1
|
Liu G, Li B, Qin S, Nice EC, Yang J, Yang L, Huang C. Redox signaling-mediated tumor extracellular matrix remodeling: pleiotropic regulatory mechanisms. Cell Oncol (Dordr) 2024; 47:429-445. [PMID: 37792154 DOI: 10.1007/s13402-023-00884-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND The extracellular matrix (ECM), a fundamental constituent of all tissues and organs, is crucial for shaping the tumor microenvironment. Dysregulation of ECM remodeling has been closely linked to tumor initiation and progression, where specific signaling pathways, including redox signaling, play essential roles. Reactive oxygen species (ROS) are risk factors for carcinogenesis whose excess can facilitate the oxidative damage of biomacromolecules, such as DNA and proteins. Emerging evidence suggests that redox effects can aid the modification, stimulation, and degradation of ECM, thus affecting ECM remodeling. These alterations in both the density and components of the ECM subsequently act as critical drivers for tumorigenesis. In this review, we provide an overview of the functions and primary traits of the ECM, and it delves into our current understanding of how redox reactions participate in ECM remodeling during cancer progression. We also discuss the opportunities and challenges presented by clinical strategies targeting redox-controlled ECM remodeling to overcome cancer. CONCLUSIONS The redox-mediated ECM remodeling contributes importantly to tumor survival, progression, metastasis, and poor prognosis. A comprehensive investigation of the concrete mechanism of redox-mediated tumor ECM remodeling and the combination usage of redox-targeted drugs with existing treatment means may reveal new therapeutic strategy for future antitumor therapies.
Collapse
Affiliation(s)
- Guowen Liu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, and , Chengdu, 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, and , Chengdu, 610041, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, and , Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Jinlin Yang
- Department of Gastroenterology & Hepatology, West China Hospital of Sichuan University, Sichuan Province, No.37 Guoxue Alley, Chengdu, 610041, China.
- Department of Gastroenterology & Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Li Yang
- Department of Gastroenterology & Hepatology, West China Hospital of Sichuan University, Sichuan Province, No.37 Guoxue Alley, Chengdu, 610041, China.
- Department of Gastroenterology & Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, and , Chengdu, 610041, China.
| |
Collapse
|
2
|
Kunnathattil M, Rahul P, Skaria T. Soluble vascular endothelial glycocalyx proteoglycans as potential therapeutic targets in inflammatory diseases. Immunol Cell Biol 2024; 102:97-116. [PMID: 37982607 DOI: 10.1111/imcb.12712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Reducing the activity of cytokines and leukocyte extravasation is an emerging therapeutic strategy to limit tissue-damaging inflammatory responses and restore immune homeostasis in inflammatory diseases. Proteoglycans embedded in the vascular endothelial glycocalyx, which regulate the activity of cytokines to restrict the inflammatory response in physiological conditions, are proteolytically cleaved in inflammatory diseases. Here we critically review the potential of proteolytically shed, soluble vascular endothelial glycocalyx proteoglycans to modulate pathological inflammatory responses. Soluble forms of the proteoglycans syndecan-1, syndecan-3 and biglycan exert beneficial anti-inflammatory effects by the removal of chemokines, suppression of proinflammatory cytokine expression and leukocyte migration, and induction of autophagy of proinflammatory M1 macrophages. By contrast, soluble versikine and decorin enhance proinflammatory responses by increasing inflammatory cytokine synthesis and leukocyte migration. Endogenous syndecan-2 and mimecan exert proinflammatory effects, syndecan-4 and perlecan mediate beneficial anti-inflammatory effects and glypican regulates Hh and Wnt signaling pathways involved in systemic inflammatory responses. Taken together, targeting the vascular endothelial glycocalyx-derived, soluble syndecan-1, syndecan-2, syndecan-3, syndecan-4, biglycan, versikine, mimecan, perlecan, glypican and decorin might be a potential therapeutic strategy to suppress overstimulated cytokine and leukocyte responses in inflammatory diseases.
Collapse
Affiliation(s)
- Maneesha Kunnathattil
- Department of Zoology, Government College Madappally, University of Calicut, Calicut, Kerala, India
| | - Pedapudi Rahul
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
3
|
Ismail Y, Zakaria AS, Allam R, Götte M, Ibrahim SA, Hassan H. Compartmental Syndecan-1 (CD138) expression as a novel prognostic marker in triple-negative metaplastic breast cancer. Pathol Res Pract 2024; 253:154994. [PMID: 38071886 DOI: 10.1016/j.prp.2023.154994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Metaplastic breast cancer (MpBC) is rare, aggressive, and mostly triple-negative (TN) subtype of BC. We aimed to investigate the potential prognostic significance of Syndecan-1 (SDC1/CD138) expression in this unique tumor. METHODS Archived charts of 50 TNBC patients [21 MpBC and 29 invasive ductal carcinoma (IDC)] were retrospectively evaluated. Corresponding paraffin blocks were used for immunohistochemical (IHC) staining of SDC1. Compartmental (epithelial membranous, stromal, and cytoplasmic) staining scores were expressed in quartiles (Q) and correlated with disease-free survival (DFS) and overall survival (OS). RESULTS The median follow-up period was 54.6 months (range: 2.2-112.7). MpBC patients showed significantly worse DFS and OS than IDC (p = 0.007 and 0.004, respectively). MpBC demonstrated significantly higher Q4 stromal and membranous SDC1 compared to IDC (p = 0.016 and 0.021, respectively), whereas IDC exhibited significantly higher cytoplasmic Q4 SDC1 than MpBC (p = 0.015). Stromal Q4 SDC1 expression was found to be an independent factor associated with MpBC relative to IDC (OR: 6.7, 95% CI: 1.24-36.90; p = 0.028). Stromal Q4 SDC1 expression was also an independent prognostic parameter for worse DFS and OS compared to Q1-3 in the whole cohort (HR: 4.2, 95% CI: 1.6-10.5; p = 0.003 and HR: 5.8; 95% CI: 2.2-15.3; p < 0.001, respectively). In MpBC, cytoplasmic Q1-3 SDC1 expression was an independent prognostic indicator for worse OS compared with their IDC counterparts (HR: 2.837, 95% CI: 1.048-7.682; p = 0.04). CONCLUSION This study suggests, for the first time, that differential expression and localization of SDC1 may contribute to the pathogenesis and prognosis of TN-MpBC. Therefore, targeting SDC1 (CD138) could emerge as a novel therapeutic approach for this devastating disease.
Collapse
Affiliation(s)
- Yahia Ismail
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Al-Shimaa Zakaria
- Pathology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Rasha Allam
- Cancer Epidemiology and Biostatistics Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster 48149 Germany
| | | | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
4
|
Ostrowska-Lesko M, Rajtak A, Moreno-Bueno G, Bobinski M. Scientific and clinical relevance of non-cellular tumor microenvironment components in ovarian cancer chemotherapy resistance. Biochim Biophys Acta Rev Cancer 2024; 1879:189036. [PMID: 38042260 DOI: 10.1016/j.bbcan.2023.189036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
The tumor microenvironment (TME) components play a crucial role in cancer cells' resistance to chemotherapeutic agents. This phenomenon is exceptionally fundamental in patients with ovarian cancer (OvCa), whose outcome depends mainly on their response to chemotherapy. Until now, most reports have focused on the role of cellular components of the TME, while less attention has been paid to the stroma and other non-cellular elements of the TME, which may play an essential role in the therapy resistance. Inhibiting these components could help define new therapeutic targets and potentially restore chemosensitivity. The aim of the present article is both to summarize the knowledge about non-cellular components of the TME in the development of OvCa chemoresistance and to suggest targeting of non-cellular elements of the TME as a valuable strategy to overcome chemoresistance and to develop new therapeutic strategies in OvCA patients.
Collapse
Affiliation(s)
- Marta Ostrowska-Lesko
- Chair and Department of Toxicology, Medical University of Lublin, 8b Jaczewskiego Street, 20-090 Lublin, Poland.
| | - Alicja Rajtak
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland
| | - Gema Moreno-Bueno
- Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Sols-Morreale' (IIBm-CISC), Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Spain; Fundación MD Anderson Internacional (FMDA), Spain.
| | - Marcin Bobinski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland.
| |
Collapse
|
5
|
Wang H, Zhang Y, Yang Z, Jiang Y, Wu L, Wang R, Zhang Z. Clinical/prognostic significance of Syndecan-1 expression in invasive breast carcinoma with distant metastasis and its correlation with tumor immunity. Pathol Res Pract 2023; 250:154787. [PMID: 37678063 DOI: 10.1016/j.prp.2023.154787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/03/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVE Breast Cancer (BC) is the most common malignant tumor for women in the world. 90% of BC-associated deaths are attributed to distant metastasis (DM). Therefore, there is an urgent need for a novel molecular target for the treatment of distant metastatic breast cancer (DMBC). Syndecan-1 (SDC-1) is a cell surface heparan sulfate proteoglycan (HSPG). This study aims to study the expression patterns of SDC-1 in invasive breast carcinoma (IBC) with DM and to analyze its relationship with different clinicopathologic features, stromal tumor infiltrating lymphocytes (sTILs) status and the clinical outcomes. METHODS A total of 50 DM breast cancer and 100 non-distant metastasis (non-DM) breast cancer patients in West China Hospital, Sichuan University from January 1, 2011 to December 31, 2011 were collected. Immunohistochemical (IHC) method was used to detect the expression of SDC-1, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER2), and Ki-67 in 150 specimens of patients with IBC. STILs were used to evaluate immune cells in the stromal tissue within the tumor. Various clinicopathologic characteristics were retrospectively analyzed, and follow-up information were collected for prognosis analyses. The expression pattern difference of SDC-1 in the DM group and the non-DM group and its correlation with clinicopathologic characteristics of IBC were analyzed. RESULTS Compared with the non-DM group, SDC-1 had higher cytoplasmic (90.0%) and stromal diffuse (70.0%) expressions and lower stromal peritumoral (18.0%) expression in the DM group. SDC-1 cytoplasmic expression was significantly associated with HER2-positive and high Ki-67 index in DM group, and with high histological grade and lymph node (LN) metastasis in non-DM group (P < 0.05). Compared with the non-DM group, the membranous expression of SDC-1 in the DM group was related to higher histological grade and T stage, higher frequency of LN involvement. Meanwhile, the expression pattern of SDC-1 in tumor stroma was associated with sTILs status (P < 0.05). The different combinations of SDC-1 staining patterns were correlated with clinicopathological features, biomarkers and sTILs status between DM group and non-DM group.There was no significant difference in overall survival between DMBC with different expression patterns of SDC-1. CONCLUSION The cytoplasmic and stromal expressions of SDC-1 in the primary lesion of IBC are closely associated with DM, and the stromal expression of SDC-1 is correlated with tumor immune microenvironment. SDC-1 is expected to be a potential new marker for predicting the risk of DM in IBC.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Pathology, Langzhong People's Hospital, Langzhong, Sichuan, China
| | - Yu Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziqi Yang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yong Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lixue Wu
- Department of Pathology, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Mavrogonatou E, Papadopoulou A, Pratsinis H, Kletsas D. Senescence-associated alterations in the extracellular matrix: deciphering their role in the regulation of cellular function. Am J Physiol Cell Physiol 2023; 325:C633-C647. [PMID: 37486063 DOI: 10.1152/ajpcell.00178.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The extracellular matrix (ECM) is a dynamic structural network that provides a physical scaffolding, as well as biochemical factors that maintain normal tissue homeostasis and thus its disruption is implicated in many pathological conditions. On the other hand, senescent cells express a particular secretory phenotype, affecting the composition and organization of the surrounding ECM and modulating their microenvironment. As accumulation of senescent cells may be linked to the manifestation of several age-related conditions, senescence-associated ECM alterations may serve as targets for novel anti-aging treatment modalities. Here, we will review characteristic changes in the ECM elicited by cellular senescence and we will discuss the complex interplay between ECM and senescent cells, in relation to normal aging and selected age-associated pathologies.
