1
|
Homayoonfal M, Molavizadeh D, Sadeghi S, Chaleshtori RS. The role of microRNAs in acrylamide toxicity. Front Nutr 2024; 11:1344159. [PMID: 38456012 PMCID: PMC10917983 DOI: 10.3389/fnut.2024.1344159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
The chemical compound known as Acrylamide (AA) is employed in different industries worldwide and is also found in thermal-processed food. AA has been acting as a reproductive toxicant, carcinogen, and neurotoxic in various animals, which may promote several toxic impacts in animal and human species. Up to now, various studies have focused on the harmful mechanisms and intervention actions of AA. However, the underlying mechanisms that AA and its toxic effects can exert have remained uncertain. MicroRNAs (miRNAs) are a class of short, non-coding RNAs that are able to act as epigenetic regulators. These molecules can regulate a wide range of cellular and molecular processes. In this regard, it has been shown that different chemical agents can dysregulate miRNAs. To determine the possible AA targets along with mechanisms of its toxicity, it is helpful to study the alteration in the profiles of miRNA regulation following AA intake. The current research aimed to evaluate the miRNAs' mediatory roles upon the AA's toxic potentials. This review study discussed the AA, which is made within the food matrix, the way it is consumed, and the potential impacts of AA on miRNAs and its association with different cancer types and degenerative diseases. The findings of this review paper indicated that AA might be capable of altering miRNA signatures in different tissues and exerting its carcinogen effects.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Danial Molavizadeh
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Sadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Sharafati Chaleshtori
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
2
|
Dolan M, St. John N, Zaidi F, Doyle F, Fasullo M. High-throughput screening of the Saccharomyces cerevisiae genome for 2-amino-3-methylimidazo [4,5-f] quinoline resistance identifies colon cancer-associated genes. G3 (BETHESDA, MD.) 2023; 13:jkad219. [PMID: 37738679 PMCID: PMC11025384 DOI: 10.1093/g3journal/jkad219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 10/25/2022] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Heterocyclic aromatic amines (HAAs) are potent carcinogenic agents found in charred meats and cigarette smoke. However, few eukaryotic resistance genes have been identified. We used Saccharomyces cerevisiae (budding yeast) to identify genes that confer resistance to 2-amino-3-methylimidazo[4,5-f] quinoline (IQ). CYP1A2 and NAT2 activate IQ to become a mutagenic nitrenium compound. Deletion libraries expressing human CYP1A2 and NAT2 or no human genes were exposed to either 400 or 800 µM IQ for 5 or 10 generations. DNA barcodes were sequenced using the Illumina HiSeq 2500 platform and statistical significance was determined for exactly matched barcodes. We identified 424 ORFs, including 337 genes of known function, in duplicate screens of the "humanized" collection for IQ resistance; resistance was further validated for a select group of 51 genes by growth curves, competitive growth, or trypan blue assays. Screens of the library not expressing human genes identified 143 ORFs conferring resistance to IQ per se. Ribosomal protein and protein modification genes were identified as IQ resistance genes in both the original and "humanized" libraries, while nitrogen metabolism, DNA repair, and growth control genes were also prominent in the "humanized" library. Protein complexes identified included the casein kinase 2 (CK2) and histone chaperone (HIR) complex. Among DNA Repair and checkpoint genes, we identified those that function in postreplication repair (RAD18, UBC13, REV7), base excision repair (NTG1), and checkpoint signaling (CHK1, PSY2). These studies underscore the role of ribosomal protein genes in conferring IQ resistance, and illuminate DNA repair pathways for conferring resistance to activated IQ.
Collapse
Affiliation(s)
- Michael Dolan
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Nick St. John
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Faizan Zaidi
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Francis Doyle
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Michael Fasullo
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| |
Collapse
|
3
|
Chong ZX, Yong CY, Ong AHK, Yeap SK, Ho WY. Deciphering the roles of aryl hydrocarbon receptor (AHR) in regulating carcinogenesis. Toxicology 2023; 495:153596. [PMID: 37480978 DOI: 10.1016/j.tox.2023.153596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent receptor that belongs to the superfamily of basic helix-loop-helix (bHLH) transcription factors. The activation of the canonical AHR signaling pathway is known to induce the expression of cytochrome P450 enzymes, facilitating the detoxification metabolism in the human body. Additionally, AHR could interact with various signaling pathways such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1α (HIF-1α), nuclear factor ekappa B (NF-κβ), estrogen receptor (ER), and androgen receptor (AR) signaling pathways. Over the past 30 years, several studies have reported that various chemical, physical, or biological agents, such as tobacco, hydrocarbon compounds, industrial and agricultural chemical wastes, drugs, UV, viruses, and other toxins, could affect AHR expression or activity, promoting cancer development. Thus, it is valuable to overview how these factors regulate AHR-mediated carcinogenesis. Current findings have reported that many compounds could act as AHR ligands to drive the expressions of AHR-target genes, such as CYP1A1, CYP1B1, MMPs, and AXL, and other targets that exert a pro-proliferation or anti-apoptotic effect, like XIAP. Furthermore, some other physical and chemical agents, such as UV and 3-methylcholanthrene, could promote AHR signaling activities, increasing the signaling activities of a few oncogenic pathways, such as the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. Understanding how various factors regulate AHR-mediated carcinogenesis processes helps clinicians and scientists plan personalized therapeutic strategies to improve anti-cancer treatment efficacy. As many studies that have reported the roles of AHR in regulating carcinogenesis are preclinical or observational clinical studies that did not explore the detailed mechanisms of how different chemical, physical, or biological agents promote AHR-mediated carcinogenesis processes, future studies should focus on conducting large-scale and functional studies to unravel the underlying mechanism of how AHR interacts with different factors in regulating carcinogenesis processes.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Chean Yeah Yong
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia
| | - Alan Han Kiat Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
4
|
Kukal S, Thakran S, Kanojia N, Yadav S, Mishra MK, Guin D, Singh P, Kukreti R. Genic-intergenic polymorphisms of CYP1A genes and their clinical impact. Gene 2023; 857:147171. [PMID: 36623673 DOI: 10.1016/j.gene.2023.147171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
The humancytochrome P450 1A (CYP1A) subfamily genes, CYP1A1 and CYP1A2, encoding monooxygenases are critically involved in biotransformation of key endogenous substrates (estradiol, arachidonic acid, cholesterol) and exogenous compounds (smoke constituents, carcinogens, caffeine, therapeutic drugs). This suggests their significant involvement in multiple biological pathways with a primary role of maintaining endogenous homeostasis and xenobiotic detoxification. Large interindividual variability exist in CYP1A gene expression and/or catalytic activity of the enzyme, which is primarily due to the existence of polymorphic alleles which encode them. These polymorphisms (mainly single nucleotide polymorphisms, SNPs) have been extensively studied as susceptibility factors in a spectrum of clinical phenotypes. An in-depth understanding of the effects of polymorphic CYP1A genes on the differential metabolic activity and the resulting biological pathways is needed to explain the clinical implications of CYP1A polymorphisms. The present review is intended to provide an integrated understanding of CYP1A metabolic activity with unique substrate specificity and their involvement in physiological and pathophysiological roles. The article further emphasizes on the impact of widely studied CYP1A1 and CYP1A2 SNPs and their complex interaction with non-genetic factors like smoking and caffeine intake on multiple clinical phenotypes. Finally, we attempted to discuss the alterations in metabolism/physiology concerning the polymorphic CYP1A genes, which may underlie the reported clinical associations. This knowledge may provide insights into the disease pathogenesis, risk stratification, response to therapy and potential drug targets for individuals with certain CYP1A genotypes.
Collapse
Affiliation(s)
- Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarita Thakran
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saroj Yadav
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| | - Pooja Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Identifying polymorphic cis-regulatory variants as risk markers for lung carcinogenesis and chemotherapy responses in tobacco smokers from eastern India. Sci Rep 2023; 13:4019. [PMID: 36899086 PMCID: PMC10006236 DOI: 10.1038/s41598-023-30962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Aberrant expression of xenobiotic metabolism and DNA repair genes is critical to lung cancer pathogenesis. This study aims to identify the cis-regulatory variants of the genes modulating lung cancer risk among tobacco smokers and altering their chemotherapy responses. From a list of 2984 SNVs, prioritization and functional annotation revealed 22 cis-eQTLs of 14 genes within the gene expression-correlated DNase I hypersensitive sites using lung tissue-specific ENCODE, GTEx, Roadmap Epigenomics, and TCGA datasets. The 22 cis-regulatory variants predictably alter the binding of 44 transcription factors (TFs) expressed in lung tissue. Interestingly, 6 reported lung cancer-associated variants were found in linkage disequilibrium (LD) with 5 prioritized cis-eQTLs from our study. A case-control study with 3 promoter cis-eQTLs (p < 0.01) on 101 lung cancer patients and 401 healthy controls from eastern India with confirmed smoking history revealed an association of rs3764821 (ALDH3B1) (OR = 2.53, 95% CI = 1.57-4.07, p = 0.00014) and rs3748523 (RAD52) (OR = 1.69, 95% CI = 1.17-2.47, p = 0.006) with lung cancer risk. The effect of different chemotherapy regimens on the overall survival of lung cancer patients to the associated variants showed that the risk alleles of both variants significantly decreased (p < 0.05) patient survival.
Collapse
|
6
|
Vilčková M, Škereňová M, Dobrota D, Kaplán P, Jurečeková J, Kliment J, Híveš M, Dušenka R, Evin D, Knoško Brožová M, Kmeťová Sivoňová M. Polymorphisms in the gene encoding CYP1A2 influence prostate cancer risk and progression. Oncol Lett 2023; 25:85. [PMID: 36760517 PMCID: PMC9878356 DOI: 10.3892/ol.2023.13671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/16/2022] [Indexed: 01/18/2023] Open
Abstract
The role of the cytochrome P450 1A2 (CYP1A2) rs2472299, rs2470890 and rs11072508 polymorphisms in prostate cancer risk, disease progression and tumour development remains unclear. The potential associations of these three CYP1A2 polymorphisms and haplotypes with prostate cancer susceptibility and its clinicopathological characteristics were therefore investigated. The present case-control study consisted of 522 patients with prostate cancer and 554 healthy controls. High-resolution melting analysis was used to determine the CYP1A2 polymorphisms. No significant association in prostate cancer risk was seen for CYP1A2 rs2472299 and rs11072508. However, a significantly decreased risk of prostate cancer was found for CYP1A2 rs2470890 [odds ratio (OR), 0.67; P=0.02] in the recessive model. After analysis of the associations of clinical status and these three CYP1A2 polymorphisms, the CYP1A2 rs2470890 and rs11072508 polymorphisms showed a positive association with a higher Gleason score (rs2470890 OR, 1.36, P=0.04 in the allelic model; rs11072508 OR, 1.37, P=0.04 in the allelic model and OR, 1.60, P=0.03 in the dominant model). All three polymorphisms showed a significant positive association with pathological T stage in the additive, allelic and dominant genetic models (P<0.05). Haplotype analysis revealed that the most common haplotypes 'GTT' and 'ACC' were significantly associated with pathological T stages 3 and 4 (OR, 0.62; P=0.02 and OR, 1.54; P=0.03, respectively). A significant association was found between the 'GTT' haplotype and the Gleason score (OR, 0.71; P=0.03). In conclusion, these CYP1A2 polymorphisms and haplotypes have the potential to predict prostate cancer disease progression.
