1
|
Shi L, Song L, Maurer K, Dou Y, Patel VR, Su C, Leonard ME, Lu S, Hodge KM, Torres A, Chesi A, Grant SFA, Wells AD, Zhang Z, Petri MA, Sullivan KE. IL-1 Transcriptional Responses to Lipopolysaccharides Are Regulated by a Complex of RNA Binding Proteins. THE JOURNAL OF IMMUNOLOGY 2020; 204:1334-1344. [PMID: 31953354 DOI: 10.4049/jimmunol.1900650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/05/2019] [Indexed: 01/02/2023]
Abstract
The IL1A and IL1B genes lie in close proximity on chromosome 2 near the gene for their natural inhibitor, IL1RN Despite diverse functions, they are all three inducible through TLR4 signaling but with distinct kinetics. This study analyzed transcriptional induction kinetics, chromosome looping, and enhancer RNA production to understand the distinct regulation of these three genes in human cells. IL1A, IL1B, and IL1RN were rapidly induced after stimulation with LPS; however, IL1B mRNA production was less inhibitable by iBET151, suggesting it does not use pause-release regulation. Surprisingly, chromatin looping contacts between IL1A and IL1B were highly intermingled, although those of IL1RN were distinct, and we focused on comparing IL1A and IL1B transcriptional pathways. Our studies demonstrated that enhancer RNAs were produced from a subset of the regulatory regions, that they were critical for production of the mRNAs, and that they bound a diverse array of RNA binding proteins, including p300 but not CBP. We, furthermore, demonstrated that recruitment of p300 was dependent on MAPKs. Integrator is another RNA binding protein recruited to the promoters and enhancers, and its recruitment was more dependent on NF-κB than MAPKs. We found that integrator and NELF, an RNA polymerase II pausing protein, were associated with RNA in a manner that facilitated interaction. We conclude that IL1A and IL1B share many regulatory contacts, signaling pathways, and interactions with enhancer RNAs. A complex of protein interactions with enhancer RNAs emphasize the role of enhancer RNAs and the overall structural aspects of transcriptional regulation.
Collapse
Affiliation(s)
- Lihua Shi
- Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Li Song
- Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Kelly Maurer
- Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Ying Dou
- Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Vishesh R Patel
- Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Chun Su
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Michelle E Leonard
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Sumei Lu
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Kenyaita M Hodge
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Annabel Torres
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, 19104.,Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, 19104.,Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104; and
| | - Michelle A Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104;
| |
Collapse
|
2
|
Burks H, Pashos N, Martin E, Mclachlan J, Bunnell B, Burow M. Endocrine disruptors and the tumor microenvironment: A new paradigm in breast cancer biology. Mol Cell Endocrinol 2017; 457:13-19. [PMID: 28012841 DOI: 10.1016/j.mce.2016.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/09/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022]
Abstract
Breast cancer is one of the most frequently diagnosed malignancies in women and is characterized by predominantly estrogen dependent growth. Endocrine disruptors (EDCs) have estrogenic properties which have been shown to increase breast cancer risk. While the direct effects of EDCs on breast cancer cell biology and tumor progression have been well studied, the roles for EDCs on tumor microenvironment composition, signaling and structure are incompletely defined. Estrogen targeting of tumor stromal cells can drive paracrine signaling to breast cancer cells regulating tumorigenesis and progression. Additionally, estrogen and estrogen receptor signaling has been shown to alter breast architecture and extracellular matrix component synthesis. Unsurprisingly, EDCs have been shown to induce structural changes in the mammary gland as well as increased collagen fibers in the tissue stroma. Previous work demonstrates that human mesenchymal stem cells (hMSC) are essential components of the tumor microenvironment and are direct targets of both estrogens and EDCs. Furthermore, estrogen-stem cell cross talk has been implicated in breast cancer progression and results in increased tumor cell proliferation, angiogenesis and invasion. This review aims to dissect the possible relationship and mechanisms between EDCs, the tumor microenvironment, and breast cancer progression.