Collapse
Affiliation(s)
- Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Adamantia Papadopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| |
Collapse
|
7
|
Oto J, Le QK, Schäfer SD, Kiesel L, Marí-Alexandre J, Gilabert-Estellés J, Medina P, Götte M. Role of Syndecans in Ovarian Cancer: New Diagnostic and Prognostic Biomarkers and Potential Therapeutic Targets. Cancers (Basel) 2023; 15:3125. [PMID: 37370735 DOI: 10.3390/cancers15123125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ovarian cancer (OC) is the eighth cancer both in prevalence and mortality in women and represents the deadliest female reproductive cancer. Due to generally vague symptoms, OC is frequently diagnosed only at a late and advanced stage, resulting in high mortality. The tumor extracellular matrix and cellular matrix receptors play a key role in the pathogenesis of tumor progression. Syndecans are a family of four transmembrane heparan sulfate proteoglycans (PG), including syndecan-1, -2, -3, and -4, which are dysregulated in a myriad of cancers, including OC. Many clinicopathological studies suggest that these proteins are promising diagnostic and prognostic biomarkers for OC. Furthermore, functions of the syndecan family in the regulation of cellular processes make it an interesting pharmacological target for anticancer therapies.
Collapse
Affiliation(s)
- Julia Oto
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
| | - Quang-Khoi Le
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| | - Sebastian D Schäfer
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| | - Josep Marí-Alexandre
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Pathology, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain
| | - Juan Gilabert-Estellés
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Gynecology and Obstetrics, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| |
Collapse
|
8
|
Krishnan SR, Bebawy M. Circulating biosignatures in multiple myeloma and their role in multidrug resistance. Mol Cancer 2023; 22:79. [PMID: 37120508 PMCID: PMC10148481 DOI: 10.1186/s12943-022-01683-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/14/2022] [Indexed: 05/01/2023] Open
Abstract
A major obstacle to chemotherapeutic success in cancer treatment is the development of drug resistance. This occurs when a tumour fails to reduce in size after treatment or when there is clinical relapse after an initial positive response to treatment. A unique and serious type of resistance is multidrug resistance (MDR). MDR causes the simultaneous cross resistance to unrelated drugs used in chemotherapy. MDR can be acquired through genetic alterations following drug exposure, or as discovered by us, through alternative pathways mediated by the transfer of functional MDR proteins and nucleic acids by extracellular vesicles (M Bebawy V Combes E Lee R Jaiswal J Gong A Bonhoure GE Grau, 23 9 1643 1649, 2009).Multiple myeloma is an incurable cancer of bone marrow plasma cells. Treatment involves high dose combination chemotherapy and patient response is unpredictable and variable due to the presence of multisite clonal tumour infiltrates. This clonal heterogeneity can contribute to the development of MDR. There is currently no approved clinical test for the minimally invasive testing of MDR in myeloma.Extracellular vesicles comprise a group of heterogeneous cell-derived membranous structures which include; exosomes, microparticles (microvesicles), migrasomes and apoptotic bodies. Extracellular vesicles serve an important role in cellular communication through the intercellular transfer of cellular protein, nucleic acid and lipid cargo. Of these, microparticles (MPs) originate from the cell plasma membrane and vary in size from 0.1-1um. We have previously shown that MPs confer MDR through the transfer of resistance proteins and nucleic acids. A test for the early detection of MDR would benefit clinical decision making, improve survival and support rational drug use. This review focuses on microparticles as novel clinical biomarkers for the detection of MDR in Myeloma and discusses their role in the therapeutic management of the disease.
Collapse
|
9
|
Hassan N, Bückreiß N, Efing J, Schulz-Fincke M, König P, Greve B, Bendas G, Götte M. The Heparan Sulfate Proteoglycan Syndecan-1 Triggers Breast Cancer Cell-Induced Coagulability by Induced Expression of Tissue Factor. Cells 2023; 12:cells12060910. [PMID: 36980251 PMCID: PMC10047229 DOI: 10.3390/cells12060910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Syndecan-1 (Sdc-1) upregulation is associated with poor prognosis in breast cancer. Sdc-1 knockdown results in reduced angiogenesis and the dysregulation of tissue factor (TF) pathway constituents. Here, we evaluate the regulatory mechanisms and functional consequences of the Sdc-1/TF-axis using Sdc-1 knockdown and overexpression approaches in MCF-7 and MDA-MB-231 breast cancer cells. Gene expression was analyzed by means of qPCR. Thrombin generation and cell migration were detected. Cell-cycle progression and apoptosis were investigated using flow cytometry. In MDA-MB-231 cells, IL6, IL8, VEGF, and IGFR-dependent signaling affected TF pathway expression depending on Sdc-1. Notably, Sdc-1 depletion and TF pathway inhibitor (TFPI) synergistically affected PTEN, MAPK, and STAT3 signaling. At the functional level, the antiproliferative and pro-apoptotic effects of TFPI depended on Sdc-1, whereas Sdc-1’s modulation of cell motility was not affected by TFPI. Sdc-1 overexpression in MCF-7 and MDA-MB-231 cells led to increased TF expression, inducing a procoagulative phenotype, as indicated by the activation of human platelets and increased thrombin formation. A novel understanding of the functional interplay between Sdc-1 and the TF pathway may be compatible with the classical co-receptor role of Sdc-1 in cytokine signaling. This opens up the possibility of a new functional understanding, with Sdc-1 fostering coagulation and platelet communication as the key to the hematogenous metastatic spread of breast cancer cells.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Nico Bückreiß
- Pharmaceutical Department, University Bonn, An der Immenburg 4, 53225 Bonn, Germany
| | - Janes Efing
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Marie Schulz-Fincke
- Pharmaceutical Department, University Bonn, An der Immenburg 4, 53225 Bonn, Germany
| | - Philipp König
- Pharmaceutical Department, University Bonn, An der Immenburg 4, 53225 Bonn, Germany
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Gerd Bendas
- Pharmaceutical Department, University Bonn, An der Immenburg 4, 53225 Bonn, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Correspondence:
| |
Collapse
|
10
|
The Role of Membrane-Type 1 Matrix Metalloproteinase-Substrate Interactions in Pathogenesis. Int J Mol Sci 2023; 24:ijms24032183. [PMID: 36768503 PMCID: PMC9917210 DOI: 10.3390/ijms24032183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
A protease is an enzyme with a proteolytic activity that facilitates the digestion of its substrates. Membrane-type I matrix metalloproteinase (MT1-MMP), a member of the broader matrix metalloproteinases (MMP) family, is involved in the regulation of diverse cellular activities. MT1-MMP is a very well-known enzyme as an activator of pro-MMP-2 and two collagenases, MMP-8 and MMP-13, all of which are essential for cell migration. As an anchored membrane enzyme, MT1-MMP has the ability to interact with a diverse group of molecules, including proteins that are not part of the extracellular matrix (ECM). Therefore, MT1-MMP can regulate various cellular activities not only by changing the extra-cellular environment but also by regulating cell signaling. The presence of both intracellular and extra-cellular portions of MT1-MMP can allow it to interact with proteins on both sides of the cell membrane. Here, we reviewed the MT1-MMP substrates involved in disease pathogenesis.
Collapse
|
11
|
Kizhakkeppurath Kumaran A, Sahu A, Singh A, Aynikkattil Ravindran N, Sekhar Chatterjee N, Mathew S, Verma S. Proteoglycans in breast cancer, identification and characterization by LC-MS/MS assisted proteomics approach: A review. Proteomics Clin Appl 2023:e2200046. [PMID: 36598116 DOI: 10.1002/prca.202200046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
PURPOSE Proteoglycans (PGs) are negatively charged macromolecules containing a core protein and single or several glycosaminoglycan chains attached by covalent bond. They are distributed in all tissues, including extracellular matrix (ECM), cell surface, and basement membrane. They are involved in major pathways and cell signalling cascades which modulate several vital physiological functions of the body. They have also emerged as a target molecule for cancer treatment and as possible biomarkers for early cancer detection. Among cancers, breast cancer is a highly invasive and heterogenous type and has become the major cause of mortality especially among women. So, this review revisits the studies on PGs characterization in breast cancer using LC-MS/MS-based proteomics approach, which will be further helpful for identification of potential PGs-based biomarkers or therapeutic targets. EXPERIMENTAL DESIGN There is a lack of comprehensive knowledge on the use of LC-MS/MS-based proteomics approaches to identify and characterize PGs in breast cancer. RESULTS LC-MS/MS assisted PGs characterization in breast cancer revealed the vital PGs in breast cancer invasion and progression. In addition, comprehensive profiling and characterization of PGs in breast cancer are efficiently carried out by this approach. CONCLUSIONS Proteomics techniques including LC-MS/MS-based identification of proteoglycans is effectively carried out in breast cancer research. Identification of expression at different stages of breast cancer is a major challenge, and LC-MS/MS-based profiling of PGs can boost novel strategies to treat breast cancer, which involve targeting PGs, and also aid early diagnosis using PGs as biomarkers.
Collapse
Affiliation(s)
| | - Ankita Sahu
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| | - Astha Singh
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| | - Nisha Aynikkattil Ravindran
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Thrissur, India
| | | | - Suseela Mathew
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Kochi, India
| | - Saurabh Verma
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| |
Collapse
|
12
|
Espinoza-Sanchez NA, Troschel F, Greve B, Götte M. Proteoglycan Expression Studied by MicroRNAs. Methods Mol Biol 2023; 2619:273-292. [PMID: 36662477 DOI: 10.1007/978-1-0716-2946-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
MicroRNAs are small noncoding RNAs that regulate gene expression at the posttranscriptional level. Proteoglycans are glycoproteins characterized by covalent attachment of a glycosaminoglycan chain, which have been identified as regulatory targets of microRNAs in a physiological and pathophysiological context. We present a strategy and detailed methods for the functional analysis of microRNA regulation of proteoglycans using human cancer cells as an application example. The experimental setup includes in silico microRNA target prediction, transfection of cancer cells with microRNA precursors, validation of target regulation by qPCR, flow cytometry and luciferase reporter assays, and an example for functional analysis and phenotype confirmation by complementation analysis.
Collapse
Affiliation(s)
- Nancy Adriana Espinoza-Sanchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Muenster, Germany
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Muenster, Germany
| | - Fabian Troschel
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Muenster, Germany
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Muenster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Muenster, Germany.
| |
Collapse
|
13
|
Velesiotis C, Kanellakis M, Vynios DH. Steviol glycosides affect functional properties and macromolecular expression of breast cancer cells. IUBMB Life 2022; 74:1012-1028. [PMID: 36054915 DOI: 10.1002/iub.2669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022]
Abstract
Steviol glycosides, the active sweet components of stevia plant, have been recently found to possess a number of therapeutic properties, including some recorded anticancer ones against various cancer cell types (breast, ovarian, cervical, pancreatic, and colon cancer). Our aim was to investigate this anticancer potential on the two most commonly used breast cancer cell lines which differ in the phenotype and estrogen receptor (ER) status: the low metastatic, ERα+ MCF-7 and the highly metastatic, ERα-/ERβ+ MDA-MB-231. Specifically, glycosides' effect was studied on cancer cells': (a) viability, (b) functionality (proliferation, migration, and adhesion), and (c) gene expression (mRNA level) of crucial molecules implicated in cancer's pathophysiology. Results showed that steviol glycosides induced cell death in both cell lines, in the first 24 hr, which was in line with the antiapoptotic BCL2 decrease. However, cells that managed to survive showcased diametrically opposite behavior. The low metastatic ERα+ MCF-7 cells acquired an aggressive phenotype, depicted by the upregulation of all receptors and co-receptors (ESR, PGR, AR, GPER1, EGFR, IGF1R, CD44, SDC2, and SDC4), as well as VIM and MMP14. On the contrary, the highly metastatic ERα-/ERβ+ MDA-MB-231 cells became less aggressive as pointed out by the respective downregulation of EGFR, IGF1R, CD44, and SDC2. Changes observed in gene expression were compatible with altered cell functions. Glycosides increased MCF-7 cells migration and adhesion, but reduced MDA-MB-231 cells migratory and metastatic potential. In conclusion, the above data clearly demonstrate that steviol glycosides have different effects on breast cancer cells according to their ER status, suggesting that steviol glycosides might be examined for their potential anticancer activity against breast cancer, especially triple negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Christos Velesiotis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Department of Chemistry, University of Patras, Patras, Greece
| | - Marinos Kanellakis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Department of Chemistry, University of Patras, Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
14
|
Yang Z, Chen S, Ying H, Yao W. Targeting syndecan-1: new opportunities in cancer therapy. Am J Physiol Cell Physiol 2022; 323:C29-C45. [PMID: 35584326 PMCID: PMC9236862 DOI: 10.1152/ajpcell.00024.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022]
Abstract
Syndecan-1 (SDC1, CD138) is one of the heparan sulfate proteoglycans and is essential for maintaining normal cell morphology, interacting with the extracellular and intracellular protein repertoire, as well as mediating signaling transduction upon environmental stimuli. The critical role of SDC1 in promoting tumorigenesis and metastasis has been increasingly recognized in various cancer types, implying a promising potential of utilizing SDC1 as a novel target for cancer therapy. This review summarizes the current knowledge on SDC1 structure and functions, including its role in tumor biology. We also discuss the highlights and limitations of current SDC1-targeted therapies as well as the obstacles in developing new therapeutic methods, offering our perspective on the future directions to target SDC1 for cancer treatment.
