1
|
Gu Y, Taifour T, Bui T, Zuo D, Pacis A, Poirier A, Attalla S, Fortier AM, Sanguin-Gendreau V, Pan TC, Papavasiliou V, Lin NU, Hughes ME, Smith K, Park M, Tremblay ML, Chodosh LA, Jeselsohn R, Muller WJ. Osteopontin is a therapeutic target that drives breast cancer recurrence. Nat Commun 2024; 15:9174. [PMID: 39448577 PMCID: PMC11502809 DOI: 10.1038/s41467-024-53023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
Recurrent breast cancers often develop resistance to standard-of-care therapies. Identifying targetable factors contributing to cancer recurrence remains the rate-limiting step in improving long-term outcomes. In this study, we identify tumor cell-derived osteopontin as an autocrine and paracrine driver of tumor recurrence. Osteopontin promotes tumor cell proliferation, recruits macrophages, and synergizes with IL-4 to further polarize them into a pro-tumorigenic state. Macrophage depletion and osteopontin inhibition decrease recurrent tumor growth. Furthermore, targeting osteopontin in primary tumor-bearing female mice prevents metastasis, permits T cell infiltration and activation, and improves anti-PD-1 immunotherapy response. Clinically, osteopontin expression is higher in recurrent metastatic tumors versus female patient-matched primary breast tumors. Osteopontin positively correlates with macrophage infiltration, increases with higher tumor grade, and its elevated pathway activity is associated with poor prognosis and long-term recurrence. Our findings suggest clinical implications and an alternative therapeutic strategy based on osteopontin's multiaxial role in breast cancer progression and recurrence.
Collapse
Affiliation(s)
- Yu Gu
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Tarek Taifour
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Tung Bui
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Dongmei Zuo
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Alain Pacis
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Canadian Centre for Computational Genomics, McGill University Genome Center, Montreal, QC, Canada
| | - Alexandre Poirier
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Sherif Attalla
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Anne-Marie Fortier
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | | | - Tien-Chi Pan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vasilios Papavasiliou
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Melissa E Hughes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kalie Smith
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Michel L Tremblay
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Lewis A Chodosh
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - William J Muller
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
- Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Panda VK, Mishra B, Nath AN, Butti R, Yadav AS, Malhotra D, Khanra S, Mahapatra S, Mishra P, Swain B, Majhi S, Kumari K, Radharani NNV, Kundu GC. Osteopontin: A Key Multifaceted Regulator in Tumor Progression and Immunomodulation. Biomedicines 2024; 12:1527. [PMID: 39062100 PMCID: PMC11274826 DOI: 10.3390/biomedicines12071527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) is composed of various cellular components such as tumor cells, stromal cells including fibroblasts, adipocytes, mast cells, lymphatic vascular cells and infiltrating immune cells, macrophages, dendritic cells and lymphocytes. The intricate interplay between these cells influences tumor growth, metastasis and therapy failure. Significant advancements in breast cancer therapy have resulted in a substantial decrease in mortality. However, existing cancer treatments frequently result in toxicity and nonspecific side effects. Therefore, improving targeted drug delivery and increasing the efficacy of drugs is crucial for enhancing treatment outcome and reducing the burden of toxicity. In this review, we have provided an overview of how tumor and stroma-derived osteopontin (OPN) plays a key role in regulating the oncogenic potential of various cancers including breast. Next, we dissected the signaling network by which OPN regulates tumor progression through interaction with selective integrins and CD44 receptors. This review addresses the latest advancements in the roles of splice variants of OPN in cancer progression and OPN-mediated tumor-stromal interaction, EMT, CSC enhancement, immunomodulation, metastasis, chemoresistance and metabolic reprogramming, and further suggests that OPN might be a potential therapeutic target and prognostic biomarker for the evolving landscape of cancer management.
Collapse
Affiliation(s)
- Venketesh K. Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Barnalee Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Angitha N. Nath
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Ramesh Butti
- Division of Hematology and Oncology, Department of Internal Medicine, Southwestern Medical Center, University of Texas, Dallas, TX 75235, USA;
| | - Amit Singh Yadav
- Biomedical Centre, Faculty of Medicine, Lund University, 223 62 Lund, Sweden; (A.S.Y.); (N.N.V.R.)
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Sinjan Khanra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Samikshya Mahapatra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Priyanka Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Biswajit Swain
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Sambhunath Majhi
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Kavita Kumari
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - N. N. V. Radharani
- Biomedical Centre, Faculty of Medicine, Lund University, 223 62 Lund, Sweden; (A.S.Y.); (N.N.V.R.)
| | - Gopal C. Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar 751024, India
| |
Collapse
|
3
|
Kakkat S, Suman P, Turbat- Herrera EA, Singh S, Chakroborty D, Sarkar C. Exploring the multifaceted role of obesity in breast cancer progression. Front Cell Dev Biol 2024; 12:1408844. [PMID: 39040042 PMCID: PMC11260727 DOI: 10.3389/fcell.2024.1408844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Obesity is a multifaceted metabolic disorder characterized by excessive accumulation of adipose tissue. It is a well-established risk factor for the development and progression of breast cancer. Adipose tissue, which was once regarded solely as a passive energy storage depot, is now acknowledged as an active endocrine organ producing a plethora of bioactive molecules known as adipokines that contribute to the elevation of proinflammatory cytokines and estrogen production due to enhanced aromatase activity. In the context of breast cancer, the crosstalk between adipocytes and cancer cells within the adipose microenvironment exerts profound effects on tumor initiation, progression, and therapeutic resistance. Moreover, adipocytes can engage in direct interactions with breast cancer cells through physical contact and paracrine signaling, thereby facilitating cancer cell survival and invasion. This review endeavors to summarize the current understanding of the intricate interplay between adipocyte-associated factors and breast cancer progression. Furthermore, by discussing the different aspects of breast cancer that can be adversely affected by obesity, this review aims to shed light on potential avenues for new and novel therapeutic interventions.
Collapse
Affiliation(s)
- Sooraj Kakkat
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Prabhat Suman
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Elba A. Turbat- Herrera
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Seema Singh
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| | - Debanjan Chakroborty
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| | - Chandrani Sarkar
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
4
|
Abdel-Megeed RM, Abdel-Hamid AHZ, Kadry MO. Titanium dioxide nanostructure-loaded Adriamycin surmounts resistance in breast cancer therapy: ABCA/P53/C-myc crosstalk. Future Sci OA 2024; 10:FSO979. [PMID: 38827789 PMCID: PMC11140649 DOI: 10.2144/fsoa-2023-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Aim: To clarify the alternation of gene expression responsible for resistance of Adriamycin (ADR) in rats, in addition to investigation of a novel promising drug-delivery system using titanium dioxide nanoparticles loaded with ADR (TiO2-ADR). Method: Breast cancer was induced in female Sprague-Dawley rats, followed by treatment with ADR (5 mg/kg) or TiO2-ADR (2 mg/kg) for 1 month. Results: Significant improvements in both zinc and calcium levels were observed with TiO2-ADR treatment. Gene expression of ATP-binding cassette transporter membrane proteins (ABCA1 & ABCG1), P53 and Jak-2 showed a significant reduction and overexpression of the C-myc in breast cancer-induced rats. TiO2-ADR demonstrated a notable ability to upregulate these genes. Conclusion: TiO2-ADR could be a promising drug-delivery system for breast cancer therapy.
Collapse
Affiliation(s)
- Rehab M Abdel-Megeed
- Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Institute, National Research Center, El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Abdel-Hamid Z Abdel-Hamid
- Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Institute, National Research Center, El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Mai O Kadry
- Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Institute, National Research Center, El Buhouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
5
|
Hong S, Kim J, Jung K, Ahn M, Moon C, Nomura Y, Matsuda H, Tanaka A, Jeong H, Shin T. Histopathological evaluation of the lungs in experimental autoimmune encephalomyelitis. J Vet Sci 2024; 25:e35. [PMID: 38834505 PMCID: PMC11156594 DOI: 10.4142/jvs.23302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 06/06/2024] Open
Abstract
IMPORTANCE Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis characterized by inflammation within the central nervous system. However, inflammation in non-neuronal tissues, including the lungs, has not been fully evaluated. OBJECTIVE This study evaluated the inflammatory response in lungs of EAE mice by immunohistochemistry and histochemistry. METHODS Eight adult C57BL/6 mice were injected with myelin oligodendrocyte glycoprotein35-55 to induce the EAE. Lungs and spinal cords were sampled from the experimental mice at the time of sacrifice and used for the western blotting, histochemistry, and immunohistochemistry. RESULTS Histopathological examination revealed inflammatory lesions in the lungs of EAE mice, characterized by infiltration of myeloperoxidase (MPO)- and galectin-3-positive cells, as determined by immunohistochemistry. Increased numbers of collagen fibers in the lungs of EAE mice were confirmed by histopathological analysis. Western blotting revealed significantly elevated level of osteopontin (OPN), cluster of differentiation 44 (CD44), MPO and galectin-3 in the lungs of EAE mice compared with normal controls (p < 0.05). Immunohistochemical analysis revealed both OPN and CD44 in ionized calcium-binding adapter molecule 1-positive macrophages within the lungs of EAE mice. CONCLUSIONS AND RELEVANCE Taken together, these findings suggest that the increased OPN level in lungs of EAE mice led to inflammation; concurrent increases in proinflammatory factors (OPN and galectin-3) caused pulmonary impairment.
Collapse
Affiliation(s)
- Sungmoo Hong
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| | - Jeongtae Kim
- Department of Anatomy, Kosin University College of Medicine, Busan 49267, Korea
| | - Kyungsook Jung
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea
| | - Yoshihiro Nomura
- Scleroprotein and Leather Research Institute, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Hiroshi Matsuda
- Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Akane Tanaka
- Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Hyohoon Jeong
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea.
| | - Taekyun Shin
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
6
|
Kvergelidze E, Barbakadze T, Bátor J, Kalandadze I, Mikeladze D. Thyroid hormone T3 induces Fyn modification and modulates palmitoyltransferase gene expression through αvβ3 integrin receptor in PC12 cells during hypoxia. Transl Neurosci 2024; 15:20220347. [PMID: 39118829 PMCID: PMC11306964 DOI: 10.1515/tnsci-2022-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Thyroid hormones (THs) are essential in neuronal and glial cell development and differentiation, synaptogenesis, and myelin sheath formation. In addition to nuclear receptors, TH acts through αvβ3-integrin on the plasma membrane, influencing transcriptional regulation of signaling proteins that, in turn, affect adhesion and survival of nerve cells in various neurologic disorders. TH exhibits protective properties during brain hypoxia; however, precise intracellular mechanisms responsible for the preventive effects of TH remain unclear. In this study, we investigated the impact of TH on integrin αvβ3-dependent downstream systems in normoxic and hypoxic conditions of pheochromocytoma PC12 cells. Our findings reveal that triiodothyronine (T3), acting through αvβ3-integrin, induces activation of the JAK2/STAT5 pathway and suppression of the SHP2 in hypoxic PC12 cells. This activation correlates with the downregulation of the expression palmitoyltransferase-ZDHHC2 and ZDHHC9 genes, leading to a subsequent decrease in palmitoylation and phosphorylation of Fyn tyrosine kinase. We propose that these changes may occur due to STAT5-dependent epigenetic silencing of the palmitoyltransferase gene, which in turn reduces palmitoylation/phosphorylation of Fyn with a subsequent increase in the survival of cells. In summary, our study provides the first evidence demonstrating the involvement of integrin-dependent JAK/STAT pathway, SHP2 suppression, and altered post-translational modification of Fyn in protective effects of T3 during hypoxia.