Collapse
Affiliation(s)
- Hope Burks
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nicholas Pashos
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Elizabeth Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - John Mclachlan
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bruce Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Matthew Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
3
|
Fluoxetine induces apoptosis through endoplasmic reticulum stress via mitogen-activated protein kinase activation and histone hyperacetylation in SK-N-BE(2)-M17 human neuroblastoma cells. Apoptosis 2017. [DOI: 10.1007/s10495-017-1390-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Strong AL, Miller DFB, Buechlein AM, Fang F, Glowacki J, McLachlan JA, Nephew KP, Burow ME, Bunnell BA. Bisphenol A alters the self-renewal and differentiation capacity of human bone-marrow-derived mesenchymal stem cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/23273747.2016.1200344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Wang S, Dougherty EJ, Danner RL. PPARγ signaling and emerging opportunities for improved therapeutics. Pharmacol Res 2016; 111:76-85. [PMID: 27268145 DOI: 10.1016/j.phrs.2016.02.028] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 01/23/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear receptor that regulates glucose and lipid metabolism, endothelial function and inflammation. Rosiglitazone (RGZ) and other thiazolidinedione (TZD) synthetic ligands of PPARγ are insulin sensitizers that have been used for the treatment of type 2 diabetes. However, undesirable side effects including weight gain, fluid retention, bone loss, congestive heart failure, and a possible increased risk of myocardial infarction and bladder cancer, have limited the use of TZDs. Therefore, there is a need to better understand PPARγ signaling and to develop safer and more effective PPARγ-directed therapeutics. In addition to PPARγ itself, many PPARγ ligands including TZDs bind to and activate G protein-coupled receptor 40 (GPR40), also known as free fatty acid receptor 1. GPR40 signaling activates stress kinase pathways that ultimately regulate downstream PPARγ responses. Recent studies in human endothelial cells have demonstrated that RGZ activation of GPR40 is essential to the optimal propagation of PPARγ genomic signaling. RGZ/GPR40/p38 MAPK signaling induces and activates PPARγ co-activator-1α, and recruits E1A binding protein p300 to the promoters of target genes, markedly enhancing PPARγ-dependent transcription. Therefore in endothelium, GPR40 and PPARγ function as an integrated signaling pathway. However, GPR40 can also activate ERK1/2, a proinflammatory kinase that directly phosphorylates and inactivates PPARγ. Thus the role of GPR40 in PPARγ signaling may have important implications for drug development. Ligands that strongly activate PPARγ, but do not bind to or activate GPR40 may be safer than currently approved PPARγ agonists. Alternatively, biased GPR40 agonists might be sought that activate both p38 MAPK and PPARγ, but not ERK1/2, avoiding its harmful effects on PPARγ signaling, insulin resistance and inflammation. Such next generation drugs might be useful in treating not only type 2 diabetes, but also diverse chronic and acute forms of vascular inflammation such as atherosclerosis and septic shock.
Collapse
Affiliation(s)
- Shuibang Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Edward J Dougherty
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert L Danner
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Wang S, Awad KS, Elinoff JM, Dougherty EJ, Ferreyra GA, Wang JY, Cai R, Sun J, Ptasinska A, Danner RL. G Protein-coupled Receptor 40 (GPR40) and Peroxisome Proliferator-activated Receptor γ (PPARγ): AN INTEGRATED TWO-RECEPTOR SIGNALING PATHWAY. J Biol Chem 2015; 290:19544-57. [PMID: 26105050 DOI: 10.1074/jbc.m115.638924] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Indexed: 12/18/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) ligands have been widely used to treat type 2 diabetes mellitus. However, knowledge of PPARγ signaling remains incomplete. In addition to PPARγ, these drugs also activate G protein-coupled receptor 40 (GPR40), a Gαq-coupled free fatty acid receptor linked to MAPK networks and glucose homeostasis. Notably, p38 MAPK activation has been implicated in PPARγ signaling. Here, rosiglitazone (RGZ) activation of GPR40 and p38 MAPK was found to boost PPARγ-induced gene transcription in human endothelium. Inhibition or knockdown of p38 MAPK or expression of a dominant negative (DN) p38 MAPK mutant blunted RGZ-induced PPARγ DNA binding and reporter activity in EA.hy926 human endothelial cells. GPR40 inhibition or knockdown, or expression of a DN-Gαq mutant likewise blocked activation of both p38 MAPK and PPARγ reporters. Importantly, RGZ induction of PPARγ target genes in primary human pulmonary artery endothelial cells (PAECs) was suppressed by knockdown of either p38 MAPK or GPR40. GPR40/PPARγ signal transduction was dependent on p38 MAPK activation and induction of PPARγ co-activator-1 (PGC1α). Silencing of p38 MAPK or GPR40 abolished the ability of RGZ to induce phosphorylation and expression of PGC1α in PAECs. Knockdown of PGC1α, its essential activator SIRT1, or its binding partner/co-activator EP300 inhibited RGZ induction of PPARγ-regulated genes in PAECs. RGZ/GPR40/p38 MAPK signaling also led to EP300 phosphorylation, an event that enhances PPARγ target gene transcription. Thus, GPR40 and PPARγ can function as an integrated two-receptor signal transduction pathway, a finding with implications for rational drug development.
Collapse
Affiliation(s)
- Shuibang Wang
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Keytam S Awad
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Jason M Elinoff
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Edward J Dougherty
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Gabriela A Ferreyra
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Jennifer Y Wang
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Rongman Cai
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Junfeng Sun
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Anetta Ptasinska
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Robert L Danner
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
7
|
Bratton MR, Martin EC, Elliott S, Rhodes LV, Collins-Burow BM, McLachlan JA, Wiese TE, Boue SM, Burow ME. Glyceollin, a novel regulator of mTOR/p70S6 in estrogen receptor positive breast cancer. J Steroid Biochem Mol Biol 2015; 150:17-23. [PMID: 25771071 PMCID: PMC4424142 DOI: 10.1016/j.jsbmb.2014.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 12/22/2014] [Accepted: 12/29/2014] [Indexed: 01/07/2023]
Abstract
An estimated 70% of breast cancer tumors utilize estrogen receptor (ER) signaling to maintain tumorigenesis and targeting of the estrogen receptor is a common method of treatment for these tumor types. However, ER-positive (+) breast cancers often acquire drug resistant or altered ER activity in response to anti-estrogens. Here we demonstrate glyceollin, an activated soy compound, has anti-estrogen effects in breast cancers. We demonstrate through estrogen response element luciferase and phosphorylation-ER mutants that the effects of glyceollin arise from mechanisms distinct from conventional endocrine therapies. We show that glyceollin suppresses estrogen response element activity; however, it does not affect ER-alpha (α) phosphorylation levels. Additionally we show that glyceollin suppresses the phosphorylation of proteins known to crosstalk with ER signaling, specifically we demonstrate an inhibition of ribosomal protein S6 kinase, 70 kDa (p70S6) phosphorylation following glyceollin treatment. Our data suggests a mechanism for glyceollin inhibition of ERα through the induced suppression of p70S6 and demonstrates novel mechanisms for ER inhibition.