Collapse
Affiliation(s)
- Zecheng Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shuaitong Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wantong Yao
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
15
|
The Cell Surface Heparan Sulfate Proteoglycan Syndecan-3 Promotes Ovarian Cancer Pathogenesis. Int J Mol Sci 2022; 23:ijms23105793. [PMID: 35628603 PMCID: PMC9145288 DOI: 10.3390/ijms23105793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
Syndecans are transmembrane heparan sulfate proteoglycans that integrate signaling at the cell surface. By interacting with cytokines, signaling receptors, proteases, and extracellular matrix proteins, syndecans regulate cell proliferation, metastasis, angiogenesis, and inflammation. We analyzed public gene expression datasets to evaluate the dysregulation and potential prognostic impact of Syndecan-3 in ovarian cancer. Moreover, we performed functional in vitro analysis in syndecan-3-siRNA-treated SKOV3 and CAOV3 ovarian cancer cells. In silico analysis of public gene array datasets revealed that syndecan-3 mRNA expression was significantly increased 5.8-fold in ovarian cancer tissues (n = 744) and 3.4-fold in metastases (n = 44) compared with control tissue (n = 46), as independently confirmed in an RNAseq dataset on ovarian serous cystadenocarcinoma tissue (n = 374, controls: n = 133, 3.5-fold increase tumor vs. normal). Syndecan-3 siRNA knockdown impaired 3D spheroid growth and colony formation as stemness-related readouts in SKOV3 and CAOV3 cells. In SKOV3, but not in CAOV3 cells, syndecan-3 depletion reduced cell viability both under basal conditions and under chemotherapy with cisplatin, or cisplatin and paclitaxel. While analysis of the SIOVDB database did not reveal differences in Syndecan-3 expression between patients, sensitive, resistant or refractory to chemotherapy, KM Plotter analysis of 1435 ovarian cancer patients revealed that high syndecan-3 expression was associated with reduced survival in patients treated with taxol and platin. At the molecular level, a reduction in Stat3 activation and changes in the expression of Wnt and notch signaling constituents were observed. Our study suggests that up-regulation of syndecan-3 promotes the pathogenesis of ovarian cancer by modulating stemness-associated pathways.
Collapse
|
16
|
D'Arcy C, Zimmermann CC, Espinoza-Sanchez NA, Greve B, Schmidt A, Kiesel L, von Wahlde MK, Götte M. The heparan sulphate proteoglycan Syndecan-1 (CD138) regulates tumour progression in a 3D model of ductal carcinoma in situ of the breast. IUBMB Life 2022; 74:955-968. [PMID: 35587107 DOI: 10.1002/iub.2623] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/25/2022] [Indexed: 11/07/2022]
Abstract
Ductal carcinoma in situ (DCIS) is a form of breast cancer that is restricted to the lactiferous ducts and has not yet invaded the surrounding breast tissue. Dysregulation of the transmembrane heparan sulphate proteoglycan Syndecan-1 (Sdc-1) plays a role in tumour progression of invasive breast cancer (IBC). In DCIS, Sdc-1, c-Met and E-cadherin are part of a proangiogenic expression signature. In this study, we employed a siRNA knockdown approach in the DCIS model cell line MCF10A DCIS.com to investigate a potential connection between Sdc-1 and epithelial mesenchymal transition (EMT), proteolysis and the Rho kinase pathway. Analysis of gene expression data of the TNMplot.com database revealed that Sdc-1 expression was higher in primary breast tumours compared to metastases. The impact of Sdc-1-depletion on the cellular phenotype was investigated in a Matrigel-based three-dimensional cell culture model. Sdc-1 depletion resulted in the formation of larger spheroids and the formation of invasive protrusions. Application of matrix metalloproteinase (MMP) and Rho kinase inhibitors could block the Sdc-1-induced phenotype. qPCR analysis of Sdc-1-depleted cells in two-dimensional culture revealed upregulated expression of the EMT-markers CDH1, FN-1, CLDN1, the proteolysis markers MMP3, and MMP9, and HPSE, while MMP2, VIM and ROCK-2 were downregulated. Immunocytochemistry confirmed upregulation of MMP9 and fibronectin, the latter being particular prominent after ROCK inhibition. STRING analysis confirmed an interaction of the investigated gene products at the protein level. Our results suggest that diminished Sdc-1 expression plays a role in DCIS progression to IBC through deregulation of proteolytic factors and a partial EMT.
Collapse
Affiliation(s)
- Christopher D'Arcy
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | | | - Nancy Adriana Espinoza-Sanchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.,Department of Radiotherapy-Radiooncology, Department of Radiotherapy and Radiooncology, University Hospital Münster, Münster, Germany
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Department of Radiotherapy and Radiooncology, University Hospital Münster, Münster, Germany
| | - Annika Schmidt
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | | | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| |
Collapse
|
17
|
Hilgers K, Ibrahim SA, Kiesel L, Greve B, Espinoza-Sánchez NA, Götte M. Differential Impact of Membrane-Bound and Soluble Forms of the Prognostic Marker Syndecan-1 on the Invasiveness, Migration, Apoptosis, and Proliferation of Cervical Cancer Cells. Front Oncol 2022; 12:803899. [PMID: 35155241 PMCID: PMC8828476 DOI: 10.3389/fonc.2022.803899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
Cervical cancer ranks fourth among the most commonly diagnosed malignant tumors in women worldwide. Previously published evidence suggested a possible connection between the expression of the membrane-bound heparan sulfate proteoglycan syndecan-1 (Sdc-1) and the development of cervical carcinoma. Sdc-1 serves as a matrix receptor and coreceptor for receptor tyrosine kinases and additional signaling pathways. It influences cell proliferation, adhesion, and migration and is seen as a modulator of the tumor microenvironment. Following proteolytic cleavage of its extracellular domain in a process called shedding, Sdc-1 can act as a paracrine effector. The loss of Sdc-1 expression is associated with low differentiation of cervical carcinoma and with an increased rate of lymph node metastases. Here, we analyzed the clinical impact of Sdc-1 expression by analysis of public gene expression datasets and studied the effect of an overexpression of Sdc-1 and its membrane-bound and soluble forms on the malignant properties of the human cervical carcinoma cell line HeLa through functional analysis. For this purpose, the HeLa cells were stably transfected with the control plasmid pcDNA3.1 and three different Sdc-1-DNA constructs,encoding wild-type, permanently membrane-bound, and constitutively soluble Sdc-1. In clinical specimens, Sdc-1 mRNA was more highly expressed in local tumor tissues than in normal and metastatic cervical cancer tissues. Moreover, high Sdc-1 expression correlated with a poor prognosis in Kaplan-Meier survival analysis, suggesting the important role of Sdc-1 in the progression of this type of cancer. In vitro, we found that the soluble, as well as the permanently membrane-bound forms of Sdc-1 modulated the proliferation and the cell cycle, while membrane-bound Sdc1 regulated HeLa cell apoptosis. The overexpression of Sdc-1 and its soluble form increased invasiveness. In vitro scratch/wound healing assay, showed reduced Sdc-1-dependent cell motility which was linked to the Rho-GTPase signaling pathway. In conclusion, in cervical cancer Sdc-1 modulates pathogenetically relevant processes, which depend on the membrane-association of Sdc-1.
Collapse
Affiliation(s)
- Katharina Hilgers
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | | | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.,Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| |
Collapse
|
18
|
Pham SH, Pratt K, Okolicsanyi RK, Oikari LE, Yu C, Peall IW, Arif KMT, Chalmers TA, Gyimesi M, Griffiths LR, Haupt LM. Syndecan-1 and -4 influence Wnt signaling and cell migration in human breast cancers. Biochimie 2022; 198:60-75. [DOI: 10.1016/j.biochi.2022.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/30/2021] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
|
19
|
Hassanein SS, Abdel-Mawgood AL, Ibrahim SA. EGFR-Dependent Extracellular Matrix Protein Interactions Might Light a Candle in Cell Behavior of Non-Small Cell Lung Cancer. Front Oncol 2021; 11:766659. [PMID: 34976811 PMCID: PMC8714827 DOI: 10.3389/fonc.2021.766659] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related death and is associated with a poor prognosis. Lung cancer is divided into 2 main types: the major in incidence is non-small cell lung cancer (NSCLC) and the minor is small cell lung cancer (SCLC). Although NSCLC progression depends on driver mutations, it is also affected by the extracellular matrix (ECM) interactions that activate their corresponding signaling molecules in concert with integrins and matrix metalloproteinases (MMPs). These signaling molecules include cytoplasmic kinases, small GTPases, adapter proteins, and receptor tyrosine kinases (RTKs), particularly the epidermal growth factor receptor (EGFR). In NSCLC, the interplay between ECM and EGFR regulates ECM stiffness, angiogenesis, survival, adhesion, migration, and metastasis. Furthermore, some tumor-promoting ECM components (e.g., glycoproteins and proteoglycans) enhance activation of EGFR and loss of PTEN. On the other hand, other tumor-suppressing glycoproteins and -proteoglycans can inhibit EGFR activation, suppressing cell invasion and migration. Therefore, deciphering the molecular mechanisms underlying EGFR and ECM interactions might provide a better understanding of disease pathobiology and aid in developing therapeutic strategies. This review critically discusses the crosstalk between EGFR and ECM affecting cell behavior of NSCLC, as well as the involvement of ECM components in developing resistance to EGFR inhibition.
Collapse
Affiliation(s)
- Sarah Sayed Hassanein
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed Lotfy Abdel-Mawgood
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
| | | |
Collapse
|
20
|
Circulating CD138 enhances disease progression by augmenting autoreactive antibody production in a mouse model of systemic lupus erythematosus. J Biol Chem 2021; 297:101053. [PMID: 34364875 PMCID: PMC8405997 DOI: 10.1016/j.jbc.2021.101053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a progressive autoimmune disease characterized by high levels of antibodies directed against nuclear antigens. Elevated serum CD138, a heparan sulfate–bearing proteoglycan, correlates with increased disease activity in patients with SLE, but the contribution of CD138 to lupus disease is not known. Corroborating patient data, we detected an increase in serum CD138 in MRL/MpJ-Faslpr/J (MRL/Lpr) mice (a model for SLE disease) parallel to disease activity. Although T-cell receptor β (TCRβ)+CD138+ T cells typically expand in MRL/Lpr mice as the disease progresses, surprisingly, TCRβ+CD138− cells were the primary source of circulating CD138, as the transfer of TCRβ+CD138− cells, but not TCRβ+CD138+ cells, to young MRL/Lpr mice resulted in higher serum CD138 in the recipients. We found that trypsin was able to cleave CD138 from TCRβ+CD138+ cells, and that trypsin was highly expressed in TCRβ+CD138− cells. Moreover, trypsin inhibitors, the “defined trypsin inhibitor” and leupeptin, increased CD138 expression on TCRβ+CD138− cells, suggesting a contribution of cleaved CD138 to the increase in blood CD138 levels. Furthermore, soluble CD138 was able to bind “a proliferation-inducing ligand” (APRIL) and enhance APRIL-mediated plasma cell generation and autoreactive antibody production through the phosphorylation of extracellular signal–regulated kinase in B cells. The APRIL receptor “transmembrane activator, calcium modulator, and cyclophilin ligand interactor” was involved in the enhancement of APRIL activity by CD138, as the synergistic effect of APRIL and CD138 was ablated in transmembrane activator, calcium modulator, and cyclophilin ligand interactor–deficient B cells. These findings indicate a regulatory role for soluble CD138 in B-cell differentiation and autoreactive antibody production in SLE disease.
