1
|
Grigor’eva EV, Karapetyan LV, Malakhova AA, Medvedev SP, Minina JM, Hayrapetyan VH, Vardanyan VS, Zakian SM, Arakelyan A, Zakharyan R. Generation of iPSCs from a Patient with the M694V Mutation in the MEFV Gene Associated with Familial Mediterranean Fever and Their Differentiation into Macrophages. Int J Mol Sci 2024; 25:6102. [PMID: 38892289 PMCID: PMC11173119 DOI: 10.3390/ijms25116102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Familial Mediterranean fever (FMF) is a systemic autoinflammatory disorder caused by inherited mutations in the MEFV (Mediterranean FeVer) gene, located on chromosome 16 (16p13.3) and encoding the pyrin protein. Despite the existing data on MEFV mutations, the exact mechanism of their effect on the development of the pathological processes leading to the spontaneous and recurrent autoinflammatory attacks observed in FMF, remains unclear. Induced pluripotent stem cells (iPSCs) are considered an important tool to study the molecular genetic mechanisms of various diseases due to their ability to differentiate into any cell type, including macrophages, which contribute to the development of FMF. In this study, we developed iPSCs from an Armenian patient with FMF carrying the M694V, p.(Met694Val) (c.2080A>G, rs61752717) pathogenic mutation in exon 10 of the MEFV gene. As a result of direct differentiation, macrophages expressing CD14 and CD45 surface markers were obtained. We found that the morphology of macrophages derived from iPSCs of a patient with the MEFV mutation significantly differed from that of macrophages derived from iPSCs of a healthy donor carrying the wild-type MEFV gene.
Collapse
Affiliation(s)
- Elena V. Grigor’eva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.G.); (A.A.M.); (S.P.M.); (J.M.M.); (S.M.Z.)
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Lana V. Karapetyan
- Department of Bioengineering, Bioinformatics, and Molecular Biology, Institute of Biomedicine and Pharmacy, Russian-Armenian (Slavonic) University, Yerevan 0051, Armenia; (L.V.K.); (V.H.H.); (A.A.)
| | - Anastasia A. Malakhova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.G.); (A.A.M.); (S.P.M.); (J.M.M.); (S.M.Z.)
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Sergey P. Medvedev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.G.); (A.A.M.); (S.P.M.); (J.M.M.); (S.M.Z.)
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Julia M. Minina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.G.); (A.A.M.); (S.P.M.); (J.M.M.); (S.M.Z.)
| | - Varduhi H. Hayrapetyan
- Department of Bioengineering, Bioinformatics, and Molecular Biology, Institute of Biomedicine and Pharmacy, Russian-Armenian (Slavonic) University, Yerevan 0051, Armenia; (L.V.K.); (V.H.H.); (A.A.)
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia
| | - Valentina S. Vardanyan
- Department of Rheumatology, Yerevan State Medical University after Mkhitar Heratsi (YSMU), Yerevan 0025, Armenia;
- Department of Rheumatology, “Mikaelyan” Institute of Surgery, Yerevan 0052, Armenia
| | - Suren M. Zakian
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.G.); (A.A.M.); (S.P.M.); (J.M.M.); (S.M.Z.)
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Arsen Arakelyan
- Department of Bioengineering, Bioinformatics, and Molecular Biology, Institute of Biomedicine and Pharmacy, Russian-Armenian (Slavonic) University, Yerevan 0051, Armenia; (L.V.K.); (V.H.H.); (A.A.)
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia
| | - Roksana Zakharyan
- Department of Bioengineering, Bioinformatics, and Molecular Biology, Institute of Biomedicine and Pharmacy, Russian-Armenian (Slavonic) University, Yerevan 0051, Armenia; (L.V.K.); (V.H.H.); (A.A.)
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia
| |
Collapse
|
2
|
Demeter JB, Elshaarrawi A, Dowker‐Key PD, Bettaieb A. The emerging role of
PKM
in keratinocyte homeostasis and pathophysiology. FEBS J 2022; 290:2311-2319. [PMID: 36541050 DOI: 10.1111/febs.16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Increased aerobic glycolysis in keratinocytes has been reported as a hallmark of skin diseases while its pharmacological inhibition restores keratinocyte homeostasis. Pyruvate kinase muscle (PKM) isoforms are key enzymes in the glycolytic pathway and, therefore, an attractive therapeutic target. Simon Nold and colleagues used CRISPR/Cas9-mediated gene editing to investigate the outcomes of PKM splicing perturbations and specific PKM1 or PKM2 deficiency in human HaCaT keratinocytes. Collectively, the study demonstrated different effects of PKM1 or PKM2 depletion on the reciprocal PKM isoform and on keratinocyte gene expression, metabolism and proliferation. Findings from this study provide novel insights into the role of PKM in keratinocyte homeostasis, warranting additional investigations into the underlying molecular mechanisms and potential therapeutic applications.
Collapse
Affiliation(s)
- Jenna B. Demeter
- Department of Nutrition The University of Tennessee Knoxville TN USA
| | - Ahmed Elshaarrawi
- Graduate School of Genome Science and Technology The University of Tennessee Knoxville TN USA
| | | | - Ahmed Bettaieb
- Department of Nutrition The University of Tennessee Knoxville TN USA
- Graduate School of Genome Science and Technology The University of Tennessee Knoxville TN USA
- Department of Biochemistry & Cellular and Molecular Biology The University of Tennessee Knoxville TN USA
| |
Collapse
|
3
|
Periasamy J, Kurdekar V, Jasti S, Nijaguna MB, Boggaram S, Hurakadli MA, Raina D, Kurup LM, Chintha C, Manjunath K, Goyal A, Sadasivam G, Bharatham K, Padigaru M, Potluri V, Venkitaraman AR. Targeting Phosphopeptide Recognition by the Human BRCA1 Tandem BRCT Domain to Interrupt BRCA1-Dependent Signaling. Cell Chem Biol 2018; 25:677-690.e12. [PMID: 29606576 PMCID: PMC6015222 DOI: 10.1016/j.chembiol.2018.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/24/2017] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Intracellular signals triggered by DNA breakage flow through proteins containing BRCT (BRCA1 C-terminal) domains. This family, comprising 23 conserved phosphopeptide-binding modules in man, is inaccessible to small-molecule chemical inhibitors. Here, we develop Bractoppin, a drug-like inhibitor of phosphopeptide recognition by the human BRCA1 tandem (t)BRCT domain, which selectively inhibits substrate binding with nanomolar potency in vitro. Structure-activity exploration suggests that Bractoppin engages BRCA1 tBRCT residues recognizing pSer in the consensus motif, pSer-Pro-Thr-Phe, plus an abutting hydrophobic pocket that is distinct in structurally related BRCT domains, conferring selectivity. In cells, Bractoppin inhibits substrate recognition detected by Förster resonance energy transfer, and diminishes BRCA1 recruitment to DNA breaks, in turn suppressing damage-induced G2 arrest and assembly of the recombinase, RAD51. But damage-induced MDC1 recruitment, single-stranded DNA (ssDNA) generation, and TOPBP1 recruitment remain unaffected. Thus, an inhibitor of phosphopeptide recognition selectively interrupts BRCA1 tBRCT-dependent signals evoked by DNA damage. Bractoppin selectively blocks phosphopeptide recognition by the BRCA1 tBRCT domain Bractoppin engages tBRCT residues recognizing pSer, plus an adjacent pocket Bractoppin interrupts BRCA1 tBRCT-dependent cellular signals evoked by DNA damage This work opens avenues to inhibit intracellular signaling by the tBRCT domain family
Collapse
Affiliation(s)
- Jayaprakash Periasamy
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Vadiraj Kurdekar
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Subbarao Jasti
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Mamatha B Nijaguna
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Sanjana Boggaram
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Manjunath A Hurakadli
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Dhruv Raina
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Lokavya Meenakshi Kurup
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Chetan Chintha
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Kavyashree Manjunath
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Aneesh Goyal
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Gayathri Sadasivam
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Kavitha Bharatham
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Muralidhara Padigaru
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Vijay Potluri
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Ashok R Venkitaraman
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India; Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK.
