1
|
Wang J, Liang Q, Zhao Q, Tang Q, Ahmed AF, Zhang Y, Kang W. The effect of microbial composition and proteomic on improvement of functional constipation by Chrysanthemum morifolium polysaccharide. Food Chem Toxicol 2021; 153:112305. [PMID: 34033886 DOI: 10.1016/j.fct.2021.112305] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
In this paper, SD rat constipation model was established with loperamide hydrochloride to study the effect of Chrysanthemum morifolium polysaccharide on the improvement of functional constipation, and the mechanism of improving constipation was investigated with the proteomics and intestinal flora. The results showed that the HD group of C. morifolium polysaccharide could significantly increase the levels of water content of stool pellets, small intestine propulsion rate, gastrin (MTL), gastrin (GAS) and substance P (SP), decrease the level of growth inhibitor (SS) and improved gastrointestinal motility in rats. Gut microbial studies showed that C. morifolium polysaccharide could significantly increase species abundance and flora diversity and improve flora structure. The relative abundance of Lactobacillus and Romboutsia increased, while the relative abundance of Lachnospiraceae_NK4A136_group and Roseburia decreased compared with the MC group. Proteomics studies suggested that C. morifolium polysaccharides could reduce intestinal lesions, enhance intestinal homeostasis, increase amino acid uptake, promote intestinal motility and relieve constipation by regulating the expression of RAS, FABP1 and SLC1A5 proteins.
Collapse
Affiliation(s)
- Jinmei Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Functional Food Engineering Technology Research Center, Kaifeng, 475004, China
| | - Qiongxin Liang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Functional Food Engineering Technology Research Center, Kaifeng, 475004, China
| | - Qingchun Zhao
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
| | - Qi Tang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
| | - Adel F Ahmed
- Medicinal and Aromatic Plants Researches Department, Horticulture Research Institute, Agricultural Research Center, Giza, 71625, Egypt.
| | - Yan Zhang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Shijiazhuang, 050227, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, 050227, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Functional Food Engineering Technology Research Center, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 2021; 85:69-94. [PMID: 34175443 DOI: 10.1016/j.semcancer.2021.06.019] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Razin T, Melamed-Book N, Argaman J, Galin I, Lowy Y, Anuka E, Naftali-Shani N, Kandel-Kfir M, Garfinkel BP, Brielle S, Granot Z, Apte RN, Conway SJ, Molkentin JD, Kamari Y, Leor J, Orly J. Interleukin-1α dependent survival of cardiac fibroblasts is associated with StAR/STARD1 expression and improved cardiac remodeling and function after myocardial infarction. J Mol Cell Cardiol 2021; 155:125-137. [PMID: 33130150 PMCID: PMC11492233 DOI: 10.1016/j.yjmcc.2020.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 12/19/2022]
Abstract
AIMS One unaddressed aspect of healing after myocardial infarction (MI) is how non-myocyte cells that survived the ischemic injury, keep withstanding additional cellular damage by stress forms typically arising during the post-infarction inflammation. Here we aimed to determine if cell survival is conferred by expression of a mitochondrial protein novel to the cardiac proteome, known as steroidogenic acute regulatory protein, (StAR/STARD1). Further studies aimed to unravel the regulation and role of the non-steroidogenic cardiac StAR after MI. METHODS AND RESULTS Following permanent ligation of the left anterior descending coronary artery in mouse heart, timeline western blot analyses showed that StAR expression corresponds to the inflammatory response to MI. Following the identification of StAR in mitochondria of cardiac fibroblasts in culture, confocal microscopy immunohistochemistry (IHC) identified StAR expression in left ventricular (LV) activated interstitial fibroblasts, adventitial fibroblasts and endothelial cells. Further work with the primary fibroblasts model revealed that interleukin-1α (IL-1α) signaling via NF-κB and p38 MAPK pathways efficiently upregulates the expression of the Star gene products. At the functional level, IL-1α primed fibroblasts were protected against apoptosis when exposed to cisplatin mimicry of in vivo apoptotic stress; yet, the protective impact of IL-1α was lost upon siRNA mediated StAR downregulation. At the physiological level, StAR expression was nullified during post-MI inflammation in a mouse model with global IL-1α deficiency, concomitantly resulting in a 4-fold elevation of apoptotic fibroblasts. Serial echocardiography and IHC studies of mice examined 24 days after MI revealed aggravation of LV dysfunction, LV dilatation, anterior wall thinning and adverse tissue remodeling when compared with loxP control hearts. CONCLUSIONS This study calls attention to overlooked aspects of cellular responses evolved under the stress conditions associated with the default inflammatory response to MI. Our observations suggest that LV IL-1α is cardioprotective, and at least one mechanism of this action is mediated by induction of StAR expression in border zone fibroblasts, which renders them apoptosis resistant. This acquired survival feature also has long-term ramifications on the heart recovery by diminishing adverse remodeling and improving the heart function after MI.