Collapse
Affiliation(s)
- Marta Vilčková
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovak Republic
| | - Mária Škereňová
- Department of Clinical Biochemistry, Jessenius Faculty of Medicine and University Hospital Martin, Comenius University in Bratislava, 03601 Martin, Slovak Republic,Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovak Republic
| | - Dušan Dobrota
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovak Republic,Department of Clinical Biochemistry, Jessenius Faculty of Medicine and University Hospital Martin, Comenius University in Bratislava, 03601 Martin, Slovak Republic
| | - Peter Kaplán
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovak Republic
| | - Jana Jurečeková
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovak Republic
| | - Ján Kliment
- Department of Urology, Jessenius Faculty of Medicine and University Hospital Martin, Comenius University in Bratislava, 03601 Martin, Slovak Republic
| | - Márk Híveš
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovak Republic
| | - Róbert Dušenka
- Department of Urology, Jessenius Faculty of Medicine and University Hospital Martin, Comenius University in Bratislava, 03601 Martin, Slovak Republic
| | - Daniel Evin
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovak Republic,Department of Nuclear Medicine, Jessenius Faculty of Medicine and University Hospital Martin, Comenius University in Bratislava, 03601 Martin, Slovak Republic
| | - Martina Knoško Brožová
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovak Republic
| | - Monika Kmeťová Sivoňová
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovak Republic,Correspondence to: Dr Monika Kmet'ová Sivoňová, Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 4D Malá Hora, 03601 Martin, Slovak Republic, E-mail:
| |
Collapse
|
7
|
Reng Q, Zhu LL, Feng L, Li YJ, Zhu YX, Wang TT, Jiang F. Dietary meat mutagens intake and cancer risk: A systematic review and meta-analysis. Front Nutr 2022; 9:962688. [PMID: 36211500 PMCID: PMC9537819 DOI: 10.3389/fnut.2022.962688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background Clinical and preclinical studies suggested that certain mutagens occurring as a reaction of creatine, amino acids, and sugar during the high temperature of cooking meat are involved in the pathogenesis of human cancer. Here we conducted a systematic review and meta-analysis to examine whether meat mutagens [PhIP, MeIQx, DiMeIQx, total HCA, and B(a)P] present a risk factor for human cancer. Methods We searched the following databases for relevant articles published from inception to 10 Oct 2021 with no language restrictions: Pubmed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), Baidu Academic, Zhejiang Digital Library. Two independent researchers screened all titles and obtained eligible texts for further screening. Independent data extraction was conducted, and meta-analysis was carried out using random-effects models to calculate the risk ratio of the meat mutagens exposure. Results A total of 1,786,410 participants and 70,653 cancer cases were identified. Among these, there were 12 different types of cancer at various sites, i.e., breast, bladder, colorectal, colon, rectum, prostate, lung, Non-Hodgkin lymphoma, kidney, gastric, esophagus, pancreatic, hepatocellular carcinoma. Cancer risk was significantly increased by intake of PhIP (OR = 1.13;95% CI 1.07–1.21; p < 0.001), MeIQx (OR = 1.14; 95% CI: 1.07–1.21; p < 0.001), DiMeIQx (OR = 1.07; 95% CI: 1.01–1.13; p = 0.013), total HCA (OR = 1.20; 95% CI: 1.03–1.38; p = 0.016), and cancer risk was not significantly increased by intake of B(a)P (OR = 1.04; 95% CI: 0.98–1.10; p = 0.206). Conclusion Meat mutagens of PhIP, MeIQx, DiMeIQx, and total HCA have a positive association with the risk of cancer. Systematic review registration [www.crd.york.ac.uk/prospero], identifier [CRD42022148856].
Collapse
|
8
|
Lin WS, Lai YJ, Nagabhushanam K, Ho CT, Pan MH. S-allylcysteine potently protects against PhIP-induced DNA damage via Nrf2/AhR signaling pathway modulation in normal human colonic mucosal epithelial cells. Mol Nutr Food Res 2022; 66:e2101141. [PMID: 35753083 DOI: 10.1002/mnfr.202101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/27/2022] [Indexed: 11/06/2022]
Abstract
SCOPE This study aimed to investigate whether S-allylcysteine (SAC) exerts chemoprophylactic effects on foodborne carcinogenicity caused by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in normal human colonic mucosal epithelial cells. METHODS AND RESULTS Cellular thermal shift assays showed that SAC had an affinity for the Keap1 protein. Moreover, SAC may also dampen the binding of Keap1 and NF-E2-related factor 2 (Nrf2) by inhibiting p-p38 and increasing the phosphorylation of ERK1/2 and AKT, thereby inducing Nrf2/HO-1 signaling and upregulating the ratio of GSH to GSH/GSSG, which inhibits PhIP-induced oxidative stress and DNA damage. In addition, SAC significantly downregulates the aryl hydrocarbon receptor signaling pathway, suggesting that SAC may potentially impede the metabolic transformation of carcinogens. CONCLUSION Collectively, these findings suggest that SAC protects against PhIP-induced reactive oxygen species production and DNA damage by modulating the Nrf2/AhR signaling pathway, which may have significant potential as a novel chemopreventive agent. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wei-Sheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Ying-Jang Lai
- Department of Food Science, National Quemoy University, Quemoy County, 89250, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, 08901-8520, USA
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan
| |
Collapse
|
9
|
Cheng T, Gamage SMK, Lu CT, Aktar S, Gopalan V, Lam AKY. Polymorphisms in PAH metabolising enzyme CYP1A1 in colorectal cancer and their clinicopathological correlations. Pathol Res Pract 2022; 231:153801. [DOI: 10.1016/j.prp.2022.153801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
|
10
|
Cheng T, Lam AK, Gopalan V. Diet derived polycyclic aromatic hydrocarbons and its pathogenic roles in colorectal carcinogenesis. Crit Rev Oncol Hematol 2021; 168:103522. [PMID: 34748942 DOI: 10.1016/j.critrevonc.2021.103522] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
Polycyclic aromatic hydrocarbon (PAHs) are molecules that contaminate meat products during the high-temperature cooking of meat. This study reviewed the pathogenic roles of meat derived polycyclic aromatic hydrocarbons in the carcinogenesis of colorectal cancer (CRC). Ingested PAHs undergo xenobiotic metabolism resulting in the activation of genotoxic metabolites that can induce DNA damage in the colorectum. Genetic polymorphisms in PAH xenobiotic enzymes are linked to the risk of CRC and suggest a role for PAH-meat ingestion in carcinogenesis of colorectal malignancies. Furthermore, PAH specific DNA adducts have been identified in colorectal cancer tissue and linked to high meat intake. DNA adduct resolution is mediated by the nucleotide excision repair, and polymorphisms within genes of this repair pathway and high meat intake are associated with increased CRC risk. In the literature, there is evidence from metabolic enzyme gene variants, DNA repair genes, PAH metabolites, and epidemiological studies suggesting PAH involvement in CRC.
Collapse
Affiliation(s)
- Tracie Cheng
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast, Queensland 4222, Australia.
| |
Collapse
|
11
|
Ibrahem SQ, Al-Dalawi ZT, Bahaaldin AS. Sequence Polymorphism in Xenobiotic Metabolising Genes in Iraqi Colorectal Cancer Patients. Asian Pac J Cancer Prev 2021; 22:1203-1210. [PMID: 33906313 PMCID: PMC8325151 DOI: 10.31557/apjcp.2021.22.4.1203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/06/2021] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES Colorectal cancer (CRC) is the third most prevalent malignant neoplasm. Genetic variations in the xenobiotic metabolising cytochrome enzymes. Family 1 Subfamily A Member 1 (CYP1A1) and Family 1 Subfamily B Member 1 (CYP1B1) might play a role in cancer pathogenesis and prognosis. The aim of this work is to determine the frequency of Single Nucleotide Polymorphisms (SNPs) in CYP1A1 (rs1048943, Ile462VaI and rs4646903/MSP1) and CYP1B1 (rs1056836, Leu432Val) genes in patients with CRC cancer. It was also an attempt to identify the association between SNPs and CRC and its stage and grade at diagnosis. METHODS This case-control study was conducted in Kirkuk/Iraq, 200 patients with CRC and 200 cancer free control subjects were enrolled. Genomic DNA was extracted from venous blood samples and screened for SNPs using Restriction Fragment Length Polymorphism (RFLP) and confirmed by the direct DNA sequencing. RESULTS The reference genotype of CYP1A1 gene rs1048943 is AA. Both the AG and GG variants were significantly more frequent in the cancer group and associated with increased risks of CRC and its later stages (stages III and IV) and poor differentiation (p <0.01). The reference genotype of CYP1A1 rs4646903 is TT. The variant genotypes, TC and CC, had no significant association with increased odds of cancer (P>0.05) or with tumour stage or its grade (p>0.05). The GG genotype of CYP1B1 rs1056836 was the reference genotype. The CG and CC variants were not associated with increased risks of CRC (P>0.05) or its stage or grade except the CG genotype which was associated with poor differentiation (OR= 3.4, 95 % CI= 1.8 -6.5, p <0.001). CONCLUSION CYP1A1 gene rs1048943 SNPs can represent a potential future marker for CRC risk prediction and prognosis. Further evaluation in large scale studies will provide greater understanding of the effects of other genes SNPs on CRC risk and prognosis. .
Collapse
Affiliation(s)
- Salih Q Ibrahem
- Department of Biochemistry, College of Medicine, Kirkuk University, Iraq.
| | | | | |
Collapse
|
12
|
Li D, Lujia Z, Liuqing Y, Yinghua L, Xiaosong H, Fang C. Acrylamide alters the miRNA profiles and miR‐27a‐5p plays the key role in multiple tissues of rats. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dong Li
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education China Agricultural University Beijing China
| | - Zhang Lujia
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education China Agricultural University Beijing China
| | - Yang Liuqing
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education China Agricultural University Beijing China
| | - Luo Yinghua
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education China Agricultural University Beijing China
| | - Hu Xiaosong
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education China Agricultural University Beijing China
| | - Chen Fang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education China Agricultural University Beijing China
| |
Collapse
|
13
|
Rehman MYA, Taqi MM, Hussain I, Nasir J, Rizvi SHH, Syed JH. Elevated exposure to polycyclic aromatic hydrocarbons (PAHs) may trigger cancers in Pakistan: an environmental, occupational, and genetic perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42405-42423. [PMID: 32875453 DOI: 10.1007/s11356-020-09088-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 04/27/2020] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds which are emitted through incomplete combustion of organic materials, fossil fuels, consumption of processed meat, smoked food, and from various industrial activities. High molecular mass and mobility make PAHs widespread and lethal for human health. A cellular system in human detoxifies these toxicants through specialized enzymatic machinery called xenobiotic-metabolizing (CYP450) and phase-II (GSTs) enzymes (XMEs). These metabolizing enzymes include cytochromes P450 family (CYP1, CYP2), glutathione s-transferases, and ALDHs. Gene polymorphisms in XMEs encoding genes can compromise their metabolizing capacity to detoxify ingested carcinogens (PAHs etc.) that may lead to prolong and elevated exposure to ingested toxicants and may consequently lead to cancer. Moreover, PAHs can induce cancer through reprograming XMEs' gene functions by altering their epigenetic markers. This review article discusses possible interplay between individual's gene polymorphism in XMEs' genes, their altered epigenetic markers, and exposure to PAHs in cancer susceptibility in Pakistan.
Collapse
Affiliation(s)
- Muhammad Yasir Abdur Rehman
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, PO, 45320, Pakistan
| | | | - Imran Hussain
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, PO, 45320, Pakistan
- Business Unit Environmental Resources and Technologies, Center for Energy, Austrian Institute of Technology (AIT), Vienna, Austria
| | - Jawad Nasir
- Earth Sciences Directorate, Pakistan Space and Upper Atmosphere Research Commission (SUPARCO), P.O. Box 8402, Karachi, 75270, Pakistan
| | - Syed Hussain Haider Rizvi
- Earth Sciences Directorate, Pakistan Space and Upper Atmosphere Research Commission (SUPARCO), P.O. Box 8402, Karachi, 75270, Pakistan
| | - Jabir Hussain Syed
- Department of Meteorology, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, 45550, Pakistan.
| |
Collapse
|
14
|
Nastasi C, Mannarino L, D’Incalci M. DNA Damage Response and Immune Defense. Int J Mol Sci 2020; 21:E7504. [PMID: 33053746 PMCID: PMC7588887 DOI: 10.3390/ijms21207504] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023] Open
Abstract
DNA damage is the cause of numerous human pathologies including cancer, premature aging, and chronic inflammatory conditions. The DNA damage response (DDR), in turn, coordinates DNA damage checkpoint activation and promotes the removal of DNA lesions. In recent years, several studies have shown how the DDR and the immune system are tightly connected, revealing an important crosstalk between the two of them. This interesting interplay has opened up new perspectives in clinical studies for immunological diseases as well as for cancer treatment. In this review, we provide an overview, from cellular to molecular pathways, on how DDR and the immune system communicate and share the crucial commitment of maintaining the genomic fitness.