Collapse
Affiliation(s)
- Melyssa R Bratton
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, United States
| | - Elizabeth C Martin
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States
| | - Steven Elliott
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States
| | - Lyndsay V Rhodes
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States
| | - Bridgette M Collins-Burow
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States
| | - John A McLachlan
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States; Department of Pharmacology, Tulane University, New Orleans, LA, United States; The Center for Bioenvironmental Research, Tulane University, New Orleans, LA, United States
| | - Thomas E Wiese
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, United States
| | - Stephen M Boue
- Southern Regional Research Center, U.S. Department of Agriculture, New Orleans, LA, United States
| | - Matthew E Burow
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States; Department of Pharmacology, Tulane University, New Orleans, LA, United States; The Center for Bioenvironmental Research, Tulane University, New Orleans, LA, United States.
| |
Collapse
|
8
|
Lorenzi PL, Claerhout S, Mills GB, Weinstein JN. A curated census of autophagy-modulating proteins and small molecules: candidate targets for cancer therapy. Autophagy 2014; 10:1316-26. [PMID: 24906121 PMCID: PMC4203555 DOI: 10.4161/auto.28773] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autophagy, a programmed process in which cell contents are delivered to lysosomes for degradation, appears to have both tumor-suppressive and tumor-promoting functions; both stimulation and inhibition of autophagy have been reported to induce cancer cell death, and particular genes and proteins have been associated both positively and negatively with autophagy. To provide a basis for incisive analysis of those complexities and ambiguities and to guide development of new autophagy-targeted treatments for cancer, we have compiled a comprehensive, curated inventory of autophagy modulators by integrating information from published siRNA screens, multiple pathway analysis algorithms, and extensive, manually curated text-mining of the literature. The resulting inventory includes 739 proteins and 385 chemicals (including drugs, small molecules, and metabolites). Because autophagy is still at an early stage of investigation, we provide extensive analysis of our sources of information and their complex relationships with each other. We conclude with a discussion of novel strategies that could potentially be used to target autophagy for cancer therapy.
Collapse
Affiliation(s)
- Philip L Lorenzi
- Department of Bioinformatics and Computational Biology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | - Sofie Claerhout
- Department of Systems Biology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | - Gordon B Mills
- Department of Systems Biology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology; The University of Texas MD Anderson Cancer Center; Houston, TX USA; Department of Systems Biology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| |
Collapse
|
9
|
Abstract
The heritable component of breast cancer accounts for only a small proportion of total incidences. Environmental and lifestyle factors are therefore considered to among the major influencing components increasing breast cancer risk. Endocrine-disrupting chemicals (EDCs) are ubiquitous in the environment. The estrogenic property of EDCs has thus shown many associations between ongoing exposures and the development of endocrine-related diseases, including breast cancer. The environment consists of a heterogenous population of EDCs and despite many identified modes of action, including that of altering the epigenome, drawing definitive correlations regarding breast cancer has been a point of much discussion. In this review, we describe in detail well-characterized EDCs and their actions in the environment, their ability to disrupt mammary gland formation in animal and human experimental models and their associations with exposure and breast cancer risk. We also highlight the susceptibility of early-life exposure to each EDC to mediate epigenetic alterations, and where possible describe how these epigenome changes influence breast cancer risk.
Collapse
Affiliation(s)
- Kevin C Knower
- Cancer Drug Discovery, MIMR-PHI Institute of Medical Research, PO BOX 5152, Clayton, Victoria 3168, Australia Department of Molecular Biology and Biochemistry, Monash University, Clayton, Victoria, Australia Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
10
|
Wang QE, Han C, Zhao R, Wani G, Zhu Q, Gong L, Battu A, Racoma I, Sharma N, Wani AA. p38 MAPK- and Akt-mediated p300 phosphorylation regulates its degradation to facilitate nucleotide excision repair. Nucleic Acids Res 2012; 41:1722-33. [PMID: 23275565 PMCID: PMC3561975 DOI: 10.1093/nar/gks1312] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Besides the primary histone acetyltransferase (HAT)-mediated chromatin remodeling function, co-transcriptional factor, p300, is also known to play a distinct role in DNA repair. However, the exact mechanism of p300 function in DNA repair has remained unclear and difficult to discern due to the phosphorylation and degradation of p300 in response to DNA damage. Here, we have demonstrated that p300 is only degraded in the presence of specific DNA lesions, which are the substrates of nucleotide excision repair (NER) pathway. In contrast, DNA double-strand breaks fail to degrade p300. Degradation is initiated by phosphorylation of p300 at serine 1834, which is catalyzed by the cooperative action of p38 mitogen-activated protein kinases and Akt kinases. In depth, functional analysis revealed that (i) p300 and CBP act redundantly in repairing ultraviolet (UV) lesions, (ii) the phosphorylation of p300 at S1834 is critical for efficient removal of UV-induced cyclobutane pyrimidine dimers and (iii) p300 is recruited to DNA damage sites located within heterochromatin. Taken together, we conclude that phosphorylated p300 initially acetylates histones to relax heterochromatin to allow damage recognition factors access to damage DNA. Thereupon, p300 is promptly degraded to allow the sequential recruitment of downstream repair proteins for successful execution of NER.