Collapse
Affiliation(s)
- Elisabed Kvergelidze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, 0162, Georgia
| | - Tamar Barbakadze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, 0162, Georgia
- Laboratory of Biochemistry, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, 0160, Georgia
| | - Judit Bátor
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pécs, Pécs, 7624, Hungary
- Janos Szentagothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Irine Kalandadze
- Laboratory of Biochemistry, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, 0160, Georgia
| | - David Mikeladze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, 0162, Georgia
- Laboratory of Biochemistry, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, 0160, Georgia
| |
Collapse
|
7
|
Cui Y, Zhang H, Wang Z, Gong B, Al-Ward H, Deng Y, Fan O, Wang J, Zhu W, Sun YE. Exploring the shared molecular mechanisms between systemic lupus erythematosus and primary Sjögren's syndrome based on integrated bioinformatics and single-cell RNA-seq analysis. Front Immunol 2023; 14:1212330. [PMID: 37614232 PMCID: PMC10442653 DOI: 10.3389/fimmu.2023.1212330] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS) are common systemic autoimmune diseases that share a wide range of clinical manifestations and serological features. This study investigates genes, signaling pathways, and transcription factors (TFs) shared between SLE and pSS. Methods Gene expression profiles of SLE and pSS were obtained from the Gene Expression Omnibus (GEO). Weighted gene co-expression network analysis (WGCNA) and differentially expressed gene (DEG) analysis were conducted to identify shared genes related to SLE and pSS. Overlapping genes were then subject to Gene Ontology (GO) and protein-protein interaction (PPI) network analyses. Cytoscape plugins cytoHubba and iRegulon were subsequently used to screen shared hub genes and predict TFs. In addition, gene set variation analysis (GSVA) and CIBERSORTx were used to calculate the correlations between hub genes and immune cells as well as related pathways. To confirm these results, hub genes and TFs were verified in microarray and single-cell RNA sequencing (scRNA-seq) datasets. Results Following WGCNA and limma analysis, 152 shared genes were identified. These genes were involved in interferon (IFN) response and cytokine-mediated signaling pathway. Moreover, we screened six shared genes, namely IFI44L, ISG15, IFIT1, USP18, RSAD2 and ITGB2, out of which three genes, namely IFI44L, ISG15 and ITGB2 were found to be highly expressed in both microarray and scRNA-seq datasets. IFN response and ITGB2 signaling pathway were identified as potentially relevant pathways. In addition, STAT1 and IRF7 were identified as common TFs in both diseases. Conclusion This study revealed IFI44L, ISG15 and ITGB2 as the shared genes and identified STAT1 and IRF7 as the common TFs of SLE and pSS. Notably, the IFN response and ITGB2 signaling pathway played vital roles in both diseases. Our study revealed common pathogenetic characteristics of SLE and pSS. The particular roles of these pivotal genes and mutually overlapping pathways may provide a basis for further mechanistic research.
Collapse
Affiliation(s)
- Yanling Cui
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huina Zhang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Wang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bangdong Gong
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine, Shanghai, China
| | - Hisham Al-Ward
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yaxuan Deng
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Orion Fan
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junbang Wang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenmin Zhu
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Abdolvahabi Z, Ezzati-Mobaser S, Hesari Z. The route of autophagy regulation by osteopontin: a review on the linking mechanisms. J Recept Signal Transduct Res 2023; 43:102-108. [PMID: 38082480 DOI: 10.1080/10799893.2023.2291563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/15/2023] [Indexed: 01/23/2024]
Abstract
Autophagy is a dynamic intracellular process of protein degradation, which is mostly triggered by nutrient deprivation. This process initiates with the formation of autophagosomes, which they capture cytosolic material that is then degraded upon fusion with the lysosome. Several factors have been found to be associated with autophagy modulation, of which extracellular matrix (ECM) components has attracted the attention of recent studies. Osteopontin (OPN) is an important extracellular matrix component that has been detected in a wide range of tumor cells, and is involved in cancer cell invasion and metastasis. Recently, a number of studies have focused on the relationship of OPN with autophagy, by delineating the intracellular signaling pathways that connect OPN to the autophagy process. We will summarize signaling pathways and cell surface receptors, through which OPN regulates the process of autophagy.
Collapse
Affiliation(s)
- Zohreh Abdolvahabi
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Samira Ezzati-Mobaser
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Hesari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
9
|
Sinha SK, Mellody M, Carpio MB, Damoiseaux R, Nicholas SB. Osteopontin as a Biomarker in Chronic Kidney Disease. Biomedicines 2023; 11:1356. [PMID: 37239027 PMCID: PMC10216241 DOI: 10.3390/biomedicines11051356] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Osteopontin (OPN) is a ubiquitously expressed protein with a wide range of physiological functions, including roles in bone mineralization, immune regulation, and wound healing. OPN has been implicated in the pathogenesis of several forms of chronic kidney disease (CKD) where it promotes inflammation and fibrosis and regulates calcium and phosphate metabolism. OPN expression is increased in the kidneys, blood, and urine of patients with CKD, particularly in those with diabetic kidney disease and glomerulonephritis. The full-length OPN protein is cleaved by various proteases, including thrombin, matrix metalloproteinase (MMP)-3, MMP-7, cathepsin-D, and plasmin, producing N-terminal OPN (ntOPN), which may have more detrimental effects in CKD. Studies suggest that OPN may serve as a biomarker in CKD, and while more research is needed to fully evaluate and validate OPN and ntOPN as CKD biomarkers, the available evidence suggests that they are promising candidates for further investigation. Targeting OPN may be a potential treatment strategy. Several studies show that inhibition of OPN expression or activity can attenuate kidney injury and improve kidney function. In addition to its effects on kidney function, OPN has been linked to cardiovascular disease, which is a major cause of morbidity and mortality in patients with CKD.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- Division of Endocrinology, Molecular Medicine and Metabolism, Charles R. Drew University of Science and Medicine, Los Angeles, CA 90059, USA
| | - Michael Mellody
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA;
| | - Maria Beatriz Carpio
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
10
|
Chen L, Yang J, Zhang M, Fu D, Luo H, Yang X. SPP1 exacerbates ARDS via elevating Th17/Treg and M1/M2 ratios through suppression of ubiquitination-dependent HIF-1α degradation. Cytokine 2023; 164:156107. [PMID: 36773529 DOI: 10.1016/j.cyto.2022.156107] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 02/11/2023]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a severe inflammatory pulmonary condition that leads to respiratory failure. The imbalance of Th17/Treg and M1/M2 is implicated in ARDS. A better understanding of the regulation of the balance of Th17/Treg and M1/M2 may provide novel therapeutic targets for ARDS. METHODS Plasma and BALF samples were collected from ARDS patients. Inflammatory cytokines were examined by ELISA. Th17, Treg, M1 and M2 were identified via immunofluorescence staining of RORγt, Foxp3, iNOS and Arg-1. H&E and Masson's trichrome staining were applied for evaluating pulmonary damage and fibrosis. A mouse model of ARDS was established through LPS administration. HIF-1α was immunoprecipitated and subjected to ubiquitination analysis via western blotting. The expression of SPP1, VHL and HIF-1α was examined by RT-qPCR and western blotting. RESULTS ARDS patients showed elevated levels of inflammatory cytokines and ratios of Th17/Treg and M1/M2. SPP1 was upregulated in ARDS mice, and silencing of SPP1 alleviated lung injury and fibrosis. SPP1 inhibited VHL expression to reduce the ubiquitination and degradation of HIF-1α in ARDS. Overexpression of SPP1 facilitated Th17, Treg and M1 polarization but inhibited M2 polarization through upregulation of HIF-1α. CONCLUSION SPP1 elevates Th17/Treg and M1/M2 ratio by suppressing VHL expression and ubiquitination-dependent HIF-1α degradation, thus exacerbating ARDS. Our study provides novel mechanistic insights into ARDS pathogenesis and promising therapeutic targets.
Collapse
Affiliation(s)
- Liang Chen
- Intensive Care Unit, Chongqing General Hospital, Chongqing 401147, PR China.
| | - Jin Yang
- Intensive Care Unit, Chongqing General Hospital, Chongqing 401147, PR China
| | - Meng Zhang
- Intensive Care Unit, Chongqing General Hospital, Chongqing 401147, PR China
| | - Donglin Fu
- Intensive Care Unit, Chongqing General Hospital, Chongqing 401147, PR China
| | - Huan Luo
- Intensive Care Unit, Chongqing General Hospital, Chongqing 401147, PR China
| | - Xiaolei Yang
- Intensive Care Unit, Chongqing General Hospital, Chongqing 401147, PR China
| |
Collapse
|
11
|
Autophagy inhibition prevents lymphatic malformation progression to lymphangiosarcoma by decreasing osteopontin and Stat3 signaling. Nat Commun 2023; 14:978. [PMID: 36813768 PMCID: PMC9946935 DOI: 10.1038/s41467-023-36562-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Lymphatic malformation (LM) is a vascular anomaly originating from lymphatic endothelial cells (ECs). While it mostly remains a benign disease, a fraction of LM patients progresses to malignant lymphangiosarcoma (LAS). However, very little is known about underlying mechanisms regulating LM malignant transformation to LAS. Here, we investigate the role of autophagy in LAS development by generating EC-specific conditional knockout of an essential autophagy gene Rb1cc1/FIP200 in Tsc1iΔEC mouse model for human LAS. We find that Fip200 deletion blocked LM progression to LAS without affecting LM development. We further show that inhibiting autophagy by genetical ablation of FIP200, Atg5 or Atg7, significantly inhibited LAS tumor cell proliferation in vitro and tumorigenicity in vivo. Transcriptional profiling of autophagy-deficient tumor cells and additional mechanistic analysis determine that autophagy plays a role in regulating Osteopontin expression and its down-stream Jak/Stat3 signaling in tumor cell proliferation and tumorigenicity. Lastly, we show that specifically disrupting FIP200 canonical autophagy function by knocking-in FIP200-4A mutant allele in Tsc1iΔEC mice blocked LM progression to LAS. These results demonstrate a role for autophagy in LAS development, suggesting new strategies for preventing and treating LAS.
Collapse
|
12
|
Kalkitoxin: A Potent Suppressor of Distant Breast Cancer Metastasis. Int J Mol Sci 2023; 24:ijms24021207. [PMID: 36674719 PMCID: PMC9863388 DOI: 10.3390/ijms24021207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Bone metastasis resulting from advanced breast cancer causes osteolysis and increases mortality in patients. Kalkitoxin (KT), a lipopeptide toxin derived from the marine cyanobacterium Moorena producens (previously Lyngbya majuscula), has an anti-metastatic effect on cancer cells. We verified that KT suppressed cancer cell migration and invasion in vitro and in animal models in the present study. We confirmed that KT suppressed osteoclast-soup-derived MDA-MB-231 cell invasion in vitro and induced osteolysis in a mouse model, possibly enhancing/inhibiting metastasis markers. Furthermore, KT inhibits CXCL5 and CXCR2 expression, suppressing the secondary growth of breast cancer cells on the bone, brain, and lungs. The breast-cancer-induced osteolysis in the mouse model further reveals that KT plays a protective role, judging by micro-computed tomography and immunohistochemistry. We report for the first time the novel suppressive effects of KT on cancer cell migration and invasion in vitro and on MDA-MB-231-induced bone loss in vivo. These results suggest that KT may be a potential therapeutic drug for the treatment of breast cancer metastasis.
Collapse
|
13
|
Polymer Thin Film Promotes Tumor Spheroid Formation via JAK2-STAT3 Signaling Primed by Fibronectin-Integrin α5 and Sustained by LMO2-LDB1 Complex. Biomedicines 2022; 10:biomedicines10112684. [DOI: 10.3390/biomedicines10112684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer stem-like cells (CSCs) are considered promising targets for anti-cancer therapy owing to their role in tumor progression. Extensive research is, therefore, being carried out on CSCs to identify potential targets for anti-cancer therapy. However, this requires the availability of patient-derived CSCs ex vivo, which remains restricted due to the low availability and diversity of CSCs. To address this limitation, a functional polymer thin-film (PTF) platform was invented to induce the transformation of cancer cells into tumorigenic spheroids. In this study, we demonstrated the functionality of a new PTF, polymer X, using a streamlined production process. Polymer X induced the formation of tumor spheroids with properties of CSCs, as revealed through the upregulated expression of CSC-related genes. Signal transducer and activator of transcription 3 (STAT3) phosphorylation in the cancer cells cultured on polymer X was upregulated by the fibronectin-integrin α5-Janus kinase 2 (JAK2) axis and maintained by the cytosolic LMO2/LBD1 complex. In addition, STAT3 signaling was critical in spheroid formation on polymer X. Our PTF platform allows the efficient generation of tumor spheroids from cancer cells, thereby overcoming the existing limitations of cancer research.
Collapse
|
14
|
Dinakar YH, Kumar H, Mudavath SL, Jain R, Ajmeer R, Jain V. Role of STAT3 in the initiation, progression, proliferation and metastasis of breast cancer and strategies to deliver JAK and STAT3 inhibitors. Life Sci 2022; 309:120996. [PMID: 36170890 DOI: 10.1016/j.lfs.2022.120996] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Breast cancer (BC) accounts for the majority of cancers among the female population. Anomalous activation of various signaling pathways has become an issue of concern. The JAK-STAT signaling pathway is activated in numerous cancers, including BC. STAT3 is widely involved in BCs, as 40 % of BCs display phosphorylated STAT3. JAK-STAT signaling is crucial for proliferation, survival, metastasis and other cellular events associated with the tumor microenvironment. Hence, targeting this pathway has become an area of interest among researchers. KEY FINDINGS This review article focuses on the role of STAT3 in the initiation, proliferation, progression and metastasis of BC. The roles of various phytochemicals, synthetic molecules and biologicals against JAK-STAT and STAT3 in various cancers have been discussed, with special emphasis on BC. SIGNIFICANCE JAK and STAT3 are involved in various phases from initiation to metastasis, and targeting this pathway is a promising approach to inhibit the various stages of BC development and to prevent metastasis. A number of phytochemicals and synthetic and biological molecules have demonstrated potential inhibitory effects on JAK and STAT3, thereby paving the way for the development of better therapeutics against BC.