Collapse
Affiliation(s)
- Talya Razin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Naomi Melamed-Book
- Bio-Imaging Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Jasmin Argaman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Iris Galin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Yosef Lowy
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Eli Anuka
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Nili Naftali-Shani
- Neufeld Cardiac Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Tamman Cardiovascular Research Institute, and Sheba Center of Regenerative Medicine, Stem Cells and Tissue Engineering, Sheba Medical Center, Tel-Hashomer, Israel.
| | - Michal Kandel-Kfir
- Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel, Sackler Faculty of Medicine, Tel-Aviv University, Israel. Michal.KandelKfir-@sheba.health.gov.il
| | - Benjamin P Garfinkel
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Shlomi Brielle
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, 91120 Jerusalem, Israel.
| | - Ron N Apte
- Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University, Beer-Sheva, Israel.
| | - Simon J Conway
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, IN 46202, United States.
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH, United States.
| | - Yehuda Kamari
- Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel, Sackler Faculty of Medicine, Tel-Aviv University, Israel.
| | - Jonathan Leor
- Neufeld Cardiac Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Tamman Cardiovascular Research Institute, and Sheba Center of Regenerative Medicine, Stem Cells and Tissue Engineering, Sheba Medical Center, Tel-Hashomer, Israel.
| | - Joseph Orly
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
4
|
Li S, Liu Y, Li J, Zhao X, Yu D. Mechanisms of Ferroptosis and Application to Head and Neck Squamous Cell Carcinoma Treatments. DNA Cell Biol 2021; 40:720-732. [PMID: 33979530 DOI: 10.1089/dna.2021.0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Many kinds of cancer cells are intrinsically sensitive to ferroptosis, and research interest regarding ferroptosis has been sparked by its significant role in many detrimental diseases. Ferroptosis is a novel type of iron-dependent cell death mediated by accumulation of reactive oxygen species and lipid peroxidation. Furthermore, a large number of small agents can induce ferroptosis in numerous kinds of cancer cells, including prostate cancer, pancreatic cancer, breast cancer, lymphomas, and renal cancer. These insights may help discover novel approaches for cancer therapeutic strategies; however, there is considerable uncertainty regarding ferroptosis in head and neck cancer (HNC). So far, no review of the current studies on this topic has been published. Therefore, we here elaborate the mechanisms of ferroptosis and summarize the latest findings regarding its role in HNC according to current literature. The respective findings shed light on the role of ferroptosis in HNC treatment with a number of important implications for future practice in HNC management, as outlined in this review.
Collapse
Affiliation(s)
- Shuang Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Yan Liu
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Jinqiu Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xue Zhao
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Dan Yu
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
5
|
Yang Z, Wei X, Pan Y, Min Z, Xu J, Yu B. Colon cancer combined with obesity indicates improved survival- research on relevant mechanism. Aging (Albany NY) 2020; 12:23778-23794. [PMID: 33197880 PMCID: PMC7762486 DOI: 10.18632/aging.103972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
Obesity contributes to the incidence of various tumors, including colon cancer. However, the impact of obesity on patients’ survival and related mechanisms remains unclear. Multi-omics data of 227 cases of colon cancer patients combined with clinical characteristics data were acquired from The Cancer Genome Atlas (TCGA) database. We confirmed obesity as an independent prognostic factor for improved overall survival of colon cancer patients. We demonstrated that hypoxia pathways were repressed in obese patients by regulating miR-210. Immune checkpoints PD-1 and LAG3 were also downregulated in obese patients, which indicated enhanced immune surveillance. The frequency of PIK3CA and KRAS mutations was decreased in obese patients. The sites and types of TP53 mutation were alternated in obesity patients. In conclusion, our research demonstrated the potential mechanisms of prolonged survival in colon cancer patients combined with obesity, which may provide potential value for improving the prognosis of colon cancer.