Collapse
Affiliation(s)
- Qi-En Wang
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bratton MR, Frigo DE, Segar HC, Nephew KP, McLachlan JA, Wiese TE, Burow ME. The organochlorine o,p'-DDT plays a role in coactivator-mediated MAPK crosstalk in MCF-7 breast cancer cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1291-6. [PMID: 22609851 PMCID: PMC3440107 DOI: 10.1289/ehp.1104296] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 05/18/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND The organochlorine dichlorodiphenyltrichloroethane (DDT), a known estrogen mimic and endocrine disruptor, has been linked to animal and human disorders. However, the detailed mechanism(s) by which DDT affects cellular physiology remains incompletely defined. OBJECTIVES We and others have shown that DDT activates cell-signaling cascades, culminating in the activation of estrogen receptor-dependent and -independent gene expression. Here, we identify a mechanism by which DDT alters cellular signaling and gene expression, independent of the estrogen receptor. METHODS We performed quantitative polymerase chain reaction array analysis of gene expression in MCF-7 breast cancer cells using either estradiol (E₂) or o,p´-DDT to identify distinct cellular gene expression responses. To elucidate the mechanisms by which DDT regulates cell signaling, we used molecular and pharmacological techniques. RESULTS E₂ and DDT treatment both altered the expression of many of the genes assayed, but up-regulation of vascular endothelial growth factor A (VEGFA) was observed only after DDT treatment, and this increase was not affected by the pure estrogen receptor α antagonist ICI 182780. Furthermore, DDT increased activation of the HIF-1 response element (HRE), a known enhancer of the VEGFA gene. This DDT-mediated increase in HRE activity was augmented by the coactivator CBP (CREB-binding protein) and was dependent on the p38 pathway. CONCLUSIONS DDT up-regulated the expression of several genes in MCF-7 breast cancer cells that were not altered by treatment with E₂, including VEGFA. We propose that this DDT-initiated, ER-independent stimulation of gene expression is due to DDT's ability to initiate crosstalk between MAPK (mitogen-activated protein kinase) signaling pathways and transcriptional coactivators.
Collapse
Affiliation(s)
- Melyssa R Bratton
- Department of Pharmacology, Tulane University, New Orleans, Louisiana, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Antoon JW, Bratton MR, Guillot LM, Wadsworth S, Salvo VA, Burow ME. Inhibition of p38-MAPK alters SRC coactivation and estrogen receptor phosphorylation. Cancer Biol Ther 2012; 13:1026-33. [PMID: 22825349 DOI: 10.4161/cbt.20992] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The p38 mitogen activated protein kinase pathway (MAPK) is known to promote cell survival, endocrine therapy resistance and hormone independent breast cancer cell proliferation. Therefore, we utilized the novel p38 inhibitor RWJ67657 to investigate the relevance of targeting this pathway in the ER (+) breast cancer cell line MCF-7. Our results show that RWJ67657 inhibits both basal and estrogen stimulated phosphorylation of p38α, resulting in decreased activation of the downstream p38α targets hsp27 and MAPAPK. Furthermore, inhibition of p38α by RWJ67657 blocks clonogenic survival of MCF-7 cells with little effect on non-cancerous breast epithelial cells. Even though p38α is known to phosphorylate ERα at residue within ER's hinge region at Thr311, resulting in increased ERα transcriptional activation, our results suggest RWJ67657 inhibits the p38α-induced activation of ER by targeting both the AF-1 and AF-2 activation domains within ERα. We further show that RWJ67657 decreases the transcriptional activity of the ER coactivators SRC-1, SRC-2 and SRC-3. Taken together, our results strongly suggest that in addition to phosphorylating Thr311 within ERα, p38α indirectly activates the ER by phosphorylation and stimulation of the known ERα coactivators, SRC-1, -2 and-3. Overall, our data underscore the therapeutic potential of targeting the p38 MAPK pathway in the treatment of ER (+) breast cancer.