Collapse
Affiliation(s)
- Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Mohali 140306, Punjab, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Ramkishan Ajmeer
- Central Drugs Standard Control Organization, East Zone, Kolkata 700020, West Bengal, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India.
| |
Collapse
|
15
|
Synthesis of naphthalimide derivatives bearing benzothiazole and thiazole moieties: In vitro anticancer and in silico ADMET study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Wang M, Sun X, Xin H, Wen Z, Cheng Y. SPP1 promotes radiation resistance through JAK2/STAT3 pathway in esophageal carcinoma. Cancer Med 2022; 11:4526-4543. [PMID: 35593388 PMCID: PMC9741975 DOI: 10.1002/cam4.4840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Therapeutic resistance to radiotherapy is one of the major obstacles in clinical practice that significantly affect the therapeutic efficiency and prognosis of human esophageal carcinoma (ESCA). Thus, it is critical to understand the molecular mechanisms of radiation resistance in ESCA. Secreted phosphoprotein 1 (SPP1) plays an essential role in various human cancers, but its role in radiation resistance remains unclear. METHOD Cell culture and transfection; Cell Counting Kit-8 (CCK-8) assays; EdU incorporation assays; Patient sample collection and medical records review; Transwell assays; Colony formation assays; Wound healing assays; Western blot; Immunofluorescence; Immunohistochemistry; Irradiation; Flow cytometry; Animal studies; Human Apoptosis Array Kit; Bioinformatics. RESULT In the current study, we reported the novel phenomenon that radiation-treated human ESCA cells upregulated SPP1 expression, which in turn contributed to the ESCA resistance to radiotherapy. We also reported the tumor-promoting effect of SPP1 in ESCA systematically and comprehensively. Furthermore, subsequent studies by knocking down or overexpressing SPP1 in human ESCA cells showed that SPP1 could facilitate the repair of DNA damage and the survival of tumor cells post-radiation in ESCA, which might contribute to the development of radiation resistance during the radiotherapy process. More detailed investigations on the downstream molecular pathway suggested that radiation could increase the phosphorylation level of JAK2 and STAT3 by increasing SPP1 expression. Further in vivo validation using a mouse ESCA xenograft model showed that SPP1 overexpression significantly increased tumor volume while either SPP1 knockdown or pharmacological inhibition of the JAK2-STAT3 pathway reduced tumor volume in a synergistic manner with radiotherapy. CONCLUSION Collectively, these findings suggested that the SPP1/JAK2/STAT3 axis is a critical player in ESCA progression and radiation resistance, which is a potential therapeutic target for combined therapy with the standard radiotherapy regimen to improve curative effect and increase patients' survival with ESCA.
Collapse
Affiliation(s)
- Meijie Wang
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of MedicineQilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina,Laboratory of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Xiaozheng Sun
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of MedicineQilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina,Laboratory of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Huixian Xin
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of MedicineQilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina,Laboratory of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Zhihua Wen
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of MedicineQilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of MedicineQilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
17
|
Wang RR, Yuan TY, Chen D, Chen YC, Sun SC, Wang SB, Kong LL, Fang LH, Du GH. Dan-Shen-Yin Granules Prevent Hypoxia-Induced Pulmonary Hypertension via STAT3/HIF-1α/VEGF and FAK/AKT Signaling Pathways. Front Pharmacol 2022; 13:844400. [PMID: 35479305 PMCID: PMC9035666 DOI: 10.3389/fphar.2022.844400] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional Chinese medicine (TCM) plays an important role in the treatment of complex diseases, especially cardiovascular diseases. However, it is hard to identify their modes of action on account of their multiple components. The present study aims to evaluate the effects of Dan-Shen-Yin (DSY) granules on hypoxia-induced pulmonary hypertension (HPH), and then to decipher the molecular mechanisms of DSY. Systematic pharmacology was employed to identify the targets of DSY on HPH. Furthermore, core genes were identified by constructing a protein-protein interaction (PPI) network and analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analysis. Related genes and pathways were verified using a hypoxia-induced mouse model and hypoxia-treated pulmonary artery cells. Based on network pharmacology, 147 potential targets of DSY on HPH were found, constructing a PPI network, and 13 hub genes were predicted. The results showed that the effect of DSY may be closely associated with AKT serine/threonine kinase 1 (AKT1), signal transducer and activator of transcription 3 (STAT3), and HIF-1 signaling pathways, as well as biological processes such as cell proliferation. Consistent with network pharmacology analysis, experiments in vivo demonstrated that DSY could prevent the development of HPH in a hypoxia-induced mouse model and alleviate pulmonary vascular remodeling. In addition, inhibition of STAT3/HIF-1α/VEGF and FAK/AKT signaling pathways might serve as mechanisms. Taken together, the network pharmacology analysis suggested that DSY exhibited therapeutic effects through multiple targets in the treatment of HPH. The inferences were initially confirmed by subsequent in vivo and in vitro studies. This study provides a novel perspective for studying the relevance of TCM and disease processes and illustrates the advantage of this approach and the multitargeted anti-HPH effect of DSY.
Collapse
Affiliation(s)
- Ran-Ran Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian-Yi Yuan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Chen
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Cai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-Chan Sun
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shou-Bao Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling-Lei Kong
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lian-Hua Fang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Effects of Ruxolitinib and Calcitriol Combination Treatment on Various Molecular Subtypes of Breast Cancer. Int J Mol Sci 2022; 23:ijms23052535. [PMID: 35269680 PMCID: PMC8910493 DOI: 10.3390/ijms23052535] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/28/2022] Open
Abstract
The anticancer effects of ruxolitinib and calcitriol against breast cancer were reported previously. However, the effect of ruxolitinib and calcitriol combination treatment on various molecular subtypes of breast cancer remains unexplored. In this study, we used MCF-7, SKBR3, and MDA-MB-468 cells to investigate the effect of ruxolitinib and calcitriol combination treatment on cell proliferation, apoptosis, cell cycle, and cell signaling markers, in vitro and in vivo. Our results revealed the synergistic anticancer effect of ruxolitinib and calcitriol combination treatment in SKBR3 and MDA-MB-468 cells, but not in MCF-7 cells in vitro, via cell proliferation inhibition, apoptosis induction, cell cycle arrest, and the alteration of cell signaling protein expression, including cell cycle-related (cyclin D1, CDK1, CDK4, p21, and p27), apoptosis-related (c-caspase and c-PARP), and cell proliferation-related (c-Myc, p-p53, and p-JAK2) proteins. Furthermore, in the MDA-MB-468 xenograft mouse model, we demonstrated the synergistic antitumor effect of ruxolitinib and calcitriol combination treatment, including the alteration of c-PARP, cyclin D1, and c-Myc expression, without significant drug toxicity. The combination exhibited a synergistic effect in HER2-enriched and triple-negative breast cancer subtypes. In conclusion, our results suggest different effects of the combination treatment of ruxolitinib and calcitriol depending on the molecular subtype of breast cancer.
Collapse
|
19
|
Shi H, Qin Y, Tian Y, Wang J, Wang Y, Wang Z, Lv J. Interleukin-1beta triggers the expansion of circulating granulocytic myeloid-derived suppressor cell subset dependent on Erk1/2 activation. Immunobiology 2021; 227:152165. [PMID: 34936966 DOI: 10.1016/j.imbio.2021.152165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/08/2021] [Accepted: 12/11/2021] [Indexed: 11/18/2022]
Abstract
Chronic inflammation contributes to cancer development and progression. Although interleukin-1beta (IL-1β) has been observed to be associated with an general immune suppression of T cell response and the immunosuppression strongly correlates with accumulation of myeloid-derived suppressor cells (MDSCs), the relationship and mechanism between MDSCs expansion and IL-1β expression remain ambiguous. Here, we showed that the concentration of IL-1β was highly correlated with G-MDSC subset, rather than mo-MDSC subset. Recombinant IL-1β increased the percentage of G-MDSCs in the blood of tumor-bearing mice, and IL-1Ra attenuated the accumulation of G-MDSCs in the tumor-bearing mice. In addition, the IL-1β-overexpressing B16F10 cells induced higher level of G-MDSCs compared with wild-type B16F10 cells. Moreover, we found that the accumulation of G-MDSCs induced by IL-1β was dependent on the activation of extracellular signal-regulated kinases 1 and 2 (Erk1/2). Collectively, these findings show a novel role of IL-1β in G-MDSCs accumulation by activating Erk1/2, which suggests that IL-1β elimination or Erk1/2 signaling blockade could decrease G-MDSCs generation and thereby improve host immunosurveillance.
Collapse
Affiliation(s)
- Huifang Shi
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China.
| | - Yan Qin
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Yufeng Tian
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Jiaan Wang
- Department of Blood Transfusion, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Yan Wang
- Department of Medical Image, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Ziyi Wang
- Department of Anesthesiology, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Jie Lv
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China.
| |
Collapse
|
20
|
Gao J, Zhao BR, Zhang H, You YL, Li F, Wang XW. Interferon functional analog activates antiviral Jak/Stat signaling through integrin in an arthropod. Cell Rep 2021; 36:109761. [PMID: 34592151 DOI: 10.1016/j.celrep.2021.109761] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/19/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Drosophila Vago is a small antiviral peptide. Its ortholog in Culex mosquito was found to be an interferon-like cytokine that limits virus replication through activating Jak/Stat signaling. However, this activation is independent of Domeless, the sole homolog of vertebrate type I cytokine receptor. How Vago activates the Jak/Stat pathway remains unknown. Herein, we report this process is dependent on integrin in kuruma shrimp (Marsupenaeus japonicus). Shrimp Vago-like (MjVago-L) plays an antiviral role by activating the Jak/Stat pathway and inducing Stat-regulated Ficolin. Blocking integrin abrogates the role of MjVago-L. The interaction between MjVago-L and integrin β3 is confirmed. An Asp residue in MjVago-L is found critical for the interaction and MjVago-L's antiviral role. Moreover, Fak, a key adaptor of integrin signaling, mediates MjVago-L-induced Jak/Stat activation. Therefore, this study reveals that integrin, as the receptor of MjVago-L, mediates Jak/Stat activation. The establishment of the MjVago-L/integrin/Fak/Jak/Stat/Ficolin axis provides insights into antiviral cytokine signaling in invertebrates.
Collapse
Affiliation(s)
- Jie Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Bao-Rui Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yan-Lin You
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Fang Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
21
|
Ferdowsi S, Ghaffari SH, Shiraji ST, Mousavi SA, Mohammadi S. Investigation of the Osteopontin isoforms expression in patients with acute myeloid leukemia. Med Oncol 2021; 38:102. [PMID: 34313836 DOI: 10.1007/s12032-021-01539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/21/2021] [Indexed: 12/01/2022]
Abstract
Acute myeloid leukemia (AML) is one of the major hematological malignancies. Advances in molecular research have greatly improved our understanding of the process of leukemia formation in AML. Osteopontin (OPN) is a novel molecule that mediates critical processes for cancer progression. The aim of this study was to investigate the relative expression of OPN gene isoforms in AML patients on days 0, 14, and 28 after chemotherapy. The bone marrow samples were collected from 40 newly diagnosed AML patients (24 male and 16 female with a mean age of 30 years) at the initial time of diagnosis, 14 and 28 days after treatment. The peripheral blood samples of 10 healthy individuals were also collected as the control group. The expression of OPN isoforms was investigated by Real-Time Quantitative PCR. The expression of VEGFc/STAT3/CXCR4 was also investigated by Real-Time PCR. Findings indicated that OPNb and OPNc isoforms had significantly overexpression in AML patients on 14 and 28 days after treatment compared to normal samples (P < 0.05). The level of OPNb and OPNc isoforms was increased significantly in M0, M1, and M2 subgroups with overexpression of VEGFc/STAT3/CXCR4, 28 days after starting chemotherapy (P < 0.05). Our results suggested that OPNb and OPNc isoforms play a major role in cancer relapse. Therefore, they can be used as a valuable prognostic and diagnostic biomarker for relapse of the AML disease. However, these findings need confirmation with further studies.
Collapse
Affiliation(s)
- Shirin Ferdowsi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Tavakkoli Shiraji
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Asadollah Mousavi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Mohammadi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran. .,Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Beshay BY, Abdellatef AA, Loksha YM, Fahmy SM, Habib NS, Bekhit AEDA, Georghiou PE, Hayakawa Y, Bekhit AA. Design and synthesis of 2-Substituted-4-benzyl-5-methylimidazoles as new potential Anti-breast cancer agents to inhibit oncogenic STAT3 functions. Bioorg Chem 2021; 113:105033. [PMID: 34089945 DOI: 10.1016/j.bioorg.2021.105033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/17/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022]
Abstract
STAT3 signaling is known to be associated with tumorigenesis and further cancer cell-intrinsic activation of STAT3 leads to altered regulation of several oncogenic processes. Given the importance of STAT3 in cancer development and progression particularly breast cancer, it is crucial to discover new chemical entities of STAT3 inhibitor to develop anti-breast cancer drug candidates. Herein, 4-benzyl-2-benzylthio-5-methyl-1H-imidazole (2a) and 4-benzyl-5-methyl-2-[(2,6-difluorobenzyl)thio]-1H-imidazole (2d) from a group of thirty imidazole-bearing compounds showed greater STAT3 inhibition than their lead compounds VS1 and the oxadiazole derivative MD77. Within all tested compounds, ten derivatives effectively inhibited the growth of the two tested breast cancer cells with IC50 values ranging from 6.66 to 26.02 µM. In addition, the most potent derivatives 2a and 2d inhibited the oncogenic function of STAT3 as seen in the inhibition of colony formation and IL-6 production of breast cancer cell lines. Modeling studies provided evidence for the possible interactions of the synthesized compounds with the key residues of the STAT3-SH2 domain. Collectively, our present study suggests 2-substituted-4-benzyl-5-methylimidazoles are a new class of anti-cancer drug candidates to inhibit oncogenic STAT3 function.