Collapse
Affiliation(s)
- Zhou Yang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Xiyi Wei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu, China
| | - Yitong Pan
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211116, China
| | - Zhijun Min
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Jingyuan Xu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.,Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Bo Yu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.,Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai 201399, China
| |
Collapse
|
6
|
Fujiwara-Tani R, Fujii K, Mori S, Kishi S, Sasaki T, Ohmori H, Nakashima C, Kawahara I, Nishiguchi Y, Mori T, Sho M, Kondoh M, Luo Y, Kuniyasu H. Role of Clostridium perfringens Enterotoxin on YAP Activation in Colonic Sessile Serrated Adenoma/ Polyps with Dysplasia. Int J Mol Sci 2020; 21:ijms21113840. [PMID: 32481659 PMCID: PMC7313056 DOI: 10.3390/ijms21113840] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Sessile serrated adenoma/polyp with dysplasia (SSA/P-D) is an SSA/P with cellular dysplasia and has a higher risk of progressing to colon carcinogenesis. Previously, we reported that tight junction impairment by Clostridiumperfringens enterotoxin (CPE) leads to activation of the transcriptional co-activator yes-associated protein (YAP) in oral squamous cell carcinoma. Here, we investigated whether CPE activates YAP to promote the malignant progression of SSA/P. E-cadherin expression was lower in the 12 cases with SSA/P-D examined than that in normal mucosa, SSA/P, or tubular adenoma (TA). Furthermore, intracellular translocation of claudin-4 (CLDN4) and nuclear translocation of YAP were observed. The CPE gene was detected in DNA extracted from SSA/P-D lesions, but not in SSA/P or TA. Treatment of the rat intestinal epithelial cell line IEC6 with low-dose CPE resulted in intracellular translocation of CLDN4 to the cytoplasmic membrane. Cytoplasmic CLDN4 showed co-precipitation with transcriptional co-activator with PDZ-binding motif, zonula occludens (ZO)-1, large tumor suppressor, and mammalian Ste20-like. Additionally, YAP co-precipitated with ZO-2 under CPE treatment led to decreased YAP phosphorylation and nuclear translocation. YAP activation promoted increase in nuclear TEA domain family member level, expression of cyclin D1, snail, vimentin, CD44, NS and decrease in E-cadherin levels, thereby inducing stemness and epithelial-mesenchymal-transition (EMT). The Hippo complex with the incorporation of CLDN4 increased stability. Upon low-dose CPE treatment, HT29 cells with BRAFV600E gene mutation showed increased growth, enhanced invasive potential, stemness, and induced EMT phenotype, whereas HCT116 cells, which carry KRASG13D gene mutation, did not show such changes. In an examination of 10 colorectal cancers, an increase in EMT and stemness was observed in CPE (+) and BRAF mutation (+) cases. These findings suggest that C.perfringens might enhance the malignant transformation of SSA/P-D via YAP activation. Our findings further highlight the importance of controlling intestinal flora using probiotics or antibiotics.
Collapse
Affiliation(s)
- Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Takuya Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan;
| | - Masuo Kondoh
- Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, 6-1 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Yi Luo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China
- Correspondence: (Y.L.); (H.K.); Tel.: +86-0513-8505-1805 (Y.L.); +81-744-22-3051 (H.K.); Fax: +81-744-25-7308 (H.K.)
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
- Correspondence: (Y.L.); (H.K.); Tel.: +86-0513-8505-1805 (Y.L.); +81-744-22-3051 (H.K.); Fax: +81-744-25-7308 (H.K.)