| |
Collapse
|
4
|
Fernandez-Martell A, Johari YB, James DC. Metabolic phenotyping of CHO cells varying in cellular biomass accumulation and maintenance during fed-batch culture. Biotechnol Bioeng 2017; 115:645-660. [DOI: 10.1002/bit.26485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
Affiliation(s)
| | - Yusuf B. Johari
- Department of Chemical and Biological Engineering; University of Sheffield; Mappin St. Sheffield UK
| | - David C. James
- Department of Chemical and Biological Engineering; University of Sheffield; Mappin St. Sheffield UK
| |
Collapse
|
5
|
Capo-chichi CD, Aguida B, Chabi NW, Cai QK, Offrin G, Agossou VK, Sanni A, Xu XX. Lamin A/C deficiency is an independent risk factor for cervical cancer. Cell Oncol (Dordr) 2015; 39:59-68. [PMID: 26537870 DOI: 10.1007/s13402-015-0252-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND In the past, cervical cancer has been linked to Human Papilloma Virus (HPV) infection. Previously, we found that pre-neoplastic breast and ovarian lesions may be associated with lamin A/C deficiency, resulting in abnormal nuclear morphologies and chromosomal instability. Ultimately, these phenomena are thought to lead to cancer. Here, we assessed lamin A/C deficiency as an indicator for the risk to develop cervical cancer. METHODS The expression of lamin A/C was assessed by Western blotting in cervical uterine smears (CUS) of 76 adult women from Benin concomitant with nuclear morphology assessment and HPV genotyping using microscopy and PCR-based assays, respectively. In vitro analyses were performed to uncover the mechanism underlying lamin A/C expression alterations observed in vivo. The presence of cervical intra-epithelial neoplasia (CIN) was assessed by colposcopy. RESULTS Normal lamin A/C expression (group A) was observed in 39% of the CUS, weak lamin A/C expression (group B) was observed in 28% of the CUS and no lamin A/C expression (group C) was observed in 33% of the CUS tested. Infection with oncogenic HPV was found to be significantly higher in group C (36%) than in groups A (17%) and B (14%). Two years after our first assessment, CIN was observed in 20% of the women in group C. The in vitro application of either a histone deacetylase inhibitor (trichostatin) or a protein kinase inhibitor (staurosporine) was found to restore lamin A/C expression in cervical cancer-derived cells. CONCLUSION Lamin A/C deficiency may serve as an independent risk factor for CIN development and as an indicator for preventive therapy in cervical cancer.
Collapse
Affiliation(s)
- Callinice D Capo-chichi
- Faculty of Sciences and Technology (FAST)/Institute of Biomedical Sciences and Applications (ISBA), University of Abomey-Calavi (UAC), Abomey Calavi, Benin. .,National University Hospital (CNHU), Cotonou, BENIN. .,Unit of Biochemistry and Molecular Biology (UBBM), Section of Molecular Biomarkers in Cancer and Nutrition (BMCN), Faculty of Sciences and Technology (FAST), Institute of Biomedical Sciences and Applications (ISBA), University Abomey-Calavi (UAC), 04BP488, Cotonou, Benin.
| | - Blanche Aguida
- Faculty of Sciences and Technology (FAST)/Institute of Biomedical Sciences and Applications (ISBA), University of Abomey-Calavi (UAC), Abomey Calavi, Benin.
| | - Nicodème W Chabi
- Faculty of Sciences and Technology (FAST)/Institute of Biomedical Sciences and Applications (ISBA), University of Abomey-Calavi (UAC), Abomey Calavi, Benin.
| | - Qi K Cai
- Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| | | | | | - Ambaliou Sanni
- Faculty of Sciences and Technology (FAST)/Institute of Biomedical Sciences and Applications (ISBA), University of Abomey-Calavi (UAC), Abomey Calavi, Benin.
| | - Xiang-Xi Xu
- Sylvester Cancer Center/Miller Medical School of Medicine, University of Miami, Coral Gables, FL, USA.
| |
Collapse
|
6
|
Liang-Chu MMY, Yu M, Haverty PM, Koeman J, Ziegle J, Lee M, Bourgon R, Neve RM. Human biosample authentication using the high-throughput, cost-effective SNPtrace(TM) system. PLoS One 2015; 10:e0116218. [PMID: 25714623 PMCID: PMC4340925 DOI: 10.1371/journal.pone.0116218] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/05/2014] [Indexed: 12/15/2022] Open
Abstract
Cell lines are the foundation for much of the fundamental research into the mechanisms underlying normal biologic processes and disease mechanisms. It is estimated that 15%-35% of human cell lines are misidentified or contaminated, resulting in a huge waste of resources and publication of false or misleading data. Here we evaluate a panel of 96 single-nucleotide polymorphism (SNP) assays utilizing Fluidigm microfluidics technology for authentication and sex determination of human cell lines. The SNPtrace Panel was tested on 907 human cell lines. Pairwise comparison of these data show the SNPtrace Panel discriminated among identical, related and unrelated pairs of samples with a high degree of confidence, equivalent to short tandem repeat (STR) profiling. We also compared annotated sex calls with those determined by the SNPtrace Panel, STR and Illumina SNP arrays, revealing a high number of male samples are identified as female due to loss of the Y chromosome. Finally we assessed the sensitivity of the SNPtrace Panel to detect intra-human cross-contamination, resulting in detection of as little as 2% contaminating cell population. In conclusion, this study has generated a database of SNP fingerprints for 907 cell lines used in biomedical research and provides a reliable, fast, and economic alternative to STR profiling which can be applied to any human cell line or tissue sample.
Collapse
Affiliation(s)
- May M. Y. Liang-Chu
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Mamie Yu
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Peter M. Haverty
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julie Koeman
- Van Andel Research Institute, Cytogenetics, Grand Rapids, MI 49503, United States of America
| | - Janet Ziegle
- Fluidigm Corporation, 7000 Shoreline Court, Suite 100, South San Francisco, CA 94080, United States of America
| | - Marie Lee
- Fluidigm Corporation, 7000 Shoreline Court, Suite 100, South San Francisco, CA 94080, United States of America
| | - Richard Bourgon
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Richard M. Neve
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| |
Collapse
|
7
|
Alternative lengthening of telomeres: recurrent cytogenetic aberrations and chromosome stability under extreme telomere dysfunction. Neoplasia 2014; 15:1301-13. [PMID: 24339742 DOI: 10.1593/neo.131574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 12/23/2022] Open
Abstract
Human tumors using the alternative lengthening of telomeres (ALT) exert high rates of telomere dysfunction. Numerical chromosomal aberrations are very frequent, and structural rearrangements are widely scattered among the genome. This challenging context allows the study of telomere dysfunction-driven chromosomal instability in neoplasia (CIN) in a massive scale. We used molecular cytogenetics to achieve detailed karyotyping in 10 human ALT neoplastic cell lines. We identified 518 clonal recombinant chromosomes affected by 649 structural rearrangements. While all human chromosomes were involved in random or clonal, terminal, or pericentromeric rearrangements and were capable to undergo telomere healing at broken ends, a differential recombinatorial propensity of specific genomic regions was noted. We show that ALT cells undergo epigenetic modifications rendering polycentric chromosomes functionally monocentric, and because of increased terminal recombinogenicity, they generate clonal recombinant chromosomes with interstitial telomeric repeats. Losses of chromosomes 13, X, and 22, gains of 2, 3, 5, and 20, and translocation/deletion events involving several common chromosomal fragile sites (CFSs) were recurrent. Long-term reconstitution of telomerase activity in ALT cells reduced significantly the rates of random ongoing telomeric and pericentromeric CIN. However, the contribution of CFS in overall CIN remained unaffected, suggesting that in ALT cells whole-genome replication stress is not suppressed by telomerase activation. Our results provide novel insights into ALT-driven CIN, unveiling in parallel specific genomic sites that may harbor genes critical for ALT cancerous cell growth.