Collapse
Affiliation(s)
- Botros Y Beshay
- Department of Pharmaceutical Chemistry, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Amira A Abdellatef
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Yasser M Loksha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University, Al-Arish, North Sinai, Egypt
| | - Salwa M Fahmy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 2152 Alexandria, Egypt
| | - Nargues S Habib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 2152 Alexandria, Egypt
| | | | - Paris E Georghiou
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Yoshihiro Hayakawa
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama, Japan.
| | - Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 2152 Alexandria, Egypt; Pharmacy Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Bahrain; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| |
Collapse
|
23
|
Attia YM, Tawfiq RA, Gibriel AA, Ali AA, Kassem DH, Hammam OA, Elmazar MM. Activation of FXR modulates SOCS3/Jak2/STAT3 signaling axis in a NASH-dependent hepatocellular carcinoma animal model. Biochem Pharmacol 2021; 186:114497. [PMID: 33675775 DOI: 10.1016/j.bcp.2021.114497] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Despite the recent substantial progress in the treatment of hepatocellular carcinoma (HCC) from viral etiology, non-alcoholic steatohepatitis (NASH) is on a trajectory to become the fastest growing indication for HCC-related liver transplantation. The Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily with multifaceted roles in several metabolic disorders, particularly NASH. Its role as a tumor suppressor was also highlighted. Herein, we investigated the effect of obeticholic acid (OCA), as an FXR agonist, on NASH-associated HCC (NASH-HCC) animal model induced by diethylnitrosamine and high fat choline-deficient diet, exploring the potential impact on the suppressor of cytokine signaling 3 (SOCS3)/Janus kinase 2 (Jak2)/signal transducer and activator of transcription 3 (STAT3) pathway. Results indicated that OCA treatment upregulated FXR and its key mediator, small heterodimer partner (SHP), with remarkable amelioration in the dysplastic foci observed in the NASH-HCC group. This was paralleled with noticeable downregulation of alpha fetoprotein along with reduction in interferon gamma and transforming growth factor beta-1 hepatic levels besides caspase-3 and p53 upregulation. Moreover, sirtuin-1 (SIRT-1), a key regulator of FXR that controls the regenerative response of the liver, was elevated following OCA treatment. Modulation in the SOCS3/Jak2/STAT3 signaling axis was also reported. In conclusion, OCA attenuated the development and progression of NASH-dependent HCC possibly by interfering with SOCS3/Jak2/STAT3 pathway suggesting the potential use of FXR activators in NASH-related disorders, even at later stages of the disease, to impede its progression to the more deteriorating condition of HCC.
Collapse
Affiliation(s)
- Yasmeen M Attia
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.
| | - Rasha A Tawfiq
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Abdullah A Gibriel
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; Biochemistry & Molecular Biology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Aya A Ali
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Dina H Kassem
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Olfat A Hammam
- Pathology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Mohamed M Elmazar
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
24
|
Hou J, Ji J, Chen X, Cao H, Tan Y, Cui Y, Xiang Z, Han X. Alveolar epithelial cell-derived Sonic hedgehog promotes pulmonary fibrosis through OPN-dependent alternative macrophage activation. FEBS J 2020; 288:3530-3546. [PMID: 33314622 DOI: 10.1111/febs.15669] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/03/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022]
Abstract
The alternative activation of macrophages in the lungs has been considered as a major factor promoting pulmonary fibrogenesis; however, the mechanisms underlying this phenomenon are still elusive. In this study, we investigated the interaction between macrophages and fibrosis-associated alveolar epithelial cells using a bleomycin-induced mouse pulmonary fibrosis model and a coculture system. We demonstrated that fibrosis-promoting macrophages are spatially proximate to alveolar type II (ATII) cells, permissive for paracrine-induced macrophage polarization. Importantly, we revealed that fibrosis-associated ATII cells secrete Sonic hedgehog (Shh), a hedgehog pathway ligand, and that ATII cell-derived Shh promotes the development of pulmonary fibrosis by osteopontin (OPN)-mediated macrophage alternative activation. Mechanistically, Shh promotes the secretion of OPN in macrophages via Shh/Gli signaling cascade. The secreted OPN acts on the surrounding macrophages in an autocrine or paracrine manner and induces macrophage alternative activation through activating the JAK2/STAT3 signaling pathway. Tissue samples from idiopathic pulmonary fibrosis patients confirmed the increased expression of Shh and OPN in ATII cells and macrophages, respectively. Together, our study illustrated an alveolar epithelium-dependent mechanism for macrophage M2 polarization and pulmonary fibrogenesis and suggested that targeting Shh may offer a selective and efficient therapeutic strategy for the development and progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiwei Hou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Jie Ji
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Xiang Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Honghui Cao
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Yi Tan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Yu Cui
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| |
Collapse
|
25
|
Kim SJ, Saeidi S, Cho NC, Kim SH, Lee HB, Han W, Noh DY, Surh YJ. Interaction of Nrf2 with dimeric STAT3 induces IL-23 expression: Implications for breast cancer progression. Cancer Lett 2020; 500:147-160. [PMID: 33278500 DOI: 10.1016/j.canlet.2020.11.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 12/19/2022]
Abstract
Persistent activation of STAT3 and Nrf2 is considered to stimulate the aggressive behavior of basal-like breast cancer (BLBC). However, the precise mechanism underlying sustained overactivation of these transcription factors and their roles in breast cancer progression remain elusive. Analysis of the TCGA multi-omics data showed that high levels of STAT3 and Nrf2 mRNA were correlated with elevated expression of P-STAT3Y705 and Nrf2 target proteins in breast cancer patients. Our present study demonstrates a unique interaction between Nrf2 and STAT3 in the maintenance and progression of BLBC. RNA sequencing analysis identified the gene encoding IL-23A upregulated by concurrent binding of STAT3 and Nrf2 to its promoter. IL-23A depletion also showed the similar phenotypic changes to those caused by double knockdown of both transcription factors. In conclusion, the STAT3-Nrf2 interaction accelerates BLBC growth and progression by augmenting IL-23A expression, which underscores the importance of subtype-specific molecular pathways in human breast cancer.
Collapse
Affiliation(s)
- Su-Jung Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Soma Saeidi
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Nam-Chul Cho
- Korea Chemical Bank, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Seung Hyeon Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Cancer Research Institute, Seoul National University, Seoul, 03080, South Korea
| | - Han-Byoel Lee
- Cancer Research Institute, Seoul National University, Seoul, 03080, South Korea; Department of Surgery, Seoul National University College of Medicine, Seoul, 03087, South Korea
| | - Wonshik Han
- Cancer Research Institute, Seoul National University, Seoul, 03080, South Korea; Department of Surgery, Seoul National University College of Medicine, Seoul, 03087, South Korea
| | - Dong-Young Noh
- Cancer Research Institute, Seoul National University, Seoul, 03080, South Korea; Department of Surgery, Seoul National University College of Medicine, Seoul, 03087, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea; Cancer Research Institute, Seoul National University, Seoul, 03080, South Korea.
| |
Collapse
|
26
|
Yang C, Pan H, Shen L. Pan-Cancer Analyses Reveal Prognostic Value of Osteomimicry Across 20 Solid Cancer Types. Front Mol Biosci 2020; 7:576269. [PMID: 33240930 PMCID: PMC7678014 DOI: 10.3389/fmolb.2020.576269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022] Open
Abstract
Background Osteomimicry of cancer cells had been widely reported in prostate cancer and breast cancer. However, the prognostic value of osteomimicry in various cancer types remained unclear. We hypothesized that osteomimicry would result in remodeling of the tumor microenvironment and was eligible to predict patient prognosis. Methods A comprehensive transcriptomic analysis of the osteomimicry, which was characterized by mRNA expression of SPARC, SPP1, and BGLAP, across 20 solid tumors (7564 patients) using RNA-seq data from The Cancer Genome Atlas (TCGA) was conducted. Samples of each cancer type were classified into subgroups (high vs. low) based on median value of osteomimetic markers, the associations of these markers with clinical outcomes, immune cell infiltration and immune checkpoints expression were explored. Results Each osteomimetic marker harbored prognostic value in the pan-cancer analyses [SPARC: hazard ratio (HR) = 1.10, p = 0.028; SPP1: HR = 1.25, p < 0.001; BGLAP: HR = 1.13, p = 0.005]. Patients with high expression of all the three genes also had significantly unfavorable survival (HR = 1.61, p < 0.0001) compared with those of low expression. Correlation analyses demonstrated that osteomimicry was closely related to tumor purity, dendritic cells (DC) infiltration and expression of immune checkpoints. Conclusion Osteomimicry had prognostic value in various cancer types and the underlying mechanism might correlate to the trapping and dysfunction of DCs in the tumor microenvironment, revealing the potential of osteomimicry as a target of immunotherapy.
Collapse
Affiliation(s)
- Changsheng Yang
- Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Orthopaedic Hospital of Guangdong Province, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Hehai Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lujun Shen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
MFG-E8 attenuates inflammation in subarachnoid hemorrhage by driving microglial M2 polarization. Exp Neurol 2020; 336:113532. [PMID: 33245889 DOI: 10.1016/j.expneurol.2020.113532] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 11/21/2022]
Abstract
Increasing evidence suggests that microglial polarization plays an important role in the pathological processes of neuroinflammation following subarachnoid hemorrhage (SAH). Previous studies indicated that milk fat globule-epidermal growth factor-8 (MFG-E8) has potential anti-apoptotic and anti-inflammatory effects in cerebral ischemia. However, the effects of MFG-E8 on microglial polarization have not been evaluated after SAH. Therefore, the aim of this study was to explore the role of MFG-E8 in anti-inflammation, and its effects on microglial polarization following SAH. We established the SAH model via prechiasmatic cistern blood injection in mice. Double-immunofluorescence staining, western blotting and quantitative real-time polymerase chain reaction (q-PCR) were performed to investigate the expression and cellular distribution of MFG-E8. Two different dosages (1 and 5 μg) of recombinant human MFG-E8 (rhMFG-E8) were injected intracerebroventricularly (i.c.v.) at 1 h after SAH. Brain water content, neurological scores, beam-walking score, Fluoro-Jade C (FJC), and terminal deoxynucleotidyl transferase dUTP nick endlabeling staining (TUNEL) were measured at 24 h. Suppression of MFG-E8, integrin β3 and phosphorylation of STAT3 were achieved by specific siRNAs (500 pmol/5 μl) and the STAT3 inhibitor Stattic (5 μM). The potential signaling pathways and microglial polarization were measured by immunofluorescence labeling and western blotting. SAH induction increased the levels of inflammatory mediators and the proportion of M1 cells, and caused neuronal apoptosis in mice at 24 h. Treatment with rhMFG-E8 (5 μg) remarkably decreased brain edema, improved neurological functions, reduced the levels of proinflammatory factors, and promoted the microglial to shift to M2 phenotype. However, knockdown of MFG-E8 and integrin β3 via siRNA abolished the effects of MFG-E8 on anti-inflammation and M2 phenotype polarization. The STAT3 inhibitor Stattic further clarified the role of rhMFG-E8 in microglial polarization by regulating the protein levels of the integrin β3/SOCS3/STAT3 pathway. rhMFG-E8 inhibits neuronal inflammation by transformation the microglial phenotype toward M2 and its direct protective effect on neurons after SAH, which may be mediated by modulation of the integrin β3/SOCS3/STAT3 signaling pathway, highlighting rhMFG-E8 as a potential therapeutic target for the treatment of SAH patients.
