, 40699 Erkrath, Germany
| | - Sophie Richon
- Laboratory of preclinical investigation, Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France; UMR 144, Institut Curie, PSL Research University, CNRS, Paris, France
| | - Didier Decaudin
- Laboratory of preclinical investigation, Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France; Department of Medical Oncology, Institut Curie, 75005 Paris, France
| | - Sergio Roman-Roman
- Laboratory of preclinical investigation, Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France; Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Edouard Reyes-Gomez
- Unité d'Histologie et d'Anatomie Pathologique, Ecole Nationale Vétérinaire d'Alfort, 94704 Maisons-Alfort, France; Laboratoire d'anatomo-cytopathologie, BioPôle Alfort, Ecole Nationale Vétérinaire d'Alfort, 94704 Maisons-Alfort, France; U955 - IMRB, Inserm, Ecole Nationale Vétérinaire d'Alfort, UPEC, Maisons-Alfort F-94700, France
| | - Ivan Bieche
- Department of Genetics, Pharmacogenomics Unit, Institut Curie, PSL Research University, Paris, France; Faculty of Pharmacy, Université Paris Descartes, Paris, France
| | - Fariba Nemati
- Laboratory of preclinical investigation, Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Virginie Dangles-Marie
- Laboratory of preclinical investigation, Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France; Faculty of Pharmacy, Université Paris Descartes, Paris, France; In vivo Experiment Platform, PSL Research University, 75005 Paris, France.
| |
Collapse
|
45
|
Yu X, Yustein JT, Xu J. Research models and mesenchymal/epithelial plasticity of osteosarcoma. Cell Biosci 2021; 11:94. [PMID: 34022967 PMCID: PMC8141200 DOI: 10.1186/s13578-021-00600-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Most osteosarcomas (OSs) develop from mesenchymal cells at the bone with abnormal growth in young patients. OS has an annual incidence of 3.4 per million people and a 60-70% 5-year surviving rate. About 20% of OS patients have metastasis at diagnosis, and only 27% of patients with metastatic OS survive longer than 5 years. Mutation of tumor suppressors RB1, TP53, REQL4 and INK4a and/or deregulation of PI3K/mTOR, TGFβ, RANKL/NF-κB and IGF pathways have been linked to OS development. However, the agents targeting these pathways have yielded disappointing clinical outcomes. Surgery and chemotherapy remain the main treatments of OS. Recurrent and metastatic OSs are commonly resistant to these therapies. Spontaneous canine models, carcinogen-induced rodent models, transgenic mouse models, human patient-derived xenograft models, and cell lines from animal and human OSs have been developed for studying the initiation, growth and progression of OS and testing candidate drugs of OS. The cell plasticity regulated by epithelial-to-mesenchymal transition transcription factors (EMT-TFs) such as TWIST1, SNAIL, SLUG, ZEB1 and ZEB2 plays an important role in maintenance of the mesenchymal status and promotion of cell invasion and metastasis of OS cells. Multiple microRNAs including miR-30/9/23b/29c/194/200, proteins including SYT-SSX1/2 fusion proteins and OVOL2, and other factors that inhibit AMF/PGI and LRP5 can suppress either the expression or activity of EMT-TFs to increase epithelial features and inhibit OS metastasis. Further understanding of the molecular mechanisms that regulate OS cell plasticity should provide potential targets and therapeutic strategies for improving OS treatment.
Collapse
Affiliation(s)
- Xiaobin Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jason T Yustein
- Department of Pediatrics, Texas Children's Cancer and Hematology Center, and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
46
|
Preclinical In Vivo Modeling of Pediatric Sarcoma-Promises and Limitations. J Clin Med 2021; 10:jcm10081578. [PMID: 33918045 PMCID: PMC8069549 DOI: 10.3390/jcm10081578] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Pediatric sarcomas are an extremely heterogeneous group of genetically distinct diseases. Despite the increasing knowledge on their molecular makeup in recent years, true therapeutic advancements are largely lacking and prognosis often remains dim, particularly for relapsed and metastasized patients. Since this is largely due to the lack of suitable model systems as a prerequisite to develop and assess novel therapeutics, we here review the available approaches to model sarcoma in vivo. We focused on genetically engineered and patient-derived mouse models, compared strengths and weaknesses, and finally explored possibilities and limitations to utilize these models to advance both biological understanding as well as clinical diagnosis and therapy.