Collapse
|
8
|
Je EM, Yoo NJ, Lee SH. Mutational and expressional analysis of SMC2 gene in gastric and colorectal cancers with microsatellite instability. APMIS 2014; 122:499-504. [PMID: 24483990 DOI: 10.1111/apm.12193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/05/2013] [Indexed: 12/21/2022]
Abstract
Structural maintenance of chromosomes 2 (SMC2) gene encodes condensin complexes that are required for proper chromosome segregation and maintenance of chromosomal stability. Although cells with defective chromosome segregation become aneuploid and are prone to harbor chromosome instability, pathologic implications of SMC2 gene alterations are largely unknown. In a public database, we found that SMC2 gene had mononucleotide repeats that could be mutated in cancers with microsatellite instability (MSI). In this study, we analyzed these repeats in 32 gastric cancers (GC) with high MSI (MSI-H), 59 GC with low MSI (MSI-L)/stable MSI (MSS), 43 colorectal cancers (CRC) with MSI-H and 60 CRC with MSI-L/MSS by single-strand conformation polymorphism (SSCP) and DNA sequencing. We also analyzed SMC2 protein expression in GC and CRC tissues using immunohistochemistry. We found SMC2 frameshift mutations in two GC and two CRC that would result in truncation of SMC2. The mutations were detected exclusively in MSI-H cancers, but not in MSI-L/MSS cancers. Loss of SMC2 expression was observed in 22% of GC and 25% of CRC. Of note, all of the cancers with SMC2 frameshift mutations displayed loss of SMC2 expression. Also, both GC and CRC with MSI-H had significantly higher incidences in SMC2 frameshift mutations and loss of SMC2 expression than those with MSI-L/MSS. Our data indicate that SMC2 gene is altered by both frameshift mutation and loss of expression in GC and CRC with MSI-H, and suggest that SMC2 gene alterations might be involved in pathogenesis of these cancers.
Collapse
Affiliation(s)
- Eun Mi Je
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | |
Collapse
|
9
|
The roles of telomerase in the generation of polyploidy during neoplastic cell growth. Neoplasia 2013; 15:156-68. [PMID: 23441130 DOI: 10.1593/neo.121398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 01/20/2023] Open
Abstract
Polyploidy contributes to extensive intratumor genomic heterogeneity that characterizes advanced malignancies and is thought to limit the efficiency of current cancer therapies. It has been shown that telomere deprotection in p53-deficient mouse embryonic fibroblasts leads to high rates of polyploidization. We now show that tumor genome evolution through whole-genome duplication occurs in ∼15% of the karyotyped human neoplasms and correlates with disease progression. In a panel of human cancer and transformed cell lines representing the two known types of genomic instability (chromosomal and microsatellite), as well as the two known pathways of telomere maintenance in cancer (telomerase activity and alternative lengthening of telomeres), telomere dysfunction-driven polyploidization occurred independently of the mutational status of p53. Depending on the preexisting context of telomere maintenance, telomerase activity and its major components, human telomerase reverse transcriptase (hTERT) and human telomerase RNA component (hTERC), exert both reverse transcriptase-related (canonical) and noncanonical functions to affect tumor genome evolution through suppression or induction of polyploidization. These new findings provide a more complete mechanistic understanding of cancer progression that may, in the future, lead to novel therapeutic interventions.
Collapse
|
10
|
de Groote ML, Kazemier HG, Huisman C, van der Gun BT, Faas MM, Rots MG. Upregulation of endogenous ICAM-1 reduces ovarian cancer cell growth in the absence of immune cells. Int J Cancer 2013; 134:280-90. [DOI: 10.1002/ijc.28375] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/25/2013] [Accepted: 06/12/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Marloes L. de Groote
- Epigenetic Editing; Department of Pathology and Medical Biology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| | - Hinke G. Kazemier
- Epigenetic Editing; Department of Pathology and Medical Biology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| | - Christian Huisman
- Epigenetic Editing; Department of Pathology and Medical Biology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| | - Bernardina T.F. van der Gun
- Epigenetic Editing; Department of Pathology and Medical Biology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| | - Marijke M. Faas
- Immunoendocrinology; Department of Pathology and Medical Biology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| | - Marianne G. Rots
- Epigenetic Editing; Department of Pathology and Medical Biology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| |
Collapse
|
11
|
Sutiaková I, Kovalkovičová N, Sutiak V. Chromosomal aberrations in ovine lymphocytes exposed in vitro to tolylfluanid. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2012; 47:1-6. [PMID: 22022782 DOI: 10.1080/03601234.2012.601939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chromosomal aberrations have been used as important cytogenetic biomarkers to study the mutagenic effects of different chemicals in vivo and in vitro. Chromosomal aberrations were evaluated in cultures of sheep lymphocytes in vitro exposed to the fungicide tolylfluanid. Lymphocyte cultures from three donors were exposed to four different concentrations of fungicide (1.10(-4) M(.)L; 1.10(-5) M(.)L; 1.10(-6) M(.)L; 1 × 10(-7) M(.)L). Chromosomal analysis showed a significant (P = 0.018 and 0.038 respectively, Anova test, P < 0.05, Tukey test) increase in the frequency of aberrant cells (ABC) in cultures treated with the highest negative experimental concentrations of tolylfluanid (1.10(-4) M(.)L; 1.10(-5) M(.)L) compared to control. Significantly increased numbers of chromatid breaks (7.67 ± 0.58% against 1.67 ± 2.08%, P = 0.009, Anova test, P < 0.05, Tukey test) and chromatid gaps (7.67 ± 1.15% against 2.67 ± 0.58%, P = 0.003, Anova test, P < 0.05, Tukey test) were observed in ovine cultures treated with the highest experimental concentration of tolylfluanid (1.10(-4) M(.)L). Tolylfluanid induced also chromosomal exchanges (P = 0.038, and 0.016 respectively, Anova test, P < 0.05, Tukey test) in ovine cultures treated with the highest experimental concentrations of tolylfluanid (1.10(-4) M(.)L; 1.10(-5) M(.)L). The mitotic index has not shown any statistical differences between the various treatments and control groups. Our results suggest a significant genotoxic effect of tolylfluanid only at the highest concentration in sheep peripheral lymphocytes in vitro.