| |
Collapse
|
7
|
Mori T, Ohmori H, Luo Y, Mori S, Miyagawa Y, Nukaga S, Goto K, Fujiwara-Tani R, Kishi S, Sasaki T, Fujii K, Kawahara I, Kuniyasu H. Giving combined medium-chain fatty acids and glucose protects against cancer-associated skeletal muscle atrophy. Cancer Sci 2019; 110:3391-3399. [PMID: 31432554 PMCID: PMC6778650 DOI: 10.1111/cas.14170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle volume is associated with prognosis of cancer patients. Maintenance of skeletal muscle is an essential concern in cancer treatment. In nutritional intervention, it is important to focus on differences in metabolism between tumor and skeletal muscle. We examined the influence of oral intake of glucose (0%, 10%, 50%) and 2% medium‐chain fatty acid (lauric acid, LAA, C12:0) on tumor growth and skeletal muscle atrophy in mouse peritoneal metastasis models using CT26 mouse colon cancer cells and HT29 human colon cancer cells. After 2 weeks of experimental breeding, skeletal muscle and tumor were removed and analyzed. Glucose intake contributed to prevention of skeletal muscle atrophy in a sugar concentration‐dependent way and also promoted tumor growth. LAA ingestion elevated the level of skeletal muscle protein and suppressed tumor growth by inducing tumor‐selective oxidative stress production. When a combination of glucose and LAA was ingested, skeletal muscle mass increased and tumor growth was suppressed. Our results confirmed that although glucose is an important nutrient for the prevention of skeletal muscle atrophy, it may also foster tumor growth. However, the ingestion of LAA inhibited tumor growth, and its combination with glucose promoted skeletal muscle integrity and function, without stimulating tumor growth. These findings suggest novel strategies for the prevention of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Takuya Mori
- Department of Molecular Pathology, Nara Medical University, Nara, Japan.,Division of Rehabilitation, Hanna Central Hospital, Nara, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University, Nara, Japan.,Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, China
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Yoshihiro Miyagawa
- Department of Molecular Pathology, Nara Medical University, Nara, Japan.,Division of Rehabilitation, Hanna Central Hospital, Nara, Japan
| | - Shota Nukaga
- Department of Molecular Pathology, Nara Medical University, Nara, Japan.,Division of Rehabilitation, Hanna Central Hospital, Nara, Japan
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University, Nara, Japan.,Division of Rehabilitation, Hoshida Minami Hospital, Osaka, Japan
| | | | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, Nara, Japan.,Division of Rehabilitation, Hanna Central Hospital, Nara, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| |
Collapse
|
8
|
Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 2019; 567:118-122. [PMID: 30760928 PMCID: PMC6405297 DOI: 10.1038/s41586-019-0945-5] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/14/2019] [Indexed: 12/16/2022]
Abstract
Cholesterol is essential for cells to grow and proliferate. Normal mammalian cells meet their need for cholesterol through its uptake or de novo synthesis1, but the extent to which cancer cells rely on each of these pathways remains poorly understood. Here, using a competitive proliferation assay on a pooled collection of DNA-barcoded cell lines, we identify a subset of cancer cells that is auxotrophic for cholesterol and thus highly dependent on its uptake. Through metabolic gene expression analysis, we pinpoint the loss of squalene monooxygenase expression as a cause of cholesterol auxotrophy, particularly in ALK+ anaplastic large cell lymphoma (ALCL) cell lines and primary tumours. Squalene monooxygenase catalyses the oxidation of squalene to 2,3-oxidosqualene in the cholesterol synthesis pathway and its loss results in accumulation of the upstream metabolite squalene, which is normally undetectable. In ALK+ ALCLs, squalene alters the cellular lipid profile and protects cancer cells from ferroptotic cell death, providing a growth advantage under conditions of oxidative stress and in tumour xenografts. Finally, a CRISPR-based genetic screen identified cholesterol uptake by the low-density lipoprotein receptor as essential for the growth of ALCL cells in culture and as patient-derived xenografts. This work reveals that the cholesterol auxotrophy of ALCLs is a targetable liability and, more broadly, that systematic approaches can be used to identify nutrient dependencies unique to individual cancer types.