Collapse
|
28
|
Meng H, Pang Y, Liu G, Luo Z, Tan H, Liu X. Podocarpusflavone A inhibits cell growth of skin cutaneous melanoma by suppressing STAT3 signaling. J Dermatol Sci 2020; 100:201-208. [PMID: 33127205 DOI: 10.1016/j.jdermsci.2020.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND JAK2/STAT3 pathway is involved in the development and progression of melanoma once DNA damage is caused by environment and genetic factors. OBJECTIVE Here, we aimed to identify novel inhibitor of JAK2/STAT3 pathway and reveal the underlying mechanisms. METHODS Eighty MedChemExpress compounds were screened by using STAT3-Luc reporter in A375 cells. Podocarpusflavone A (PCFA) was identified as an inhibitor of STAT3, which was further verified in four melanoma cell lines. The anti-melanoma effects and mechanism of PCFA were examined and explored in melanoma cells and mouse xenograft models by using Western blot and cell-counting kit-8 assay. RESULTS PCFA exhibited potent inhibitory effects on melanoma both in vitro and in vivo. PCFA inhibited the activation of STAT3 through suppressing the phosphorylation of JAK2, and then restrained cell cycle and induced apoptosis of melanoma cells. CONCLUSION PCFA inhibits melanoma growth via the inhibition of JAK2/STAT3 pathway, which provides a promising therapeutic strategies of melanoma treatment.
Collapse
Affiliation(s)
- Huijuan Meng
- Department of Dermatology, the Affiliated Hospital of Weifang Medical University, Shandong, China
| | - Yunyan Pang
- Department of Dermatology, the Affiliated Hospital of Weifang Medical University, Shandong, China
| | - Guoyan Liu
- Department of Dermatology, the Affiliated Hospital of Weifang Medical University, Shandong, China
| | - Zengxiang Luo
- Department of Dermatology, the Affiliated Hospital of Weifang Medical University, Shandong, China
| | - Haiyang Tan
- Department of Pharmacy, the Affiliated Hospital of Weifang Medical University, Shandong, China
| | - Xiangming Liu
- Department of Dermatology, Weifang Medical University, Shandong, China.
| |
Collapse
|
29
|
Bai J, Luo Y, Zhang S. Microarray data analysis reveals gene expression changes in response to ionizing radiation in MCF7 human breast cancer cells. Hereditas 2020; 157:37. [PMID: 32883354 PMCID: PMC7650302 DOI: 10.1186/s41065-020-00151-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Background The aim of this study was to identify potential therapeutic target genes for breast cancer (BC) by the investigation of gene expression changes after ionizing radiation (IR) in BC cells. Gene expression profile GSE21748, including BC cell line MCF-7 samples at different time points after IR treatment, were downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified in different time points following IR compared with cell samples before IR, respectively. Gene ontology functions and The Kyoto Encyclopedia of Genes and Genomes pathways of the overlapping DEGs were enriched using DAVID. Transcription factor (TFs)-encoding genes were identified from the overlapping DEGs, followed by construction of transcriptional regulatory network and co-expression network. Results A total of 864 overlapping DEGs were identified, which were significantly enriched in regulation of cell proliferation and apoptosis, and cell cycle process. We found that FOXD1, STAT6, XBP1, STAT2, LMO2, TFAP4, STAT3, STAT1 were hub nodes in the transcriptional regulatory network of the overlapping DEGs. The co-expression network of target genes regulated by STAT3, STAT1, STAT6 and STAT2 included some key genes such as BCL2L1. Conclusion STAT1, STAT2, STAT3, STAT6, XBP1, BCL2L1, CYB5D2, ESCO2, and PARP2 were significantly affected by IR and they may be used as therapeutic gene targets in the treatment of BC.
Collapse
Affiliation(s)
- Jing Bai
- Department of Gynaecology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang Central People's Hospital, Yichang, 443000, Hubei, China
| | - Youzhen Luo
- Department of Gynaecology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang Central People's Hospital, Yichang, 443000, Hubei, China
| | - Shengchu Zhang
- Department of Thyroid and Breast Surgery, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang Central People's Hospital, No. 183 Yiling Road, Wujia District, Yichang, 443000, Hubei, China.
| |
Collapse
|
30
|
Liu K, Hu H, Jiang H, Liu C, Zhang H, Gong S, Wei D, Yu Z. Upregulation of secreted phosphoprotein 1 affects malignant progression, prognosis, and resistance to cetuximab via the KRAS/MEK pathway in head and neck cancer. Mol Carcinog 2020; 59:1147-1158. [PMID: 32805066 DOI: 10.1002/mc.23245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Acquired resistance is a barrier to cetuximab efficacy in patients with head and neck squamous cell carcinoma (HNSCC). Secreted phosphoprotein 1 (SPP1) is involved in various biological processes, including immune responses, cancer progression, and prognosis in many cancers, while little is known in HNSCC. Bioinformatics methods were used to identify candidate genes and further in vivo and in vitro experiments were performed to examine and validate the function of SPP1. We found that SPP1 was upregulated and has been found to have an oncogenic role in HNSCC. We further confirmed that overexpression of SPP1 affected proliferation, migration, invasion, and survival, and inhibited apoptosis, whereas silencing of SPP1 yielded opposite results to those of SPP1 overexpression. In addition, activation of the KRAS/MEK pathway contributed to the SPP1-induced malignant progression of HNSCC and resistance to cetuximab. Furthermore, SPP1 knockdown or an MEK inhibitor overcame this cetuximab-resistance pattern. Taken together, our findings for the first time identify the role of SPP1 in tumor promotion, prognostic prediction, and potential therapeutic targeting, as well as resistance to cetuximab in HNSCC.
Collapse
Affiliation(s)
- Kai Liu
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Center of Yu Zhenkun Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huiying Hu
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Center of Yu Zhenkun Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huanyu Jiang
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Center of Yu Zhenkun Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenglei Liu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haidong Zhang
- Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Center of Yu Zhenkun Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shanchun Gong
- Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Center of Yu Zhenkun Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongmin Wei
- Department of Otorhinolaryngology, Key Laboratory of Otolaryngology, Qilu Hospital, Shandong University, NHFPC (Shandong University), Jinan, Shandong, China
| | - Zhenkun Yu
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Center of Yu Zhenkun Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
31
|
Wang H, Jia R, Lv T, Wang M, He S, Zhang X. Resveratrol Suppresses Tumor Progression via Inhibiting STAT3/HIF-1α/VEGF Pathway in an Orthotopic Rat Model of Non-Small-Cell Lung Cancer (NSCLC). Onco Targets Ther 2020; 13:7057-7063. [PMID: 32801741 PMCID: PMC7382608 DOI: 10.2147/ott.s259016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background The STAT3/HIF-1α/VEGF pathway is associated with the development and progress of various tumors including NSCLC. The aim of the present study was to investigate whether resveratrol (RES) could suppress NSCLC progression via inhibiting the expressions of STAT3, HIF-1α, and VEGF in a nude rat model. Methods Twenty-four nude rats were randomly divided into control, NSCLC, and NSCLC+RES groups. An orthotopic rat model of NSCLC was established. The animals in the NSCLC+RES group received the same operation as the NSCLC group and were intragastrically administered RES at 250 mg/kg/day for 12 weeks. Lung tissue samples were harvested for gross tumor burden measurement, histological examinations, RT-PCR, and Western blot assays. Results In the NSCLC+RES group, significant decreases in lung weight index, lung tumor burden, STAT3/HIF-1α/VEGF mRNA, and protein levels were observed when compared with the NSCLC group (all P<0.05). The structural integrity of the lung was less affected and the apoptotic index was significantly higher in the NSCLC+RES group, when compared to the NSCLC group (P<0.05). Conclusion RES suppresses NSCLC partly through inhibiting the expressions of STAT3, HIF-1α, and VEGF. The STAT3/HIF-1α/VEGF pathway might be a candidate drug target for developing new chemotherapy agents derived from RES for the treatment of NSCLC.
Collapse
Affiliation(s)
- Huixia Wang
- Respiratory Department, The People's Hospital of Baoji City, Baoji, Shaanxi 721000, People's Republic of China
| | - Ruzhen Jia
- Respiratory Department, The People's Hospital of Baoji City, Baoji, Shaanxi 721000, People's Republic of China
| | - Tianle Lv
- Respiratory Department, The People's Hospital of Baoji City, Baoji, Shaanxi 721000, People's Republic of China
| | - Mei Wang
- Respiratory Department, The People's Hospital of Baoji City, Baoji, Shaanxi 721000, People's Republic of China
| | - Shiwei He
- Respiratory Department, The People's Hospital of Baoji City, Baoji, Shaanxi 721000, People's Republic of China
| | - Xia Zhang
- Department of Pulmonary and Critical Care Medicine, Central Hospital of Hanzhong City, Hanzhong, Shaanxi 723000, People's Republic of China
| |
Collapse
|
32
|
Osteopontin accelerates the development and metastasis of bladder cancer via activating JAK1/STAT1 pathway. Genes Genomics 2020; 42:467-475. [PMID: 32088853 DOI: 10.1007/s13258-019-00907-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Bladder cancer is the 10th common cancer worldwide. Osteopontin has been found to enhance cell proliferation, metastasis and invasion in various human tumors. OBJECTIVE To investigate the roles of osteopontin in bladder cancer. METHODS The RNA interference and overexpression of osteopontin were performed in bladder cancer cell lines (T24 and SCaBER). Cell proliferation and apoptosis were measured using CCK-8 assay and flow cytometry, respectively. Cell invasion was determined using transwell assay. RESULTS Osteopontin was highly expressed in bladder cancer tissues in comparison with the adjacent normal tissues. Its high expression significantly correlated with high histologic grade, high TNM stage (III and IV) and poor prognosis. For T24 cells with osteopontin interference and SCaBER cells with osteopontin overexpression, cell proliferation was significantly inhibited (3.58-fold vs. 5.62-fold) and enhanced (7.81-fold vs. 5.29-fold), respectively. The apoptosis portion of T24 cells significantly increased from 4.48 to 10.75%, and that of SCaBER cells significantly declined from 7.33 to 4.01%. The invaded T24 and SCaBER cells significantly decreased to 52.0% and increased to 2.0-fold, respectively. Osteopontin overexpression enhanced the expression (1.54-fold and 2.39-fold; 2.33-fold and 2.05-fold) and activation (1.80-fold and 1.96-fold; 2.00-fold and 2.59-fold) of JAK1 and STAT1 in two cell lines of bladder cancer. CONCLUSION Osteopontin might enhance proliferation, inhibit apoptosis and accelerate invasion and thus promote the development and metastasis of bladder cancer, and osteopontin's functions might be mediated by activating JAK1/STAT1 signaling pathway.
Collapse
|
33
|
Wang G, Chu P, Chen M, Cheng L, Zhao C, Chen S, Li X, Yang G, Chang C. Osteopontin promotes rat hepatocyte proliferation both in vitro and in vivo. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3745-3757. [PMID: 31544532 DOI: 10.1080/21691401.2019.1666862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aim: This study aimed to examine the effects of osteopontin (OPN) on hepatocyte growth and liver regeneration (LR). Methods: A recombinant lentivirus expressing OPN and OPN-siRNAs were used to treat BRL-3A cells, while the adenovirus expressing OPN or OPN-targeted shRNA were applied for rat primary hepatocytes. Moreover, rrOPN and OPN-Ab were added to treat BRL-3A. Next, rrOPN was administrated into rat regenerating livers. Then in vitro and in vivo assays were performed to evaluate the biological function of OPN in hepatocyte growth and LR. Results: OPN overexpression facilitated proliferation and viability of BRL-3A cells and primary hepatocytes, while OPN silencing reversed these effects. Similarly, rrOPN stimulated cell cycle progression and viability, but OPN-Ab led to cell cycle arrest and decreased viability. OPN overexpression induced the expression of p-STAT3, p-AKT and CCND1, and OPN siRNA led to reduction of p-AKT and CCND1. Furthermore, rrOPN promoted the expression of p-STAT3 and p-AKT, while OPN-Ab and PI3K/Akt inhibitor LY294002 both inhibited the expressions of p-AKT and Bcl2. Moreover, LR rate, serum IL-6 and TNF-α, Ki-67+ proportion and the phosphorylation of STAT3, AKT and p65 were augmented by rrOPN treatment. Conclusion: OPN promotes hepatocyte proliferation both in vitro and in vivo through STAT3 and AKT signaling pathways.