Collapse
|
12
|
Kim MS, An CH, Kim SS, Yoo NJ, Lee SH. Frameshift mutations of poly(adenosine diphosphate-ribose) polymerase genes in gastric and colorectal cancers with microsatellite instability. Hum Pathol 2011; 42:1289-96. [DOI: 10.1016/j.humpath.2010.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 11/18/2010] [Accepted: 11/19/2010] [Indexed: 12/25/2022]
|
13
|
Bayani J, Marrano P, Graham C, Zheng Y, Li L, Katsaros D, Lassus H, Butzow R, Squire JA, Diamandis EP. Genomic instability and copy-number heterogeneity of chromosome 19q, including the kallikrein locus, in ovarian carcinomas. Mol Oncol 2011; 5:48-60. [PMID: 20800559 PMCID: PMC3110681 DOI: 10.1016/j.molonc.2010.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 12/28/2022] Open
Abstract
Many tissue kallikrein (KLK) genes and proteins are candidate diagnostic, prognostic and predictive biomarkers for ovarian cancer (OCa). We previously demonstrated that the KLK locus (19q13.3/4) is subject to copy-number gains and structural rearrangements in a pilot study of cell lines and ovarian cancer primary tissues, shown to overexpress KLK gene family members. To determine the overall frequency of genomic instability and copy-number changes, a retrospective study was conducted using formalin-fixed paraffin embedded (FFPE) tissues. Eighty-one chemotherapy naïve serous OCas were examined using 3-colour fluorescence in situ hybridization (FISH) to identify structural and numerical changes on 19q, including the KLK locus; in addition to immunohistochemistry (IHC) for KLK6, which has been shown to be overexpressed in OCa. The KLK locus was subject to copy-number changes in ∼83% of cases: net gain in 51%, net loss in 30% and amplified in 2%; and found to be chromosomally unstable (p < 0.001). All cases showed a wide range of immuoreactivity for KLK6 by IHC. Although no strong correlation could be found with copy-number, the latter was contributing factor to the observed KLK6 protein overexpression. Moreover, univariate and multivariate analyses showed an association between the net loss of the KLK locus and longer disease-free survival. Interestingly, FISH analyses indicated that chromosome 19q was subjected to structural rearrangement in 62% of cases and was significantly correlated to tumor grade (p < 0.001). We conclude that numerical and structural aberrations of chromosome 19q, affect genes including the KLK gene members, may contribute to ovarian carcinoma progression and aggressiveness.
Collapse
Affiliation(s)
- Jane Bayani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, 6th Floor, Room 6-201, Box 32, 60 Murray Street, Toronto, Ontario M5T 3L9, Canada
| | - Paula Marrano
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, 555 University Ave., 3rd Floor, Toronto, Ontario M5G 1X8, Canada
| | - Cassandra Graham
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, 555 University Ave., 3rd Floor, Toronto, Ontario M5G 1X8, Canada
| | - Yingye Zheng
- Department of Biostatistics & Bioinfomatics, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, PO Box 19024, Seattle, WA 98109 1024, USA
| | - Lin Li
- Department of Biostatistics & Bioinfomatics, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, PO Box 19024, Seattle, WA 98109 1024, USA
| | - Dionyssios Katsaros
- Department of Obstetrics and Gynecology, University of Turin, via Ventimiglia 3, 10126 Torino, Italy
| | - Heini Lassus
- Department of Pathology, University of Helsinki, Research Laboratory, Haartmaninkatu 8 FIN-00029 HUS Helsinki, Finland
| | - Ralf Butzow
- Department of Pathology, University of Helsinki, Research Laboratory, Haartmaninkatu 8 FIN-00029 HUS Helsinki, Finland
| | - Jeremy A. Squire
- Department of Laboratory Medicine and Pathobiology, Queen's University, Kingston General Hospital, Translational Laboratory Research, NCIC Clinical Trials Group, Room 201e, 88 Stuart St Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Eleftherios P. Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, 6th Floor, Room 6-201, Box 32, 60 Murray Street, Toronto, Ontario M5T 3L9, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Kim YR, Song SY, Kim SS, An CH, Lee SH, Yoo NJ. Mutational and expressional analysis of RFC3, a clamp loader in DNA replication, in gastric and colorectal cancers. Hum Pathol 2010; 41:1431-7. [DOI: 10.1016/j.humpath.2010.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/22/2010] [Accepted: 03/31/2010] [Indexed: 11/30/2022]
|
15
|
Chung WC, Jung SH, Lee KM, Paik CN, Kwak JW, Jung JH, Yoo JY, Lee MK, Chung IS. Genetic instability in gastric epithelial neoplasias categorized by the revised vienna classification. Gut Liver 2010; 4:179-85. [PMID: 20559519 DOI: 10.5009/gnl.2010.4.2.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 07/27/2009] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND/AIMS The aim of this study was to determine the structural chromosomal aberrations, such as loss of heterozygosity (LOH) and microsatellite instability (MSI), at multiple tumor suppressor gene loci in gastric epithelial neoplasia categorized by the revised Vienna classification. METHODS All tissue samples were excised by endoscopic mucosal resection. Sixty category 3 (low-grade adenoma) tissue samples and 51 category 4 samples (high-grade adenoma and intramucosal carcinoma with adenoma) were examined at the 7 sets of microsatellite loci linked to the tumor suppressor gene locus. RESULTS For category 3 and 4 tissue samples, there were no differences in the frequencies of LOH-positive chromosomes or the extent of chromosomal loss. The Helicobacter-pylori (H. pylori)-positive rate was significantly higher in MSI-positive category 4 samples than in category 3 samples (p=0.04). The frequency of MSI positivity was significantly higher in category 4 samples than in category 3 samples (p=0.003). CONCLUSIONS H. pylori infection is associated with genetic instability of the premalignant lesion. MSI occurs in the early stages of gastric carcinogenesis and its occurrence increases during malignant transformation. Detection of MSI in premalignant gastric lesions may be a surveillant of risk of malignant transformation.
Collapse
Affiliation(s)
- Woo Chul Chung
- Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, College of Medicine, Suwon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lee SH, Kim YR, Yoo NJ, Lee SH. Mutation and Expression of DNA2Gene in Gastric and Colorectal Carcinomas. KOREAN JOURNAL OF PATHOLOGY 2010. [DOI: 10.4132/koreanjpathol.2010.44.4.354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Sung Hak Lee
- Department of Hospital Pathology, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Yoo Ri Kim
- Department of Pathology, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Nam Jin Yoo
- Department of Pathology, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Sug Hyung Lee
- Department of Pathology, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Ahn CH, Kim YR, Kim SS, Yoo NJ, Lee SH. Mutational analysis of TTK gene in gastric and colorectal cancers with microsatellite instability. Cancer Res Treat 2009; 41:224-8. [PMID: 20057968 DOI: 10.4143/crt.2009.41.4.224] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 07/29/2009] [Indexed: 12/26/2022] Open
Abstract
PURPOSE The TTK gene plays a crucial role in regulation of the mitotic checkpoint. The TTK gene has an A9 mononucleotide repeat in the coding sequences, which harbors mutations in gastric (GC) and colorectal cancers (CRC) with microsatellite instability (MSI). However, there are three more repeats (the A7s) in the coding sequences that have not been analyzed. The aim of this study was to explore whether the three A7s as well as the A9 are altered in GC and CRC, and to find any association of TTK mutation with clinocopathologic characteristics of GC and CRC. MATERIALS AND METHODS We analyzed exon 5 (A7 and A7) and exon 22 (A9 and A7) which have repeat sequences in 30 GC with high MSI (MSI-H), 15 GC with low MSI (MSI-L), 35 CRC with MSI-H, and 15 CRC with MSI-L, by single-strand conformation polymorphism (SSCP) and DNA sequencing assays. RESULTS Overall, we detected 23 frameshift mutations in the repeat sequences of TTK in the GC with MSI-H (11/30; 36.7%) and the CRC with MSI-H (12/35; 34.3%), but not in the cancers with MSI-L. The mutations were observed in both A9 and A7 of exon 22, but in neither of the two A7s of exon 5. The mutations consisted of c.2560delA, c.2560dupA, c.2571delA and c.[2560delA(+)2571delA]. All of the mutations were frameshift mutations and would result in premature stops of TTK protein synthesis. There was no significant difference in clinopathologic parameters of the cancers with the mutations. CONCLUSION Our data indicate that frameshift mutations of TTK are common in both GC and CRC with MSI-H, and that the mutations occur not only in the A9 repeat but also in the A7 repeat. The data suggest that frameshift mutations of TTK might alter cell cycle control in the affected cells and contribute to pathogenesis of cancers with MSI-H.