Collapse
|
9
|
Martín‐Sánchez P, Luengo A, Griera M, Orea MJ, López‐Olañeta M, Chiloeches A, Lara‐Pezzi E, Frutos S, Rodríguez–Puyol M, Calleros L, Rodríguez–Puyol D. H‐
ras
deletion protects against angiotensin II–induced arterial hypertension and cardiac remodeling through protein kinase G‐Iβ pathway activation. FASEB J 2018; 32:920-934. [DOI: 10.1096/fj.201700134rrrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Paloma Martín‐Sánchez
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | - Alicia Luengo
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | - Mercedes Griera
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | | | - Marina López‐Olañeta
- Myocardial Pathophysiology AreaCentro Nacional de Investigaciones CardiovascularesMadridSpain
| | | | - Enrique Lara‐Pezzi
- Myocardial Pathophysiology AreaCentro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Sergio Frutos
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | - Manuel Rodríguez–Puyol
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | - Laura Calleros
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | - Diego Rodríguez–Puyol
- Department of MedicineUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
- Nephrology SectionResearch Unit FoundationHospital Universitario Príncipe de AsturiasAlcalá de HenaresMadridSpain
| |
Collapse
|
10
|
Lien GS, Lin CH, Yang YL, Wu MS, Chen BC. Ghrelin induces colon cancer cell proliferation through the GHS-R, Ras, PI3K, Akt, and mTOR signaling pathways. Eur J Pharmacol 2016; 776:124-31. [PMID: 26879868 DOI: 10.1016/j.ejphar.2016.02.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/16/2022]
Abstract
Colon cancer is the third most common malignancy worldwide. Recently, some interesting associations between ghrelin and cancer were reported, and it may participate in colon cancer development. In the present report, we explored the role of the growth hormone secretagogue receptor (GHS-R), Ras, phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR) pathways in the ghrelin-induced proliferation of human colon cancer cells. Ghrelin-caused HT-29 proliferation was reduced by [D-Lys3]-GHRP-6 (a GHS-R inhibitor). We also found that a dominant negative mutant of Ras (Ras DN), a PI3K inhibitor (LY 294002), an Akt DN, and an mTOR inhibitor (rapamycin) attenuated ghrelin-caused colon cancer cell proliferation. We found that ghrelin induced time-dependent increases in Ras activity. Moreover, ghrelin-mediated Akt Ser473 phosphorylation was attenuated by a Ras DN and LY 294002. Furthermore, a Ras DN, LY 294002, and an Akt DN all inhibited ghrelin-caused mTOR Ser2448 phosphorylation. These results indicate that the Ras/PI3K/Akt/mTOR cascade plays a critical role in ghrelin-induced colon cancer cell proliferation.
Collapse
Affiliation(s)
- Gi-Shih Lien
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - You-Lan Yang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
11
|
Ma LI, Chang Y, Yu L, He W, Liu Y. Pro-apoptotic and anti-proliferative effects of mitofusin-2 via PI3K/Akt signaling in breast cancer cells. Oncol Lett 2015; 10:3816-3822. [PMID: 26788214 DOI: 10.3892/ol.2015.3748] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 08/05/2015] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial GTPase mitofusin-2 (Mfn2) gene is a novel gene characterized as a cell proliferation inhibitor. Mfn2 has previously been reported to play a role in regulating cell proliferation, apoptosis and differentiation in a number of cell types. However, there are no studies on the effect of Mfn2 in breast cancer. In this study, we aimed to elucidate the function and mechanism of Mfn2 in breast cancer. A plasmid encoding the complete Mfn2 open reading frame (pEGFP-Mfn2) was used to infect breast cancer cells. The effect of Mfn2 on proliferation was assessed by methyl thiazolyl tetrazolium and bromodeoxyuridine incorporation analyses. Flow cytometry, immunofluorescence and western blot analyses were used to test the effects of Mfn2 on cell cycle distribution and apoptosis. Additionally, the PI3K/Akt signaling pathway was analyzed after pEGFP-Mfn2 was transfected into MCF-7 cells. The results revealed that Mfn2 suppressed the proliferation of MCF-7 cells by regulating more cells at the G0/G1 phase and decreasing proliferating cell nuclear antigen and cyclin A expression. The results also demonstrated that the PI3K/Akt signaling pathway is involved in Mfn2-regulated proliferation and apoptosis. Taken together, this indicates that Mfn2 mediates MCF-7 cell proliferation and apoptosis via the PI3K/Akt signaling pathway. Mfn2 may thus be a significant therapeutic target in the treatment of breast cancer.