Collapse
Affiliation(s)
- James W Antoon
- Department Medicine, Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | | | | | | |
Collapse
|
13
|
Antoon JW, Bratton MR, Guillot LM, Wadsworth S, Salvo VA, Elliott S, McLachlan JA, Burow ME. Pharmacology and anti-tumor activity of RWJ67657, a novel inhibitor of p38 mitogen activated protein kinase. Am J Cancer Res 2012; 2:446-458. [PMID: 22860234 PMCID: PMC3410584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/17/2012] [Indexed: 06/01/2023] Open
Abstract
Endocrine therapy resistance is a primary cause of clinical breast cancer treatment failure. The p38 mitogen activated protein kinase (MAPK) signaling pathway is known to promote ligand independent tumor growth and resistance to endocrine therapy. In this study, we investigated the therapeutic potential of the p38 inhibitor RWJ67657 in the treatment of tamoxifen resistant MDA-MB-361 cells. RWJ67657 dose-dependently decreased both basal and stimulated activation of p38 MAPK signaling in this drug resistant cell system. Decreased activation of p38 by RWJ67657 resulted in inhibition of the downstream p38 targets hsp27 and MAPKAPK. Diminished p38 signaling resulted in inhibition of p38-medated gene transcription. Furthermore, pharmacological inhibition of p38 by RWJ67657 decreased biological effects of p38, including ER-mediated gene expression and clonogenic survival in a dose-dependent manner. Animal studies revealed significantly decreased p38 signaling in vivo following exposure to RWJ67657. Treatment with the inhibitor markedly decreased phosphorylation of p38 in MDA-MB-361 tumors, leading to decreased transcription of both Fra-1 and progesterone receptor. Utilizing well-established xenograft tumor models, we demonstrated that RWJ67657 exhibits potent anti-tumor properties. Treatment with RWJ67657 markedly decreased tamoxifen resistant tumor growth, both in the presence and absence of estrogen. Taken together, our findings demonstrate the therapeutic potential of targeting the p38-MAPK signaling cascade in the treatment of endocrine resistant breast cancer.
Collapse
Affiliation(s)
- James W Antoon
- Department Medicine, Section of Hematology & Medical Oncology, Tulane University School of MedicineNew Orleans, LA 70112, USA
| | - Melyssa R Bratton
- Department of Pharmacology, Tulane University School of MedicineNew Orleans, LA 70112, USA
| | - Lori M Guillot
- Department Medicine, Section of Hematology & Medical Oncology, Tulane University School of MedicineNew Orleans, LA 70112, USA
| | | | - Virgilio A Salvo
- Department Medicine, Section of Hematology & Medical Oncology, Tulane University School of MedicineNew Orleans, LA 70112, USA
| | - Steven Elliott
- Department Medicine, Section of Hematology & Medical Oncology, Tulane University School of MedicineNew Orleans, LA 70112, USA
| | - John A McLachlan
- Department of Pharmacology, Tulane University School of MedicineNew Orleans, LA 70112, USA
| | - Matthew E Burow
- Department Medicine, Section of Hematology & Medical Oncology, Tulane University School of MedicineNew Orleans, LA 70112, USA
| |
Collapse
|
14
|
McLachlan JA, Tilghman SL, Burow ME, Bratton MR. Environmental signaling and reproduction: a comparative biological and chemical perspective. Mol Cell Endocrinol 2012; 354:60-2. [PMID: 22178089 PMCID: PMC3641892 DOI: 10.1016/j.mce.2011.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/28/2011] [Indexed: 01/31/2023]
Abstract
Reproduction is a critical element of life. Self-propagation in all living organisms ranging from bacteria to humans involves numerous common strategies. Underlying all reproductive strategies is the essential need for signaling molecules to initiate and maintain the process. In this paper we use comparative biological and chemical approaches to explore the origins and distribution of estrogen signaling as a pathway common to many life forms. In the process we illuminate the mechanisms whereby environmental agents alter reproduction and development. These mechanisms involve altered signaling pathways within cells and shifts in the targets of the signaling pathways to include regulators of gene transcription normally associated with other pathways. We also stress the role of signal cross talk in mediating hormone action.
Collapse
Affiliation(s)
- John A. McLachlan
- Environmental Signaling Laboratory, Tulane University, 1430 Tulane Ave., New Orleans, LA 70122, USA
- Department of Pharmacology, Tulane University School of Medicine, USA
- Department of Ecology and Evolutionary Biology, Tulane University School of Science and Engineering, USA
| | - Syreeta L. Tilghman
- Environmental Signaling Laboratory, Tulane University, 1430 Tulane Ave., New Orleans, LA 70122, USA
- Department of Pharmacology, Tulane University School of Medicine, USA
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, USA
| | - Matthew E. Burow
- Department of Medicine, Division of Hematology and Oncology, Tulane University School of Medicine, USA
| | - Melyssa R. Bratton
- Environmental Signaling Laboratory, Tulane University, 1430 Tulane Ave., New Orleans, LA 70122, USA
- Department of Pharmacology, Tulane University School of Medicine, USA
- Corresponding author at: Department of Pharmacology, Tulane University,
School of Medicine, USA. Tel.: +1 504 988 6623. (M.R. Bratton)
| |
Collapse
|
15
|
Antoon JW, White MD, Burow ME, Beckman BS. Dual inhibition of sphingosine kinase isoforms ablates TNF-induced drug resistance. Oncol Rep 2012; 27:1779-86. [PMID: 22469881 DOI: 10.3892/or.2012.1743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/15/2012] [Indexed: 01/14/2023] Open
Abstract
Recent research has demonstrated that aberrant sphingolipid signaling is an important mechanism of chemoresistance in solid tumors. Sphingosine kinase (Sphk), the primary enzyme metabolizing the sphingolipid ceramide into sphingosine-1-phosphate (S1P), is a primary mediator of breast cancer promotion, survival and chemoresistance. However, to date the mechanism of Sphk-mediated drug resistance is poorly understood. Using the dual sphingosine kinase isozyme inhibitor, SKI-II (4-[4-(4-chloro-phenyl)-thiazol-2-ylamino]-phenol), we explored the effects of sphingosine kinase inhibition on multi-drug-resistant breast cancer cells. We demonstrate that SKI-II alters endogenous sphingolipid signaling and decreases cancer proliferation, survival and viability. Furthermore, pharmacological inhibition of Sphk1/2 induced intrinsic apoptosis in these cells through modulation of the NF-κB pathway. SKI-II decreases NF-κB transcriptional activity through altered phosphorylation of the p65 subunit. Taken together, these results suggest that Sphk may be a promising therapeutic target in chemoresistant cancers.