Collapse
|
21
|
Syndecan-1 Depletion Has a Differential Impact on Hyaluronic Acid Metabolism and Tumor Cell Behavior in Luminal and Triple-Negative Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22115874. [PMID: 34070901 PMCID: PMC8198019 DOI: 10.3390/ijms22115874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022] Open
Abstract
Glycosaminoglycans (GAGs) and proteoglycans (PGs) are major components of the glycocalyx. The secreted GAG and CD44 ligand hyaluronic acid (HA), and the cell surface PG syndecan-1 (Sdc-1) modulate the expression and activity of cytokines, chemokines, growth factors, and adhesion molecules, acting as critical regulators of tumor cell behavior. Here, we studied the effect of Sdc-1 siRNA depletion and HA treatment on hallmark processes of cancer in breast cancer cell lines of different levels of aggressiveness. We analyzed HA synthesis, and parameters relevant to tumor progression, including the stem cell phenotype, Wnt signaling constituents, cell cycle progression and apoptosis, and angiogenic markers in luminal MCF-7 and triple-negative MDA-MB-231 cells. Sdc-1 knockdown enhanced HAS-2 synthesis and HA binding in MCF-7, but not in MDA-MB-231 cells. Sdc-1-depleted MDA-MB-231 cells showed a reduced CD24-/CD44+ population. Furthermore, Sdc-1 depletion was associated with survival signals in both cell lines, affecting cell cycle progression and apoptosis evasion. These changes were linked to the altered expression of KLF4, MSI2, and miR-10b and differential changes in Erk, Akt, and PTEN signaling. We conclude that Sdc-1 knockdown differentially affects HA metabolism in luminal and triple-negative breast cancer model cell lines and impacts the stem phenotype, cell survival, and angiogenic factors.
Collapse
|
22
|
Mc Cormack B, Maenhoudt N, Fincke V, Stejskalova A, Greve B, Kiesel L, Meresman GF, Vankelecom H, Götte M, Barañao RI. The ellagic acid metabolites urolithin A and B differentially affect growth, adhesion, motility, and invasion of endometriotic cells in vitro. Hum Reprod 2021; 36:1501-1519. [PMID: 33748857 DOI: 10.1093/humrep/deab053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION What are the effects of plant-derived antioxidant compounds urolithin A (UA) and B (UB) on the growth and pathogenetic properties of an in vitro endometriosis model? SUMMARY ANSWER Both urolithins showed inhibitory effects on cell behavior related to the development of endometriosis by differentially affecting growth, adhesion, motility, and invasion of endometriotic cells in vitro. WHAT IS KNOWN ALREADY Endometriosis is one of the most common benign gynecological diseases in women of reproductive age and is defined by the presence of endometrial tissue outside the uterine cavity. As current pharmacological therapies are associated with side effects interfering with fertility, we aimed at finding alternative therapeutics using natural compounds that can be administered for prolonged periods with a favorable side effects profile. STUDY DESIGN, SIZE, DURATION In vitro cultures of primary endometriotic stromal cells from 6 patients subjected to laparoscopy for benign pathologies with histologically confirmed endometriosis; and immortalized endometrial stromal (St-T1b) and endometriotic epithelial cells (12Z) were utilized to assess the effects of UA and UB on endometriotic cell properties. Results were validated in three-dimensional (3D) in vitro co-culture spheroids of 12Z and primary endometriotic stroma cells of one patient, and organoids from 3 independent donors with endometriosis. PARTICIPANTS/MATERIALS, SETTING, METHODS The effects on cell growth were measured by non-radioactive colorimetric assay to measure cellular metabolic activity as an indicator of cell viability (MTT assay) and flow cytometric cell cycle assay on primary cultures, St-T1b, and 12Z. Apoptosis analyses, the impact on in vitro adhesion, migration, and invasion were evaluated in the cell lines. Moreover, Real-Time Quantitative Reverse Transcription polymerase chain reaction (RT-qPCR) assays were performed on primary cultures, St- T1b and 12Z to evaluate a plausible mechanistic contribution by factors related to proteolysis (matrix metalloproteinase 2, 3 and 9 -MMP2, MMP3, MMP9-, and tissue inhibitor of metalloproteinases -TIMP-1-), cytoskeletal regulators (Ras-related C3 botulinum toxin substrate 1 -RAC1-, Rho-associated coiled-coil containing protein kinase 2 -ROCK2-), and cell adhesion molecules (Syndecan 1 -SDC1-, Integrin alpha V-ITGAV-). Finally, the urolithins effects were evaluated on spheroids and organoids by formation, viability, and drug screen assays. MAIN RESULTS AND THE ROLE OF CHANCE 40 µM UA and 20 µM UB produced a significant decrease in cell proliferation in the primary endometriotic cell cultures (P < 0.001 and P < 0.01, respectively) and in the St-T1b cell line (P < 0.001 and P < 0.05, respectively). In St-T1b, UA exhibited a mean half-maximum inhibitory concentration (IC50) of 39.88 µM, while UB exhibited a mean IC50 of 79.92 µM. Both 40 µM UA and 20 µM UB produced an increase in cells in the S phase of the cell cycle (P < 0.01 and P < 0.05, respectively). The same concentration of UA also increased the percentage of apoptotic ST-t1b cells (P < 0.05), while both urolithins decreased cell migration after 24 h (P < 0.001 both). Only the addition of 5 µM UB decreased the number of St-T1b adherent cells. TIMP-1 expression was upregulated in response to treating the cells with 40 µM UA (P < 0.05). Regarding the 12Z endometriotic cell line, only 40 µM UA decreased proliferation (P < 0.01); while both 40 µM UA and 20 µM UB produced an increase in cells in the G2/M phase (P < 0.05 and P < 0.01, respectively). In this cell line, UA exhibited a mean IC50 of 40.46 µM, while UB exhibited a mean IC50 of 54.79 µM. UB decreased cell migration (P < 0.05), and decreased the number of adherent cells (P < 0.05). Both 40 µM UA and 20 µM UB significantly decreased the cellular invasion of these cells; and several genes were altered when treating the cells with 40 µM UA and 10 µM UB. The expression of MMP2 was downregulated by UA (P < 0.001), and expression of MMP3 (UA P < 0.001 and UB P < 0.05) and MMP9 (P < 0.05, both) were downregulated by both urolithins. Moreover, UA significantly downregulated ROCK2 (P < 0.05), whereas UB treatment was associated with RAC1 downregulation (P < 0.05). Finally, the matrix adhesion receptors and signaling (co)receptors SDC1 and ITGAV were downregulated upon treatment with either UA or UB (P < 0.01 and P < 0.05, respectively in both cases). Regarding the effects of urolithins on 3D models, we have seen that they significantly decrease the viability of endometriosis spheroids (80 µM UA and UB: P < 0.05 both) as well as affecting their area (40 µM UA: P < 0.05, and 80 µM UA: P < 0.01) and integrity (40 µM UA and UB: P < 0.05, 80 µM UA and UB: P < 0.01). On the other hand, UA and UB significantly inhibited organoid development/outgrowth (40 and 80 µM UA: P < 0.0001 both; 40 µM UB: P < ns-0.05-0.001, and 80 µM UB: P < 0.01-0.001-0.001), and all organoid lines show urolithins sensitivity resulting in decreasing viability (UA exhibited a mean IC50 of 33.93 µM, while UB exhibited a mean IC50 of 52.60 µM). LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This study was performed on in vitro endometriosis models. WIDER IMPLICATIONS OF THE FINDINGS These in vitro results provide new insights into the pathogenetic pathways affected by these compounds and mark their use as a potential new therapeutic strategy for the treatment of endometriosis. STUDY FUNDING/COMPETING INTEREST(S) This study was funded EU MSCA-RISE-2015 project MOMENDO (691058). The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Barbara Mc Cormack
- Instituto de Biología y Medicina Experimental (IBYME)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - N Maenhoudt
- Laboratory of Tissue Plasticity in Health and Disease, Stem Cell and Developmental Biology Cluster, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - V Fincke
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - A Stejskalova
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - B Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - L Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - G F Meresman
- Instituto de Biología y Medicina Experimental (IBYME)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - H Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Stem Cell and Developmental Biology Cluster, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - M Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - R I Barañao
- Instituto de Biología y Medicina Experimental (IBYME)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
23
|
Nadanaka S, Bai Y, Kitagawa H. Cleavage of Syndecan-1 Promotes the Proliferation of the Basal-Like Breast Cancer Cell Line BT-549 Via Akt SUMOylation. Front Cell Dev Biol 2021; 9:659428. [PMID: 34113616 PMCID: PMC8185021 DOI: 10.3389/fcell.2021.659428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Basal-like breast cancer is characterized by an aggressive clinical outcome and presence of metastasis, for which effective therapies are unavailable. We have previously shown that chondroitin 4-O-sulfotransferase-1 (C4ST-1) controls the invasive properties of the basal-like breast cancer cell line BT-549 by inducing matrix metalloproteinase (MMP) expression through the N-cadherin/β-catenin pathway. Here we report that C4ST-1 controls the proliferation of BT-549 cells via the MMP-dependent cleavage of syndecan-1. Syndecan-1 is a membrane-bound proteoglycan associated with an aggressive phenotype and poor prognosis in breast cancer. In addition, the cleavage of syndecan-1 at a specific juxtamembrane cleavage site is implicated in the pathophysiological response in breast cancer. Knockout of C4ST-1 remarkably suppressed both the cleavage of syndecan-1 and proliferation of BT-549 cells. Kinases (AKT1, ERK1/2, PI3K, and STAT3) comprising cancer proliferative pathways are phosphorylated in C4ST-1 knockout cells at a level similar to that in parental BT-549 cells, whereas levels of phosphorylated S6 kinase and SUMOylated AKT (hyperactivated AKT observed in breast cancer) decreased in C4ST-1 knockout cells. An MMP inhibitor, GM6001, suppressed the small ubiquitin-like modifier (SUMO) modification of AKT, suggesting that cleavage of syndecan-1 by MMPs is involved in the SUMO modification of AKT. Forced expression of the cytoplasmic domain of syndecan-1, which is generated by MMP-dependent cleavage, increased the SUMO modification of AKT and global protein SUMOylation. Furthermore, syndecan-1 C-terminal domain-expressing BT-549 cells were more proliferative and sensitive to a potent SUMOylation inhibitor, tannic acid, compared with BT-549 cells transfected with an empty expression vector. These findings assign new functions to the C-terminal fragment of syndecan-1 generated by MMP-dependent proteolysis, thereby broadening our understanding of their physiological importance and implying that the therapeutic inhibition of syndecan-1 cleavage could affect the progression of basal-like breast cancer.