Collapse
Affiliation(s)
- L I Ma
- Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yuan Chang
- Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Long Yu
- Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Wenbo He
- Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yueping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
12
|
Hąc-Wydro K. Studies on β-sitosterol and ceramide-induced alterations in the properties of cholesterol/sphingomyelin/ganglioside monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2460-9. [DOI: 10.1016/j.bbamem.2013.06.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/23/2013] [Accepted: 06/26/2013] [Indexed: 12/20/2022]
|
13
|
Pennarun B, Kleibeuker JH, Boersma-van Ek W, Kruyt FAE, Hollema H, de Vries EGE, de Jong S. Targeting FLIP and Mcl-1 using a combination of aspirin and sorafenib sensitizes colon cancer cells to TRAIL. J Pathol 2013; 229:410-21. [PMID: 23132258 DOI: 10.1002/path.4138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/15/2012] [Accepted: 10/19/2012] [Indexed: 12/16/2022]
Abstract
The multikinase inhibitor sorafenib is highly effective against certain types of cancer in the clinic and prevents colon cancer cell proliferation in vitro. Non-steroidal anti-inflammatory drugs, such as acetylsalicylic acid (aspirin), have shown activity against colon cancer cells. The aims of this study were to determine whether the combination of aspirin with sorafenib has enhanced anti-proliferative effects and increases recombinant human tumour necrosis factor-related apoptosis-inducing ligand (rhTRAIL)-induced apoptosis in the human SW948, Lovo, Colo205, Colo320, Caco-2 and HCT116 colon cancer cell lines. In four cell lines, aspirin strongly stimulated the anti-proliferative effects of sorafenib (∼four-fold enhancement) by inducing cell cycle arrest. Furthermore, combining low doses of aspirin (≤ 5 mm) and sorafenib (≤ 2.5 µm) greatly sensitized TRAIL-sensitive and TRAIL-resistant colon cancer cells to rhTRAIL, much more potently than either drug combined with rhTRAIL. The increase in rhTRAIL sensitivity was due to inhibition of FLIP and Mcl-1 protein expression following aspirin and sorafenib co-treatment, as confirmed by knock-down studies. Next, the clinical relevance of targeting FLIP and Mcl-1 in colon cancer was examined. Using immunohistochemistry, we found that Mcl-1 expression was significantly increased in colon adenoma and carcinoma patient material compared to healthy colonic epithelium, similar to the enhanced FLIP expression we recently observed in colon cancer. These results underscore the potential of combining low doses of aspirin with sorafenib to inhibit proliferation and target the anti-apoptotic proteins FLIP and Mcl-1 in colon cancer cells.
Collapse
Affiliation(s)
- Bodvael Pennarun
- Department of Medical Oncology, University of Groningen, University Medical Centre Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
14
|
Lorenzato A, Martino C, Dani N, Oligschläger Y, Ferrero AM, Biglia N, Calogero R, Olivero M, Di Renzo MF. The cellular apoptosis susceptibility
CAS/CSE1L
gene protects ovarian cancer cells from death by suppressing RASSF1C. FASEB J 2012; 26:2446-56. [DOI: 10.1096/fj.11-195982] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Annalisa Lorenzato
- Department of Oncological SciencesUniversity of Torino School of MedicineTurin Italy
- Institute for Cancer Research at CandioloCandioloItaly
| | - Cosimo Martino
- Department of Oncological SciencesUniversity of Torino School of MedicineTurin Italy
- Institute for Cancer Research at CandioloCandioloItaly
| | - Nadia Dani
- Department of Oncological SciencesUniversity of Torino School of MedicineTurin Italy
- Institute for Cancer Research at CandioloCandioloItaly
| | - Yvonne Oligschläger
- Department of Oncological SciencesUniversity of Torino School of MedicineTurin Italy
- Institute for Cancer Research at CandioloCandioloItaly
| | - Anna Maria Ferrero
- Department of Obstetrics and GynaecologyAzienda Sanitaria Ospedaliera (ASO) Ordine MaurizianoTurinItaly
| | - Nicoletta Biglia
- Department of Obstetrics and GynaecologyAzienda Sanitaria Ospedaliera (ASO) Ordine MaurizianoTurinItaly
| | - Raffaele Calogero
- Genomics and Bioinformatics UnitDepartment of Clinical and Biological SciencesASO San Luigi GonzagaOrbassanoItaly
| | - Martina Olivero
- Department of Oncological SciencesUniversity of Torino School of MedicineTurin Italy
- Institute for Cancer Research at CandioloCandioloItaly
| | - Maria Flavia Di Renzo
- Department of Oncological SciencesUniversity of Torino School of MedicineTurin Italy
- Institute for Cancer Research at CandioloCandioloItaly
| |
Collapse
|
15
|
Castellano E, Downward J. RAS Interaction with PI3K: More Than Just Another Effector Pathway. Genes Cancer 2011; 2:261-74. [PMID: 21779497 DOI: 10.1177/1947601911408079] [Citation(s) in RCA: 519] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RAS PROTEINS ARE SMALL GTPASES KNOWN FOR THEIR INVOLVEMENT IN ONCOGENESIS: around 25% of human tumors present mutations in a member of this family. RAS operates in a complex signaling network with multiple activators and effectors, which allows them to regulate many cellular functions such as cell proliferation, differentiation, apoptosis, and senescence. Phosphatidylinositol 3-kinase (PI3K) is one of the main effector pathways of RAS, regulating cell growth, cell cycle entry, cell survival, cytoskeleton reorganization, and metabolism. However, it is the involvement of this pathway in human tumors that has attracted most attention. PI3K has proven to be necessary for RAS-induced transformation in vitro, and more importantly, mice with mutations in the PI3K catalytic subunit p110α that block its ability to interact with RAS are highly resistant to endogenous oncogenic KRAS-induced lung tumorigenesis and HRAS-induced skin carcinogenesis. These animals also have a delayed development of the lymphatic vasculature. Many PI3K inhibitors have been developed that are now in clinical trials. However, it is a complex pathway with many feedback loops, and interactions with other pathways make the results of its inhibition hard to predict. Combined therapy with another RAS-regulated pathway such as RAF/MEK/ERK may be the most effective way to treat cancer, at least in animal models mimicking the human disease. In this review, we will summarize current knowledge about how RAS regulates one of its best-known effectors, PI3K.