Collapse
Affiliation(s)
- Gaiping Wang
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| | - Peipei Chu
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| | - Meng Chen
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| | - Liya Cheng
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| | - Congcong Zhao
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| | - Shasha Chen
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| | - Xiaofang Li
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| | - Ganggang Yang
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,Henan Engineering Research Center of Functional Protein Application, Henan Normal University , Xinxiang , Henan Province , China
| | - Cuifang Chang
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| |
Collapse
|
34
|
Wang M, Wang W, Ding J, Wang J, Zhang J. Downregulation of Rab17 promotes cell proliferation and invasion in non-small cell lung cancer through STAT3/HIF-1α/VEGF signaling. Thorac Cancer 2019; 11:379-388. [PMID: 31841274 PMCID: PMC6997001 DOI: 10.1111/1759-7714.13278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Rab GTPases play a key role in regulating intercellular vesicle trafficking in both exo- and endocytic pathways. Recent studies have reported that Rab small GTPases and the associated regulatory proteins and effectors are involved in many cancers. The purpose of this study was to investigate the biological role of Rab17 in non-small cell lung cancer (NSCLC) and the relative mechanism. METHODS Rab17 expression in human NSCLC cell lines and tissues was evaluated using real-time PCR (RT-PCR), western blot and immunohistochemical (IHC) staining. NSCLC cell lines with RAB17 stable knockdown were generated to explore its function in vitro and in vivo. Additionally, we investigated the potential mechanism of Rab17 by identifying the expression levels of STAT3/HIF-1α/VEGF pathway using western blot analysis. RESULTS Decreased Rab17 expression was correlated with poor overall survival in NSCLC patients. The functional assays showed that knockdown of Rab17 could promote tumorigenic properties of NSCLC cells in vitro and in vivo, including enhanced cell proliferation, colony formation, invasion and migration, angiogenesis and tumor xenograft growth, and suppressed apoptosis. Moreover, Rab17 downregulation decreased epithelial marker E-cadherin and increased mesenchymal markers Vimentin and β-catenin, suggesting knockdown of Rab17 induced epithelial-mesenchymal transition (EMT). CONCLUSION Downregulation of Rab17 promotes cell invasion and enhances tumorigenicity in part through the STAT3/HIF-1α/VEGF pathway, which may represent a novel potential therapeutic target.
Collapse
Affiliation(s)
- Mingliang Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wendong Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingmin Ding
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiashun Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Zhang C, Ma K, Li WY. Cinobufagin Suppresses The Characteristics Of Osteosarcoma Cancer Cells By Inhibiting The IL-6-OPN-STAT3 Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4075-4090. [PMID: 31824138 PMCID: PMC6900468 DOI: 10.2147/dddt.s224312] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022]
Abstract
Background Current clinical treatments for osteosarcoma are limited by disease recurrence and primary or secondary chemoresistance. Cancer stem-like cells have been proposed to facilitate the initiation, progression, recurrence and chemoresistance of osteosarcoma. Furthermore, previous studies have reported that IL-6-STAT3 pathway is overexpressed in various types of cancer and contributes to cell proliferation, apoptosis, invasion/migration, chemoresistance and modulation of stemness features. Aim To examined the effect of cinobufagin on cancer progression and modulation of stemness features in osteosarcoma, and investigated the molecular mechanisms underlying such effects. Methods Human osteosarcoma cell lines U2OS/MG-63 were recruited in this study. Cell proliferation, migration, and invasion were determined by MTT assay, colony formation assay,wound healing assay, and cell invasion assay respectively. Its effect on stemness was assessed by flow cytometry and mammosphere formation. The protein expression levels of related proteins were detected by Western blot. The xenograft model, immunofluorescence staining and immunohistochemistry were used to determine the effect of cinobufagin on tumorigenicity in vivo experiment. Results We found that cinobufagin suppressed the viability of U2OS/MG-63 spheroids/parent cells in a time-and dose-dependent manner. Notably, cinobufagin had no effect on the viability of hFOB 1.19 cells. Moreover, cinobufagin induced apoptosis, increased the width of wounds, reduced invasive osteosarcoma spheroids/parent cell numbers and reduced EMT phenotype and OPN levels in U2OS/MG-63 spheroids as well as U2OS/MG-63 parent cells lines. Noticeablely, we found that OPN levels were higher in spheroids group than that in parent cells. In addition, cinobufagin ameliorated the proportion of CD133-positive cells, the size of spheroids and Nanog, Sox-2 and Oct3/4 protein levels. Our in vivo experiments showed that cinobufagin consistently reduced tumor volume,the expressions of OPN, Sox-2, Oct3/4, Nanog and p-STAT3 by the immuno histochemistry staining as well as CD133 expression in tumor tissues by immunofluorescence analysis. From a mechanistic point of view, cinobufagin was shown to inhibit IL-6-OPN-STAT3 signaling pathway. Exogenous IL-6/OE-OPN/overexpression STAT3 attenuated the induction of cinobufagin-mediated apoptosis and the suppression of stemness properties respectively. Conclusion Collectively, our data demonstrated that cinobufagin inhibited the viability and tumorigenesis capability of osteosarcoma cells by blocking IL-6- OPN-STAT3 signaling pathway. Cinobufagin may therefore represent a promising therapeutic agent for osteosarcoma management. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/a2KF0PMRBDo
Collapse
Affiliation(s)
- Chuan Zhang
- Luoyang Orthopaedic-Traumatological Hospital and Henan Orthopaedic Hospital, Luoyang, Henan 471002, People's Republic of China
| | - Kun Ma
- Luoyang Orthopaedic-Traumatological Hospital and Henan Orthopaedic Hospital, Luoyang, Henan 471002, People's Republic of China
| | - Wu-Yin Li
- Luoyang Orthopaedic-Traumatological Hospital and Henan Orthopaedic Hospital, Luoyang, Henan 471002, People's Republic of China
| |
Collapse
|
36
|
Shen H, Guo M, Wang L, Cui X. MUC16 facilitates cervical cancer progression via JAK2/STAT3 phosphorylation-mediated cyclooxygenase-2 expression. Genes Genomics 2019; 42:127-133. [PMID: 31736008 DOI: 10.1007/s13258-019-00885-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/03/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES MUC16 (mucin 16, also known as CA-125, cancer antigen 125, carcinoma antigen 125, or carbohydrate antigen 125) has been predicted as tumor biomarker for therapy. We determined to investigate effects and regulatory mechanism of MUC16 on cervical tumorigenesis. METHODS Expression levels of MUC16 in cervical cancer cell lines was analyzed via qRT-PCR (quantitative real-time polymerase chain reaction). Knockdown of MUC16 was conducted via shRNA (Short hairpin RNA) transfection. MTT and colony formation assays were used to investigate effect of MUC16 on cell proliferation. Wound healing assay was utilized to detect migration and transwell assay to detect invasion. The underlying mechanism was demonstrated via western blot analysis. RESULTS MUC16 was elevated in cervical cancer cell lines. MUC16 knockdown inhibited cell proliferation, invasion and migration. Gain- and loss-of functional assays revealed that over-expression of MUC16 activated Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) via phosphorylation, thus facilitating cyclooxygenase-2 (COX-2) expression, while knockdown of MUC16 demonstrated the reverse effect on JAK2/STAT3 activation and COX-2 expression. Moreover, inhibition of JAK2/STAT3 attenuated the regulation of MUC16 on COX-2. CONCLUSIONS MUC16 enhanced proliferation and invasion of cervical cancer cells via JAK2/STAT3 phosphorylation-mediated cyclooxygenase-2 expression, suggesting the potential therapeutic target ability of MUC16 to treat cervical cancer.
Collapse
Affiliation(s)
- Hui Shen
- Department of Gynaecology and Obstetrics, The Affiliated Sir Run Run Hospital of Nanjing Medical University, No. 109 Longmian Avenue, Jiangning District, Nanjing, 211166, China.
| | - Meng Guo
- Department of Gynaecology and Obstetrics, The Affiliated Sir Run Run Hospital of Nanjing Medical University, No. 109 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Lu Wang
- Department of Gynaecology and Obstetrics, The Affiliated Sir Run Run Hospital of Nanjing Medical University, No. 109 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Xinyue Cui
- Department of Gynaecology and Obstetrics, The Affiliated Sir Run Run Hospital of Nanjing Medical University, No. 109 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| |
Collapse
|
37
|
Chen J, Hou C, Zheng Z, Lin H, Lv G, Zhou D. Identification of Secreted Phosphoprotein 1 (SPP1) as a Prognostic Factor in Lower-Grade Gliomas. World Neurosurg 2019; 130:e775-e785. [PMID: 31295606 DOI: 10.1016/j.wneu.2019.06.219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Secreted phosphoprotein 1 (SPP1) is an important extracellular glycoprotein that is associated with immune regulation, tumorigenesis, and cell signaling. However, the prognostic value of SPP1 in patients with glioma has not yet been clarified, especially in lower-grade gliomas. The objective of this study is to evaluate the prognostic merit of SPP1 in lower-grade gliomas. METHODS The messenger RNA (mRNA) expression of SPP1 in about 1000 cancer cell lines was explored by using the data from the Cancer Cell Line Encyclopedia database. The Oncomine database was mined to evaluate the mRNA expression of SPP1 in lower-grade glioma, glioblastoma, and normal brain tissues. The correlation between SPP1 mRNA expression and overall survival of patients with glioma from The Cancer Genome Atlas database was analyzed. RESULTS SPP1 mRNA expression of glioma was ranked as the eighth highest of all cancer cell lines in the Cancer Cell Line Encyclopedia database. The data from the Oncomine database suggested that SPP1 expression was significantly high in glioblastoma compared with normal brain tissues but was not significantly high in lower-grade glioma compared with normal brain tissue. Analysis of the RNA-Seq data from The Cancer Genome Atlas database showed that the increased SPP1 mRNA expression in lower-grade glioma was significantly associated with poor survival outcomes in patients with lower-grade glioma. Multivariate Cox regression analysis showed that SPP1 might be considered as an independent prognostic factor in lower-grade gliomas. CONCLUSIONS The present study showed that SPP1 overexpression is related to worse overall survival in patients with lower-grade glioma. Moreover, SPP1 could be considered as an independent factor in lower-grade gliomas.
Collapse
Affiliation(s)
- Jiawei Chen
- Shantou University Medical College, Shantou, Guangdong, China; Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chongxian Hou
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Zongtai Zheng
- Shantou University Medical College, Shantou, Guangdong, China; Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Han Lin
- Shantou University Medical College, Shantou, Guangdong, China; Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guangzhao Lv
- Shantou University Medical College, Shantou, Guangdong, China; Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
38
|
Osteopontin is An Important Regulative Component of the Fetal Bone Marrow Hematopoietic Stem Cell Niche. Cells 2019; 8:cells8090985. [PMID: 31461896 PMCID: PMC6770910 DOI: 10.3390/cells8090985] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/01/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022] Open
Abstract
Osteopontin (OPN) is an important component in both bone and blood regulation, functioning as a bridge between the two. Previously, thrombin-cleaved osteopontin (trOPN), the dominant form of OPN in adult bone marrow (BM), was demonstrated to be a critical negative regulator of adult hematopoietic stem cells (HSC) via interactions with α4β1 and α9β1 integrins. We now demonstrate OPN is also required for fetal hematopoiesis in maintaining the HSC and progenitor pool in fetal BM. Specifically, we showed that trOPN is highly expressed in fetal BM and its receptors, α4β1 and α9β1 integrins, are both highly expressed and endogenously activated on fetal BM HSC and progenitors. Notably, the endogenous activation of integrins expressed by HSC was attributed to high concentrations of three divalent metal cations, Ca2+, Mg2+ and Mn2+, which were highly prevalent in developing fetal BM. In contrast, minimal levels of OPN were detected in fetal liver, and α4β1 and α9β1 integrins expressed by fetal liver HSC were not in the activated state, thereby permitting the massive expansion of HSC and progenitors required during early fetal hematopoiesis. Consistent with these results, no differences in the number or composition of hematopoietic cells in the liver of fetal OPN-/- mice were detected, but significant increases in the hematopoietic progenitor pool in fetal BM as well as an increase in the BM HSC pool following birth and into adulthood were observed. Together, the data demonstrates OPN is a necessary negative regulator of fetal and neonatal BM progenitors and HSC, and it exhibits preserved regulatory roles during early development, adulthood and ageing.
Collapse
|
39
|
Dovitinib Triggers Apoptosis and Autophagic Cell Death by Targeting SHP-1/ p-STAT3 Signaling in Human Breast Cancers. JOURNAL OF ONCOLOGY 2019; 2019:2024648. [PMID: 31485222 PMCID: PMC6710795 DOI: 10.1155/2019/2024648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/29/2019] [Indexed: 01/13/2023]
Abstract
Breast cancer is the most common cancer and the leading cause of cancer deaths in women worldwide. The rising incidence rate and female mortality make it a significant public health concern in recent years. Dovitinib is a novel multitarget receptor tyrosine kinase inhibitor, which has been enrolled in several clinical trials in different cancers. However, its antitumor efficacy has not been well determined in breast cancers. Our results demonstrated that dovitinib showed significant antitumor activity in human breast cancer cell lines with dose- and time-dependent manners. Downregulation of phosphor-(p)-STAT3 and its subsequent effectors Mcl-1 and cyclin D1 was responsible for this drug effect. Ectopic expression of STAT3 rescued the breast cancer cells from cell apoptosis induced by dovitinib. Moreover, SHP-1 inhibitor reversed the downregulation of p-STAT3 induced by dovitinib, indicating that SHP-1 mediated the STAT3 inhibition effect of dovitinib. In addition to apoptosis, we found for the first time that dovitinib also activated autophagy to promote cell death in breast cancer cells. In conclusion, dovitinib induced both apoptosis and autophagy to block the growth of breast cancer cells by regulating the SHP-1-dependent STAT3 inhibition.