Collapse
Affiliation(s)
- Chang Hyeok Ahn
- Department of General Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | |
Collapse
|
18
|
Lee JH, Choi IJ, Song DK, Kim DK. Genetic instability in the human lymphocyte exposed to hypoxia. ACTA ACUST UNITED AC 2009; 196:83-8. [PMID: 19963140 DOI: 10.1016/j.cancergencyto.2009.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 09/07/2009] [Indexed: 02/02/2023]
Abstract
Hypoxia, one of the key tumor microenviromental factors, promotes genetic instability, which is the hallmark of human cancers. Many recent studies have demonstrated that hypoxia by itself can lead to conditions that elevate mutagenesis and inhibit the DNA repair process in cancer. The aim of this study was to investigate the cytogenetic damage and DNA repair functions in human peripheral lymphocytes exposed to hypoxia by means of sister chromatid exchange and nuclear and mitochondrial microsatellite instability (nMSI and mtMSI), respectively. Primary lymphocyte cultures obtained from blood samples of 40 healthy donors were exposed to hypoxia for 12 and 24 hours. Genomic DNA was then isolated from the fixed lymphocytes to analyze the DNA repair process by nMSI and mtMSI. The present results revealed gradual increases in SCE for both exposure times, compared to the controls, but there was no significant correlation between hypoxia and MSI. The SCE assay showed that hypoxia by itself may induce mutagenesis by causing DNA damage in normal cells. However, the DNA repair function through MSI analysis was intact.
Collapse
Affiliation(s)
- Jae-Ho Lee
- Department of Anatomy, Keimyung University School of Medicine, 194 Dongsan-dong, Jung-gu, Daegu, 700-712, South Korea
| | | | | | | |
Collapse
|
19
|
Specific pathways prevent duplication-mediated genome rearrangements. Nature 2009; 460:984-9. [PMID: 19641493 PMCID: PMC2785216 DOI: 10.1038/nature08217] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 06/16/2009] [Indexed: 11/15/2022]
Abstract
We have investigated the ability of different regions of the left arm of Saccharomyces cerevisiae chromosome V to participate in the formation of gross chromosomal rearrangements (GCRs). We found that the 4.2 kb HXT13 DSF1 region sharing divergent homology with chromosomes IV, X, and XIV, similar to mammalian segmental duplications, was “at-risk” for participating in duplication-mediated GCRs generated by homologous recombination. Numerous genes and pathways, including SGS1, TOP3, RMI1, SRS2, RAD6, SLX1, SLX4, SLX5, MSH2, MSH6, RAD10 and the DNA replication stress checkpoint requiring MRC1 and TOF1 were highly specific for suppressing these GCRs compared to GCRs mediated by single copy sequences. These results indicate that the mechanisms for formation and suppression of rearrangements occurring in regions containing “at risk” sequences differ from those occurring in regions of single copy sequence. This explains how extensive genome instability is prevented in eukaryotic cells whose genomes contain numerous divergent repeated sequences.
Collapse
|
20
|
Lee YK, Choi E, Kim MA, Park PG, Park NH, Lee H. BubR1 as a prognostic marker for recurrence-free survival rates in epithelial ovarian cancers. Br J Cancer 2009; 101:504-10. [PMID: 19603021 PMCID: PMC2720250 DOI: 10.1038/sj.bjc.6605161] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Epithelial ovarian cancer is one of the most lethal malignancies, and has a high recurrence rate. Thus, prognostic markers for recurrence are crucial for the care of ovarian cancer. As ovarian cancers frequently exhibit chromosome instability, we aimed at assessing the prognostic significance of two key mitotic kinases, BubR1 and Aurora A. METHODS We analysed paraffin-embedded tissue sections from 160 ovarian cancer patients whose clinical outcomes had been tracked after first-line treatment. RESULTS The median recurrence-free survival in patients with a positive and negative expression of BubR1 was 27 and 83 months, respectively (P<0.001). A positive BubR1 expression was also associated with advanced stage, serous histology and high grade. In contrast, Aurora A immunostaining did not correlate with any of the clinical parameters analysed. CONCLUSION BubR1, but not Aurora A, is a prognostic marker for recurrence-free survival rates in epithelial ovarian cancers.
Collapse
Affiliation(s)
- Y-K Lee
- Department of Biological Sciences and Research Center for Functional Cellulomics, College of Natural Science, Seoul National University, San 56-1, Shinlim-dong, Gwanak-ku, Seoul 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
21
|
Specific synthetic lethal killing of RAD54B-deficient human colorectal cancer cells by FEN1 silencing. Proc Natl Acad Sci U S A 2009; 106:3276-81. [PMID: 19218431 DOI: 10.1073/pnas.0813414106] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mutations that cause chromosome instability (CIN) in cancer cells produce "sublethal" deficiencies in an essential process (chromosome segregation) and, therefore, may represent a major untapped resource that could be exploited for therapeutic benefit in the treatment of cancer. If second-site unlinked genes can be identified, that when knocked down, cause a synthetic lethal (SL) phenotype in combination with a somatic mutation in a CIN gene, novel candidate therapeutic targets will be identified. To test this idea, we took a cross species SL candidate gene approach by recapitulating a SL interaction observed between rad54 and rad27 mutations in yeast, via knockdown of the highly sequence- and functionally-related proteins RAD54B and FEN1 in a cancer cell line. We show that knockdown of RAD54B, a gene known to be somatically mutated in cancer, causes CIN in mammalian cells. Using high-content microscopy techniques, we demonstrate that RAD54B-deficient human colorectal cancer cells are sensitive to SL killing by reduced FEN1 expression, while isogenic RAD54B proficient cells are not. This conserved SL interaction suggests that extrapolating SL interactions observed in model organisms for homologous genes mutated in human cancers will aid in the identification of novel therapeutic targets for specific killing of cancerous cells exhibiting CIN.