Collapse
Affiliation(s)
- Satomi Nadanaka
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Yaqiang Bai
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
24
|
Nassar E, Hassan N, El-Ghonaimy EA, Hassan H, Abdullah MS, Rottke TV, Kiesel L, Greve B, Ibrahim SA, Götte M. Syndecan-1 Promotes Angiogenesis in Triple-Negative Breast Cancer through the Prognostically Relevant Tissue Factor Pathway and Additional Angiogenic Routes. Cancers (Basel) 2021; 13:cancers13102318. [PMID: 34066023 PMCID: PMC8150756 DOI: 10.3390/cancers13102318] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Triple-negative breast cancer is an aggressive subtype of breast cancer characterized by tumor angiogenesis and poor patient survival. Here, we analyzed the function of the cell surface molecule Syndecan-1 in tumor angiogenesis in a 3D cell culture system. As a novel finding, we demonstrate that downregulation of Syndecan-1 reduces angiogenesis by decreasing the amount of angiogenesis factors of the tissue factor pathway. Furthermore, we show that the components of this pathway are associated with the prognosis of breast cancer patients. Our study identifies Syndecan-1 and the tissue factor pathway as novel potential therapeutic targets in the aggressive triple-negative subtype of breast cancer, for which no targeted therapies are currently available. Abstract Triple-negative breast cancer (TNBC) is characterized by increased angiogenesis, metastasis, and poor survival. Dysregulation of the cell surface heparan sulfate proteoglycan and signaling co-receptor Syndecan-1 is linked to poor prognosis. To study its role in angiogenesis, we silenced Syndecan-1 in TNBC cell lines using a 3D human umbilical vein endothelial cell (HUVEC) co-culture system. Syndecan-1 siRNA depletion in SUM-149, MDA-MB-468, and MDA-MB-231 cells decreased HUVEC tubule network formation. Angiogenesis array revealed reduced VEGF-A and tissue factor (TF) in the Syndecan-1-silenced secretome. qPCR independently confirmed altered expression of F3, F7, F2R/PAR1, F2RL1/PAR2, VEGF-A, EDN1, IGFBP1, and IGFBP2 in SUM-149, MDA-MB-231, and MDA-MB-468 cells. ELISA revealed reduced secreted endothelin-1 (SUM-149, MDA-MB-468) and TF (all cell lines) upon Syndecan-1 depletion, while TF pathway inhibitor treatment impaired angiogenesis. Survival analysis of 3951 patients demonstrated that high expression of F3 and F7 are associated with better relapse-free survival, whereas poor survival was observed in TNBC and p53 mutant basal breast cancer (F3) and in ER-negative and HER2-positive breast cancer (F2R, F2RL1). STRING protein network analysis revealed associations of Syndecan-1 with VEGF-A and IGFBP1, further associated with the TF and ET-1 pathways. Our study suggests that TNBC Syndecan-1 regulates angiogenesis via the TF and additional angiogenic pathways and marks its constituents as novel prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Eyyad Nassar
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
| | - Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, 12613 Giza, Egypt;
| | - Eslam A. El-Ghonaimy
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
- Department of Zoology, Faculty of Science, Cairo University, 12613 Giza, Egypt;
| | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, 12613 Giza, Egypt;
| | - Mahmoud Salah Abdullah
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, 12613 Giza, Egypt;
| | - Theresa V. Rottke
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
| | - Burkhard Greve
- Department of Radiotherapy and Radiooncology, University Hospital Münster, 48149 Münster, Germany;
| | - Sherif Abdelaziz Ibrahim
- Department of Zoology, Faculty of Science, Cairo University, 12613 Giza, Egypt;
- Correspondence: (S.A.I.); (M.G.)
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
- Correspondence: (S.A.I.); (M.G.)
| |
Collapse
|
25
|
Syndecan-1 (CD138), Carcinomas and EMT. Int J Mol Sci 2021; 22:ijms22084227. [PMID: 33921767 PMCID: PMC8072910 DOI: 10.3390/ijms22084227] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Cell surface proteoglycans are known to be important regulators of many aspects of cell behavior. The principal family of transmembrane proteoglycans is the syndecans, of which there are four in mammals. Syndecan-1 is mostly restricted to epithelia, and bears heparan sulfate chains that are capable of interacting with a large array of polypeptides, including extracellular matrix components and potent mediators of proliferation, adhesion and migration. For this reason, it has been studied extensively with respect to carcinomas and tumor progression. Frequently, but not always, syndecan-1 levels decrease as tumor grade, stage and invasiveness and dedifferentiation increase. This parallels experiments that show depletion of syndecan-1 can be accompanied by loss of cadherin-mediated adhesion. However, in some tumors, levels of syndecan-1 increase, but the characterization of its distribution is relevant. There can be loss of membrane staining, but acquisition of cytoplasmic and/or nuclear staining that is abnormal. Moreover, the appearance of syndecan-1 in the tumor stroma, either associated with its cellular component or the collagenous matrix, is nearly always a sign of poor prognosis. Given its relevance to myeloma progression, syndecan-1-directed antibody—toxin conjugates are being tested in clinical and preclinical trials, and may have future relevance to some carcinomas.
Collapse
|
26
|
Betriu N, Bertran-Mas J, Andreeva A, Semino CE. Syndecans and Pancreatic Ductal Adenocarcinoma. Biomolecules 2021; 11:biom11030349. [PMID: 33669066 PMCID: PMC7996579 DOI: 10.3390/biom11030349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a fatal disease with poor prognosis because patients rarely express symptoms in initial stages, which prevents early detection and diagnosis. Syndecans, a subfamily of proteoglycans, are involved in many physiological processes including cell proliferation, adhesion, and migration. Syndecans are physiologically found in many cell types and their interactions with other macromolecules enhance many pathways. In particular, extracellular matrix components, growth factors, and integrins collect the majority of syndecans associations acting as biochemical, physical, and mechanical transducers. Syndecans are transmembrane glycoproteins, but occasionally their extracellular domain can be released from the cell surface by the action of matrix metalloproteinases, converting them into soluble molecules that are capable of binding distant molecules such as extracellular matrix (ECM) components, growth factor receptors, and integrins from other cells. In this review, we explore the role of syndecans in tumorigenesis as well as their potential as therapeutic targets. Finally, this work reviews the contribution of syndecan-1 and syndecan-2 in PDAC progression and illustrates its potential to be targeted in future treatments for this devastating disease.
Collapse
|
27
|
Clegg J, Koch MK, Thompson EW, Haupt LM, Kalita-de Croft P, Bray LJ. Three-Dimensional Models as a New Frontier for Studying the Role of Proteoglycans in the Normal and Malignant Breast Microenvironment. Front Cell Dev Biol 2020; 8:569454. [PMID: 33163489 PMCID: PMC7581852 DOI: 10.3389/fcell.2020.569454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/15/2020] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) provides cues to direct mammogenesis, tumourigenesis and metastatic processes. Over the past several decades, two-dimensional (2D) culture models have been invaluable in furthering our understanding of the tumor microenvironment (TME), however, they still do not accurately emulate the associated biological complexities. In contrast, three-dimensional (3D) culture models provide a more physiologically relevant platform to study relevant physicochemical signals, stromal-epithelial cell interactions, vascular and immune components, and cell-ECM interactions in the human breast microenvironment. A common thread that may weave these multiple interactions are the proteoglycans (PGs), a prominent family of molecules in breast tissue. This review will discuss how these PGs contribute to the breast cancer TME and provide a summary of the traditional and emerging technologies that have been utilized to better understand the role of PGs during malignant transformation. Furthermore, this review will emphasize the differences that PGs exhibit between normal tissues and tumor ECM, providing a rationale for the investigation of underexplored roles of PGs in breast cancer progression using state-of-the-art 3D culture models.
Collapse
Affiliation(s)
- Julien Clegg
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Maria K Koch
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Larisa M Haupt
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Centre for Genomics and Personalized Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Priyakshi Kalita-de Croft
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Herston, QLD, Australia
| | - Laura J Bray
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,Faculty of Science and Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
28
|
Teixeira FCOB, Vijaya Kumar A, Kumar Katakam S, Cocola C, Pelucchi P, Graf M, Kiesel L, Reinbold R, Pavão MSG, Greve B, Götte M. The Heparan Sulfate Sulfotransferases HS2ST1 and HS3ST2 Are Novel Regulators of Breast Cancer Stem-Cell Properties. Front Cell Dev Biol 2020; 8:559554. [PMID: 33102470 PMCID: PMC7546021 DOI: 10.3389/fcell.2020.559554] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Heparan sulfate (HS) is a glycosaminoglycan found mainly in its protein-conjugated form at the cell surface and the extracellular matrix. Its high sulfation degree mediates functional interactions with positively charged amino acids in proteins. 2-O sulfation of iduronic acid and 3-O sulfation of glucosamine in HS are mediated by the sulfotransferases HS2ST and HS3ST, respectively, which are dysregulated in several cancers. Both sulfotransferases regulate breast cancer cell viability and invasion, but their role in cancer stem cells (CSCs) is unknown. Breast CSCs express characteristic markers such as CD44+/CD24−/low, CD133 and ALDH1 and are involved in tumor initiation, formation, and recurrence. We studied the influence of HS2ST1 and HS3ST2 overexpression on the CSC phenotype in breast cancer cell lines representative of the triple-negative (MDA-MB-231) and hormone-receptor positive subtype (MCF-7). The CD44+/CD24−/low phenotype was significantly reduced in MDA-MB-231 cells after overexpression of both enzymes, remaining unaltered in MCF-7 cells. ALDH1 activity was increased after HS2ST1 and HS3ST2 overexpression in MDA-MB-231 cells and reduced after HS2ST1 overexpression in MCF-7 cells. Colony and spheroid formation were increased after HS2ST1 and HS3ST2 overexpression in MCF-7 cells. Moreover, MDA-MB-231 cells overexpressing HS2ST1 formed more colonies and could not generate spheres. The phenotypic changes were associated with complex changes in the expression of the stemness-associated notch and Wnt-signaling pathways constituents, syndecans, heparanase and Sulf1. The results improve our understanding of breast CSC function and mark a subtype-specific impact of HS modifications on the CSC phenotype of triple-negative and hormone receptor positive breast cancer model cell lines.
Collapse
Affiliation(s)
- Felipe C O B Teixeira
- Instituto de Bioquímica Médica Leopoldo de Meis, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Archana Vijaya Kumar
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Sampath Kumar Katakam
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Cinzia Cocola
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy
| | - Paride Pelucchi
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy
| | - Monika Graf
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Rolland Reinbold
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy
| | - Mauro S G Pavão
- Instituto de Bioquímica Médica Leopoldo de Meis, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Burkhard Greve
- Department of Radiotherapy and Radiooncology, University Hospital of Münster, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| |
Collapse
|
29
|
Heparan Sulfate Proteoglycans Biosynthesis and Post Synthesis Mechanisms Combine Few Enzymes and Few Core Proteins to Generate Extensive Structural and Functional Diversity. Molecules 2020; 25:molecules25184215. [PMID: 32937952 PMCID: PMC7570499 DOI: 10.3390/molecules25184215] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Glycosylation is a common and widespread post-translational modification that affects a large majority of proteins. Of these, a small minority, about 20, are specifically modified by the addition of heparan sulfate, a linear polysaccharide from the glycosaminoglycan family. The resulting molecules, heparan sulfate proteoglycans, nevertheless play a fundamental role in most biological functions by interacting with a myriad of proteins. This large functional repertoire stems from the ubiquitous presence of these molecules within the tissue and a tremendous structural variety of the heparan sulfate chains, generated through both biosynthesis and post synthesis mechanisms. The present review focusses on how proteoglycans are “gagosylated” and acquire structural complexity through the concerted action of Golgi-localized biosynthesis enzymes and extracellular modifying enzymes. It examines, in particular, the possibility that these enzymes form complexes of different modes of organization, leading to the synthesis of various oligosaccharide sequences.
Collapse
|
30
|
Heparan Sulfate Proteoglycan Signaling in Tumor Microenvironment. Int J Mol Sci 2020; 21:ijms21186588. [PMID: 32916872 PMCID: PMC7554799 DOI: 10.3390/ijms21186588] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
In the last few decades, heparan sulfate (HS) proteoglycans (HSPGs) have been an intriguing subject of study for their complex structural characteristics, their finely regulated biosynthetic machinery, and the wide range of functions they perform in living organisms from development to adulthood. From these studies, key roles of HSPGs in tumor initiation and progression have emerged, so that they are currently being explored as potential biomarkers and therapeutic targets for cancers. The multifaceted nature of HSPG structure/activity translates in their capacity to act either as inhibitors or promoters of tumor growth and invasion depending on the tumor type. Deregulation of HSPGs resulting in malignancy may be due to either their abnormal expression levels or changes in their structure and functions as a result of the altered activity of their biosynthetic or remodeling enzymes. Indeed, in the tumor microenvironment, HSPGs undergo structural alterations, through the shedding of proteoglycan ectodomain from the cell surface or the fragmentation and/or desulfation of HS chains, affecting HSPG function with significant impact on the molecular interactions between cancer cells and their microenvironment, and tumor cell behavior. Here, we overview the structural and functional features of HSPGs and their signaling in the tumor environment which contributes to tumorigenesis and cancer progression.