Collapse
|
47
|
Ruiz-Espigares J, Nieto D, Moroni L, Jiménez G, Marchal JA. Evolution of Metastasis Study Models toward Metastasis-On-A-Chip: The Ultimate Model? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006009. [PMID: 33705602 DOI: 10.1002/smll.202006009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/05/2020] [Indexed: 06/12/2023]
Abstract
For decades, several attempts have been made to obtain a mimetic model for the study of metastasis, the reason of most of deaths caused by cancer, in order to solve the unknown phenomena surrounding this disease. To better understand this cellular dissemination process, more realistic models are needed that are capable of faithfully recreating the entire and essential tumor microenvironment (TME). Thus, new tools known as tumor-on-a-chip and metastasis-on-a-chip have been recently proposed. These tools incorporate microfluidic systems and small culture chambers where TME can be faithfully modeled thanks to 3D bioprinting. In this work, a literature review has been developed about the different phases of metastasis, the remaining unknowns and the use of new models to study this disease. The aim is to provide a global vision of the current panorama and the great potential that these systems have for in vitro translational research on the molecular basis of the pathology. In addition, these models will allow progress toward a personalized medicine, generating chips from patient samples that mimic the original tumor and the metastatic process to perform a precise pharmacological screening by establishing the most appropriate treatment protocol.
Collapse
Affiliation(s)
- Jesús Ruiz-Espigares
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, 18016, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, E-18071, Spain
| | - Daniel Nieto
- Photonics4life Research Group, Applied Physics Department, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, 15705, Spain
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229ER, The Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229ER, The Netherlands
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, 18016, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, E-18071, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, 18016, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, E-18071, Spain
| |
Collapse
|
48
|
Kim J, Jang J, Cho DW. Controlling Cancer Cell Behavior by Improving the Stiffness of Gastric Tissue-Decellularized ECM Bioink With Cellulose Nanoparticles. Front Bioeng Biotechnol 2021; 9:605819. [PMID: 33816446 PMCID: PMC8009980 DOI: 10.3389/fbioe.2021.605819] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
A physiologically relevant tumor microenvironment is favorable for the progression and growth of gastric cancer cells. To simulate the tumor-specific conditions of in vivo environments, several biomaterials engineering studies have investigated three-dimensional (3D) cultures. However, the implementation of such cultures remains limited because of challenges in outlining the biochemical and biophysical characteristics of the gastric cancer microenvironment. In this study, we developed a 3D cell printing-based gastric cancer model, using a combination of gastric tissue-specific bioinks and cellulose nanoparticles (CN) to provide adequate stiffness to gastric cancer cells. To create a 3D gastric tissue-specific microenvironment, we developed a decellularization process for a gastric tissue-derived decellularized extracellular matrix (g-dECM) bioink, and investigated the effect of the g-dECM bioink on promoting the aggressiveness of gastric cancer cells using histological and genetic validation methods. We found that incorporating CN in the matrix improves its mechanical properties, which supports the progression of gastric cancer. These mechanical properties are distinguishing characteristics that can facilitate the development of an in vitro gastric cancer model. Further, the CN-supplemented g-dECM bioink was used to print a variety of free-standing 3D shapes, including gastric rugae. These results indicate that the proposed model can be used to develop a physiologically relevant gastric cancer system that can be used in future preclinical trials.