Collapse
Affiliation(s)
- James W Antoon
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
16
|
Abstract
The use of organochlorine insecticides such as DDT, lindane and cyclodieneshas declined markedly worldwide over the last decades. Most are now banned or not used. At an acute toxicity level they have been relatively safe in use for humans. However, the greatest concerns are their persistence in people, wildlife and the environment due to their slow metabolism. Although their carcinogenicity for humans has not been supported by strong epidemiological evidence, their potential to be modulators of endocrine and immune function at levels remaining in the environment or associated with residual spraying of DDT continue to be of concern. At present, DDT is still allowed by the United Nations for combating malaria, with continual monitoring and assessment where possible. The toxicological consequences of exposure of animals and people to DDT is discussed as well as some analogues and other insecticides such as lindane, dieldrin and chlordecone that, although little used, continue to persist in surroundings and people. Because of circumstances of world health brought about by climate change or human activities that have yet to develop, there may come a time when the importance of some may re-emerge.
Collapse
Affiliation(s)
- Andrew G Smith
- MRC Toxicology Unit, University of Leicester Lancaster Road, Leicester UK.
| |
Collapse
|
17
|
Antoon JW, Meacham WD, Bratton MR, Slaughter EM, Rhodes LV, Ashe HB, Wiese TE, Burow ME, Beckman BS. Pharmacological inhibition of sphingosine kinase isoforms alters estrogen receptor signaling in human breast cancer. J Mol Endocrinol 2011; 46:205-16. [PMID: 21321095 PMCID: PMC4007162 DOI: 10.1530/jme-10-0116] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, crosstalk between sphingolipid signaling pathways and steroid hormones has been illuminated as a possible therapeutic target. Sphingosine kinase (SK), the key enzyme metabolizing pro-apoptotic ceramide to pro-survival sphingosine-1-phosphate (S1P), is a promising therapeutic target for solid tumor cancers. In this study, we examined the ability of pharmacological inhibition of S1P formation to block estrogen signaling as a targeted breast cancer therapy. We found that the Sphk1/2 selective inhibitor (SK inhibitor (SKI))-II, blocked breast cancer viability, clonogenic survival and proliferation. Furthermore, SKI-II dose-dependently decreased estrogen-stimulated estrogen response element transcriptional activity and diminished mRNA levels of the estrogen receptor (ER)-regulated genes progesterone receptor and steroid derived factor-1. This inhibitor binds the ER directly in the antagonist ligand-binding domain. Taken together, our results suggest that SKIs have the ability to act as novel ER signaling inhibitors in breast carcinoma.
Collapse
Affiliation(s)
- James W Antoon
- Tulane Department of Pharmacology Section of Hematology and Medical Oncology, Tulane Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-83, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Antoon JW, White MD, Slaughter EM, Driver JL, Khalili HS, Elliott S, Smith CD, Burow ME, Beckman BS. Targeting NFĸB mediated breast cancer chemoresistance through selective inhibition of sphingosine kinase-2. Cancer Biol Ther 2011; 11:678-89. [PMID: 21307639 PMCID: PMC3084971 DOI: 10.4161/cbt.11.7.14903] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 01/06/2011] [Accepted: 01/21/2011] [Indexed: 02/07/2023] Open
Abstract
Resistance to chemotherapy remains a significant obstacle in the treatment of hormone- independent breast cancer. Recent evidence suggests that altered sphingolipid signaling through increased sphingosine kinase activity may be an important mediator of breast cancer drug resistance. Sphingosine kinase-1 (Sphk1) is a proposed key regulator of breast cancer tumorigenesis, proliferation and resistance. There is, however, conflicting data on the role of sphingosine kinase-2 (Sphk2) in cancer biology and resistance, with some suggesting that Sphk2 has an opposing role to that of Sphk1. Here, we studied the effects of the novel selective Sphk2 inhibitor, ABC294640 (3-(4-chlorophenyl)-adamantane-1-carboxylic acid (pyridin-4-ylmethyl) amide), on human breast cancer. ABC294640 blocked both viability and survival at low micromolar IC(50) concentrations in the endocrine therapy-resistant MDA-MB-231 and chemoresistant MCF-7TN-R cell systems. Treatment with the inhibitor significantly reduced proliferation, as seen in immunofluorescence staining of Ki-67 in vitro. Interestingly, pharmacological inhibition of Sphk2 induced apoptosis through the intrinsic programmed cell death pathway. Furthermore, ABC294640 also diminished NF-ĸB survival signaling, through decreased activation of the Ser536 phosphorylation site on the p65 subunit. Xenografts of MCF-7TN-R cells growing in immunocompromised mice were utilized to validate the therapeutic efficacy of the sphingosine kinase-2 inhibitor. Treatment with 50 mg of ABC294640/kg completely blocked tumor volume in this model. These results indicate that pharmacological inhibition of Sphk2 with the orally bioavailable selective inhibitor, ABC294640, has therapeutic potential in the treatment of chemo- and endocrine therapy- resistant breast cancer.