Collapse
Affiliation(s)
- Claudia Nastasi
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| | | | - Maurizio D’Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| |
Collapse
|
15
|
Mensah DO, Nunes AR, Bockarie T, Lillywhite R, Oyebode O. Meat, fruit, and vegetable consumption in sub-Saharan Africa: a systematic review and meta-regression analysis. Nutr Rev 2020; 79:651-692. [PMID: 32556305 DOI: 10.1093/nutrit/nuaa032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CONTEXT The dietary choices people make affect personal health and have consequences for the environment, both of which have serious implications for the 2030 Sustainable Development Agenda. In global reviews, the literature on meat, fruit, and vegetable consumption in sub-Saharan Africa (SSA) is limited. OBJECTIVE This systematic review set out to quantify meat, fruit, and vegetable consumption in SSA populations and to answer the following question: How much meat, fruit, and/or vegetables are being consumed daily by which individuals in SSA over the years? DATA SOURCES Following the PRISMA guidelines, the authors systematically searched the MEDLINE, EMBASE, ASSIA CINAHL, Web of Science, POPLINE, and Google Scholar databases to identify 47 (out of 5922 search results) studies reporting meat, fruit, and/or vegetable consumption in SSA populations. DATA EXTRACTION Three independent investigators extracted data on year of data collection, study country, study population and geographical context, and population intake of meat, fruit, and/or vegetables. DATA ANALYSIS Using STATA SE version 15 software, random-effects meta-regression analyses were used to test the effect of year of data collection and method of data collection on population meat, fruit, and vegetable consumption. The analyses also tested any association between age, sex, rural/urban residence, or a country's economic development and population intake of meat, fruits, and/or vegetables. The review was started in 2017 and completed in 2019. RESULTS Richer SSA countries were likely to consume more meat (ß = 36.76, P = 0.04) and vegetables (ß =43.49, P = 0.00) than poorer countries. Vegetable intake has increased dramatically over the last 3 decades from ≈10 g to ≈110 g (ß = 4.43, P = 0.00). Vegetable (ß= -25.48, P = 0.00) consumption was higher in rural than in urban residents. Although the trend of meat consumption has risen (≈25 g to ≈75 g), the trend is nonsignificant (ß = 0.63, N.S.). Daily average per capita meat consumption was 98 g - above the 70 g recommendation - while fruit and vegetable intake (268 g) remain below the World Health Organization's recommendation (400 g). CONCLUSIONS Given the low intake of plant-based foods, it is likely that SSA populations may be deficient in high-quality protein and micronutrients as suggested by the EAT-Lancet Commission. There is a need to promote both an adequate supply and demand of plant-based protein and micronutrients, including fruit, vegetables, nuts, seeds, and legumes, in SSA countries. While dietary changes in SSA may offer large absolute benefits, consideration of the magnitude of dietary change, particularly increasing or reducing meat consumption, will need to occur in a way that ensures that policy and interventions support the reduction of undernutrition and micronutrient deficiencies without worsening the prevalence and environmental impacts of noncommunicable diseases. There is also the need for preventive action that ensures that SSA populations do not increase their meat consumption as disposable incomes increase and countries' economic development rises, as is seen in most countries undergoing economic transformation. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42018090497.
Collapse
Affiliation(s)
- Daniel O Mensah
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Ana R Nunes
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Tahir Bockarie
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Rob Lillywhite
- School of Life Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Oyinlola Oyebode
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
16
|
Budhathoki S, Iwasaki M, Yamaji T, Hamada GS, Miyajima NT, Zampieri JC, Sharma S, Pakseresht M, Kolahdooz F, Ishihara J, Takachi R, Charvat H, Le Marchand L, Tsugane S. Doneness preferences, meat and meat-derived heterocyclic amines intake, and N-acetyltransferase 2 polymorphisms: association with colorectal adenoma in Japanese Brazilians. Eur J Cancer Prev 2020; 29:7-14. [PMID: 30913095 PMCID: PMC6761046 DOI: 10.1097/cej.0000000000000506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intake of heterocyclic amines (HCAs) and other mutagenic compounds formed during cooking has been hypothesized to be responsible for the positive association observed between red meat and colorectal cancer. We evaluated whether well-done/very well-done preferences for various meat and fish items, higher intakes of meat and fish, and meat-derived and fish-derived HCA are associated with the risk of colorectal adenoma (CRA) in a Japanese-Brazilian population. We selected 302 patients with adenoma and 403 control individuals who underwent total colonoscopy between 2007 and 2013, and collected information on aspects of meat intake using a detailed questionnaire. We also estimated HCA intake of the study participants using an HCA database that matched the cooking methods of this population. Latent class analysis on the basis of response to doneness preferences for different cooking methods of commonly consumed meat and fish items identified four distinct subgroups. Compared with the subgroup characterized by a preference for rare/medium well-done cooking for most meat and fish items, the odds ratio of CRA for the well-done/very well-done preference subgroup was 1.19 (95% confidence interval: 0.51-2.75). High intake of mixed-meat dishes was suggestively associated inversely with CRA, whereas a high intake of poultry was associated positively with CRA. No clear association with intake of total or specific HCAs and no effect modification by N-acetyltransferase 2 acetylation genotype were observed. We found no statistically significant associations between meat and HCA intake and CRA. These findings do not support a positive association between meat and meat-derived HCA intake and the risk of CRA.
Collapse
Affiliation(s)
- Sanjeev Budhathoki
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Motoki Iwasaki
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Taiki Yamaji
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | | | | | | | - Sangita Sharma
- Indigenous and Global Health Research Group, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Mohammadreza Pakseresht
- Indigenous and Global Health Research Group, Department of Medicine, University of Alberta, Edmonton, Canada
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Canada
| | - Fariba Kolahdooz
- Indigenous and Global Health Research Group, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Junko Ishihara
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Ribeka Takachi
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Hadrien Charvat
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Loïic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Shoichiro Tsugane
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| |
Collapse
|
17
|
Tylichová Z, Neča J, Topinka J, Milcová A, Hofmanová J, Kozubík A, Machala M, Vondráček J. n-3 Polyunsaturated fatty acids alter benzo[a]pyrene metabolism and genotoxicity in human colon epithelial cell models. Food Chem Toxicol 2018; 124:374-384. [PMID: 30572064 DOI: 10.1016/j.fct.2018.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/30/2018] [Accepted: 12/14/2018] [Indexed: 12/23/2022]
Abstract
Dietary carcinogens, such as benzo[a]pyrene (BaP), are suspected to contribute to colorectal cancer development. n-3 Polyunsaturated fatty acids (PUFAs) decrease colorectal cancer risk in individuals consuming diets rich in PUFAs. Here, we investigated the impact of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid on metabolism and genotoxicity of BaP in human cell models derived from the colon: HT-29 and HCT-116 cell lines. Both PUFAs reduced levels of excreted BaP metabolites, in particular BaP-tetrols and hydroxylated BaP metabolites, as well as formation of DNA adducts in HT-29 and HCT-116 cells. However, EPA appeared to be a more potent inhibitor of formation of some intracellular BaP metabolites, including BaP-7,8-dihydrodiol. EPA also reduced phosphorylation of histone H2AX (Ser139) in HT-29 cells, which indicated that it may reduce further forms of DNA damage, including DNA double strand breaks. Both PUFAs inhibited induction of CYP1 activity in colon cells determined as 7-ethoxyresorufin-O-deethylase (EROD); this was at least partly linked with inhibition of induction of CYP1A1, 1A2 and 1B1 mRNAs. The downregulation and/or inhibition of CYP1 enzymes by PUFAs could thus alter metabolism and reduce genotoxicity of BaP in human colon cells, which might contribute to known chemopreventive effects of PUFAs in colon epithelium.
Collapse
Affiliation(s)
- Zuzana Tylichová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Neča
- Veterinary Research Institute, Brno, Czech Republic
| | - Jan Topinka
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Milcová
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiřina Hofmanová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
18
|
Zapletal O, Procházková J, Dubec V, Hofmanová J, Kozubík A, Vondráček J. Butyrate interacts with benzo[a]pyrene to alter expression and activities of xenobiotic metabolizing enzymes involved in metabolism of carcinogens within colon epithelial cell models. Toxicology 2018; 412:1-11. [PMID: 30439556 DOI: 10.1016/j.tox.2018.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/30/2018] [Accepted: 11/08/2018] [Indexed: 01/24/2023]
Abstract
Butyrate helps to maintain colon homeostasis and exhibits chemopreventive effects in colon epithelium. We examined the interactive effects of butyrate and benzo[a]pyrene (BaP), dietary carcinogen, in regulation of expression of a panel of phase I and II xenobiotic metabolizing enzymes (XMEs) in human colon cells. In human colon carcinoma HCT-116 and HT-29 cell lines, butyrate alone increased mRNA levels of some enzymes, such as N-acetyltransferases (in particular NAT2). In combination with BaP, butyrate potentiated induction of cytochrome P450 family 1 enzymes (CYP1A1), aldo-keto reductases (AKR1C1) or UDP-glucuronosyltransferases (UGT1A1). There were some notable differences between cell lines, as butyrate potentiated induction of NAD(P)H:quinone oxidoreductase 1 (NQO1) and UGT1A4 only in HCT-116 cells, and it even repressed AKR1C3 induction in HT-29 cells. Butyrate also promoted induction of CYP1, NQO1, NAT2, UGT1A1 or UGT1A4 in human colon Caco-2 cells, in a differentiation-dependent manner. Differentiated Caco-2 cells exhibited a higher inducibility of selected XME genes than undifferentiated cells. Butyrate increased induction of enzymatic activities of NATs, NQO1 and UGTs by BaP in HCT-116 and HT29 cells, whereas in differentiated Caco-2 cells it helped to increase only enzymatic activity of NQO1 and UGTs. Together, the present data suggest that butyrate may modulate expression/activities of several enzymes involved in metabolism of carcinogens in colon. In some cases (NAT2, UGT1 A1), this was linked to inhibition of histone deacetylases (HDAC), as confirmed by using HDAC inhibitor trichostatin A. These results may have implications for our understanding of the role of butyrate in regulation of XMEs and carcinogen metabolism in colon.
Collapse
Affiliation(s)
- Ondřej Zapletal
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Vít Dubec
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| | - Jiřina Hofmanová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic.
| |
Collapse
|
19
|
Barnes JL, Zubair M, John K, Poirier MC, Martin FL. Carcinogens and DNA damage. Biochem Soc Trans 2018; 46:1213-1224. [PMID: 30287511 PMCID: PMC6195640 DOI: 10.1042/bst20180519] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022]
Abstract
Humans are variously and continuously exposed to a wide range of different DNA-damaging agents, some of which are classed as carcinogens. DNA damage can arise from exposure to exogenous agents, but damage from endogenous processes is probably far more prevalent. That said, epidemiological studies of migrant populations from regions of low cancer risk to high cancer risk countries point to a role for environmental and/or lifestyle factors playing a pivotal part in cancer aetiology. One might reasonably surmise from this that carcinogens found in our environment or diet are culpable. Exposure to carcinogens is associated with various forms of DNA damage such as single-stand breaks, double-strand breaks, covalently bound chemical DNA adducts, oxidative-induced lesions and DNA-DNA or DNA-protein cross-links. This review predominantly concentrates on DNA damage induced by the following carcinogens: polycyclic aromatic hydrocarbons, heterocyclic aromatic amines, mycotoxins, ultraviolet light, ionising radiation, aristolochic acid, nitrosamines and particulate matter. Additionally, we allude to some of the cancer types where there is molecular epidemiological evidence that these agents are aetiological risk factors. The complex role that carcinogens play in the pathophysiology of cancer development remains obscure, but DNA damage remains pivotal to this process.