Collapse
|
31
|
Proteoglycans in the Pathogenesis of Hormone-Dependent Cancers: Mediators and Effectors. Cancers (Basel) 2020; 12:cancers12092401. [PMID: 32847060 PMCID: PMC7563227 DOI: 10.3390/cancers12092401] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Hormone-dependent cancers exhibit high morbidity and mortality. In spite of advances in therapy, the treatment of hormone-dependent cancers remains an unmet health need. The tumor microenvironment (TME) exhibits unique characteristics that differ among various tumor types. It is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded and supported by components of the extracellular matrix (ECM). Therefore, the interactions among cancer cells, stromal cells, and components of the ECM determine cancer progression and response to therapy. Proteoglycans (PGs), hybrid molecules consisting of a protein core to which sulfated glycosaminoglycan chains are bound, are significant components of the ECM that are implicated in all phases of tumorigenesis. These molecules, secreted by both the stroma and cancer cells, are crucial signaling mediators that modulate the vital cellular pathways implicated in gene expression, phenotypic versatility, and response to therapy in specific tumor types. A plethora of deregulated signaling pathways contributes to the growth, dissemination, and angiogenesis of hormone-dependent cancers. Specific inputs from the endocrine and immune systems are some of the characteristics of hormone-dependent cancer pathogenesis. Importantly, the mechanisms involved in various aspects of cancer progression are executed in the ECM niche of the TME, and the PG components crucially mediate these processes. Here, we comprehensively discuss the mechanisms through which PGs affect the multifaceted aspects of hormone-dependent cancer development and progression, including cancer metastasis, angiogenesis, immunobiology, autophagy, and response to therapy.
Collapse
|
32
|
Teixeira FCOB, Götte M. Involvement of Syndecan-1 and Heparanase in Cancer and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:97-135. [PMID: 32274708 DOI: 10.1007/978-3-030-34521-1_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cell surface heparan sulfate proteoglycan Syndecan-1 acts as an important co-receptor for receptor tyrosine kinases and chemokine receptors, and as an adhesion receptor for structural glycoproteins of the extracellular matrix. It serves as a substrate for heparanase, an endo-β-glucuronidase that degrades specific domains of heparan sulfate carbohydrate chains and thereby alters the functional status of the proteoglycan and of Syndecan-1-bound ligands. Syndecan-1 and heparanase show multiple levels of functional interactions, resulting in mutual regulation of their expression, processing, and activity. These interactions are of particular relevance in the context of inflammation and malignant disease. Studies in animal models have revealed a mechanistic role of Syndecan-1 and heparanase in the regulation of contact allergies, kidney inflammation, multiple sclerosis, inflammatory bowel disease, and inflammation-associated tumorigenesis. Moreover, functional interactions between Syndecan-1 and heparanase modulate virtually all steps of tumor progression as defined in the Hallmarks of Cancer. Due to their prognostic value in cancer, and their mechanistic involvement in tumor progression, Syndecan-1 and heparanase have emerged as important drug targets. Data in preclinical models and preclinical phase I/II studies have already yielded promising results that provide a translational perspective.
Collapse
Affiliation(s)
- Felipe C O B Teixeira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
33
|
Vijaya Kumar A, Brézillon S, Untereiner V, Sockalingum GD, Kumar Katakam S, Mohamed HT, Kemper B, Greve B, Mohr B, Ibrahim SA, Goycoolea FM, Kiesel L, Pavão MSG, Motta JM, Götte M. HS2ST1-dependent signaling pathways determine breast cancer cell viability, matrix interactions, and invasive behavior. Cancer Sci 2020; 111:2907-2922. [PMID: 32573871 PMCID: PMC7419026 DOI: 10.1111/cas.14539] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) act as signaling co‐receptors by interaction of their sulfated glycosaminoglycan chains with numerous signaling molecules. In breast cancer, the function of heparan sulfate 2‐O‐sulfotransferase (HS2ST1), the enzyme mediating 2‐O‐sulfation of HS, is largely unknown. Hence, a comparative study on the functional consequences of HS2ST1 overexpression and siRNA knockdown was performed in the breast cancer cell lines MCF‐7 and MDA‐MB‐231. HS2ST1 overexpression inhibited Matrigel invasion, while its knockdown reversed the phenotype. Likewise, cell motility and adhesion to fibronectin and laminin were affected by altered HS2ST1 expression. Phosphokinase array screening revealed a general decrease in signaling via multiple pathways. Fluorescent ligand binding studies revealed altered binding of fibroblast growth factor 2 (FGF‐2) to HS2ST1‐expressing cells compared with control cells. HS2ST1‐overexpressing cells showed reduced MAPK signaling responses to FGF‐2, and altered expression of epidermal growth factor receptor (EGFR), E‐cadherin, Wnt‐7a, and Tcf4. The increased viability of HS2ST1‐depleted cells was reduced to control levels by pharmacological MAPK pathway inhibition. Moreover, MAPK inhibitors generated a phenocopy of the HS2ST1‐dependent delay in scratch wound repair. In conclusion, HS2ST1 modulation of breast cancer cell invasiveness is a compound effect of altered E‐cadherin and EGFR expression, leading to altered signaling via MAPK and additional pathways.
Collapse
Affiliation(s)
- Archana Vijaya Kumar
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Stéphane Brézillon
- CNRS, MEDyC UMR 7369, UFR de Médecine, Université de Reims Champagne-Ardenne, Reims, France
| | | | | | - Sampath Kumar Katakam
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Hossam Taha Mohamed
- CNRS, MEDyC UMR 7369, UFR de Médecine, Université de Reims Champagne-Ardenne, Reims, France.,Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.,Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Björn Kemper
- Biomedical Technology Center of the Medical Faculty, University of Münster, Münster, Germany
| | - Burkhard Greve
- Department of Radiotherapy - Radiooncology, University Hospital Münster, Münster, Germany
| | - Benedikt Mohr
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | | | | | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Mauro S G Pavão
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana M Motta
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| |
Collapse
|
34
|
Characteristic molecular signature of pericardial effusion identifies malignant cancer in pericardial disorder patients. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Zhao B, Xu Y, Zhao Y, Shen S, Sun Q. Identification of Potential Key Genes Associated With the Pathogenesis, Metastasis, and Prognosis of Triple-Negative Breast Cancer on the Basis of Integrated Bioinformatics Analysis. Front Oncol 2020; 10:856. [PMID: 32596149 PMCID: PMC7304260 DOI: 10.3389/fonc.2020.00856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: Breast cancer is the most common solid tumor affecting women and the second leading cause of cancer-related death worldwide, and triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer. We aimed to identify potential TNBC-specific therapeutic targets by performing an integrative analysis on previously published TNBC transcriptome microarray data. Methods: Differentially expressed genes (DEGs) between TNBC and normal breast tissues were screened using six Gene Expression Omnibus (GEO) datasets, and DEGs between metastatic TNBC and non-metastatic TNBC were screened using one GEO dataset. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were performed on the overlapping DEGs. The Cancer Genome Atlas (TCGA) TNBC data were used to identify candidate genes that were strongly associated with survival. Expression of the candidate genes in TNBC cell lines was blocked or augmented using a lentivirus system, and transwell assays were used to determine their effect on TNBC migration. Results: Eight upregulated genes and nine downregulated genes were found to be differentially expressed both between TNBC and normal breast tissues and between metastatic TNBC and non-metastatic TNBC. Among them, S100P and SDC1 were identified as poor prognostic genes. Furthermore, compared with control cells, SDC1-overexpressing TNBC cells showed enhanced migration ability, whereas SDC1 knockdown markedly reduced the migration of TNBC cells. Conclusion: Our study determined that S100P and SDC1 may be potential treatment targets as well as prognostic biomarkers of TNBC.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yali Xu
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yang Zhao
- Department of Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Songjie Shen
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
36
|
Niedworok C, Kempkensteffen C, Eisenhardt A, Tschirdewahn S, Rehme C, Panic A, Reis H, Baba H, Nyirády P, Hadaschik B, Kovalszky I, Szarvas T. Serum and tissue syndecan-1 levels in renal cell carcinoma. Transl Androl Urol 2020; 9:1167-1176. [PMID: 32676400 PMCID: PMC7354293 DOI: 10.21037/tau-19-787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background The proteoglycan syndecan-1 is involved in cell proliferation, adhesion and angiogenesis. It was shown to be involved in cancer progression in different tumor entities. So far, the role of syndecan-1 in renal cell carcinoma (RCC), one of the most common diseases in urologic oncology, was little described. Purpose of the present study was to obtain serum concentrations and tissue expression levels of syndecan-1 in a cohort of patients diagnosed with RCC. Methods Clinical and follow-up data were obtained from 413 RCC patients. SDC1 levels were determined in serum samples of 100 patients by enzyme-linked immunosorbent assay and tissue SDC1 expression was measured by immunohistochemistry (IHC) in 343 cases. Results were correlated with clinicopathological and follow-up data. Results Five and ten years overall and cancer specific survival were 67% and 56% [overall survival (OS)] and 79% and 76% [cancer-specific survival (CSS)]. In female patients and locally advanced disease (≥T3), tissue SDC1 expression was decreased (female 85.6% vs. male 71.1% low tissue SDC1 expression, P=0.0153 and ≤T2 70.0% vs. ≥T3 87.2% low tissue SDC1 expression, P=0.0055) compared to male patients and organ confined disease. Locally advanced tumor stage, presence of lymph node or distant metastases, high Fuhrman grading and clear cell carcinoma as histopathological subtype were independent prognostic factors for reduced CSS and OS. There was no impact of serum SDC1 (sSDC1) serum concentration or SDC1 tissue protein expression on OS, CSS or recurrence free survival (RFS) in uni- or multivariable analysis. Conclusions sSDC1 concentration or SDC1 tissue protein expression levels had no influence on patients' prognosis in the present cohort of patients diagnosed with RCC.
Collapse
Affiliation(s)
- Christian Niedworok
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Urology, Hermann-Josef-Krankenhaus Erkelenz, Erkelenz, Germany
| | | | - Andreas Eisenhardt
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stephan Tschirdewahn
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christian Rehme
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andrej Panic
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Henning Reis
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hideo Baba
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter Nyirády
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Boris Hadaschik
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ilona Kovalszky
- 1st Institute of Pathology, Semmelweis University, Budapest, Hungary
| | - Tibor Szarvas
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Urology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
37
|
Yu C, Peall IW, Pham SH, Okolicsanyi RK, Griffiths LR, Haupt LM. Syndecan-1 Facilitates the Human Mesenchymal Stem Cell Osteo-Adipogenic Balance. Int J Mol Sci 2020; 21:ijms21113884. [PMID: 32485953 PMCID: PMC7312587 DOI: 10.3390/ijms21113884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
Bone marrow-derived human mesenchymal stems cells (hMSCs) are precursors to adipocyte and osteoblast lineage cells. Dysregulation of the osteo-adipogenic balance has been implicated in pathological conditions involving bone loss. Heparan sulfate proteoglycans (HSPGs) such as cell membrane-bound syndecans (SDCs) and glypicans (GPCs) mediate hMSC lineage differentiation and with syndecan-1 (SDC-1) reported in both adipogenesis and osteogenesis, these macromolecules are potential regulators of the osteo-adipogenic balance. Here, we disrupted the HSPG profile in primary hMSC cultures via temporal knockdown (KD) of SDC-1 using RNA interference (RNAi) in undifferentiated, osteogenic and adipogenic differentiated hMSCs. SDC-1 KD cultures were examined for osteogenic and adipogenic lineage markers along with changes in HSPG profile and common signalling pathways implicated in hMSC lineage fate. Undifferentiated hMSC SDC-1 KD cultures exhibited a pro-adipogenic phenotype with subsequent osteogenic differentiation demonstrating enhanced maturation of osteoblasts. In cultures where SDC-1 KD was performed following initiation of differentiation, increased adipogenic gene and protein marker expression along with increased Oil Red O staining identified enhanced adipogenesis, with impaired osteogenesis also observed in these cultures. These findings implicate SDC-1 as a facilitator of the hMSC osteo-adipogenic balance during early induction of lineage differentiation.