Collapse
Affiliation(s)
- James W Antoon
- Tulane Department of Pharmacology, Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Acetylation of a conserved lysine residue in the ATP binding pocket of p38 augments its kinase activity during hypertrophy of cardiomyocytes. Mol Cell Biol 2011; 31:2349-63. [PMID: 21444723 DOI: 10.1128/mcb.01205-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Like phosphorylation, acetylation of lysine residues within a protein is considered a biologically relevant modification that controls the activity of target proteins. During stress of cells, massive protein acetylation takes place. Here, we show that p38 mitogen-activated protein kinase (MAPK), which controls many biological functions during stress, is reversibly acetylated by PCAF/p300 and HDAC3. We identified two acetylated lysine residues, K152 and K53, located in the substrate binding domain and in the ATP-binding pocket of p38, respectively. Acetylation of lysine 53 enhanced the activity of p38 by increasing its affinity for ATP binding. The enhanced acetylation and activation of p38 were found to be in parallel with reduced intracellular ATP levels in cardiomyocytes under stress, as well as in vivo models of cardiac hypertrophy. Thus, our data show, for the first time, that p38 activity is critically regulated by, in addition to phosphorylation, reversible acetylation of a lysine residue, which is conserved in other kinases, implying the possibility of a similar mechanism regulating their activity.
Collapse
|
20
|
Antoon JW, White MD, Meacham WD, Slaughter EM, Muir SE, Elliott S, Rhodes LV, Ashe HB, Wiese TE, Smith CD, Burow ME, Beckman BS. Antiestrogenic effects of the novel sphingosine kinase-2 inhibitor ABC294640. Endocrinology 2010; 151:5124-35. [PMID: 20861237 PMCID: PMC2954724 DOI: 10.1210/en.2010-0420] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Alterations in sphingolipid metabolism have been shown to contribute to the development of endocrine resistance and breast cancer tumor survival. Sphingosine kinase (SK), in particular, is overexpressed in breast cancer and is a promising target for breast cancer drug development. In this study, we used the novel SK inhibitor ABC294640 as a tool to explore the relationship between SK and estrogen (E2) receptor (ER) signaling in breast cancer cells. Treatment with ABC294640 decreased E2-stimulated ERE-luciferase activity in both MCF-7 and ER-transfected HEK293 cells. Furthermore, the inhibitor reduced E2-mediated transcription of the ER-regulated genes progesterone receptor and SDF-1. Competitive receptor-binding assays revealed that ABC294640 binds in the antagonist ligand-binding domain of the ER, acting as a partial antagonist similar to tamoxifen. Finally, treatment with ABC294640 inhibited ER-positive breast cancer tumor formation in vivo. After 15 d of treatment with ABC294640, tumor volume was reduced by 68.4% (P < 0.05; n = 5) compared with control tumors, with no marked weight loss or illness. Taken together, these results provide strong evidence that this novel SK inhibitor, which had not previously been known to interact with E2 signaling pathways, has therapeutic potential in treating ER-positive breast cancer via inhibition of both SK and ER signaling.
Collapse
Affiliation(s)
- James W Antoon
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kim JH, Gurumurthy CB, Band H, Band V. Biochemical characterization of human Ecdysoneless reveals a role in transcriptional regulation. Biol Chem 2010; 391:9-19. [PMID: 19919181 DOI: 10.1515/bc.2010.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ecdysoneless (Ecd) is an evolutionarily conserved protein and its function is essential for embryonic development in Drosophila and cell growth in yeast. However, its function has remained unknown until recently. Studies in yeast suggested a potential role of Ecd in transcription; however, Ecd lacks a DNA-binding domain. Using a GAL4-luciferase reporter assay and a GAL4 DNA-binding domain fusion with Ecd or its mutants, we present evidence that human Ecd has a transactivation activity in its C-terminal region. Importantly, further analyses using point mutants showed that a single amino acid change at either Asp-484 or Leu-489 essentially completely abolishes the transactivation activity of Ecd. We further demonstrate that Ecd interacts with p300, a histone acetyltransferase, and coexpression of Ecd with p300 enhances the Ecd-mediated transactivation activity. Ecd localizes to both nucleus and cytoplasm and shuttles between the nucleus and cytoplasm; however, it exhibits strong nuclear export. Based on previous yeast studies and evidence provided here, we suggest that Ecd functions as a transcriptional regulator. Our results indicate an important function of human Ecd and provide a basis to explore the transcriptional partners of Ecd.