Collapse
Affiliation(s)
- Jessica L Barnes
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, U.K
| | - Maria Zubair
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, U.K
| | - Kaarthik John
- Carcinogen-DNA Interactions Section, LCBG, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, U.S.A
| | - Miriam C Poirier
- Carcinogen-DNA Interactions Section, LCBG, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, U.S.A.
| | - Francis L Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, U.K.
| |
Collapse
|
20
|
Martínez Góngora V, Matthes KL, Castaño PR, Linseisen J, Rohrmann S. Dietary Heterocyclic Amine Intake and Colorectal Adenoma Risk: A Systematic Review and Meta-analysis. Cancer Epidemiol Biomarkers Prev 2018; 28:99-109. [DOI: 10.1158/1055-9965.epi-17-1017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 03/20/2018] [Accepted: 09/20/2018] [Indexed: 11/16/2022] Open
|
21
|
Zhao Z, Yin Z, Hang Z, Zhang C, Zhao Q. Association between red and processed meat intake and colorectal adenoma incidence and recurrence: a systematic review and meta-analysis. Oncotarget 2018; 9:32373-32382. [PMID: 30190793 PMCID: PMC6122348 DOI: 10.18632/oncotarget.23561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 10/28/2017] [Indexed: 01/11/2023] Open
Abstract
The associations between red and processed meat intake and colorectal adenoma (CRA) incidence and recurrence are inconclusive. We performed a systematic review and meta-analysis to analysis these associations. We conducted a systematic search of PubMed, EMBASE and Web of Science up to December 2016. The relative risks (RRs) and 95% confidence intervals (CIs) were assessed. Subgroup analyses, dose-response-analyses, subtype analyses and analyses of CRA locations were also conducted. Twenty-seven studies that involved 208,117 participants and 19,150 cases met criteria. The RRs of the highest versus lowest intakes for CRA incidence were 1.23 (1.15–1.31) for red meat and 1.15 (1.07–1.24) for processed meat. Dose-response analyses for meat per 100 g/day yielded the results were consistent with the original analyses, with 1.14 (1.07–1.20) for red meat and 1.27 (1.03–1.50) for processed meat. Additionally, there were no associations between red and processed meat intake and CRA recurrence, including total CRA (P > 0.05), advanced CRA (P > 0.05) and multiple CRA (P > 0.05). In conclusion, our findings support the hypothesis that red and processed meat intake was associated with an increased CRA incidence but not for CRA recurrence.
Collapse
Affiliation(s)
- Zhanwei Zhao
- Department of Surgery, Navy General Hospital of PLA, Beijing, China.,Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Zifang Yin
- Department of Obstetrics, Northwestern Women and Children's Hospital, Shaanxi Province, China
| | - Zhenning Hang
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Chaojun Zhang
- Department of Surgery, Navy General Hospital of PLA, Beijing, China
| | - Qingchuan Zhao
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
22
|
Chen YS, Wang R, Dashwood WM, Löhr CV, Williams DE, Ho E, Mertens-Talcott S, Dashwood RH. A miRNA signature for an environmental heterocyclic amine defined by a multi-organ carcinogenicity bioassay in the rat. Arch Toxicol 2017; 91:3415-3425. [PMID: 28289824 PMCID: PMC5836314 DOI: 10.1007/s00204-017-1945-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/23/2017] [Indexed: 12/16/2022]
Abstract
Heterocyclic amines (HCAs) produced during high-temperature cooking have been studied extensively in terms of their genotoxic/genetic effects, but recent work has implicated epigenetic mechanisms involving non-coding RNAs. Colon tumors induced in the rat by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) have altered microRNA (miRNA) signatures linked to dysregulated pluripotency factors, such as c-Myc and Krüppel-like factor 4 (KLF4). We tested the hypothesis that dysregulated miRNAs from PhIP-induced colon tumors would provide a "PhIP signature" for use in other target organs obtained from a 1-year carcinogenicity bioassay in the rat. Downstream targets that were corroborated in the rat were then investigated in human cancer datasets. The results confirmed that multiple let-7 family members were downregulated in PhIP-induced skin, colon, lung, small intestine, and Zymbal's gland tumors, and were associated with c-myc and Hmga2 upregulation. PhIP signature miRNAs with the profile mir-21high/mir-126low/mir-29clow/mir-215low/mir-145low were linked to reduced Klf4 levels in rat tumors, and in human pan-cancer and colorectal cancer. It remains to be determined whether this PhIP signature has predictive value, given that more than 20 different genotoxic HCAs are present in the human diet, plus other agents that likely induce or repress many of the same miRNAs. Future studies should define more precisely the miRNA signatures of other HCAs, and their possible value for human risk assessment.
Collapse
Affiliation(s)
- Ying-Shiuan Chen
- Center for Epigenetics and Disease Prevention, Texas A&M University College of Medicine, 2121 W Holcombe Blvd., Houston, TX, 77030, USA
| | - Rong Wang
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Wan-Mohaiza Dashwood
- Center for Epigenetics and Disease Prevention, Texas A&M University College of Medicine, 2121 W Holcombe Blvd., Houston, TX, 77030, USA
| | - Christiane V Löhr
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - David E Williams
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Susanne Mertens-Talcott
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roderick H Dashwood
- Center for Epigenetics and Disease Prevention, Texas A&M University College of Medicine, 2121 W Holcombe Blvd., Houston, TX, 77030, USA.
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Molecular and Cellular Medicine, Texas A&M College of Medicine, College Station, TX, USA.
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
23
|
Carr PR, Holleczek B, Stegmaier C, Brenner H, Hoffmeister M. Meat intake and risk of colorectal polyps: results from a large population-based screening study in Germany. Am J Clin Nutr 2017; 105:1453-1461. [PMID: 28468894 DOI: 10.3945/ajcn.116.148304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/27/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Red and processed meats have been shown to be associated with colorectal adenomas in many, but not all, studies, and the association according to the type of colorectal adenoma or the location in the colorectum is unclear.Objectives: We investigated the association of meat intake in relation to colorectal polyps and further investigated the association according to histologic subtypes and subsites in a large population-based screening study in Germany.Design: In this cross-sectional study, 15,950 participants aged ≥55 y underwent a screening colonoscopy. We calculated prevalence ratios (PRs) and 95% CIs for associations between meat intake and the most-advanced findings from a colonoscopy with the use of log binomial regression.Results: Overall, 3340 participants (20.4%) had nonadvanced adenomas, 1643 participants (10.0%) had advanced adenomas, and 189 participants (1.2%) had colorectal cancer. We observed no statistically significant association between red or processed meat consumption and the prevalence of any adenomas or advanced adenomas [highest compared with lowest: red meat, PR: 1.07 (95% CI: 0.83, 1.37); processed meat, PR: 1.11 (95% CI: 0.91, 1.36)]. In site-specific analyses, although no dose-response relation was observed, processed meat was positively associated with the prevalence of advanced adenomas in the rectum only (multiple times per day compared with <1 time/wk, PR: 1.87; 95% CI: 1.19, 2.95). Poultry intake was not associated with any outcome.Conclusions: On the basis of this large colonoscopy-based study, there are no significant associations between red or processed meat intake and the prevalence of any adenomas or advanced adenomas. However, processed meat may be positively associated with the prevalence of advanced adenomas in the rectum, but prospective cohort studies are needed to further clarify this association. There is no association between poultry consumption and the prevalence of colorectal polyps in this study.
Collapse
Affiliation(s)
| | | | | | - Hermann Brenner
- Divisions of Clinical Epidemiology and Aging Research and.,Preventive Oncology and.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; and
| | | |
Collapse
|
24
|
Chiavarini M, Bertarelli G, Minelli L, Fabiani R. Dietary Intake of Meat Cooking-Related Mutagens (HCAs) and Risk of Colorectal Adenoma and Cancer: A Systematic Review and Meta-Analysis. Nutrients 2017; 9:nu9050514. [PMID: 28524104 PMCID: PMC5452244 DOI: 10.3390/nu9050514] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/08/2017] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
Much evidence suggests that the positive association between meat intake and colorectal adenoma (CRA) and cancer (CRC) risk is mediated by mutagenic compounds generated during cooking at high temperature. A number of epidemiological studies have estimated the effect of meat-related mutagens intake on CRC/CRA risk with contradictory and sometimes inconsistent results. A literature search was carried out (PubMed, Web of Science and Scopus) to identify articles reporting the relationship between the intake of meat-related mutagens (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f] quinoxaline: DiMeIQx, benzo(a) pyrene (B(a)P) and "meat derived mutagenic activity" (MDM)) and CRC/CRA risk. A random-effect model was used to calculate the risk association. Thirty-nine studies were included in the systematic review and meta-analysis. Polled CRA risk (15229 cases) was significantly increased by intake of PhIP (OR = 1.20; 95% CI: 1.13,1.28; p < 0.001), MeIQx (OR = 1.14; 95% CI: 1.05,1.23; p = 0.001), DiMeIQx (OR = 1.13; 95% CI: 1.05,1.21; p = 0.001), B(a)P (OR = 1.10; 95% CI: 1.02,1.19; p = 0.017) and MDM (OR = 1.17; 95% CI: 1.07,1.28; p = 0.001). A linear and curvilinear trend was observed in dose-response meta-analysis between CRA risk in association with PhIP, MDM, and MeIQx. CRC risk (21,344 cases) was increased by uptake of MeIQx (OR = 1.14; 95% CI: 1.04,1.25; p = 0.004), DiMeIQx (OR = 1.12; 95% CI: 1.02,1.22; p = 0.014) and MDM (OR = 1.12; 95% CI: 1.06,1.19; p < 0.001). No publication bias could be detected, whereas heterogeneity was in some cases rather high. Mutagenic compounds formed during cooking of meat at high temperature may be responsible of its carcinogenicity.
Collapse
Affiliation(s)
- Manuela Chiavarini
- Department of Experimental Medicine, University of Perugia, 06123 Perugia, Italy.
| | - Gaia Bertarelli
- Department of Economics, University of Perugia, 06123 Perugia, Italy.
| | - Liliana Minelli
- Department of Experimental Medicine, University of Perugia, 06123 Perugia, Italy.
| | - Roberto Fabiani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy.
| |
Collapse
|
25
|
Polonikov AV, Bushueva OY, Bulgakova IV, Freidin MB, Churnosov MI, Solodilova MA, Shvetsov YD, Ivanov VP. A comprehensive contribution of genes for aryl hydrocarbon receptor signaling pathway to hypertension susceptibility. Pharmacogenet Genomics 2017; 27:57-69. [PMID: 27977510 DOI: 10.1097/fpc.0000000000000261] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The present study was designed to investigate whether genetic polymorphisms of the aryl hydrocarbon receptor (AHR) signaling pathway are involved in the molecular basis of essential hypertension (EH). METHODS A total of 2160 unrelated Russian individuals comprising 1341 EH patients and 819 healthy controls were recruited into the study. Seven common AHR pathway single-nucleotide polymorphisms (SNPs) such as rs2066853, rs2292596, rs2228099, rs1048943, rs762551, rs1056836, and rs1800566 were genotyped by TaqMan-based allele discrimination assays. RESULTS We found that SNP rs2228099 of ARNT is associated with an increased risk of EH (odds ratio=1.20 95% confidence interval: 1.01-1.44, P=0.043) in a dominant genetic model, whereas polymorphism rs762551 of CYP1A2 showed an association with a decreased risk of disease in a recessive genetic model (odds ratio=0.68, 95% confidence interval: 0.52-0.89, P=0.006). A log-likelihood ratio test enabled identification of epistatic interaction effects on EH susceptibility for all SNPs. MB-MDR analysis showed that cigarette smoking, rs1048943, rs762551, rs1056836, and rs2228099 were significant contributing factors in 19, 18, 13, 13, and 11 interaction models, respectively. The best MDR model associated with EH risk included rs1048943, rs762551, rs1056836, and cigarette smoking (cross-validation consistency 100%, prediction error 45.7%, Ppermutation<0.0001). The mRNA expression and in-silico function prediction analyses have confirmed a regulatory potential for a majority of SNPs associated with EH susceptibility. CONCLUSION Our pilot study was the first to show that gene-gene and gene-environment interactions in the AHR signaling pathway represent important determinants for the development of EH, and the pathway may become an attractive target for a pharmacological intervention in hypertensive patients in the future.