Collapse
|
40
|
Chen X, Han K, Lin G, Liu C, Wang S, Shi X, Hu Z, Wu C, Xu X, Hu C. Ctenopharyngodon Idella STAT3 alleviates autophagy by up-regulating BCL-2 expression. FISH & SHELLFISH IMMUNOLOGY 2019; 91:194-201. [PMID: 31108175 DOI: 10.1016/j.fsi.2019.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
In mammals, STAT3 (Signal transducer and activator of transcription 3) plays an absolutely vital role in response to cytokines and growth factors. In mammals, IL-6/JAK/STAT3 pathway is closely linked to immune response and promotes cell proliferation, survival and metastasis. Some recent studies have already demonstrated that STAT3 regulates autophagy. As a downstream target gene of STAT3, Bcl-2 (B-cell lymphoma 2) not only participates in regulating apoptosis, but also responds to autophagy. STAT3 regulates autophagy through Bcl-2. In general, the generation of autophagy is always accompanied by the change of apoptosis, and the occurrence of apoptosis is often accompanied by the decreased of cell viability. In grass carp (Ctenopharyngodon idella), LPS-induced autophagy is involved in the release of pro-inflammatory cytokines. However, only the relationship between autophagy and cytokines was illustrated, in which the signaling pathways were not discussed. In the present study, we found that the autophagy inducer, Tunicamycin (Tm), can induce C.Idella Kidney cells (CIK) autophagy. When the cells were incubated with the recombinant human IL-6 (rIL-6) for a short period of times, the mRNA expression level of C.Idella IL-6R and STAT3 were increased. At the same time, the number of GFP-LC3 puncta and the ratio of LC3-II/LC3-I were both decreased obviously in cells. It indicated that the rIL-6 can significantly alleviate autophagy induced by Tm. We speculated that CiSTAT3 may play a key role in the process. To confirm this hypothesis, we performed a rIL-6 activating CiSTAT3 assay. The result demonstrated that rIL-6 can induce CiSTAT3 to form homologous dimmer. The activated CiSTAT3 regulated the transcription activity of CiBcl-2, finally led to a decrease of autophagy. In addition, when cells were in the state of autophagy, apoptosis was increased and cell viability was decreased. When CiSTAT3 was activated, cell apoptosis weakened and cell viability was increased. The results suggest that CiSTAT3 plays an important role in maintaining the normal physiological process of cells.
Collapse
Affiliation(s)
- Xingxing Chen
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Kun Han
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Gang Lin
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Changxin Liu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Shanghong Wang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xiao Shi
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Zhizhen Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chuxin Wu
- Yuzhang Normal University, Nanchang, 330103, China
| | - Xiaowen Xu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
41
|
Macur K, Hagen L, Ciesielski TM, Konieczna L, Skokowski J, Jenssen BM, Slupphaug G, Bączek T. A targeted mass spectrometry immunoassay to quantify osteopontin in fresh-frozen breast tumors and adjacent normal breast tissues. J Proteomics 2019; 208:103469. [PMID: 31374364 DOI: 10.1016/j.jprot.2019.103469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/28/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Osteopontin (OPN) is a multifunctional protein that can activate cell-signaling pathways and lead to cancer development and metastasis. Elevated OPN expression was reported in different cancer types, including breast tumors. Here, we present a new immuno-mass spectrometry method for OPN quantification in fresh-frozen malignant and adjacent normal human breast tissues. For quantification we used two proteotypic peptides: OPN-peptide-1 and OPN-peptide-2. Peptide concentrations were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring (MRM) mode with stable isotope standards (SIS) and immuno-affinity enrichment for isolation of OPN peptides. Based on the OPN-peptide-1, the average OPN concentration in normal breast tissue was 19.42 μg/g, while the corresponding level in breast tumors was 603.9 μg/g. Based on OPN-peptide-2, the average concentration in normal breast tissue was 19.30 μg/g and in breast tumors 535.0 μg/g. In ER/PR/HER2(-) patients the OPN levels in breast tumors were significantly higher than in corresponding normal breast tissue samples, whereas in the single ER/PR/HER2(+) patient the OPN concentration in tumor samples was lower than in normal breast tissue sample. In conclusion, the current method is considered promising for the quantification of OPN in research and in clinical settings and should be further studied in breast cancer patients. SIGNIFICANCE: A new immuno-mass spectrometry method was successfully developed and applied to determine OPN concentrations in malignant tumor and normal breast tissues from six patients, and the method is promising for OPN quantification in both research and clinical settings.
Collapse
Affiliation(s)
- Katarzyna Macur
- Laboratory of Mass Spectrometry, Core Facility Laboratories, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, ul. Abrahama 58, 80-807 Gdańsk, Poland.
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology NTNU, Erling Skjalgssons gt.1, 7491 Trondheim, Norway; PROMEC, Proteomics and Modomics Core Facility, Norwegian University of Science and Technology and the Central Norway Regional Health Authority Norway, Norway.
| | - Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, Realfagbygget, 7491 Trondheim, Norway.
| | - Lucyna Konieczna
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, al. Hallera 107, 80-416 Gdańsk, Poland.
| | - Jarosław Skokowski
- Department of Surgical Oncology, Medical University of Gdańsk, ul. Dębinki 1, 80-211 Gdańsk, Poland; Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdańsk, ul. Dębinki 1, 80-211 Gdańsk, Poland; Biobanking and Biomolecular Resources Research Infrastructure (BBMRI.PL), Gdańsk, Poland.
| | - Bjørn M Jenssen
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, Realfagbygget, 7491 Trondheim, Norway.
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology NTNU, Erling Skjalgssons gt.1, 7491 Trondheim, Norway; PROMEC, Proteomics and Modomics Core Facility, Norwegian University of Science and Technology and the Central Norway Regional Health Authority Norway, Norway.
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, al. Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
42
|
Pang X, Gong K, Zhang X, Wu S, Cui Y, Qian BZ. Osteopontin as a multifaceted driver of bone metastasis and drug resistance. Pharmacol Res 2019; 144:235-244. [PMID: 31028902 DOI: 10.1016/j.phrs.2019.04.030] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
Metastasis to bone frequently occurs in majority of patients with advanced breast cancer and prostate cancer, leading to devastating skeletal-related events and substantially reducing the survival of patients. Currently, the crosstalk between tumor cells and the bone stromal compartment was widely investigated for bone metastasis and the resistance to many conventional therapeutic methods. Osteopontin (OPN), also known as SPP1 (secreted phosphoprotein 1), a secreted and chemokine-like glyco-phosphoprotein is involved in tumor progression such as cell proliferation, angiogenesis, and metastasis. The expression of OPN in tumor tissue and plasma has been clinically proved to be correlated to poor prognosis and shortened survival in patients with breast cancer and prostate cancer. This review summarizes the multifaceted roles that OPN plays in bone microenvironment and drug resistance, with emphasis on breast and prostate cancers, via binding to αvβ3 integrin and CD44 receptor and inducing signaling cascades. We further discuss the promising therapeutic strategy for OPN targeting, mainly inhibiting OPN at transcriptional or protein level or blocking it binding to receptor or its downstream signaling pathways. The comprehending of the function of OPN in bone microenvironment is crucial for the development of novel biomarker and potential therapeutic target for the diagnosis and treatment of bone metastasis and against the emergence of drug resistance in advanced cancers.
Collapse
Affiliation(s)
- Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, Xicheng District, 10034, Beijing, China
| | - Kan Gong
- Department of Urology, Peking University First Hospital, Xicheng District, 10034, Beijing, China
| | - Xiaodan Zhang
- Department of Pharmacy, Peking University First Hospital, Xicheng District, 10034, Beijing, China
| | - Shiliang Wu
- Department of Urology, Peking University First Hospital, Xicheng District, 10034, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xicheng District, 10034, Beijing, China.
| | - Bin-Zhi Qian
- Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University.University of Edinburgh and MRC Centre for Reproductive Health, 2 Edinburgh Cancer Research UK Centre Queen's Medical Research Institute, EH16 4TJ, Edinburgh, United Kingdom; Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Haizhu District, 510260, Guangzhou, China.
| |
Collapse
|
43
|
Jyothi Buggana S, Paturi MC, Perka H, Gade DR, VVS RP. Novel 2,4-disubstituted quinazolines as cytotoxic agents and JAK2 inhibitors: Synthesis, in vitro evaluation and molecular dynamics studies. Comput Biol Chem 2019; 79:110-118. [DOI: 10.1016/j.compbiolchem.2019.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 12/26/2022]
|
44
|
Farini A, Gowran A, Bella P, Sitzia C, Scopece A, Castiglioni E, Rovina D, Nigro P, Villa C, Fortunato F, Comi GP, Milano G, Pompilio G, Torrente Y. Fibrosis Rescue Improves Cardiac Function in Dystrophin-Deficient Mice and Duchenne Patient-Specific Cardiomyocytes by Immunoproteasome Modulation. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:339-353. [PMID: 30448404 DOI: 10.1016/j.ajpath.2018.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/12/2018] [Accepted: 10/10/2018] [Indexed: 11/30/2022]
Abstract
Patients affected by Duchenne muscular dystrophy (DMD) develop a progressive dilated cardiomyopathy characterized by inflammatory cell infiltration, necrosis, and cardiac fibrosis. Standard treatments consider the use of β-blockers and angiotensin-converting enzyme inhibitors that are symptomatic and unspecific toward DMD disease. Medications that target DMD cardiac fibrosis are in the early stages of development. We found immunoproteasome dysregulation in affected hearts of mdx mice (murine animal model of DMD) and cardiomyocytes derived from induced pluripotent stem cells of patients with DMD. Interestingly, immunoproteasome inhibition ameliorated cardiomyopathy in mdx mice and reduced the development of cardiac fibrosis. Establishing the immunoproteasome inhibition-dependent cardioprotective role suggests the possibility of modulating the immunoproteasome as new and clinically relevant treatment to rescue dilated cardiomyopathy in patients with DMD.
Collapse
Affiliation(s)
- Andrea Farini
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Universitá degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Aoife Gowran
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Pamela Bella
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Universitá degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Clementina Sitzia
- UOC SMEL-1, Scuola di Specializzazione di Patologia Clinica e Biochimica Clinica, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Scopece
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Elisa Castiglioni
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Davide Rovina
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Patrizia Nigro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Chiara Villa
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Universitá degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Francesco Fortunato
- Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giuseppina Milano
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy; Laboratory of Cardiovascular Research, Department of Surgery and Anesthesiology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy; Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Universitá degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy.
| |
Collapse
|
45
|
Wang Y, Zhou P, Qin S, Xu D, Liu Y, Fu W, Ruan B, Zhang L, Zhang Y, Wang X, Pan Y, Wang S, Yan H, Qin J, Wang X, Liu Q, Du Z, Liu Z, Wang Y. The Curcumin Analogs 2-Pyridyl Cyclohexanone Induce Apoptosis via Inhibition of the JAK2-STAT3 Pathway in Human Esophageal Squamous Cell Carcinoma Cells. Front Pharmacol 2018; 9:820. [PMID: 30186159 PMCID: PMC6113578 DOI: 10.3389/fphar.2018.00820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022] Open
Abstract
Multiple modifications to the structure of curcumin have been investigated with an aim to improve its potency and biochemical properties. Previously, we have synthesized a series of curcumin analogs. In the present study, the anticancer effect of 2-pyridyl cyclohexanone, one of the curcumin analogs, on esophageal carcinoma Eca109 and EC9706 cell lines and its molecular mechanisms were investigated. 2-Pyridyl cyclohexanone inhibited the proliferation of Eca109 and EC9706 cells by inducing apoptosis as indicated by morphological changes, membrane phospholipid phosphatidylserine ectropion, caspase 3 activation, and cleavage of poly(ADP-ribose) polymerase. Mechanistic studies indicated that 2-pyridyl cyclohexanone disrupted mitochondrial membrane potential, disturbed the balance of the Bcl-2 family proteins, and triggered apoptosis via the mitochondria-mediated intrinsic pathway. In 2-pyridine cyclohexanone-treated cells, the phosphorylation levels of JAK2 and STAT3 were dose-dependently decreased and p38 and p-ERK signals were notably activated in a dose-dependent manner. Moreover, we found that the addition of S3I-201, a STAT3 inhibitor, led to a decreased expression level of Bcl-2 in Eca109 cells. The chromatin immunoprecipitation assay demonstrated that STAT3 bound to the promoter of Bcl-2 in the Eca109 cells. Furthermore, the mutation of four STAT3 binding sites (−1733/−1723, −1627/−1617, −807/−797, and −134/−124) on the promote of Bcl-2 gene alone attenuated the transcriptional activation of STAT3. In addition, down-regulation of STAT3 resulted in less of transcriptional activity of STAT3 on Bcl-2 expression. These data provide a potential molecular mechanism of the apoptotic induction function of 2-pyridyl cyclohexanone, and emphasize its important roles as a therapeutic agent for esophageal squamous carcinoma.