Collapse
Affiliation(s)
- Jun Hyun Kim
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | |
Collapse
|
22
|
Porta M, López T, Pumarega J, Jariod M, Crous-Bou M, Marco E, Rifà J, Grimalt JO, Malats N, Real FX. In pancreatic ductal adenocarcinoma blood concentrations of some organochlorine compounds and coffee intake are independently associated with KRAS mutations. Mutagenesis 2009; 24:513-21. [PMID: 19797353 DOI: 10.1093/mutage/gep037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
While KRAS activation is a fundamental initiating event in the aetiopathogenesis of pancreatic ductal adenocarcinoma (PDA), environmental factors influencing the occurrence and persistence of KRAS mutations remain largely unknown. The objective was to test the hypothesis that in PDA there are aetiopathogenic relationships among concentrations of some organochlorine compounds (OCs) and the mutational status of the KRAS oncogene, as well as among the latter and coffee intake. Incident cases of PDA were interviewed and had blood drawn at hospital admission (N = 103). OCs were measured by high-resolution gas chromatography with electron capture detection. Cases whose tumours harboured a KRAS mutation had higher concentrations of p,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodiphenyldichloroethene (DDE) and polychlorinated biphenyls (PCBs) 138, 153 and 180 than cases with wild-type KRAS, but differences were statistically significant only for p,p'-DDT and PCBs 138 and 153. The association between coffee intake and KRAS mutations remained significant (P-trend < 0.015) when most OCs where accounted for. When p,p'-DDT, PCB 153, coffee and alcohol intake were included in the same model, all were associated with KRAS (P = 0.042, 0.007, 0.016 and 0.025, respectively). p,p'-DDT, p,p'-DDE and PCB 138 were significantly associated with the two most prevalent KRAS mutations (Val and Asp). OCs and coffee may have independent roles in the aetiopathogenesis of PDA through modulation of KRAS activation, acquisition or persistence, plausibly through non-genotoxic or epigenetic mechanisms. Given that KRAS mutations are the most frequent abnormality of oncogenes in human cancers, and the lifelong accumulation of OCs in humans, refutation or replication of the findings is required before any implications are assessed.
Collapse
Affiliation(s)
- Miquel Porta
- Institut Municipal d'Investigació Mèdica-Hospital del Mar, E-08003 Barcelona, Catalonia, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
King EM, Holden NS, Gong W, Rider CF, Newton R. Inhibition of NF-kappaB-dependent transcription by MKP-1: transcriptional repression by glucocorticoids occurring via p38 MAPK. J Biol Chem 2009; 284:26803-15. [PMID: 19648110 PMCID: PMC2785369 DOI: 10.1074/jbc.m109.028381] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/15/2009] [Indexed: 02/05/2023] Open
Abstract
Acting via the glucocorticoid receptor (GR), glucocorticoids exert potent anti-inflammatory effects partly by repressing inflammatory gene transcription occurring via factors such as NF-kappaB. In the present study, the synthetic glucocorticoid, dexamethasone, induces expression of MKP-1 (mitogen-activated protein kinase (MAPK) phosphatase-1) in human bronchial epithelial (BEAS-2B) and pulmonary (A549) cells. This correlates with reduced TNFalpha-stimulated p38 MAPK phosphorylation. Since NF-kappaB-dependent transcription and IL-8 protein, mRNA, and unspliced RNA (a surrogate of transcription rate) are sensitive to p38 MAPK inhibitors (SB203580 and SB239063), we explored the role of MKP-1 in repression of these outputs. Repression of TNFalpha-induced p38 MAPK phosphorylation, NF-kappaB-dependent transcription, and IL-8 expression by dexamethasone are sensitive to transcriptional or translational inhibitors. This indicates a role for de novo gene synthesis. Adenoviral expression of MKP-1 profoundly reduces p38 MAPK phosphorylation and IL-8 expression. Similarly, NF-kappaB-dependent transcription is significantly reduced to levels consistent with maximal p38 MAPK inhibition. Thus, MKP-1 attenuates TNFalpha-dependent activation of p38 MAPK, induction of IL-8 expression, and NF-kappaB-dependent transcription. Small interfering RNA knockdown of dexamethasone-induced MKP-1 expression partially reverses the repression of TNFalpha-activated p38 MAPK, demonstrating that MKP-1 participates in the dexamethasone-dependent repression of this pathway. In the presence of MKK6 (MAPK kinase 6), a p38 MAPK activator, dexamethasone dramatically represses TNFalpha-induced NF-kappaB-dependent transcription, and this is significantly reversed by MKP-1-targeting small interfering RNA. This reveals an important and novel role for transcriptional activation (transactivation) of MKP-1 in the repression of NF-kappaB-dependent transcription by glucocorticoids. We conclude that GR transactivation is essential to the anti-inflammatory properties of GR ligands.
Collapse
Affiliation(s)
- Elizabeth M. King
- From the Airways Inflammation Group, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Neil S. Holden
- From the Airways Inflammation Group, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Wei Gong
- From the Airways Inflammation Group, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Christopher F. Rider
- From the Airways Inflammation Group, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Robert Newton
- From the Airways Inflammation Group, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|