Collapse
|
22
|
Li L, McCormack AA, Nicholson JM, Fabarius A, Hehlmann R, Sachs RK, Duesberg PH. Cancer-causing karyotypes: chromosomal equilibria between destabilizing aneuploidy and stabilizing selection for oncogenic function. ACTA ACUST UNITED AC 2009; 188:1-25. [PMID: 19061776 DOI: 10.1016/j.cancergencyto.2008.08.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 08/05/2008] [Indexed: 01/10/2023]
Abstract
The chromosomes of cancer cells are unstable, because of aneuploidy. Despite chromosomal instability, however, cancer karyotypes are individual and quasi-stable, as is evident especially from clonal chromosome copy numbers and marker chromosomes. This paradox would be resolved if the karyotypes in cancers represent chromosomal equilibria between destabilizing aneuploidy and stabilizing selection for oncogenic function. To test this hypothesis, we analyzed the initial and long-term karyotypes of seven clones of newly transformed human epithelial, mammary, and muscle cells. Approximately 1 in 100,000 such cells generates transformed clones at 2-3 months after introduction of retrovirus-activated cellular genes or the tumor virus SV40. These frequencies are too low for direct transformation, so we postulated that virus-activated genes initiate transformation indirectly, via specific karyotypes. Using multicolor fluorescence in situ hybridization with chromosome-specific DNA probes, we found individual clonal karyotypes that were stable for at least 34 cell generations-within limits, as follows. Depending on the karyotype, average clonal chromosome numbers were stable within +/- 3%, and chromosome-specific copy numbers were stable in 70-100% cells. At any one time, however, relative to clonal means, per-cell chromosome numbers varied +/-18% and chromosome-specific copy numbers varied +/-1 in 0-30% of cells; unstable nonclonal markers were found within karyotype-specific quotas of <1% to 20% of the total chromosome number. For two clones, karyotypic ploidies also varied. With these rates of variation, the karyotypes of transformed clones would randomize in a few generations unless selection occurs. We conclude that individual aneuploid karyotypes initiate and maintain cancers, much like new species. These cancer-causing karyotypes are in flexible equilibrium between destabilizing aneuploidy and stabilizing selection for transforming function. Karyotypes as a whole, rather than specific mutations, explain the individuality, fluidity, and phenotypic complexity of cancers.
Collapse
Affiliation(s)
- Lin Li
- Department of Molecular and Cell Biology, Donner Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Goo YA, Liu AY, Ryu S, Shaffer SA, Malmström L, Page L, Nguyen LT, Doneanu CE, Goodlett DR. Identification of secreted glycoproteins of human prostate and bladder stromal cells by comparative quantitative proteomics. Prostate 2009; 69:49-61. [PMID: 18792917 PMCID: PMC4281891 DOI: 10.1002/pros.20853] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Functional development of the prostate is governed by stromal mesenchyme induction and epithelial response. Stromal/epithelial signaling can be mediated through direct cell-cell contact and diffusible factors and their cell surface receptors. These inducers are likely secreted or membrane-associated extracellular proteins. Given the importance of intercellular communication, it is possible that diseases like cancer could arise from a loss of this communication. One approach to gain a molecular understanding of stromal cells is to identify, as a first step, secreted stromal signaling factors. We proposed to do this by comparative analysis between bladder and prostate. METHODS Secreted proteins were identified from cultured normal prostate and bladder stromal mesenchyme cells by glycopeptide-capture method followed by mass spectrometry. Differences in protein abundance between prostate and bladder were quantified from calculated peptide ion current area (PICA) followed by Western validation. Functional and pathway analyses of the proteins were carried out by Gene Ontology (GO) and Teranode software. RESULTS This analysis produced a list of 116 prostate and 84 bladder secreted glycoproteins with ProteinProphet probability scores > or =0.9. Stromal proteins upregulated in the prostate include cathepsin L, follistatin-related protein, neuroendocrine convertase, tumor necrosis factor receptor, and others that are known to be involved in signal transduction, extracellular matrix interaction, differentiation and transport. CONCLUSIONS We have identified a number of potential proteins for stromal signaling and bladder or prostate differentiation program. The prostate stromal/epithelial signaling may be accomplished through activation of the ECM-receptor interaction, complement and coagulation cascades, focal adhesion and cell adhesion pathways.
Collapse
Affiliation(s)
- Young Ah Goo
- Urology (Box 356510), University of Washington, Seattle, WA 98195
- Medicinal Chemistry (Box 357610), University of Washington, Seattle, WA 98195
- Institute for Systems Biology, 1441 N. 34 St. Seattle, WA, 98103
- Corresponding Authors: University of Washington, Medicinal Chemistry, Box 357610, Seattle, WA 98195-7610, USA, Tel: 206-616-4586, Fax: 206-685-3252, ,
| | - Alvin Y. Liu
- Urology (Box 356510), University of Washington, Seattle, WA 98195
- Institute for Systems Biology, 1441 N. 34 St. Seattle, WA, 98103
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195
| | - Soyoung Ryu
- Medicinal Chemistry (Box 357610), University of Washington, Seattle, WA 98195
| | - Scott A. Shaffer
- Medicinal Chemistry (Box 357610), University of Washington, Seattle, WA 98195
| | - Lars Malmström
- Medicinal Chemistry (Box 357610), University of Washington, Seattle, WA 98195
| | - Laura Page
- Urology (Box 356510), University of Washington, Seattle, WA 98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195
| | - Liem T. Nguyen
- Medicinal Chemistry (Box 357610), University of Washington, Seattle, WA 98195
| | | | - David R. Goodlett
- Medicinal Chemistry (Box 357610), University of Washington, Seattle, WA 98195
- Institute for Systems Biology, 1441 N. 34 St. Seattle, WA, 98103
- Corresponding Authors: University of Washington, Medicinal Chemistry, Box 357610, Seattle, WA 98195-7610, USA, Tel: 206-616-4586, Fax: 206-685-3252, ,
| |
Collapse
|
24
|
Payne CM, Bernstein C, Dvorak K, Bernstein H. Hydrophobic bile acids, genomic instability, Darwinian selection, and colon carcinogenesis. Clin Exp Gastroenterol 2008; 1:19-47. [PMID: 21677822 PMCID: PMC3108627 DOI: 10.2147/ceg.s4343] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sporadic colon cancer is caused predominantly by dietary factors. We have selected bile acids as a focus of this review since high levels of hydrophobic bile acids accompany a Western-style diet, and play a key role in colon carcinogenesis. We describe how bile acid-induced stresses cause cell death in susceptible cells, contribute to genomic instability in surviving cells, impose Darwinian selection on survivors and enhance initiation and progression to colon cancer. The most likely major mechanisms by which hydrophobic bile acids induce stresses on cells (DNA damage, endoplasmic reticulum stress, mitochondrial damage) are described. Persistent exposure of colon epithelial cells to hydrophobic bile acids can result in the activation of pro-survival stress-response pathways, and the modulation of numerous genes/proteins associated with chromosome maintenance and mitosis. The multiple mechanisms by which hydrophobic bile acids contribute to genomic instability are discussed, and include oxidative DNA damage, p53 and other mutations, micronuclei formation and aneuploidy. Since bile acids and oxidative stress decrease DNA repair proteins, an increase in DNA damage and increased genomic instability through this mechanism is also described. This review provides a mechanistic explanation for the important link between a Western-style diet and associated increased levels of colon cancer.
Collapse
Affiliation(s)
- Claire M Payne
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | | | | | | |
Collapse
|
25
|
Distinct patterns of structural and numerical chromosomal instability characterize sporadic ovarian cancer. Neoplasia 2008; 10:1057-65. [PMID: 18813350 DOI: 10.1593/neo.08584] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/02/2008] [Accepted: 07/04/2008] [Indexed: 12/27/2022] Open
Abstract
Sporadic ovarian cancer is a particularly aggressive tumor characterized by highly abnormal karyotypes exhibiting many features of genomic instability. More complex genomic changes in tumors arise as a consequence of chromosomal instability (CIN), which can generate both numerical [(N)-CIN] and structural chromosomal instability [(S)-CIN]. In this study, molecular cytogenetic analysis was used to evaluate the relative levels of both (N)-CIN and (S)-CIN. Six tumors had a near-diploid chromosome number, two were near-tetraploid, and two were near-triploid. (N)-CIN levels increased as a function of overall tumor genomic content, with near-diploid tumors exhibiting numerical instability indices ranging from 7.0 to 21.0 and near-tetraploid and triploid tumors exhibiting instability indices ranging from 24.9 to 54.9. In contrast, the extent of (S)-CIN was generally more evident in the diploid tumors compared with the near-tetraploid tumors. To determine whether the associated chromosomal constitution and/or ploidy changes were influenced by mitotic segregation errors, centrosome analyses were performed on all 10 tumors. The near-diploid tumors, with the lowest numerical change, were observed to possess fewer cells with centrosome abnormalities (5.5% to 14.0%), whereas the near-tetraploid tumors possessed much higher levels of (N)-CIN and were characterized by a trend of elevating percentages of cells with abnormal centrosomes (16.0% to 20.5%). These observations suggest that two distinct processes governing genome stability may be disrupted in ovarian cancer: those that impact on numerical segregation and ploidy of chromosomes and those that affect the fidelity of DNA repair and lead to structural aberrations.