Collapse
Affiliation(s)
- Ying Wang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Pengjun Zhou
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shurong Qin
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dandan Xu
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Yukun Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wuyu Fu
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bibo Ruan
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yi Zhang
- Cancer Center, Department of Surgery, Yale University, New Haven, CT, United States
| | - Xiao Wang
- Department of Pharmacy, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Yuwei Pan
- College of Medicine, Jinan University, Guangzhou, China
| | - Sheng Wang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Haizhao Yan
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Jinhong Qin
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaoyan Wang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qiuying Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhiyun Du
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Zhong Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yifei Wang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
46
|
Chen M, Pockaj B, Andreozzi M, Barrett MT, Krishna S, Eaton S, Niu R, Anderson KS. JAK2 and PD-L1 Amplification Enhance the Dynamic Expression of PD-L1 in Triple-negative Breast Cancer. Clin Breast Cancer 2018; 18:e1205-e1215. [PMID: 29933930 DOI: 10.1016/j.clbc.2018.05.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/25/2018] [Accepted: 05/20/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Activation of the JAK/STAT pathway is common in triple-negative breast cancer (TNBC) and affects the expression of genes controlling immune signaling. A subset of TNBC cases will have somatic amplification of chromosome 9p24.1, encoding PD-L1, PD-L2, and JAK2, which has been associated with decreased survival. MATERIALS AND METHODS Eleven TNBC cell lines were evaluated using array comparative genomic hybridization. A copy number gain was defined as an array comparative genomic hybridization log2 ratio of ≥ 1. Cell surface expression of programmed cell death ligand 1 (PD-L1) was detected using flow cytometry and compared with the median fluorescence intensity of isotype control immunoglobulin. To selectively inhibit JAK2, lentiviral vectors encoding 2 different short hairpin RNA (shRNA) were generated. JAK2, STAT1, STAT3, phosphorylated (p) STAT1, and pSTAT3 expression were measured by immunoblot. Statistical significance was defined as P < .05. RESULTS The cell line HCC70 had 9p24.1 copy number amplification that was associated with both increased JAK2 and pSTAT3; however, knockdown of JAK2 inhibited cell growth independently of 9p24.1 copy number status. In TNBC cell lines with 9p24.1 gain or amplification, PD-L1 expression rapidly and strikingly increased 5- to 38-fold with interferon-γ (P < .05), and inducible PD-L1 expression was completely blocked by JAK2 knockdown and the JAK1/2 inhibitor ruxolitinib. In tumor tissue, expression of interferon-γ-related genes correlated with 9p24.1 copy number status. CONCLUSION These data suggest that the JAK2/STAT1 pathway in TNBC might regulate the dynamic expression of PD-L1 that is induced in the setting of an inflammatory response. Inhibition of JAK2 might provide a synergistic therapy when combined with other immunotherapies in the subset of TNBC with 9p24.1 amplification.
Collapse
Affiliation(s)
- Meixuan Chen
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ; Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | | | | | | | - Sri Krishna
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ
| | - Seron Eaton
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Ruifang Niu
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Karen S Anderson
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ; Department of Medicine, Mayo Clinic, Phoenix, AZ.
| |
Collapse
|
47
|
Goel S, Sahu S, Minz RW, Singh S, Suri D, Oh YM, Rawat A, Sehgal S, Saikia B. STAT3-Mediated Transcriptional Regulation of Osteopontin in STAT3 Loss-of-Function Related Hyper IgE Syndrome. Front Immunol 2018; 9:1080. [PMID: 29868029 PMCID: PMC5966547 DOI: 10.3389/fimmu.2018.01080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/30/2018] [Indexed: 11/22/2022] Open
Abstract
Background Hyper-IgE syndrome (HIES) caused by loss-of-function (LOF) mutations in STAT3 gene (STAT3 LOF HIES) is associated with dental and facial abnormalities in addition to immunological defects. The role of STAT3 in the pathogenesis of the dental/facial features is, however, poorly elucidated. Objectives Since mechanism of cellular resorption of mineralized tissues such as bone and teeth are similar, we attempted to study the expression of genes involved in bone homeostasis in STAT3 LOF HIES. Methods Peripheral blood mononuclear cells from healthy controls (HCs), STAT3 LOF HIES patients, STAT3−/− PC-3 cells and STAT3+/+ LNCaP cells were stimulated with IL-6 and quantitative PCR array was performed to study the relative mRNA expression of 43 pre-selected genes. PCR array finding were further evaluated after stattic induced STAT3 inhibition. Results Osteopontin (OPN) gene was seen to be significantly upregulated after IL-6 stimulation in HC (mean fold change 18.6, p = 0.01) compared with HIES subjects. Inhibition of STAT3 signaling by stattic followed by IL-6 stimulation abrogated the OPN response in HCs suggesting that IL-6-induced STAT3 signaling regulates OPN expression. Bioinformatics analysis predicted the presence of STAT3 response element TTCCAAGAA at position -2005 of the OPN gene. Conclusion Regulation of OPN gene through IL-6-mediated STAT3 activation and its significant dysregulation in STAT3 LOF HIES subjects could make OPN a plausible candidate involved in the pathogenesis of dental/facial manifestations in HIES.
Collapse
Affiliation(s)
- Shubham Goel
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Smrity Sahu
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana W Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Young M Oh
- Cell Line Development Team, Bio Research Institute, Genexine Inc, Seongnam, South Korea
| | - Amit Rawat
- Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shobha Sehgal
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Biman Saikia
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
48
|
Mazaheri N, Peymani M, Galehdari H, Ghaedi K, Ghoochani A, Kiani-Esfahani A, Nasr-Esfahani MH. Ameliorating Effect of Osteopontin on H 2O 2-Induced Apoptosis of Human Oligodendrocyte Progenitor Cells. Cell Mol Neurobiol 2018; 38:891-899. [PMID: 29110207 DOI: 10.1007/s10571-017-0563-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/30/2017] [Indexed: 12/22/2022]
Abstract
Recently our group used oligodendrocyte progenitor cells (OPCs) as appropriate model cells to pinpoint the mechanism of the progress of neurodegenerative disorders. In the present study, we focused on the therapeutic role of osteopontin (OPN), a secreted glycosylated phosphoprotein, involved in a number of physiological events including bone formation and remodeling, immune responses, and tumor progression. Protective role of OPN, as a negative regulator of tumorigenesis, has already been clarified. Human embryonic stem cell-derived OPCs were pretreated with OPN before induction of apoptosis by H2O2. Data indicated that OPN prohibited cell death and enhanced OPC viability. This effect is achieved through reduction of apoptosis and induction of anti-apoptosis markers. In addition OPN induces expression of several integrin subunits, responsible for OPN interaction. Notably, our findings showed that expression of αV β1/β3/β5 and β8 integrins increased in response to OPN, while treatment with H2O2 down-regulated αV β1/β5 and β8 integrins expression significantly. In conclusion, OPN may act via αV integrin signaling and trigger suppression of P53-dependent apoptotic cascades. Therefore OPN therapy may be considered as a feasible process to prevent progress of neurodegenerative diseases in human.
Collapse
Affiliation(s)
- Neda Mazaheri
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 816513-1378, Iran
| | - Hamid Galehdari
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kamran Ghaedi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 816513-1378, Iran.
| | - Ali Ghoochani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 816513-1378, Iran
| | - Abbas Kiani-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 816513-1378, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 816513-1378, Iran.
| |
Collapse
|
49
|
Raja R, Sahasrabuddhe NA, Radhakrishnan A, Syed N, Solanki HS, Puttamallesh VN, Balaji SA, Nanjappa V, Datta KK, Babu N, Renuse S, Patil AH, Izumchenko E, Prasad TSK, Chang X, Rangarajan A, Sidransky D, Pandey A, Gowda H, Chatterjee A. Chronic exposure to cigarette smoke leads to activation of p21 (RAC1)-activated kinase 6 (PAK6) in non-small cell lung cancer cells. Oncotarget 2018; 7:61229-61245. [PMID: 27542207 PMCID: PMC5308647 DOI: 10.18632/oncotarget.11310] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/08/2016] [Indexed: 12/21/2022] Open
Abstract
Epidemiological data clearly establishes cigarette smoking as one of the major cause for lung cancer worldwide. Recently, targeted therapy has become one of the most preferred modes of treatment for cancer. Though certain targeted therapies such as anti-EGFR are in clinical practice, they have shown limited success in lung cancer patients who are smokers. This demands discovery of alternative drug targets through systematic investigation of cigarette smoke-induced signaling mechanisms. To study the signaling events activated in response to cigarette smoke, we carried out SILAC-based phosphoproteomic analysis of H358 lung cancer cells chronically exposed to cigarette smoke. We identified 1,812 phosphosites, of which 278 phosphosites were hyperphosphorylated (≥ 3-fold) in H358 cells chronically exposed to cigarette smoke. Our data revealed hyperphosphorylation of S560 within the conserved kinase domain of PAK6. Activation of PAK6 is associated with various processes in cancer including metastasis. Mechanistic studies revealed that inhibition of PAK6 led to reduction in cell proliferation, migration and invasion of the cigarette smoke treated cells. Further, siRNA mediated silencing of PAK6 resulted in decreased invasive abilities in a panel of non-small cell lung cancer (NSCLC) cells. Consistently, mice bearing tumor xenograft showed reduced tumor growth upon treatment with PF-3758309 (group II PAK inhibitor). Immunohistochemical analysis revealed overexpression of PAK6 in 66.6% (52/78) of NSCLC cases in tissue microarrays. Taken together, our study indicates that PAK6 is a promising novel therapeutic target for NSCLC, especially in smokers.
Collapse
Affiliation(s)
- Remya Raja
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India
| | | | - Aneesha Radhakrishnan
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014, India
| | - Nazia Syed
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014, India
| | - Hitendra S Solanki
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Vinuth N Puttamallesh
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,Amrita School of Biotechnology, Amrita University, Kollam, 690 525, India
| | - Sai A Balaji
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Vishalakshi Nanjappa
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,Amrita School of Biotechnology, Amrita University, Kollam, 690 525, India
| | - Keshava K Datta
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Niraj Babu
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India
| | - Santosh Renuse
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,Amrita School of Biotechnology, Amrita University, Kollam, 690 525, India
| | - Arun H Patil
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Evgeny Izumchenko
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231, USA
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,Amrita School of Biotechnology, Amrita University, Kollam, 690 525, India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India.,NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Xiaofei Chang
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231, USA
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231, USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Baltimore, Maryland, 21205, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India
| |
Collapse
|
50
|
Solanki HS, Raja R, Zhavoronkov A, Ozerov IV, Artemov AV, Advani J, Radhakrishnan A, Babu N, Puttamallesh VN, Syed N, Nanjappa V, Subbannayya T, Sahasrabuddhe NA, Patil AH, Prasad TSK, Gaykalova D, Chang X, Sathyendran R, Mathur PP, Rangarajan A, Sidransky D, Pandey A, Izumchenko E, Gowda H, Chatterjee A. Targeting focal adhesion kinase overcomes erlotinib resistance in smoke induced lung cancer by altering phosphorylation of epidermal growth factor receptor. Oncoscience 2018; 5:21-38. [PMID: 29556515 PMCID: PMC5854290 DOI: 10.18632/oncoscience.395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
EGFR-based targeted therapies have shown limited success in smokers. Identification of alternate signaling mechanism(s) leading to TKI resistance in smokers is critically important. We observed increased resistance to erlotinib in H358 NSCLC (non-small cell lung carcinoma) cells chronically exposed to cigarette smoke (H358-S) compared to parental cells. SILAC-based mass-spectrometry approach was used to study altered signaling in H358-S cell line. Importantly, among the top phosphosites in H358-S cells we observed hyperphosphorylation of EGFR (Y1197) and non-receptor tyrosine kinase FAK (Y576/577). Supporting these observations, a transcriptomic-based pathway activation analysis of TCGA NSCLC datasets revealed that FAK and EGFR internalization pathways were significantly upregulated in smoking patients, compared to the never-smokers and were associated with elevated PI3K signaling and lower level of caspase cascade and E-cadherin pathways activation. We show that inhibition of FAK led to decreased cellular proliferation and invasive ability of the smoke-exposed cells, and restored their dependency on EGFR signaling. Our data suggests that activation of focal adhesion pathway significantly contributes to erlotinib resistance, and that FAK is a potential therapeutic target for management of erlotinib resistance in smoke-induced NSCLC.
Collapse
Affiliation(s)
- Hitendra S Solanki
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Remya Raja
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | - Alex Zhavoronkov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD 21218, USA
| | - Ivan V Ozerov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD 21218, USA
| | - Artem V Artemov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD 21218, USA
| | - Jayshree Advani
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | | | - Niraj Babu
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Vinuth N Puttamallesh
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.,School of Biotechnology, Amrita University, Kollam 690525, India
| | - Nazia Syed
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | | | | | | | - Arun H Patil
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India.,Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.,Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India.,NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Daria Gaykalova
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Xiaofei Chang
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rachana Sathyendran
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Premendu Prakash Mathur
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Evgeny Izumchenko
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.,Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.,Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India
| |
Collapse
|