Collapse
Affiliation(s)
- Alexey V Polonikov
- aDepartment of Biology, Medical Genetics and Ecology bLaboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk cPopulation Genetics Laboratory, Research Institute for Medical Genetics, Tomsk dDepartment of Medical Biological Disciplines, Belgorod State University, Belgorod, Russian Federation
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
In first part of this study, a systematic review was designed to explore the involvement of CYP1A1 and GSTP1 genes in breast cancerogenesis. Based on systematic review, we designed a study to screen CYP1A1 and GSTP1 genes for mutation and their possible association with breast carcinogenesis. A total of 400 individuals were collected and analyzed by PCR-SSCP. After sequence analysis of coding region of CYP1A1 we identified eleven mutations in different exons of respective gene. Among these eleven mutations, ~3 folds increased breast cancer risk was found associated with Asp82Glu mutation (OR 2.99; 95% CI 1.26-7.09), with Ser83Thr mutation (OR 2.99; 95% CI 1.26-7.09) and with Glu86Ala mutation (OR 3.18; 95% CI 1.27-7.93) in cancer patients compared to controls. Furthermore, ~4 folds increase in breast cancer risk was found associated with Asp347Glu, Phe398Tyr and 5178delT mutations (OR 3.92; 95% CI 1.35-11.3) in patients compared to controls. The sequence analysis of GSTP1 resulted in identification of total five mutations. Among these five mutations, ~3 folds increase in breast cancer risk was observed associated with 1860G>A mutation, with 1861-1876delCAGCCCTCTGGAGTGG mutation (OR 2.70; 95% CI 1.10-6.62) and with 1861C>A mutation (OR 2.97; 95% CI 1.01-8.45) in cancer patients compared to controls. Furthermore, ~5 folds increase in breast cancer risk was associated with 1883G>T mutation (OR 4.75; 95% CI 1.46-15.3) and ~6 folds increase in breast cancer risk was found associated with Iso105Val mutation (OR 6.43; 95% CI 1.41-29.3) in cancer patients compared to controls. Our finding, based on systematic review and experimental data suggest that the polymorphic CYP1A1 and GSTP1 genes may contribute to risk of developing breast cancer.
Collapse
|
27
|
Procopciuc LM, Osian G, Iancu M. N-acetyl transferase 2/environmental factors and their association as a modulating risk factor for sporadic colon and rectal cancer. J Clin Lab Anal 2016; 31. [PMID: 27883249 DOI: 10.1002/jcla.22098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/26/2016] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the association between environmental factors and colon or rectal cancer after adjusting for N-acetyl transferase 2 (NAT2) phenotypes. METHODS Ninety-six patients with sporadic colon cancer, 54 with sporadic rectal cancer and 162 control subjects were genotyped for NAT2-T341C, G590A, G857A, A845C, and C481T using sequencing and PCR-RFLP analysis. RESULTS The risk for colon cancer was increased in carriers of the homozygous negative genotypes for NAT2*5C-T341C, NAT2*6B-G590A, NAT2*7B-G857A, NAT2*18-A845C, and NAT2*5A-C481T. The risk for rectal cancer was increased in carriers of the homozygous negative genotypes for NAT2*5C-T341C, NAT2*7B-G857A, and NAT2*5A-C481T. High fried red meat intake associated with NAT2-T341C, G590A, G857A, A845C, and C481T rapid acetylator allele determines a risk of 2.39 (P=.002), 2.39 (P=.002), 2.37 (P=.002), 2.28 (P=.004), and 2.51 (P=.001), respectively, for colon cancer, whereas in the case of rectal cancer, the risk increased to 7.55 (P<.001), 7.7 (P<.001), 7.83 (P<.001), 7.51 (P<.001), and 8.62 (P<.001), respectively. Alcohol consumption associated with the NAT2 -T341C, G590A, G857A, A845C, and C481T rapid acetylator allele induces a risk of 10.63 (P<.001), 12.04 (P<.001), 9.76 (P<.001), 10.25 (P<.001), and 9.54 (P<.001), respectively, for colon cancer, whereas the risk for rectal cancer is 9.72 (P<.001), 11.24 (P<.001), 13.07 (P<.001), 10.04 (P<.001), and 9.43 (P<.001), respectively. Smokers with NAT2-T341C, G590A, G857A, A845C, and C481T rapid acetylator allele have a risk of 4.87, 4.25, 4.18, 3.81, and 3.82, respectively, to develop colon cancer. CONCLUSIONS Fried red meat, alcohol, and smoking increase the risk of sporadic CRC, especially of colon cancer, in the case of rapid acetylators for the NAT2 variants.
Collapse
Affiliation(s)
- Lucia M Procopciuc
- Department of Medical Biochemistry, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gelu Osian
- Multi Organ Transplant Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Mihaela Iancu
- Department of Medical Informatics and Biostatistics, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
28
|
Sekimoto M, Sumi H, Hosaka T, Umemura T, Nishikawa A, Degawa M. Aryl hydrocarbon receptor activation and CYP1A induction by cooked food-derived carcinogenic heterocyclic amines in human HepG2 cell lines. Food Chem Toxicol 2016; 97:256-264. [DOI: 10.1016/j.fct.2016.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/28/2016] [Accepted: 09/15/2016] [Indexed: 11/27/2022]
|
29
|
Hong CH, Lee CH, Yu HS, Huang SK. Benzopyrene, a major polyaromatic hydrocarbon in smoke fume, mobilizes Langerhans cells and polarizes Th2/17 responses in epicutaneous protein sensitization through the aryl hydrocarbon receptor. Int Immunopharmacol 2016; 36:111-117. [PMID: 27129092 DOI: 10.1016/j.intimp.2016.04.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 01/27/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common disease with genetic and environmental interactions. We previously reported lifetime exposure to cigarette smoke is associated with adult-onset AD. Aryl hydrocarbon receptor (AhR) is important in regulating environmental exposure to xenobiotics, including benzopyrenes (BP), a major polycyclic aromatic hydrocarbon (PAH) present in cigarette smoke. However, how AhR regulates immune responses in sensitization phase of AD remained elusive. METHODS We investigated how BP affects epicutaneous sensitization response through AhR axis. We compared AhR expression in skin from AD patients and healthy controls. We measured immune responses (Langerhans cell migration and T cell polarization in epicutaneous Ova sensitization in mice with or without AhR defect. RESULTS We found AhR and ARNT (AhR nuclear translocator) are upregulated in AD skin. BP exposure increases Langerhans cell migration, and increases IL-5, IL-13, and IL-17 levels when lymph node cells were re-challenged with Ova. The increased cytokine levels were attenuated in AhR defected mice. AhR agonists (BP and ITE) decreased E-cadherin expression, while AhR antagonist (CH223191) increased it in human primary keratinocytes. CONCLUSIONS These results suggested AhR interacts with BP to polarize T cell responses, along with Langerhans cell migration. This study revealed a regulatory mechanism how cigarette smoking affects atopic sensitization through the benzopyrene-AhR interaction.
Collapse
Affiliation(s)
- Chien-Hui Hong
- Department of Dermatology, National Yang Ming University, Taipei, Taiwan; Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung, Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Dermatology, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Su Yu
- Department of Dermatology, Kaohsiung Medical University, Kaohsiung, Taiwan; National Health Research Institute, Miao-Li, Taiwan
| | - Shau-Ku Huang
- National Health Research Institute, Miao-Li, Taiwan.
| |
Collapse
|
30
|
Qi GZ, Zhang ZY, Wang X, Yin SJ, Lou YQ, Zhang GL. Functional allele and genotype frequencies of CYP1A2
,CYP2B6
and iNOS
among mainland Chinese Tibetan, Mongolian, Uygur and Han populations. J Clin Pharm Ther 2016; 41:84-91. [DOI: 10.1111/jcpt.12351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022]
Affiliation(s)
- G.-Z. Qi
- Department of Pharmacology; Basic Medical School; Beijing (Peking) University; Beijing China
| | - Z.-Y. Zhang
- Department of Pharmacology; Basic Medical School; Beijing (Peking) University; Beijing China
| | - X. Wang
- Department of Pharmacology; Basic Medical School; Beijing (Peking) University; Beijing China
| | - S.-J. Yin
- Department of Pharmacology; Basic Medical School; Beijing (Peking) University; Beijing China
| | - Y.-Q. Lou
- Department of Pharmacology; Basic Medical School; Beijing (Peking) University; Beijing China
| | - G.-L. Zhang
- Department of Pharmacology; Basic Medical School; Beijing (Peking) University; Beijing China
| |
Collapse
|
31
|
Kachuri L, Villeneuve PJ, Parent MÉ, Johnson KC, Harris SA. Workplace exposure to diesel and gasoline engine exhausts and the risk of colorectal cancer in Canadian men. Environ Health 2016; 15:4. [PMID: 26762540 PMCID: PMC4712563 DOI: 10.1186/s12940-016-0088-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/10/2016] [Indexed: 05/26/2023]
Abstract
BACKGROUND The International Agency for Research on Cancer (IARC) classified diesel exhaust as carcinogenic to humans (Group 1) and gasoline exhaust as a possible carcinogen (Group 2B) based studies of lung cancer, however the evidence for other sites is limited. We addressed this question by investigating exposure to diesel and gasoline emissions with respect to risk of colorectal cancer in men. METHODS We used data from a population-based case-control study with incident cases of colon (n = 931) and rectal (n = 840) cancer and 1360 controls from 7 Canadian provinces conducted in 1994-1997. Lifetime occupational history and information on other risk factors was collected. Occupational hygienists, blinded to case-control status, assigned exposures to each job for 3 dimensions: concentration, frequency, and reliability. Logistic regression was used to estimate odds ratios (OR) and their 95 % confidence intervals (CI), adjusted for age, province, use of proxy respondents, smoking, body-mass index, physical activity, intake of alcohol, processed meats, and occupational exposure to asbestos and aromatic amines. RESULTS Among CRC cases, 638 (36 %) were exposed to diesel and 814 (46 %) were exposed to gasoline emissions. Relative to the unexposed, elevated risks were observed among subjects ever exposed to high concentration levels of diesel emissions for colorectal cancer (OR = 1.65, 95 % CI = 0.98-2.80) and rectal cancer (OR = 1.98, 95 % CI = 1.09-3.60), but not colon cancer. Prolonged (>10 years) exposure at high concentrations was also associated with high risks of rectal cancer (OR = 2.33 95 % CI = 0.94-5.78; p-trend = 0.02). No statistically significant associations were observed for gasoline emissions. CONCLUSIONS Our findings suggest that sustained high-level exposure diesel emissions may increase the risk of rectal cancer.
Collapse
Affiliation(s)
- Linda Kachuri
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, 6th Floor, Toronto, ON, M5T 3 M7, Canada.
- Occupational Cancer Research Centre, Cancer Care Ontario, 525 University Avenue, 3rd Floor, Toronto, ON, M5G 2 L3, Canada.
- Prevention and Cancer Control, Cancer Care Ontario, 620 University Ave, Toronto, ON, M5G 2 L7, Canada.
| | - Paul J Villeneuve
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, 6th Floor, Toronto, ON, M5T 3 M7, Canada.
- Occupational Cancer Research Centre, Cancer Care Ontario, 525 University Avenue, 3rd Floor, Toronto, ON, M5G 2 L3, Canada.
- CHAIM Research Centre, Carleton University, 5435 Herzberg Laboratories, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| | - Marie-Élise Parent
- INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, University of Quebec, 531 boul. des Prairies, Édifice 12, Laval, QC, H7V 1B7, Canada.
| | - Kenneth C Johnson
- Department of Epidemiology and Community Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, ON, K1H 8 M5, Canada.
| | - Shelley A Harris
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, 6th Floor, Toronto, ON, M5T 3 M7, Canada.
- Occupational Cancer Research Centre, Cancer Care Ontario, 525 University Avenue, 3rd Floor, Toronto, ON, M5G 2 L3, Canada.