Collapse
|
38
|
Tatsumi Y, Miyake M, Shimada K, Fujii T, Hori S, Morizawa Y, Nakai Y, Anai S, Tanaka N, Konishi N, Fujimoto K. Inhibition of Heparanase Expression Results in Suppression of Invasion, Migration and Adhesion Abilities of Bladder Cancer Cells. Int J Mol Sci 2020; 21:ijms21113789. [PMID: 32471161 PMCID: PMC7313018 DOI: 10.3390/ijms21113789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 01/15/2023] Open
Abstract
Heparan sulfate proteoglycan syndecan-1, CD138, is known to be associated with cell proliferation, adhesion, and migration in malignancies. We previously reported that syndecan-1 (CD138) may contribute to urothelial carcinoma cell survival and progression. We investigated the role of heparanase, an enzyme activated by syndecan-1 in human urothelial carcinoma. Using human urothelial cancer cell lines, MGH-U3 and T24, heparanase expression was reduced with siRNA and RK-682, a heparanase inhibitor, to examine changes in cell proliferation activity, induction of apoptosis, invasion ability of cells, and its relationship to autophagy. A bladder cancer development mouse model was treated with RK-682 and the bladder tissues were examined using immunohistochemical analysis for Ki-67, E-cadherin, LC3, and CD31 expressions. Heparanase inhibition suppressed cellular growth by approximately 40% and induced apoptosis. The heparanase inhibitor decreased cell activity in a concentration-dependent manner and suppressed invasion ability by 40%. Inhibition of heparanase was found to suppress autophagy. In N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced bladder cancer mice, treatment with heparanase inhibitor suppressed the progression of cancer by 40%, compared to controls. Immunohistochemistry analysis showed that heparanase inhibitor suppressed cell growth, and autophagy. In conclusion, heparanase suppresses apoptosis and promotes invasion and autophagy in urothelial cancer.
Collapse
Affiliation(s)
- Yoshihiro Tatsumi
- Department of Urology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (Y.T.); (M.M.); (S.H.); (Y.M.); (Y.N.); (S.A.); (N.T.)
- Department of Pathology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (K.S.); (T.F.); (N.K.)
| | - Makito Miyake
- Department of Urology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (Y.T.); (M.M.); (S.H.); (Y.M.); (Y.N.); (S.A.); (N.T.)
| | - Keiji Shimada
- Department of Pathology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (K.S.); (T.F.); (N.K.)
| | - Tomomi Fujii
- Department of Pathology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (K.S.); (T.F.); (N.K.)
| | - Shunta Hori
- Department of Urology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (Y.T.); (M.M.); (S.H.); (Y.M.); (Y.N.); (S.A.); (N.T.)
| | - Yosuke Morizawa
- Department of Urology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (Y.T.); (M.M.); (S.H.); (Y.M.); (Y.N.); (S.A.); (N.T.)
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (Y.T.); (M.M.); (S.H.); (Y.M.); (Y.N.); (S.A.); (N.T.)
| | - Satoshi Anai
- Department of Urology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (Y.T.); (M.M.); (S.H.); (Y.M.); (Y.N.); (S.A.); (N.T.)
| | - Nobumichi Tanaka
- Department of Urology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (Y.T.); (M.M.); (S.H.); (Y.M.); (Y.N.); (S.A.); (N.T.)
| | - Noboru Konishi
- Department of Pathology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (K.S.); (T.F.); (N.K.)
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (Y.T.); (M.M.); (S.H.); (Y.M.); (Y.N.); (S.A.); (N.T.)
- Correspondence: ; Tel.: +81-744-22-3051 (ext. 2338)
| |
Collapse
|
39
|
Kumar Katakam S, Tria V, Sim WC, Yip GW, Molgora S, Karnavas T, Elghonaimy EA, Pelucchi P, Piscitelli E, Ibrahim SA, Zucchi I, Reinbold R, Greve B, Götte M. The heparan sulfate proteoglycan syndecan-1 regulates colon cancer stem cell function via a focal adhesion kinase-Wnt signaling axis. FEBS J 2020; 288:486-506. [PMID: 32367652 DOI: 10.1111/febs.15356] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 12/21/2022]
Abstract
In colon cancer, downregulation of the transmembrane heparan sulfate proteoglycan syndecan-1 (Sdc-1) is associated with increased invasiveness, metastasis, and dedifferentiation. As Sdc-1 modulates signaling pathways relevant to stem cell function, we tested the hypothesis that it may regulate a tumor-initiating cell phenotype. Sdc-1 small-interfering RNA knockdown in the human colon cancer cell lines Caco2 and HT-29 resulted in an increased side population (SP), enhanced aldehyde dehydrogenase 1 activity, and higher expression of CD133, LGR5, EPCAM, NANOG, SRY (sex-determining region Y)-box 2, KLF2, and TCF4/TCF7L2. Sdc-1 knockdown enhanced sphere formation, cell viability, Matrigel invasiveness, and epithelial-to-mesenchymal transition-related gene expression. Sdc-1-depleted HT-29 xenograft growth was increased compared to controls. Decreased Sdc-1 expression was associated with an increased activation of β1-integrins, focal adhesion kinase (FAK), and wingless-type (Wnt) signaling. Pharmacological FAK and Wnt inhibition blocked the enhanced stem cell phenotype and invasive growth. Sequential flow cytometric SP enrichment substantially enhanced the stem cell phenotype of Sdc-1-depleted cells, which showed increased resistance to doxorubicin chemotherapy and irradiation. In conclusion, Sdc-1 depletion cooperatively enhances activation of integrins and FAK, which then generates signals for increased invasiveness and cancer stem cell properties. Our findings may provide a novel concept to target a stemness-associated signaling axis as a therapeutic strategy to reduce metastatic spread and cancer recurrence. DATABASES: The GEO accession number of the Affymetrix transcriptomic screening is GSE58751.
Collapse
Affiliation(s)
| | - Valeria Tria
- Istituto di Technologie Biomediche Consiglio Nazionale dell Ricerche, ITB-CNR, Segrate-Milano, Italy
| | - Wey-Cheng Sim
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - George W Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stefano Molgora
- Istituto di Technologie Biomediche Consiglio Nazionale dell Ricerche, ITB-CNR, Segrate-Milano, Italy
| | - Theodoros Karnavas
- Chromatin Dynamics Unit, Vita Salute San Raffaele University and Research Institute, Milan, Italy.,Department of Neurosurgery, NYU Langone Medical Center, New York, NY, USA
| | - Eslam A Elghonaimy
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Paride Pelucchi
- Istituto di Technologie Biomediche Consiglio Nazionale dell Ricerche, ITB-CNR, Segrate-Milano, Italy
| | - Eleonora Piscitelli
- Istituto di Technologie Biomediche Consiglio Nazionale dell Ricerche, ITB-CNR, Segrate-Milano, Italy
| | | | - Ileana Zucchi
- Istituto di Technologie Biomediche Consiglio Nazionale dell Ricerche, ITB-CNR, Segrate-Milano, Italy
| | - Rolland Reinbold
- Istituto di Technologie Biomediche Consiglio Nazionale dell Ricerche, ITB-CNR, Segrate-Milano, Italy
| | - Burkhard Greve
- Department of Radiotherapy - Radiooncology, University Hospital Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| |
Collapse
|
40
|
Alhamdow A, Tinnerberg H, Lindh C, Albin M, Broberg K. Cancer-related proteins in serum are altered in workers occupationally exposed to polycyclic aromatic hydrocarbons: a cross-sectional study. Carcinogenesis 2020; 40:771-781. [PMID: 30753342 PMCID: PMC6612054 DOI: 10.1093/carcin/bgz022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/04/2019] [Accepted: 02/07/2019] [Indexed: 01/06/2023] Open
Abstract
Exposure to some polycyclic aromatic hydrocarbons (PAH) increases the risk of cancer and is common particularly for workers in occupations such as chimney sweeping. In exposed workers, screening of early cancer-related markers provides important information to identify individuals at risk. Here, we aimed to elucidate the associations between PAH exposure and serum levels of cancer-related proteins in 118 chimney sweeps and 126 occupationally unexposed controls, all non-smoking males from Sweden. Monoydroxylated metabolites of pyrene, phenanthrene, benzo[a]pyrene and benzo[a]anthracene were measured in urine using liquid chromatography coupled to tandem mass spectrometry and 90 cancer-related proteins were measured in serum using a proximity extension assay. Linear regression analysis adjusted for age and body mass index, and false discovery rate (FDR) identified 17 serum proteins that were differentially expressed (16 upregulated and 1 downregulated) in chimney sweeps compared with controls (FDR < 0.05). Concentrations of the peptidase kallikrein 13 (KLK13) showed significant positive associations with urinary concentrations of the PAH metabolites 3-hydroxybenzo[a]pyrene (3-OH-BaP) [B, 95% confidence interval (CI): 0.042, 0.008–0.076] and 3-hydroxybenzo[a]anthracene (3-OH-BaA) (B, 95% CI: 0.068, 0.002–0.134). Moreover, dose–response relationships were observed between KLK13 and 3-OH-BaP (trend test P = 0.027) and 3-OH-BaA (P = 0.035). Pathway and gene ontology analyses showed that cell movement, cell adhesion and cell migration were the predominant molecular functions associated with the top differentially expressed proteins. In conclusion, we found a number of putative cancer-related proteins differentially expressed in workers exposed to PAH. This warrants effective measure to reduce PAH exposure among workers as well as further investigation to confirm these findings.
Collapse
Affiliation(s)
- Ayman Alhamdow
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Tinnerberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Maria Albin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Centre for Occupational and Environmental Medicine (CAMM), Stockholm County Council, Stockholm, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
41
|
Mavrogonatou E, Pratsinis H, Kletsas D. The role of senescence in cancer development. Semin Cancer Biol 2020; 62:182-191. [DOI: 10.1016/j.semcancer.2019.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
|
42
|
Goligorsky MS. The Cell “Coat of Many Colors”. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:728-731. [DOI: 10.1016/j.ajpath.2020.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 02/08/2023]
|
43
|
Greeley ET, Rochelson B, Krantz DA, Xue X, Carmichael JB, Ashour S, Woo S, Augustine S, Metz CN. Evaluation of Syndecan-1 as a Novel Biomarker for Adverse Pregnancy Outcomes. Reprod Sci 2020; 27:355-363. [DOI: 10.1007/s43032-019-00032-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/09/2019] [Indexed: 10/25/2022]
|
44
|
Liao S, Liu C, Zhu G, Wang K, Yang Y, Wang C. Relationship between SDC1 and cadherin signalling activation in cancer. Pathol Res Pract 2019; 216:152756. [PMID: 31810587 DOI: 10.1016/j.prp.2019.152756] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/31/2019] [Accepted: 11/17/2019] [Indexed: 12/17/2022]
Abstract
E-cadherin and SDC1 are markers of epithelial-to-mesenchymal transition (EMT) that can be used to assess tumour prognosis. SDC1 has different effects in various types of cancers. On the one hand, reduced expression of SDC1 can leads to advantage stages of some cancers, such as gastric and colorectal cancer. On the other hand, SDC1 overexpression can also promote the growth and proliferation of cancer cells in pancreatic and breast cancer. However, the function of SDC1 is influenced and regulated by many factors. Exfoliated extracellular domain HS chain can mediate the function of SDC1 and play an important role in the occurrence and development of cancer. SDC1 binds to various ligands and influences the growth and reproduction of cancer cells via the activation of Wnt, the long isoform of FLICE-inhibitory protein (FLIP long), vascular endothelial growth factor receptor (VEGFR), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and MAPK/c-Jun N-terminal kinase (JNK) and other pathways. Cadherins occur in several types, but this review focuses on classical cadherins. N-cadherin and P-cadherin are activated during tumour development, whereas E-cadherin is a tumour suppressor. The cellular signalling pathways involved in classical cadherins, such as Wnt and VEGFR pathways, are also related to SDC1. The activation of E-cadherin caused by SDC1 knockdown has also been observed. Despite this evidence, no articles regarding the relationship of SDC1 and cadherin activation have been published. This review summarises the expressions of these two molecules in different cancers and analyses their possible relationship to provide insights into future cancer research and clinical treatment.