Collapse
Affiliation(s)
- Esther Castellano
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, UK
| | | |
Collapse
|
16
|
Lee JE, Baba Y, Ng K, Giovannucci E, Fuchs CS, Ogino S, Chan AT. Statin use and colorectal cancer risk according to molecular subtypes in two large prospective cohort studies. Cancer Prev Res (Phila) 2011; 4:1808-15. [PMID: 21680706 DOI: 10.1158/1940-6207.capr-11-0113] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Use of statins is hypothesized to reduce colorectal cancer risk but the evidence remains inconsistent. This may be partly explained by differential associations according to tumor location or molecular subtypes of colorectal cancer. We examined the association between statin use and colorectal cancer risk according to tumor location, KRAS mutation status, microsatellite instability (MSI) status, PTGS2 (COX-2) expression, or CpG island methylator phenotype (CIMP) status in two large prospective cohort studies, the Nurses' Health Study and Health Professionals Follow-up Study. We applied Cox regression to a competing risks analysis. We identified 1,818 colorectal cancers during 1990 to 2006. Compared with nonusers, current statin use was not associated with colorectal cancer [relative risk (RR) = 0.99, 95% CI = 0.86-1.14] or colon cancer (RR = 1.10, 95% CI = 0.94-1.29) but was inversely associated with rectal cancer (RR = 0.59, 95% CI = 0.41-0.84, P(heterogeneity) < 0.001). When we examined the association within strata of KRAS mutation status, we found no association with KRAS-mutated cancers (RR = 1.20, 95% CI = 0.87-1.67) but did observe a possible inverse association among KRAS wild-type cancers (RR = 0.80, 95% CI = 0.60-1.06, P(heterogeneity) = 0.06). The association did not substantially differ by PTGS2 expression, MSI status, or CIMP status. Current statin use was not associated with risk of overall colorectal cancer. The possibility that statin use may be associated with lower risk of rectal cancer or KRAS wild-type colorectal cancer requires further confirmation.
Collapse
Affiliation(s)
- Jung Eun Lee
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Alique M, Calleros L, Luengo A, Griera M, Iñiguez MÁ, Punzón C, Fresno M, Rodríguez-Puyol M, Rodríguez-Puyol D. Changes in extracellular matrix composition regulate cyclooxygenase-2 expression in human mesangial cells. Am J Physiol Cell Physiol 2011; 300:C907-18. [DOI: 10.1152/ajpcell.00176.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glomerular diseases are characterized by a sustained synthesis and accumulation of abnormal extracellular matrix proteins, such as collagen type I. The extracellular matrix transmits information to cells through interactions with membrane components, which directly activate many intracellular signaling events. Moreover, accumulating evidence suggests that eicosanoids derived from cyclooxygenase (COX)-2 participate in a number of pathological processes in immune-mediated renal diseases, and it is known that protein kinase B (AKT) may act through different transcription factors in the regulation of the COX-2 promoter. The present results show that progressive accumulation of collagen I in the extracellular medium induces a significant increase of COX-2 expression in human mesangial cells, resulting in an enhancement in PGE2 production. COX-2 overexpression is due to increased COX-2 mRNA levels. The study of the mechanism implicated in COX-2 upregulation by collagen I showed focal adhesion kinase (FAK) activation. Furthermore, we observed that the activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway by collagen I and collagen I-induced COX-2 overexpression was abolished by PI3K and AKT inhibitors. Additionally, we showed that the cAMP response element (CRE) transcription factor is implicated. Finally, we studied COX-2 expression in an animal model, NG-nitro-l-arginine methyl ester hypertensive rats. In renal tissue and vascular walls, COX-2 and collagen type I content were upregulated. In summary, our results provide evidence that collagen type I increases COX-2 expression via the FAK/PI3K/AKT/cAMP response element binding protein signaling pathway.