- Prevention and Cancer Control, Cancer Care Ontario, 620 University Ave, Toronto, ON, M5G 2 L7, Canada.
| |
Collapse
|
32
|
Melkonian SC, Daniel CR, Ye Y, Tannir NM, Karam JA, Matin SF, Wood CG, Wu X. Gene-environment interaction of genome-wide association study-identified susceptibility loci and meat-cooking mutagens in the etiology of renal cell carcinoma. Cancer 2015; 122:108-15. [PMID: 26551148 DOI: 10.1002/cncr.29543] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 11/05/2022]
Abstract
BACKGROUND Meat-cooking mutagens may be associated with renal cell carcinoma (RCC) risk. In the current study, the authors examined associations between meat-cooking mutagens, genetic susceptibility variants, and risk of RCC. METHODS The authors used 659 newly diagnosed RCC cases and 699 healthy controls to investigate the association between dietary intake of meat-cooking mutagens and RCC. They examined whether associations varied by risk factors for RCC and genetic susceptibility variants previously identified from genome-wide association studies. Odds ratios and 95% confidence intervals were estimated using tertiles of intake of dietary polycyclic aromatic hydrocarbons/heterocyclic amines. RESULTS Dietary intake of the mutagenic compounds 2-amino-3,8-dimethylimidazo-(4,5-f) quinoxaline (MeIQx) and 2-amino-1 methyl-6-phenylimidazo(4,5-b)pyridine (PhIP) were found to be significantly associated with an increased risk of RCC (odds ratios across tertiles: 1.00 [referent], 1.28 [95% confidence interval, 0.94-1.74], and 1.95 [95% confidence interval, 1.43-2.66] [P for trend <.001], respectively; and 1.00 [referent], 1.41 [95% confidence interval, 1.04-1.90], and 1.54 [95% confidence interval, 1.14-2.07] [P for trend =.02], respectively). The authors observed evidence of interactions between PhIP and RCC susceptibility variants in 2 genes: inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) (rs718314; multiplicative P for interaction = .03 and additive P for interaction =.002) and endothelial PAS domain-containing protein 1 (EPAS1) (rs7579899; additive P for interaction =.06). CONCLUSIONS The intake of meat may increase the risk of RCC through mechanisms related to the cooking compounds MeIQx and PhIP. These associations may be modified by genetic susceptibility to RCC. Further research is necessary to understand the biological mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Stephanie C Melkonian
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carrie R Daniel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jose A Karam
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Surena F Matin
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher G Wood
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
33
|
Beyerle J, Frei E, Stiborova M, Habermann N, Ulrich CM. Biotransformation of xenobiotics in the human colon and rectum and its association with colorectal cancer. Drug Metab Rev 2015; 47:199-221. [PMID: 25686853 DOI: 10.3109/03602532.2014.996649] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In humans, the liver is generally considered to be the major organ contributing to drug metabolism, but studies during the last years have suggested an important role of the extra-hepatic drug metabolism. The gastrointestinal tract (GI-tract) is the major path of entry for a wide variety of compounds including food, and orally administered drugs, but also compounds - with neither nutrient nor other functional value - such as carcinogens. These compounds are metabolized by a large number of enzymes, including the cytochrome P450 (CYP), the glutathione S-transferase (GST) family, the uridine 5'-diphospho- glucuronosyltransferase (UDP-glucuronosyltransferase - UGT) superfamily, alcohol-metabolizing enzymes, sulfotransferases, etc. These enzymes can either inactivate carcinogens or, in some cases, generate reactive species with higher reactivity compared to the original compound. Most data in this field of research originate from animal or in vitro studies, wherein human studies are limited. Here, we review the human studies, in particular the studies on the phenotypic expression of these enzymes in the colon and rectum to get an impression of the actual enzyme levels in this primary organ of exposure. The aim of this review is to give a summary of currently available data on the relation between the CYP, the GST and the UGT biotransformation system and colorectal cancer obtained from clinical and epidemiological studies in humans.
Collapse
Affiliation(s)
- Jolantha Beyerle
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | | | | | | | | |
Collapse
|
34
|
Budhathoki S, Iwasaki M, Yamaji T, Sasazuki S, Takachi R, Sakamoto H, Yoshida T, Tsugane S. Dietary Heterocyclic Amine Intake, NAT2 Genetic Polymorphism, and Colorectal Adenoma Risk: The Colorectal Adenoma Study in Tokyo. Cancer Epidemiol Biomarkers Prev 2015; 24:613-20. [DOI: 10.1158/1055-9965.epi-14-1051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
35
|
Ananthakrishnan AN, Du M, Berndt SI, Brenner H, Caan BJ, Casey G, Chang-Claude J, Duggan D, Fuchs CS, Gallinger S, Giovannucci EL, Harrison TA, Hayes RB, Hoffmeister M, Hopper JL, Hou L, Hsu L, Jenkins MA, Kraft P, Ma J, Nan H, Newcomb PA, Ogino S, Potter JD, Seminara D, Slattery ML, Thornquist M, White E, Wu K, Peters U, Chan AT. Red meat intake, NAT2, and risk of colorectal cancer: a pooled analysis of 11 studies. Cancer Epidemiol Biomarkers Prev 2015; 24:198-205. [PMID: 25342387 PMCID: PMC4294960 DOI: 10.1158/1055-9965.epi-14-0897] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Red meat intake has been associated with risk of colorectal cancer, potentially mediated through heterocyclic amines. The metabolic efficiency of N-acetyltransferase 2 (NAT2) required for the metabolic activation of such amines is influenced by genetic variation. The interaction between red meat intake, NAT2 genotype, and colorectal cancer has been inconsistently reported. METHODS We used pooled individual-level data from the Colon Cancer Family Registry and the Genetics and Epidemiology of Colorectal Cancer Consortium. Red meat intake was collected by each study. We inferred NAT2 phenotype based on polymorphism at rs1495741, highly predictive of enzyme activity. Interaction was assessed using multiplicative interaction terms in multivariate-adjusted models. RESULTS From 11 studies, 8,290 colorectal cancer cases and 9,115 controls were included. The highest quartile of red meat intake was associated with increased risk of colorectal cancer compared with the lowest quartile [OR, 1.41; 95% confidence interval (CI), 1.29-1.55]. However, a significant association was observed only for studies with retrospective diet data, not for studies with diet prospectively assessed before cancer diagnosis. Combining all studies, high red meat intake was similarly associated with colorectal cancer in those with a rapid/intermediate NAT2 genotype (OR, 1.38; 95% CI, 1.20-1.59) as with a slow genotype (OR, 1.43; 95% CI, 1.28-1.61; P interaction = 0.9). CONCLUSION We found that high red meat intake was associated with increased risk of colorectal cancer only from retrospective case-control studies and not modified by NAT2 enzyme activity. IMPACT Our results suggest no interaction between NAT2 genotype and red meat intake in mediating risk of colorectal cancer.
Collapse
Affiliation(s)
| | - Mengmeng Du
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sonja I Berndt
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany. German Cancer Consortium, Heidelberg, Germany
| | | | - Graham Casey
- University of Southern California, Los Angeles, California
| | - Jenny Chang-Claude
- German Cancer Consortium, Heidelberg, Germany. Division of Cancer Epidemiology, German Cancer Research Center (DFKZ), Heidelberg, Germany
| | - David Duggan
- Translational Genomics Research Institute, Phoenix, Arizona
| | - Charles S Fuchs
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts. Channing Division of Network Medicine, Boston, Massachusetts
| | - Steven Gallinger
- Mount Sinai Hospital and University Health Network Toronto General Hospital, Toronto, Canada
| | - Edward L Giovannucci
- Channing Division of Network Medicine, Boston, Massachusetts. Harvard School of Public Health, Boston, Massachusetts
| | | | | | | | - John L Hopper
- Melbourne School of Population Health, The University of Melbourne, Australia
| | - Lifang Hou
- Department of Preventive Medicine and The Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Evanston, Illinois
| | - Li Hsu
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mark A Jenkins
- Melbourne School of Population Health, The University of Melbourne, Australia
| | - Peter Kraft
- Harvard School of Public Health, Boston, Massachusetts
| | - Jing Ma
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts. Channing Division of Network Medicine, Boston, Massachusetts
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Simon Cancer Center, Indiana University, Indianapolis, Indiana
| | | | - Shuji Ogino
- Channing Division of Network Medicine, Boston, Massachusetts. Harvard School of Public Health, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - John D Potter
- Fred Hutchinson Cancer Research Center, Seattle, Washington. University of Washington School of Public Health, Seattle, Washington. Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Daniela Seminara
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | - Emily White
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kana Wu
- Channing Division of Network Medicine, Boston, Massachusetts. Harvard School of Public Health, Boston, Massachusetts
| | - Ulrike Peters
- Fred Hutchinson Cancer Research Center, Seattle, Washington. University of Washington School of Public Health, Seattle, Washington.
| | - Andrew T Chan
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
36
|
Ho V, Peacock S, Massey TE, Ashbury JE, Vanner SJ, King WD. Meat-derived carcinogens, genetic susceptibility and colorectal adenoma risk. GENES AND NUTRITION 2014; 9:430. [PMID: 25231222 DOI: 10.1007/s12263-014-0430-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/06/2014] [Indexed: 01/30/2023]
Abstract
Exposure to heterocyclic aromatic amines (HAAs), carcinogens produced when meat is cooked at high temperatures, is an emerging risk factor for colorectal cancer (CRC). In a cross-sectional study of 342 patients undergoing a screening colonoscopy, the role of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (DiMeIQx), the three most abundant HAAs found in cooked meats, and total mutagenic activity in cooked meats were examined in relation to colorectal adenoma risk. Given that genetic differences in the ability to biotransform HAAs and repair DNA are postulated to modify the HAA-CRC relationship, gene-diet interactions were also examined. Among the total study population, no relationships were observed between dietary HAAs or meat mutagenicity, and colorectal adenoma risk; however, in males, positive associations between dietary HAAs/meat mutagenicity exposures and adenoma risk were suggestive of a relationship. In a separate analysis, polymorphisms in CYP1B1 were found to be associated with colorectal adenoma risk. Additionally, gene-diet interactions were observed for dietary PhIP and polymorphisms in CYP1B1 and XPD, dietary DiMeIQx and XPD polymorphisms, and meat mutagenicity exposure and CYP1B1 polymorphisms. Overall, increased colorectal adenoma risk was observed with higher HAA/meat mutagenicity exposures among those with polymorphisms which confer greater activity to biotransform HAAs and/or lower ability to repair DNA. This research supports the link between dietary HAAs and genetic susceptibility in colorectal adenoma etiology. The vast majority of CRCs arise from colorectal adenomas; thus, the results of this study suggest that changes in meat preparation practices limiting the production of HAAs may be beneficial for CRC prevention.
Collapse
Affiliation(s)
- Vikki Ho
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, H2X 0A9, Canada,
| | | | | | | | | | | |
Collapse
|
37
|
He XF, Wei J, Liu ZZ, Xie JJ, Wang W, Du YP, Chen Y, Si HQ, Liu Q, Wu LX, Wei W. Association between CYP1A2 and CYP1B1 polymorphisms and colorectal cancer risk: a meta-analysis. PLoS One 2014; 9:e100487. [PMID: 25115775 PMCID: PMC4130485 DOI: 10.1371/journal.pone.0100487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/25/2014] [Indexed: 12/31/2022] Open
Abstract
Background The previous published data on the association between CYP1A2*F (rs762551), CYP1B1 Leu432Val (rs1056836), Asn453Ser (rs180040), and Arg48Gly (rs10012) polymorphisms and colorectal cancer risk remained controversial. Methodology/Principal Findings The purpose of this study is to evaluate the role of CYP1A2*F, CYP1B1 Leu432Val, Asn453Ser, and Arg48Gly genotypes in colorectal cancer susceptibility. We performed a meta-analysis on all the eligible studies that provided 5,817 cases and 6,544 controls for CYP1A2*F (from 13 studies), 9219 cases and 10406 controls for CYP1B1 Leu432Val (from 12 studies), 6840 cases and 7761 controls for CYP1B1 Asn453Ser (from 8 studies), and 4302 cases and 4791 controls for CYP1B1Arg48Gly (from 6 studies). Overall, no significant association was found between CYP1A2*F, CYP1B1 Leu432Val, Asn453Ser, and Arg48Gly and colorectal cancer risk when all the eligible studies were pooled into the meta-analysis. And in the subgroup by ethnicity and source of controls, no evidence of significant association was observed in any subgroup analysis. Conclusions/Significance In summary, this meta-analysis indicates that CYP1A2*F, CYP1B1 Leu432Val, Asn453Ser, and Arg48Gly polymorphisms do not support an association with colorectal cancer, and further studies are needed to investigate the association. In addition, our work also points out the importance of new studies for CYP1A2*F polymorphism in Asians, because high heterogeneity was found (dominant model: I2 = 81.3%; heterozygote model: I2 = 79.0).