Collapse
Affiliation(s)
- Shiyao Liao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Chang Liu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China; Clinical Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Guiying Zhu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Kai Wang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Ying Yang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Changmiao Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
45
|
Miftode RS, Şerban IL, Timpau AS, Miftode IL, Ion A, Buburuz AM, Costache AD, Costache II. Syndecan-1: A Review on Its Role in Heart Failure and Chronic Liver Disease Patients' Assessment. Cardiol Res Pract 2019; 2019:4750580. [PMID: 31815014 PMCID: PMC6878788 DOI: 10.1155/2019/4750580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/18/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
The close connection and interaction between the cardiac and the liver functions are well-known, as cirrhotic cardiomyopathy is an important clinical entity which best describes the mutual pathogenical influence between these two organs. Due to the fact that cardiac dysfunction in patients with chronic hepatic disorders is oligosymptomatic or even asymptomatic, an early diagnosis represents a challenge for every physician. Syndecan-1-a transmembrane proteoglycan that exerts its functions mainly via its heparane sulfate chains-is a very promising biomarker, correlated not only with the degree of cardiac fibrosis but also with the severity of liver fibrosis. Many studies highlighted its role in the development of cardiac fibrosis or atherogenesis, being significantly correlated with the activity of angiotensin II. Multiple evidence revealed that syndecan-1 is also associated with tissue injury and may regulate inflammatory and regenerative responses, being considered a protective molecule that limits the inflammation and reduces cardiac remodelling and dysfunction after a myocardial infarction. Syndecan-1 may also be used as a reliable biomarker for the noninvasive assessment of liver fibrosis. Under various fibrogenetic conditions, shedding of syndecan's extracellular domain took place, becoming a soluble form that binds different growth factors and inhibits further fibrosis. This complex molecule is also involved in the lipid metabolism, by altering the clearance of cholesterol particles, and in chronic hepatitis, by enhancing the viral invasion of hepatocytes. Due to the growing interest in this biomarker, multiple studies aimed at revealing syndecan-1's potential benefits in the diagnosis and prognosis assessment in patients with heart failure or chronic liver disorders. In this review, we review the mechanisms by which syndecan-1 exerts its effects and the possible perspectives opened by its use as a dual cardio-hepatic biomarker.
Collapse
Affiliation(s)
- Radu-Stefan Miftode
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, Iasi 700115, Romania
| | - Ionela-Lăcrămioara Şerban
- Department of Morpho-Functional Sciences (II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, Iasi 700115, Romania
| | - Amalia-Stefana Timpau
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, Iasi 700115, Romania
| | - Ionela-Larisa Miftode
- Department of Infectious Diseases, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, Iasi 700115, Romania
| | - Adriana Ion
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, Iasi 700115, Romania
| | - Ana-Maria Buburuz
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, Iasi 700115, Romania
| | - Alexandru-Dan Costache
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, Iasi 700115, Romania
| | - Irina-Iuliana Costache
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, Iasi 700115, Romania
| |
Collapse
|
46
|
Kind S, Jaretzke A, Büscheck F, Möller K, Dum D, Höflmayer D, Hinsch A, Weidemann S, Fraune C, Möller-Koop C, Hube-Magg C, Simon R, Wilczak W, Lebok P, Witzel I, Müller V, Schmalfeldt B, Paluchowski P, Wilke C, Heilenkötter U, von Leffern I, Krech T, Krech RH, von der Assen A, Bawahab AA, Burandt E. A shift from membranous and stromal syndecan-1 (CD138) expression to cytoplasmic CD138 expression is associated with poor prognosis in breast cancer. Mol Carcinog 2019; 58:2306-2315. [PMID: 31545001 DOI: 10.1002/mc.23119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022]
Abstract
Syndecan-1 (CD138) is a transmembrane proteoglycan expressed in normal and malignant tissues. It is of interest because of a possible prognostic effect in tumors and as a target for Indatuximab, a monoclonal antibody coupled to a cytotoxic agent. To assess the prognostic role of CD138 expression in breast cancer (BCa), a tissue microarray containing 1535 BCa specimens was analyzed by immunohistochemistry. Cytoplasmic, membranous, and stromal CD138 staining was separately analyzed. In normal breast tissue, CD138 staining was limited to epithelial cell membranes. In cancers, membranous staining tended to become weaker or even disappeared (38.3% of cancers with absence of membranous staining) but cytoplasmic and stromal staining newly appeared in 29.7% and 58.1% of cancers. Loss of membranous epithelial CD138 staining as well as presence of cytoplasmic and stromal CD138 positivity were-to a variable degree-associated with high pT, high grade, nodal metastasis, estrogen receptor-negative, progesterone receptor-negative, human epidermal growth factor receptor 2+, and poor overall patient survival. A combined analysis of epithelial and stromal CD138 expression revealed a link to overall patient survival (P < .0001) with best prognosis for patients with stromal positivity and absence of cytoplasmic staining, the worst prognosis for cancers with cytoplasmic staining and stromal negativity and intermediate prognosis for patients having either cytoplasmic staining or stromal negativity. In multivariate analyses, CD138 was not independent of established prognostic features. In summary, these data reveal a compartment depending prognostic effect of CD138 expression in BCa with cytoplasmic positivity being linked to aggressive cancer and stromal CD138 being linked to a more favorable prognosis.
Collapse
Affiliation(s)
- Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Jaretzke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabell Witzel
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barbara Schmalfeldt
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Paluchowski
- Department of Gynecology, Regio Clinic Pinneberg, Pinneberg, Germany
| | - Christian Wilke
- Department of Gynecology, Regio Clinic Elmshorn, Elmshorn, Germany
| | - Uwe Heilenkötter
- Department of Gynecology, Clinical Centre Itzehoe, Itzehoe, Germany
| | - Ingo von Leffern
- Department of Gynecology, Albertinen Clinic Schnelsen, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, Clinical Centre Osnabrück, Osnabrück, Germany
| | - Rainer H Krech
- Institute of Pathology, Clinical Centre Osnabrück, Osnabrück, Germany
| | | | | | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
47
|
Liu ZY, Tian MY, Deng L, Wang YS, Xing R, Liu H, Fu R. The potential diagnostic power of CD138+ microparticles from the plasma analysis for multiple myeloma clinical monitoring. Hematol Oncol 2019; 37:401-408. [PMID: 31291481 DOI: 10.1002/hon.2648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022]
Abstract
Multiple myeloma (MM) is malignant tumor with abnormal proliferation of bone marrow plasma cells. The existing clinical tools used to determine treatment response and tumor relapse are limited in sensitivity. We investigated the CD138+ microparticles (MPs) of MM patients to find out whether MPs could provide a novel means to monitor the malignant cells in MM patients. Our study showed that the levels of MPs were significantly elevated in MM patients. The MP counts in peripheral blood from new diagnosed MM patients were significantly higher than patients in CR and HD. Consist with the total MPs, the number of the PC-derived MPs (CD138+) increased in BM from MM patients compared with CR and HD. The ratio of the PC-derived MPs (CD138+) in BM increased in MM patients compared with CR and HD. The correlation test revealed that the CD138+ MPs in BM and PB were all positively correlated with the plasmacyte ratio in bone marrow (BMPC) and the β2 -MG. New diagnosed MM patients and controls were compared, and ROC curves were used to identify cutoff points with optimal sensitivity and specificity concerning the ratios and counts of CD138+ MPs in BM and PB. The AUC of the CD138+ MP counts in BM was 0.767, and in PB was 0.680. The AUC of the CD138+ MP ratios in BM was 0.714, and in PB was 0.666. According to this, the counts of CD138+ MPs in BM showed to be a powerful marker of diagnosis. We demonstrated that CD138+ MPs from the plasma provide support for a potential monitoring biomarker of MM.
Collapse
|
48
|
Role of cell surface proteoglycans in cancer immunotherapy. Semin Cancer Biol 2019; 62:48-67. [PMID: 31336150 DOI: 10.1016/j.semcancer.2019.07.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 12/23/2022]
Abstract
Over the past few decades, understanding how tumor cells evade the immune system and their communication with their tumor microenvironment, has been the subject of intense investigation, with the aim of developing new cancer immunotherapies. The current therapies against cancer such as monoclonal antibodies against checkpoint inhibitors, adoptive T-cell transfer, cytokines, vaccines, and oncolytic viruses have managed to improve the clinical outcome of the patients. However, in some tumor entities, the response is limited and could benefit from the identification of novel therapeutic targets. It is known that tumor-extracellular matrix interplay and matrix remodeling are necessary for anti-tumor and pro-tumoral immune responses. Proteoglycans are dominant components of the extracellular matrix and are a highly heterogeneous group of proteins characterized by the covalent attachment of a specific linear carbohydrate chain of the glycosaminoglycan type. At cell surfaces, these molecules modulate the expression and activity of cytokines, chemokines, growth factors, adhesion molecules, and function as signaling co-receptors. By these mechanisms, proteoglycans influence the behavior of cancer cells and their microenvironment during the progression of solid tumors and hematopoietic malignancies. In this review, we discuss why cell surface proteoglycans are attractive pharmacological targets in cancer, and we present current and recent developments in cancer immunology and immunotherapy utilizing proteoglycan-targeted strategies.
Collapse
|
49
|
Zandonadi FS, Castañeda Santa Cruz E, Korvala J. New SDC function prediction based on protein-protein interaction using bioinformatics tools. Comput Biol Chem 2019; 83:107087. [PMID: 31351242 DOI: 10.1016/j.compbiolchem.2019.107087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/13/2019] [Accepted: 06/23/2019] [Indexed: 12/11/2022]
Abstract
The precise roles for SDC have been complex to specify. Assigning and reanalyzing protein and peptide identification to novel protein functions is one of the most important challenges in postgenomic era. Here, we provide SDC molecular description to support, contextualize and reanalyze the corresponding protein-protein interaction (PPI). From SDC-1 data mining, we discuss the potential of bioinformatics tools to predict new biological rules of SDC. Using these methods, we have assembled new possibilities for SDC biology from PPI data, once, the understanding of biology complexity cannot be capture from one simple question.
Collapse
Affiliation(s)
- Flávia S Zandonadi
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Departamento de Química Analítica, Universidade de Campinas, UNICAMP, Campinas, SP, Brazil.
| | - Elisa Castañeda Santa Cruz
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Departamento de Química Analítica, Universidade de Campinas, UNICAMP, Campinas, SP, Brazil
| | - Johanna Korvala
- Cancer and Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
50
|
Fleurot E, Goudin C, Hanoux V, Bonnamy PJ, Levallet J. Estrogen receptor α regulates the expression of syndecan-1 in human breast carcinoma cells. Endocr Relat Cancer 2019; 26:615-628. [PMID: 30978702 DOI: 10.1530/erc-18-0285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/11/2019] [Indexed: 01/27/2023]
Abstract
Breast cancer (BC) is the primary cause of cancer-related mortality among women. Patients who express the estrogen receptor (ER), which mediates the tumorigenic effects of estrogens, respond to antihormonal therapy. Loss of ER expression or acquired resistance to E2 is associated with aggressive malignant phenotypes, which lead to relapse. These BC subtypes overexpress syndecan-1 (SDC1), a transmembrane heparan sulfate proteoglycan that mediates angiogenesis as well as the proliferation and invasiveness of cancer cells. We showed here that the activation of ER-alpha (ERα) by estrogens induces downregulation of SDC1 expression in ER(+) MCF7 cells but not in T47D cells. Loss of ERα expression, induced by RNA interference or a selective ER downregulator, led to subsequent SDC1 overexpression. E2-dependent downregulation of SDC1 expression required de novo protein synthesis and was antagonized by treatment with BAY 11-7085, an irreversible inhibitor of IκBα phosphorylation, which inhibits the activation of NFκB. Downregulation of SDC1 expression required ERα and activation of IKK, but was independent to downstream transcriptional regulators of NFκB. BAY 11-7085 prevented E2-mediated phosphorylation of ERα on Ser118, increasing its proteasomal degradation, suggesting that IKK stabilized E2-activated ERα, leading to subsequent downregulation of SDC1 expression. Our results showed that sustained ER signaling inhibits SDC1 expression. Such antagonism elucidates the inverse correlation between SDC1 and ER expression in ER(+) BC as well as the overexpression of SDC1 in hormone receptor-negative BC subtypes with the most aggressive phenotypes. These results identify SDC1 as an attractive therapeutic target for BC as well as for other endocrine-associated cancers.
Collapse
Affiliation(s)
| | | | | | | | - Jérôme Levallet
- Normandie Univ, UNICAEN, OERECA, Caen, France
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| |
Collapse
|