Collapse
Affiliation(s)
- Matilde Alique
- Departamento de Fisiología,
- Inststuto Reina Sofía de Investigación Nefrológica, and
| | - Laura Calleros
- Departamento de Fisiología,
- Inststuto Reina Sofía de Investigación Nefrológica, and
| | - Alicia Luengo
- Departamento de Fisiología,
- Inststuto Reina Sofía de Investigación Nefrológica, and
| | - Mercedes Griera
- Departamento de Fisiología,
- Inststuto Reina Sofía de Investigación Nefrológica, and
| | - Miguel Ángel Iñiguez
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior Investigaciones Científicas-Universidad Autónoma de Mardrid, Madrid, Spain
| | - Carmen Punzón
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior Investigaciones Científicas-Universidad Autónoma de Mardrid, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior Investigaciones Científicas-Universidad Autónoma de Mardrid, Madrid, Spain
| | | | - Diego Rodríguez-Puyol
- Inststuto Reina Sofía de Investigación Nefrológica, and
- Nephrology Section of the “Príncipe de Asturias Hospital,” Alcala University, Alcalá de Henares,
| |
Collapse
|
18
|
Panka DJ, Sullivan RJ, Mier JW. An inexpensive, specific and highly sensitive protocol to detect the BrafV600E mutation in melanoma tumor biopsies and blood. Melanoma Res 2011; 20:401-7. [PMID: 20679909 DOI: 10.1097/cmr.0b013e32833d8d48] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Braf(V600E) mutation has been detected in patients with metastatic melanoma, colon, thyroid and other cancers. Recent studies suggested that tumors with this mutation are especially sensitive to Braf inhibitors, hence the need to reliably determine the Braf status of tumor specimens. The present technologies used to screen for this mutation fail to address the problems associated with infiltrating stromal and immune cells bearing wild-type Braf alleles and thus may fail to detect the presence of mutant Braf(V600E) tumors. We have developed a rapid, inexpensive method that reduces the contamination of wild-type Braf sequences from tumor biopsies. The protocol involves a series of PCR amplifications and restriction digestions that take advantage of unique features of both wild type and mutant Braf RNA at position 600. Using this protocol, mutant Braf can be detected in RNA from mixed populations with as few as 0.1% Braf(V600E) mutant cells.
Collapse
Affiliation(s)
- David J Panka
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
19
|
Malek A, Catapano CV, Czubayko F, Aigner A. A sensitive polymerase chain reaction-based method for detection and quantification of metastasis in human xenograft mouse models. Clin Exp Metastasis 2010; 27:261-71. [PMID: 20364399 DOI: 10.1007/s10585-010-9324-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 03/18/2010] [Indexed: 12/16/2022]
Abstract
Tumor cell dissemination to distant organs accounts for the majority of cancer related deaths. Analysis of the stepwise process of metastasis formation and progression might provide novel therapeutic strategies for the treatment of disseminated cancer. However, studies with both biological and therapeutic endpoints would require highly sensitive and specific methods for precise quantification of the metastatic tumor burden in vivo. We have developed a quantitative real-time PCR-based assay for the detection and quantification of human tumor cells disseminated in mouse organs. The method relies on the parallel amplification of unique, species-specific, conserved and non-transcribed sequences in the mouse and human genomes. We tested the method in xenograft models to assess the metastatic potential of various cancer cell lines, the impact of injection modality and cell type on organ distribution, and the early stages of metastasis implantation and progression. With this method, we observed clear quantitative differences among colon cancer cell lines in terms of metastasis formation in the lung, consistent with the different in vitro growth properties. The mode of cell implantation and cell intrinsic properties strongly affected the metastatic pattern of prostate and breast cancer cell lines in mouse organs. The qPCR assay accurately determined the malignant cell burden even at early stages of metastasis progression in the lung. We describe a very sensitive assay for the highly reproducible detection and accurate quantification of human metastatic cells in mouse tissues and demonstrate its broad applicability to various experimental settings.
Collapse
Affiliation(s)
- Anastasia Malek
- Laboratory of Experimental Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.
| | | | | | | |
Collapse
|