Collapse
Affiliation(s)
- Jisoo Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Jinah Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, South Korea
- Institute of Convergence Science, Yonsei University, Seoul, South Korea
| | - Dong-Woo Cho
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
- Institute of Convergence Science, Yonsei University, Seoul, South Korea
| |
Collapse
|
49
|
Tan PY, Teng KT. Role of dietary fat on obesity-related postmenopausal breast cancer: insights from mouse models and methodological considerations. Breast Cancer 2021; 28:556-571. [PMID: 33687609 DOI: 10.1007/s12282-021-01233-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/23/2021] [Indexed: 01/02/2023]
Abstract
The increasing incidence rate of breast cancer in the last few decades is known to be linked to the upward trend of obesity prevalence worldwide. The consumption of high-fat diet in particular has been correlated with postmenopausal breast cancer risk. The underlying mechanisms, using suitable and reliable experimental mouse model, however, is lacking. The current review aims to discuss the evidence available from mouse models on the effects of dietary fats intake on postmenopausal breast cancer. We will further discuss the biochemical mechanisms involved in the occurrence of postmenopausal breast cancer. In addition, the methodological considerations and their limitations in obesity-related postmenopausal breast cancer, such as choice of mouse models and breast cancer cell lines as well as the study duration will be reviewed. The current review will provide a platform for further development of new xenograft models which may offer the opportunity to investigate the mechanisms of postmenopausal breast cancer in a greater detail.
Collapse
Affiliation(s)
- Pei Yee Tan
- Division of Product Development and Advisory Services, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Kim Tiu Teng
- Division of Product Development and Advisory Services, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
50
|
Herrero de la Parte B, González-Arribas M, Diaz-Sanz I, Palomares T, García-Alonso I. Partial hepatectomy enhances the growth of CC531 rat colorectal cancer cells both in vitro and in vivo. Sci Rep 2021; 11:5356. [PMID: 33686132 PMCID: PMC7970880 DOI: 10.1038/s41598-021-85082-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Partial hepatectomy (PHx) is the gold standard for the treatment of colorectal cancer liver metastases. However, after removing a substantial amount of hepatic tissue, growth factors are released to induce liver regeneration, which may promote the proliferation of liver micrometastases or circulating tumour cells still present in the patient. The aim of this study is to assess the effect of PHx on the growth of liver metastases induced by intrasplenic cell inoculation as well as on in vitro proliferation of the same cancer cell line. Liver tumours were induced in 18 WAG/RijHsd male rats, by seeding 250,000 syngeneic colorectal cancer cells (CC531) into the spleen. The left lateral lobe of the liver was mobilized and in half of the animals it was removed to achieve a 40% hepatectomy. Twenty-eight days after tumour induction, the animals were sacrificed and the liver was removed and sliced to assess the relative tumour surface area (RTSA%). CC531 cells were cultured in presence of foetal calf serum, non-hepatectomised (NRS) or hepatectomized rat serum (HRS), and their proliferation rate at 24, 48, and 72 h was measured. RTSA% was significantly higher in animals which had undergone PHx than in the controls (non-hepatectomised) (46.98 ± 8.76% vs. 18.73 ± 5.65%; p < 0.05). Analysing each lobe separately, this difference in favour of hepatectomized animals was relevant and statistically significant in the paramedian and caudate lobes. But in the right lobe the difference was scarce and not significant. In vitro, 2.5% HRS achieved stronger proliferative rates than the control cultures (10% FCS) or their equivalent of NRS. In this experimental model, a parallelism has been shown between the effect of PHx on the growth of colorectal cancer cells in the liver and the effect of the serum on those cells in vitro.
Collapse
Affiliation(s)
- Borja Herrero de la Parte
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain. .,Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain.
| | - Mikel González-Arribas
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain
| | - Iñaki Diaz-Sanz
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain
| | - Teodoro Palomares
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain
| | - Ignacio García-Alonso
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain.,Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain
| |
Collapse
|