Collapse
|
26
|
Sadikovic B, Al-Romaih K, Squire J, Zielenska M. Cause and consequences of genetic and epigenetic alterations in human cancer. Curr Genomics 2008; 9:394-408. [PMID: 19506729 PMCID: PMC2691666 DOI: 10.2174/138920208785699580] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/06/2008] [Accepted: 05/08/2008] [Indexed: 12/16/2022] Open
Abstract
Both genetic and epigenetic changes contribute to development of human cancer. Oncogenomics has primarily focused on understanding the genetic basis of neoplasia, with less emphasis being placed on the role of epigenetics in tumourigenesis. Genomic alterations in cancer vary between the different types and stages, tissues and individuals. Moreover, genomic change ranges from single nucleotide mutations to gross chromosomal aneuploidy; which may or may not be associated with underlying genomic instability. Collectively, genomic alterations result in widespread deregulation of gene expression profiles and the disruption of signalling networks that control proliferation and cellular functions. In addition to changes in DNA and chromosomes, it has become evident that oncogenomic processes can be profoundly influenced by epigenetic mechanisms. DNA methylation is one of the key epigenetic factors involved in regulation of gene expression and genomic stability, and is biologically necessary for the maintenance of many cellular functions. While there has been considerable progress in understanding the impact of genetic and epigenetic mechanisms in tumourigenesis, there has been little consideration of the importance of the interplay between these two processes. In this review we summarize current understanding of the role of genetic and epigenetic alterations in human cancer. In addition we consider the associated interactions of genetic and epigenetic processes in tumour onset and progression. Furthermore, we provide a model of tumourigenesis that addresses the combined impact of both epigenetic and genetic alterations in cancer cells.
Collapse
Affiliation(s)
- B Sadikovic
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada
- The Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada
| | - K Al-Romaih
- The Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada
| | - J.A Squire
- The Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada
| | - M Zielenska
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
27
|
O'Brien C, Cavet G, Pandita A, Hu X, Haydu L, Mohan S, Toy K, Rivers CS, Modrusan Z, Amler LC, Lackner MR. Functional genomics identifies ABCC3 as a mediator of taxane resistance in HER2-amplified breast cancer. Cancer Res 2008; 68:5380-9. [PMID: 18593940 DOI: 10.1158/0008-5472.can-08-0234] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast cancer is a heterogeneous disease with distinct molecular subtypes characterized by differential response to targeted and chemotherapeutic agents. Enhanced understanding of the genetic alterations characteristic of different subtypes is needed to pave the way for more personalized administration of therapeutic agents. We have taken a functional genomics approach using a well-characterized panel of breast cancer cell lines to identify putative biomarkers of resistance to antimitotic agents such as paclitaxel and monomethyl-auristatin-E (MMAE). In vitro studies revealed a striking difference in sensitivity to these agents between cell lines from different subtypes, with basal-like cell lines being significantly more sensitive to both agents than luminal or HER2-amplified cell lines. Genome-wide association studies using copy number data from Affymetrix single nucleotide polymorphism arrays identified amplification of the chromosome 17q21 region as being highly associated with resistance to both paclitaxel and MMAE. An unbiased approach consisting of RNA interference and high content analysis was used to show that amplification and concomitant overexpression of the gene encoding the ABCC3 drug transporter is responsible for conferring in vitro resistance to paclitaxel and MMAE. We also show that amplification of ABCC3 is present in primary breast tumors and that it occurs predominantly in HER2-amplified and luminal tumors, and we report on development of a specific fluorescence in situ hybridization assay that may have utility as a predictive biomarker of taxane resistance in breast cancer.
Collapse
Affiliation(s)
- Carol O'Brien
- Department of Oncology, Genentech, Inc, South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bentivegna S, Zheng J, Namsaraev E, Carlton VEH, Pavlicek A, Moorhead M, Siddiqui F, Wang Z, Lee L, Ireland JS, Suyenaga K, Willis TD, Faham M, Seymour AB. Rapid identification of somatic mutations in colorectal and breast cancer tissues using mismatch repair detection (MRD). Hum Mutat 2008; 29:441-50. [PMID: 18186519 DOI: 10.1002/humu.20672] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mismatch repair detection (MRD) was used to screen 93 matched tumor-normal sample pairs and 22 cell lines for somatic mutations in 30 cancer relevant genes. Using a starting amount of only 150 ng of genomic DNA, we screened 102 kb of sequence for somatic mutations in colon and breast cancer. A total of 152 somatic mutations were discovered, encompassing previously reported mutations, such as BRAF V600E and KRAS G12S, G12V, and G13D, as well as novel mutations, including some in genes in which somatic mutations have not previously been reported, such as MAP2K1 and MAP2K2. The distribution of mutations ranged widely within and across tumor types. The functional significance of many of these mutations is not understood, with patterns of selection only evident in KRAS and BRAF in colon cancer. These results present a novel approach to high-throughput mutation screening using small amounts of starting material and reveal a mutation spectrum across 30 genes in a large cohort of breast and colorectal cancers.
Collapse
Affiliation(s)
- Steven Bentivegna
- Molecular Profiling-Pharmacogenomics, Pfizer Global Research and Development, Groton Laboratories, Groton, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rodriguez J, Frigola J, Vendrell E, Risques RA, Fraga MF, Morales C, Moreno V, Esteller M, Capellà G, Ribas M, Peinado MA. Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res 2007; 66:8462-9468. [PMID: 16951157 DOI: 10.1158/0008-5472.can-06-0293] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA hypomethylation is a common trait of colorectal cancer. Studies in tumor cell lines and animal models indicate that genome-wide demethylation may cause genetic instability and hence facilitate or accelerate tumor progression. Recent studies have shown that DNA hypomethylation precedes genomic damage in human gastrointestinal cancer, but the nature of this damage has not been clearly established. Here, we show a thorough analysis of DNA methylation and genetic alterations in two series of colorectal carcinomas. The extent of DNA demethylation but not of hypermethylation (both analyzed by amplification of intermethylated sites in near 200 independent sequences arbitrarily selected) correlated with the cumulated genomic damage assessed by two different techniques (arbitrarily primed PCR and comparative genomic hybridization). DNA hypomethylation-related instability was mainly of chromosomal nature and could be explained by a genome-wide effect rather than by the concurrence of the most prevalent genetic and epigenetic alterations. Moreover, the association of p53 mutations with genomic instability was secondary to DNA hypomethylation and the correlation between DNA hypomethylation and genomic instability was observed in tumors with and without mutation in the p53 gene. Our data support a direct link between genome-wide demethylation and chromosomal instability in human colorectal carcinogenesis and are consistent with the studies in model systems demonstrating a role of DNA demethylation in inducing chromosomal instability.