Collapse
Affiliation(s)
- Xiao-Feng He
- Department of Research, Peace Hospital of Changzhi Medical College, Changzhi, Shanxi Province, China
- * E-mail:
| | - Jie Wei
- Department of Clinical laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zhi-Zhong Liu
- Department of Gastroenterology, The Second People's Hospital of Zhuhai, Zhuhai, Guangdong Province, China
| | - Jian-Jun Xie
- Department of Gastroenterology, The Second People's Hospital of Zhuhai, Zhuhai, Guangdong Province, China
| | - Wei Wang
- Department of Gastroenterology, The Second People's Hospital of Zhuhai, Zhuhai, Guangdong Province, China
| | - Ya-Ping Du
- Department of Gastroenterology, The Second People's Hospital of Zhuhai, Zhuhai, Guangdong Province, China
| | - Yu Chen
- Department of Gastroenterology, The Second People's Hospital of Zhuhai, Zhuhai, Guangdong Province, China
| | - Hui-Qiang Si
- Department of Gastroenterology, The Second People's Hospital of Zhuhai, Zhuhai, Guangdong Province, China
| | - Qing Liu
- Department of Gastroenterology, The Second People's Hospital of Zhuhai, Zhuhai, Guangdong Province, China
| | - Li-Xia Wu
- Department of Research, Peace Hospital of Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Wu Wei
- Department of Hematology, Peace Hospital of Changzhi Medical College, Changzhi, Shanxi Province, China
| |
Collapse
|
38
|
Schembre SM, Cheng I, Wilkens LR, Albright CL, Le Marchand L. Variations in bitter-taste receptor genes, dietary intake, and colorectal adenoma risk. Nutr Cancer 2013; 65:982-90. [PMID: 24083639 PMCID: PMC3836614 DOI: 10.1080/01635581.2013.807934] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Genetic variants in bitter-taste receptor genes have been hypothesized to negatively impact health outcomes and/or influence dietary intake and, consequently, could increase the risk of colorectal neoplasia. Using a case-control study of 914 colorectal adenoma cases/1188 controls, we explored associations among colorectal adenoma risk, dietary intake, and genetic variation in 3 bitter-taste receptor genes: TAS2R38 (rs713598, rs1726866, rs10246939), TAS2R16 (rs846672), and TAS2R50 (rs1376251). Analysis of covariance was conducted to detect trends in dietary intake across TAS2R genotypes/haplotypes. Odds ratios and 95% confidence intervals were estimated by logistic regression to test gene-adenoma risk associations. No significant associations were observed between the TAS2R38 PAV/PAV diplotype or the TAS2R16 (rs846672) polymorphism with the selected diet variables. We observed weak inverse associations between the TAS2R50 (rs1376251) C allele and dietary fiber and vegetable intake (Ps < 0.015). Odds ratios for adenoma risk were not significantly different from the null. Our findings do not support a link between these TAS2R genotypes/haplotypes and dietary intake that could impact colorectal adenoma risk. However, given the paucity of data, we cannot dismiss the possibility that these genes may influence colorectal adenoma risk in other ways, such as through impaired gastrointestinal function, particularly in subgroups of the population.
Collapse
Affiliation(s)
- Susan M. Schembre
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Iona Cheng
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| | - Lynne R. Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| | - Cheryl L. Albright
- School of Nursing and Dental Hygiene, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| |
Collapse
|
39
|
quantitative assessment of the influence of cytochrome P450 1A2 gene polymorphism and colorectal cancer risk. PLoS One 2013; 8:e71481. [PMID: 23951174 PMCID: PMC3741149 DOI: 10.1371/journal.pone.0071481] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/28/2013] [Indexed: 01/01/2023] Open
Abstract
Cytochrome P450 1A2 (CYP1A2) encodes a member of the cytochrome P450 superfamily of enzymes, which play a central role in activating and detoxifying many carcinogens and endogenous compounds thought to be involved in the development of colorectal cancer (CRC). The CYP1A2*C (rs2069514) and CYP1A2*F (rs762551) polymorphism are two of the most commonly studied polymorphisms of the gene for their association with risk of CRC, but the results are conflicting. To derive a more precise estimation of the relationship between CYP1A2 and genetic risk of CRC, we performed a comprehensive meta-analysis which included 7088 cases and 7568 controls from 12 published case-control studies. In a combined analysis, the summary per-allele odds ratio for CRC was 0.91 (95% CI: 0.83-1.00, P = 0.04), and 0.91 (95% CI: 0.68-1.22, P = 0.53), for CYP1A2 *F and *C allele, respectively. In the subgroup analysis by ethnicity, significant associations were found in Asians for CYP1A2*F and CYP1A2*C, while no significant associations were detected among Caucasian populations. Similar results were also observed using dominant genetic model. Potential sources of heterogeneity were explored by subgroup analysis and meta-regression. No significant heterogeneity was detected in most of comparisons. This meta-analysis suggests that the CYP1A2 *F and *C polymorphism is a protective factor against CRC among Asians.
Collapse
|
40
|
Fu Z, Shrubsole MJ, Li G, Smalley WE, Hein DW, Cai Q, Ness RM, Zheng W. Interaction of cigarette smoking and carcinogen-metabolizing polymorphisms in the risk of colorectal polyps. Carcinogenesis 2013; 34:779-86. [PMID: 23299405 PMCID: PMC3616674 DOI: 10.1093/carcin/bgs410] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/28/2012] [Accepted: 12/18/2012] [Indexed: 12/20/2022] Open
Abstract
The causal role of cigarette smoking in the risk of colorectal neoplasm has been suggested but not established. In a case-control study including 2060 colorectal polyp patients and 3336 polyp-free controls, we evaluated 21 functional genetic variants to construct a tobacco-carcinogen-metabolizing genetic risk score. Data regarding cigarette smoking were obtained through telephone interviews. Cigarette smoking was associated with an elevated risk of both adenomas and hyperplastic polyps. The association with smoking was stronger in participants with a high carcinogen-metabolizing risk score than those with a low risk score. Smoking 30 or more cigarettes per day was associated with a 1.7-fold elevated risk of any polyps (95% confidence interval = 1.3-2.2) among those with a low genetic risk score and 2.9-fold elevated risk (95% confidence interval = 1.8-4.8) among those with a high genetic risk score (P interaction = 0.025). A similar pattern of interaction was observed in analyses conducted separately for those with adenomas only (P interaction = 0.039) and hyperplastic polyps only (P interaction = 0.024). Interaction between carcinogen-metabolizing genetic risk and cigarette smoking was found in relation to high-risk adenomas (P interaction = 0.010) but not low-risk adenomas (P interaction = 0.791). No apparent interaction was found for duration of smoking. This study shows that the association between cigarette smoking and colorectal polyp risk is modified by tobacco-carcinogen-metabolizing polymorphisms, providing support for a causal role of cigarette smoking in the etiology of colorectal tumors.
Collapse
Affiliation(s)
- Zhenming Fu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Martha J. Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Guoliang Li
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Walter E. Smalley
- VA Tennessee Valley Geriatric Research, Education and Clinical Center, Nashville, TN, USA
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA and
| | - David W. Hein
- Department of Pharmacology & Toxicology, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Reid M. Ness
- VA Tennessee Valley Geriatric Research, Education and Clinical Center, Nashville, TN, USA
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA and
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
41
|
Aune D, Chan DSM, Vieira AR, Navarro Rosenblatt DA, Vieira R, Greenwood DC, Kampman E, Norat T. Red and processed meat intake and risk of colorectal adenomas: a systematic review and meta-analysis of epidemiological studies. Cancer Causes Control 2013; 24:611-27. [PMID: 23380943 DOI: 10.1007/s10552-012-0139-z] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 12/21/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND Current evidence indicates that red and processed meat intake increases the risk of colorectal cancer; however, the association with colorectal adenomas is unclear. OBJECTIVE To conduct a systematic review and meta-analysis of epidemiological studies of red and processed meat intake and risk of colorectal adenomas as part of the Continuous Update Project of the World Cancer Research Fund. DESIGN PubMed and several other databases were searched for relevant studies from their inception up to 31 December 2011. Summary relative risks (RRs) were estimated using a random effects model. RESULTS Nineteen case-control studies and seven prospective studies were included in the analyses. The summary RR per 100 g/day of red meat was 1.27 (95 % CI 1.16-1.40, I (2) = 5 %, n = 16) for all studies combined, 1.20 (95 % CI 1.06-1.36, I (2) = 0 %, n = 6) for prospective studies, and 1.34 (95 % CI 1.12-1.59, I (2) = 31 %, n = 10) for case-control studies. The summary RR per 50 g/day of processed meat intake was 1.29 (95 % CI 1.10-1.53, I (2) = 27 %, n = 10) for all studies combined, 1.45 (95 % CI 1.10-1.90, I (2) = 0 %, n = 2) for prospective studies, and 1.23 (95 % CI 0.99-1.52, I (2) = 37 %, n = 8) for case-control studies. There was evidence of a nonlinear association between red meat (p nonlinearity < 0.001) and processed meat (p nonlinearity = 0.01) intake and colorectal adenoma risk. CONCLUSION These results indicate an elevated risk of colorectal adenomas with intake of red and processed meat, but further prospective studies are warranted.
Collapse
Affiliation(s)
- Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St. Mary's Campus, Norfolk Place, Paddington, London, W2 1PG, UK.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Voutsinas J, Wilkens LR, Franke A, Vogt TM, Yokochi LA, Decker R, Le Marchand L. Heterocyclic amine intake, smoking, cytochrome P450 1A2 and N-acetylation phenotypes, and risk of colorectal adenoma in a multiethnic population. Gut 2013; 62:416-22. [PMID: 22628494 PMCID: PMC4491437 DOI: 10.1136/gutjnl-2011-300665] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Heterocyclic amines (HAA) are animal carcinogens that are present in meat cooked at high temperature and in tobacco smoke. These compounds require activation by cytochrome P450 1A2 (CYP1A2) and N-acetyltransferase-2 (NAT2) before they can damage DNA. This study tested the hypotheses that well-done meat and cigarette smoking increase the risk of adenoma, the precursor to most colorectal cancers, especially in individuals with rapid CYP1A2 and rapid NAT2 activities. DESIGN An endoscopy-based case-control study of adenoma was conducted among Caucasians, Japanese and native Hawaiians to test this hypothesis. The overall diet and consumption of well-done meat cooked by various high-temperature methods were assessed by interview in 1016 patients with a first adenoma and 1355 controls with a normal endoscopy. A caffeine test was used to assess CYP1A2 and NAT2 activities in 635 cases and 845 controls. Logistic regression was used to account for matching factors and potential confounders. RESULTS Smoking was associated with an increased risk of adenoma. Weak non-significant elevated OR were observed for the main effects of HAA intakes or NAT2 activity. However, the combined effects of HAA intakes and NAT2 activity were statistically significant. Subjects in both the upper tertiles of NAT2 activity and HAA intake were at increased risk of adenoma compared with subjects in the lower tertiles of NAT2 activity and exposure (2-amino-3,4,8-dimethylimidazo[4,5-f]quinoxaline intake OR 1.70, 95% CI I 1.06 to 2.75; 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline intake OR 1.91, 95% CI 1.16 to 3.16; and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine intake OR 2.14, 95% CI 1.31 to 3.49). CONCLUSION The data suggest that rapid N-acetylators with high HAA intake may be at increased risk of adenoma.
Collapse
Affiliation(s)
| | | | - Adrian Franke
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | | | - Lance A Yokochi
- Pacific Health Research and Education Institute, Honolulu, Hawaii, USA
| | | | | |
Collapse
|
43
|
The aryl hydrocarbon receptor (AhR) 1661G>A polymorphism in human cancer: A meta-analysis. Gene 2013; 513:225-30. [DOI: 10.1016/j.gene.2012.09.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 08/01/2012] [Accepted: 09/12/2012] [Indexed: 12/27/2022]
|
44
|
Wang H, Zhang Z, Han S, Lu Y, Feng F, Yuan J. CYP1A2 rs762551 polymorphism contributes to cancer susceptibility: a meta-analysis from 19 case-control studies. BMC Cancer 2012; 12:528. [PMID: 23157985 PMCID: PMC3526566 DOI: 10.1186/1471-2407-12-528] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 11/08/2012] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Genetic polymorphism (rs762551A>C) in gene encoding cytochrome P450 1A2 (CYP1A2) has been shown to influence the inducibility of CYP1A2 expression and thus might be associated with risk of several types of human cancer. However, the results of previous studies on the associations of this polymorphism with risk of cancer are not all consistent. To clarify the potential contribution of CYP1A2 rs762551 to cancer risk, we performed a meta-analysis of the published case-control studies. METHODS We used PubMed, Embase, OVID, ScienceDirect, and Chinese National Knowledge Infrastructure databases to identify the related publications for this meta-analysis. The pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using random effect model to evaluate the association of rs762551 with cancer risk. A χ(2)-based Q-test was used to examine the heterogeneity assumption and the funnel plot and Egger's test were used to examine the potential publication bias. The leave-one-out sensitivity analysis was conducted to determine whether our assumptions or decisions have a major effect on the results of the review. RESULTS Our analysis of 19 eligible case-control studies showed a significant association between rs762551C variant with risk of cancer in the genetic model of CC versus AA (OR = 1.30, 95% CI = 1.02-1.64) and the dominant model (OR = 1.19, 95% CI = 1.04-1.36). In subgroup analysis based on ethnicity, the rs762551CC genotype was associated with increased cancer risk (OR = 1.29, 95% CI = 1.27-1.63 in co-dominate model and OR = 1.17, 95% CI = 1.02-1.34 in dominant model in Caucasians, but not in Asians and the mixed population. CONCLUSION These results suggested that CYP1A2 rs762551 polymorphism is likely to be associated with susceptibility to cancer in Caucasians.