Collapse
Affiliation(s)
- Jairo Rodriguez
- Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bayani J, Selvarajah S, Maire G, Vukovic B, Al-Romaih K, Zielenska M, Squire JA. Genomic mechanisms and measurement of structural and numerical instability in cancer cells. Semin Cancer Biol 2006; 17:5-18. [PMID: 17126026 DOI: 10.1016/j.semcancer.2006.10.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Accepted: 10/17/2006] [Indexed: 12/15/2022]
Abstract
The progression to cancer is often associated with instability and the acquisition of genomic heterogeneity, generating both clonal and non-clonal populations. Chromosomal instability (CIN) describes the excessive rate of numerical and structural genomic change in tumors. Mitotic segregation errors strongly influences copy number, while structural aberrations can occur at unstable genomic regions, or through aberrant DNA repair or methylation. Combined molecular cytogenetic analyses can evaluate cell-to-cell variation, and define the complexity of numerical and structural alterations. Because structural change may occur independently of numerical alteration, we propose the term structural chromosomal instability [(S)-CIN] to distinguish numerical from structural CIN.
Collapse
Affiliation(s)
- Jane Bayani
- Division of Applied Molecular Oncology, Princess Margaret Hospital, University Health Network, 610 University Avenue, Room 9-717, Toronto, Ontario, Canada M5G 2M9.
| | | | | | | | | | | | | |
Collapse
|
31
|
Kobayashi C, Oda Y, Takahira T, Izumi T, Kawaguchi K, Yamamoto H, Tamiya S, Yamada T, Oda S, Tanaka K, Matsuda S, Iwamoto Y, Tsuneyoshi M. Chromosomal aberrations and microsatellite instability of malignant peripheral nerve sheath tumors: a study of 10 tumors from nine patients. ACTA ACUST UNITED AC 2006; 165:98-105. [PMID: 16527603 DOI: 10.1016/j.cancergencyto.2005.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 07/01/2005] [Accepted: 07/06/2005] [Indexed: 10/24/2022]
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is an uncommon soft tissue neoplasm with a poor prognosis, occurring sporadically or associated with neurofibromatosis type 1 (NF1); however, the histogenesis of MPNST remains unclear, especially in sporadic tumors. There are two major forms of genomic instability in human cancer: chromosomal instability (CIN) and microsatellite instability (MSI). An inverse relationship has recently been demonstrated between CIN and MSI in colorectal cancers. CIN and MSI are suggested to be individual pathways, which are involved in the pathogenesis and which may lead to specific clinical and pathological characteristics. To elucidate the chromosomal aberration as a consequence of CIN and MSI status of MPNST, we karyotyped 10 MPNSTs from nine patients, and examined the MSI of seven microsatellite markers using high-resolution fluorescence microsatellite analysis; 2 out of 10 cases (20%) had normal karyotypes, and 8 out of 10 cases (80%) revealed structural and numerical chromosomal aberrations. Three of the 10 cases (30%) showed near triploidy. The most frequent aberration was -22 (40%), followed by +2, +14, -13, -17, and -18 (30% each). An MSI-low status was observed in 30% of cases; the remaining cases showed microsatellite stability. These findings suggest that chromosomal aberration as a consequence of CIN has a greater role in the pathogenesis of MPNST than does that due to MSI.
Collapse
Affiliation(s)
- Chikashi Kobayashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Masramon L, Vendrell E, Tarafa G, Capellà G, Miró R, Ribas M, Peinado MA. Genetic instability and divergence of clonal populations in colon cancer cells in vitro. J Cell Sci 2006; 119:1477-82. [PMID: 16551697 DOI: 10.1242/jcs.02871] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The accumulation of multiple chromosomal abnormalities is a characteristic of the majority of colorectal cancers and has been attributed to an underlying chromosomal instability. Genetic instability is considered to have a key role in the generation of genetic and phenotypic heterogeneity in cancer cells. To shed light on the dynamics of chromosomal instability in colon cancer cells, we have analyzed genetic divergence in clonal and subclonal derivates of chromosomally unstable (SW480) and stable (HCT116, LoVo) cell lines. Conventional G-banding karyotyping and arbitrarily primed PCR (AP-PCR) fingerprinting were used to calculate genetic distances among clones and parental cells, and to trace tree-type phylogenies among individual cells and clonal cell populations. SW480 cells showed enhanced karyotypic heterogeneity in clones as compared with parental cells. Moreover, genetic clonal divergence was also increased after two consecutive episodes of single-cell cloning, demonstrating that the homogeneity induced by the bottleneck of cloning is disrupted by genetic instability during clonal expansion and, as a consequence, heterogeneity is restored. These results demonstrate genetic drift in clonal populations originated from isolated cells. The generated cell heterogeneity coupled with selection provides the grounds for the reported feasibility of pre-neoplastic and neoplastic cells to generate new phenotypic variants with increased evolutionary potential.
Collapse
Affiliation(s)
- Laia Masramon
- IDIBELL-Institut de Recerca Oncològica, L'Hospitalet, 08907 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Syed V, Zhang X, Lau KM, Cheng R, Mukherjee K, Ho SM. Profiling estrogen-regulated gene expression changes in normal and malignant human ovarian surface epithelial cells. Oncogene 2005; 24:8128-43. [PMID: 16116479 DOI: 10.1038/sj.onc.1208959] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Estrogens regulate normal ovarian surface epithelium (OSE) cell functions but also affect epithelial ovarian cancer (OCa) development. Little is known about how estrogens play such opposing roles. Transcriptional profiling using a cDNA microarray containing 2400 named genes identified 155 genes whose expression was altered by estradiol-17beta (E2) in three immortalized normal human ovarian surface epithelial (HOSE) cell lines and 315 genes whose expression was affected by the hormone in three established OCa (OVCA) cell lines. All but 19 of the genes in these two sets were different. Among the 19 overlapping genes, five were found to show discordant responses between HOSE and OVCA cell lines. The five genes are those that encode clone 5.1 RNA-binding protein (RNPS1), erythrocyte adducin alpha subunit (ADD1), plexin A3 (PLXNA3 or the SEX gene), nuclear protein SkiP (SKIIP), and Rap-2 (rap-2). RNPS1, ADD1, rap-2, and SKIIP were upregulated by E2 in HOSE cells but downregulated by estrogen in OVCA cells, whereas PLXNA3 showed the reverse pattern of regulation. The estrogen effects was observed within 6-18 h of treatment. In silicon analyses revealed presence of estrogen response elements in the proximal promoters of all five genes. RNPS1, ADD1, and PLXNA3 were underexpressed in OVCA cell lines compared to HOSE cell lines, while the opposite was true for rap-2 and SKIIP. Functional studies showed that RNPS1 and ADD1 exerted multiple antitumor actions in OVCA cells, while PLXNA3 only inhibited cell invasiveness. In contrast, rap-2 was found to cause significant oncogenic effects in OVCA cells, while SKIIP promotes only anchorage-independent growth. In sum, gene profiling data reveal that (1) E2 exerts different actions on HOSE cells than on OVCA cells by affecting two distinct transcriptomes with few overlapping genes and (2) among the overlapping genes, a set of putative oncogenes/tumor suppressors have been identified due to their differential responses to E2 between the two cell types. These findings may explain the paradoxical roles of estrogens in regulating normal and malignant OSE cell functions.
Collapse
Affiliation(s)
- Viqar Syed
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|