Collapse
Affiliation(s)
- Hongge Wang
- Department of Epidemiology, College of Public Health, Hebei United University, Tangshan 063000, China
| | | | | | | | | | | |
Collapse
|
45
|
Fu Z, Shrubsole MJ, Li G, Smalley WE, Hein DW, Chen Z, Shyr Y, Cai Q, Ness RM, Zheng W. Using gene-environment interaction analyses to clarify the role of well-done meat and heterocyclic amine exposure in the etiology of colorectal polyps. Am J Clin Nutr 2012; 96:1119-28. [PMID: 23015320 PMCID: PMC3471199 DOI: 10.3945/ajcn.112.040345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The role of well-done meat intake and meat-derived mutagen heterocyclic amine (HCA) exposure in the risk of colorectal neoplasm has been suggested but not yet established. OBJECTIVE With the use of gene-environment interaction analyses, we sought to clarify the association of HCA exposure with colorectal polyp risk. DESIGN In a case-control study including 2057 colorectal polyp patients and 3329 controls, we evaluated 16 functional genetic variants to construct an HCA-metabolizing score. To derive dietary HCA-exposure amount, data were collected regarding dietary intake of meat by cooking method and degree of doneness. RESULTS A 2-fold elevated risk associated with high red meat intake was found for colorectal polyps or adenomas in subjects with a high HCA-metabolizing risk score, whereas the risk was 1.3- to 1.4-fold among those with a low risk score (P-interaction ≤ 0.05). The interaction was stronger for the risk of advanced or multiple adenomas, in which an OR of 2.8 (95% CI: 1.8, 4.6) was observed for those with both a high HCA-risk score and high red meat intake (P-interaction = 0.01). No statistically significant interaction was found in analyses that used specific HCA exposure derived from dietary data. CONCLUSION High red meat intake is associated with an elevated risk of colorectal polyps, and this association may be synergistically modified by genetic factors involved in HCA metabolism.
Collapse
Affiliation(s)
- Zhenming Fu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhuo W, Zhang L, Qiu Z, Cai L, Zhu B, Chen Z. Association of NAT2 polymorphisms with risk of colorectal adenomas: Evidence from 3,197 cases and 4,681 controls. Exp Ther Med 2012; 4:895-900. [PMID: 23226745 PMCID: PMC3493788 DOI: 10.3892/etm.2012.695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/29/2012] [Indexed: 12/14/2022] Open
Abstract
Previous studies have implicated NAT2 polymorphisms as risk factors for various types of cancer. Colorectal adenomas are recognized as a pre-neoplastic lesion. A growing body of research documenting the association of NAT2 polymorphisms with the risk of colorectal adenomas has yielded conflicting results. The aim of the present study was to derive a more precise estimation of this association. Meta-analyses assessing the association of NAT2 variants with colorectal adenomas were conducted and subgroup analyses on smoking status and the source of the controls were also performed. Eligible studies were identified for the period before March 2012. A total of seven case-control studies, including 3,197 cases and 4,681 controls, were selected following extensive searching and screening. In the overall data, no associations between NAT2 polymorphisms and colorectal adenomas were observed [odds ratio (OR), 1.04; 95% confidence interval (CI), 0.90-1.21]. However, in the subgroup analysis concerning smoking status, slow acetylator variants were revealed to be correlated with increased colorectal adenoma risk in individuals who have smoked (OR, 1.31; 95% CI, 1.04-1.64). In conclusion, the data of the present study suggested that NAT2 polymorphisms may be a risk factor for colorectal adenomas in individuals who have a history of smoking.
Collapse
Affiliation(s)
- Wenlei Zhuo
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University
| | | | | | | | | | | |
Collapse
|
47
|
Mei Q, Zhou D, Han J, Lu H, Tang B. CYP1B1 Asn453Ser polymorphism and colorectal cancer risk: a meta-analysis. Metabolism 2012; 61:1321-9. [PMID: 22459615 DOI: 10.1016/j.metabol.2012.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/12/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
Studies investigating the association between cytochrome P450 1B1 (CYP1B1) Asn453Ser (453 A/G, rs1800440) polymorphism and colorectal cancer (CRC) risk report conflicting results. The aim of this study was to quantitatively summarize the evidence for such a relationship. Two investigators independently searched the Medline and Embase Databases. Summary odds ratios (ORs) and 95% confidence intervals (95% CIs) for CYP1B1 polymorphism and CRC were calculated in a fixed-effects model (the Mantel-Haenszel method) and a random-effects model (the DerSimonian and Laird method) when appropriate. The pooled ORs were performed for co-dominant model (GG vs AA, GA vs AA), dominant model (GG+GA vs AA), and recessive model (GG vs GA+AA). This meta-analysis included 7 case-control studies, which included 6375 CRC cases and 7003 controls. Overall, the variant genotypes (GG and GA) of the 453 A/G were not associated with CRC risk when compared with the wild-type AA homozygote (GG vs AA, OR=0.94, 95% CI=0.77-1.14; GA vs AA, OR=0.99, 95% CI=0.87-1.12). Similarly, no associations were found in the dominant and recessive models (dominant model, OR=0.98, 95% CI=0.87-1.09; recessive model, OR=0.94, 95% CI=0.77-1.14). When stratifying for country, study sample size, matched control and source of controls, no evidence of significant association was observed in any subgroup, except among those studies from "Canada". No publication bias was found in the present study. No association was found between the CYP1B1 Asn453Ser polymorphism and risk of CRC among Caucasians.
Collapse
Affiliation(s)
- Qiang Mei
- 4th team of Cadet Brigade, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | |
Collapse
|
48
|
Liu J, Ding D, Wang X, Chen Y, Li R, Zhang Y, Luo R. N-acetyltransferase polymorphism and risk of colorectal adenoma and cancer: a pooled analysis of variations from 59 studies. PLoS One 2012; 7:e42797. [PMID: 22905173 PMCID: PMC3419224 DOI: 10.1371/journal.pone.0042797] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 07/11/2012] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND There have been an increasing number of studies with evidence suggesting that the N-acetyltransferase 1 (NAT1) and N-acetyltransferase 2 (NAT2) genotypes may be implicated in the development of colorectal cancer (CRC) and colorectal adenoma (CRA). So far the published data on this association has remained controversial, however. We performed a meta-analysis of case-cohort and case-control studies using a subset of the published data, with an aim to derive a better understanding of the underlying relationship. METHODS/PRINCIPAL FINDINGS A literature search was performed using Medline database for relevant studies published through October 31, 2011. A total of 39 publications were selected for this meta-analysis, including 11,724 cases and 16,215 controls for CRC, and 3,701 cases and 5,149 controls for CRA. In our pooled analysis of all these studies, the results of our meta-analysis suggested that the NAT1 genotype was not significantly associated with an elevated CRC risk (OR 0.99, 95% CI 0.91-1.07). We also found that individuals with the rapid NAT2 genotype did have an elevated risk of CRC (OR 1.07, 95% CI 1.01-1.13). There was no evidence for an association between the NAT1 and 2 rapid genotype and an elevated CRA risk (NAT1: OR 1.14, 95% CI 0.99-1.29; NAT2: OR 0.94, 95% CI 0.86-1.03). CONCLUSION This meta-analysis suggests that individuals with NAT2 genotype had an elevated risk of CRC. There was no evidence for the association between NAT1 and 2 rapid genotype and CRA risk.
Collapse
Affiliation(s)
- Jinxin Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, GuangZhou, China
- Department of Oncology, Longgang District Central Hospital of ShenZhen, ShenZhen, China
| | - Dapeng Ding
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | - Xiaoxue Wang
- Department of Proctology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yizhi Chen
- Department of Health Records, Longgang District Central Hospital of ShenZhen, ShenZhen, China
| | - Rong Li
- Department of Oncology, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - Ying Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Rongcheng Luo
- Department of Oncology, Nanfang Hospital, Southern Medical University, GuangZhou, China
| |
Collapse
|
49
|
Barbir A, Linseisen J, Hermann S, Kaaks R, Teucher B, Eichholzer M, Rohrmann S. Effects of phenotypes in heterocyclic aromatic amine (HCA) metabolism-related genes on the association of HCA intake with the risk of colorectal adenomas. Cancer Causes Control 2012; 23:1429-42. [PMID: 22740027 DOI: 10.1007/s10552-012-0017-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Heterocyclic aromatic amines (HCA), formed by high-temperature cooking of meat, are well-known risk factors for colorectal cancer (CRC). Enzymes metabolizing HCAs may influence the risk of CRC depending on the enzyme activity level. We aimed to assess effect modification by polymorphisms in the HCA-metabolizing genes on the association of HCA intake with colorectal adenoma (CRA) risk, which are precursors of CRC. METHODS A case-control study nested in the EPIC-Heidelberg cohort was conducted. Between 1994 and 2005, 413 adenoma cases were identified and 796 controls were matched to cases. Genotypes were determined and used to predict phenotypes (i.e., enzyme activities). Odds ratios (OR) and corresponding 95 % confidence intervals (CI) were calculated by logistic regression analysis. RESULTS CRA risk was positively associated with PhIP, MeIQx, and DiMeIQx (p trend = 0.006, 0.022, and 0.045, respectively) intake. SULT1A1 phenotypes modified the effect of MeIQx on CRA risk (p (Interaction) > 0.01) such that the association of MeIQx intake with CRA was stronger for slow than for normal phenotypes. Other modifying effects by phenotypes did not reach statistical significance. CONCLUSIONS HCA intake is positively associated with CRA risk, regardless of phenotypes involved in the metabolizing process. Due to the number of comparisons made in the analysis, the modifying effect of SULT1A1 on the association of HCA intake with CRA risk may be due to chance.
Collapse
Affiliation(s)
- Aline Barbir
- Division of Cancer Epidemiology and Prevention, Institute of Social and Preventive Medicine, University of Zurich, Hirschengraben 84, 8001 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
50
|
Association of variants in genes involved in environmental chemical metabolism and risk of cryptorchidism and hypospadias. J Hum Genet 2012; 57:434-41. [PMID: 22648180 DOI: 10.1038/jhg.2012.48] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We hypothesized that single-nucleotide polymorphisms (SNPs) of genes involved in environmental endocrine disruptors (EEDs) metabolism might influence the risk of male genital malformations. In this study, we explored for association between 384 SNPs in 15 genes (AHR, AHRR, ARNT, ARNT2, NR1I2, RXRA, RXRB, RXRG, CYP1A1, CYP1A2, CYP1B1, CYP2B6, CYP3A4, CYP17A1 and CYP19A1) and risk of cryptorchidism (CO) and hypospadias (HS) in 334 Japanese (JPN) males (141 controls, 95 CO and 98 HS) and 187 Italian (ITA) males (129 controls and 58 CO). In the JPN study group, five SNPs from ARNT2 (rs2278705 and rs5000770), CYP1A2 (rs2069521), CYP17A1 (rs4919686) and NR1I2 (rs2472680) were significantly associated at both allelic and genotypic levels with risk of at least one genital malformation phenotype. In the ITA study group, two SNPs in AHR (rs3757824) and ARNT2 (rs1020397) were significantly associated with risk of CO. Interaction analysis of the positive SNPs using multifactor dimensionality reduction demonstrated that synergistic interaction between rs2472680, rs4919686 and rs5000770 had 62.81% prediction accuracy for CO (P=0.011) and that between rs2069521 and rs2278705 had 69.98% prediction accuracy for HS (P=0.001) in JPN population. In a combined analysis of JPN and ITA population, the most significant multi-locus association was observed between rs5000770 and rs3757824, which had 65.70% prediction accuracy for CO (P=0.055). Our findings indicate that genetic polymorphisms in genes involved in EED metabolism are associated with risk of CO and HS.
Collapse
|