1
|
Sheng T, Shen RL, Shao H, Ma TH. Citrus fruit intake and incidence of renal cell carcinoma: A meta-analysis of observational studies. Asia Pac J Clin Oncol 2024; 20:143-151. [PMID: 36658686 DOI: 10.1111/ajco.13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/09/2021] [Accepted: 12/28/2022] [Indexed: 01/21/2023]
Abstract
Observational studies on the association between citrus fruit intake and risk of renal cell carcinoma (RCC) have reported inconsistent results. We quantitatively assessed this association by conducting a meta-analysis. PubMed and Embase databases search was conducted including relevant studies published up to January, 2020. We included epidemiological studies that reported relative risks (RRs) or odds ratios (ORs) with 95% confidence intervals (CIs) for the association between citrus fruit intake and RCC risk. A total of eight epidemiological studies consisting of five cohort and three case-control studies were included. The overall analysis showed a significantly reduced risk of RCC for high intake of citrus fruit (OR = 0.84, 95% CI 0.73-0.95). No heterogeneity was detected among the included studies (p = 0.497 for heterogeneity; I2 = 0). There was no significant publication bias by Begg's test (p = 0.266) or Egger's test (P = 0.578). A statistically significant association between citrus fruit intake and RCC was observed in case-control studies (OR = 0.84, 95% CI 0.71-0.98), while no association was observed in cohort studies (OR = 0.84, 95% CI 0.64-1.05). In addition, the dose-response analysis indicated that the RCC risk reduced by 13% (95%CI 1.0%-27%, p = 0.04 for heterogeneity) for each 100 grams per day increment of citrus fruit intake. In summary, our findings suggest an inverse association between citrus fruit intake and RCC incidence.
Collapse
Affiliation(s)
- Tao Sheng
- Department of Urology, Jiaxing T.C.M. Hospital, Jiaxing, China
| | - Rui-Lin Shen
- Department of Urology, Jiaxing T.C.M. Hospital, Jiaxing, China
| | - Huan Shao
- Department of Urology, Jiaxing T.C.M. Hospital, Jiaxing, China
| | - Tian-Hong Ma
- Department of Pharmacy, Jiaxing T.C.M. Hospital, Jiaxing, China
| |
Collapse
|
2
|
Garg P, Garg R, Horne D, Awasthi S, Salgia R, Singhal SS. Prognostic significance of natural products against multidrug tumor resistance. Cancer Lett 2023; 557:216079. [PMID: 36736532 DOI: 10.1016/j.canlet.2023.216079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Cancer is a pervasive, constantly evolving, and significant public health concern. The number of new cancer cases has risen dramatically in the last decades, making it one of the top causes of poor health and mortality worldwide. Although various treatment strategies, including surgery, radiation, and pharmaceutical therapies, have evolved into more sophisticated, precise methods, there is not much improvement in the cancer-related death toll. Consequently, natural product-based therapeutic discoveries have recently been considered an alternative approach. According to an estimate, one-third of the top twenty medications in today's market have a natural plant-product-based origin. Accordingly, primary prevention is an essential component of worldwide cancer control. This review provides an overview of the mechanisms of action of bioactive ingredients in natural dietary products that may contribute to the prevention and management of multiple malignancies.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Rachana Garg
- Department of Surgery, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sanjay Awasthi
- Cayman Health, CTMH Doctors Hospital, George Town, Grand Cayman, KY1-1104, Cayman Islands
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
3
|
Gervazoni LFO, Gonçalves-Ozorio G, Ferreira-Paes T, Silva ACA, Silveira GPE, Pereira HM, Pinto DP, Cunha-Junior EF, Almeida-Amaral EE. Analysis of 2′-hydroxyflavanone (2HF) in mouse whole blood by HPLC–MS/MS for the determination of pharmacokinetic parameters. Front Chem 2023; 11:1016193. [PMID: 36970405 PMCID: PMC10033538 DOI: 10.3389/fchem.2023.1016193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
Given the lack of investments, structure, and difficulty of metabolite isolation, promising natural product studies do not progress to preclinical studies, such as pharmacokinetics. 2′-Hydroxyflavanone (2HF) is a flavonoid that has shown promising results in different types of cancer and leishmaniasis. For accurate quantification of 2HF in BALB/c mouse blood, a validated HPLC-MS/MS method was developed. Chromatographic analysis was performed using C18 (5μm, 150 mm × 4.6 mm). The mobile phase consisted of water containing 0.1% formic acid, acetonitrile, and methanol (35/52/13 v/v/v) at a flow rate and total running time of 0.8 mL/min and 5.50 min, respectively, with an injection volume of 20 µL. 2HF was detected by electrospray ionization in negative mode (ESI-) using multiple reaction monitoring (MRM). The validated bioanalytical method showed satisfactory selectivity without significant interference for the 2HF and IS. In addition, the concentration range between 1 and 250 ng/mL showed good linearity (r = 0.9969). The method showed satisfactory results for the matrix effect. Precision and accuracy intervals varied between 1.89% and 6.76% and 95.27% and 100.77%, respectively, fitting the criteria. No degradation of 2HF in the biological matrix was observed since stability under freezing and thawing conditions, short duration, postprocessing, and long duration showed deviations less than 15%. Once validated, the method was successfully applied in a 2HF oral pharmacokinetic study with mouse blood, and the pharmacokinetic parameters were determined. 2HF demonstrated a Cmax of 185.86 ng/mL, a Tmax of 5 min, and a half-life (T1/2) of 97.52 min.
Collapse
Affiliation(s)
- Luiza F. O. Gervazoni
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Gabriella Gonçalves-Ozorio
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Taiana Ferreira-Paes
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Aline C. A. Silva
- Laboratório de Farmacocinética, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Heliana M. Pereira
- Laboratório de Farmacocinética, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Douglas P. Pinto
- Laboratório de Farmacocinética, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Edézio F. Cunha-Junior
- Laboratório de Imunoparasitologia, Unidade Integrada de Pesquisa em Produtos Bioativos e Biociên-cias, Universidade Federal do Rio de Janeiro, Campus UFRJ, Macaé, Brazil
| | - Elmo E. Almeida-Amaral
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Elmo E. Almeida-Amaral,
| |
Collapse
|
4
|
Wang Y, Qi H, Liu Y, Duan C, Liu X, Xia T, Chen D, Piao HL, Liu HX. The double-edged roles of ROS in cancer prevention and therapy. Theranostics 2021; 11:4839-4857. [PMID: 33754031 PMCID: PMC7978298 DOI: 10.7150/thno.56747] [Citation(s) in RCA: 292] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/31/2021] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) serve as cell signaling molecules generated in oxidative metabolism and are associated with a number of human diseases. The reprogramming of redox metabolism induces abnormal accumulation of ROS in cancer cells. It has been widely accepted that ROS play opposite roles in tumor growth, metastasis and apoptosis according to their different distributions, concentrations and durations in specific subcellular structures. These double-edged roles in cancer progression include the ROS-dependent malignant transformation and the oxidative stress-induced cell death. In this review, we summarize the notable literatures on ROS generation and scavenging, and discuss the related signal transduction networks and corresponding anticancer therapies. There is no doubt that an improved understanding of the sophisticated mechanism of redox biology is imperative to conquer cancer.
Collapse
|
5
|
Singhal J, Kulkarni P, Horne D, Awasthi S, Salgia R, Singhal SS. Prevention of mammary carcinogenesis in MMTV-neu mice by targeting RLIP. Mol Carcinog 2021; 60:213-223. [PMID: 33544936 PMCID: PMC7952002 DOI: 10.1002/mc.23285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/09/2022]
Abstract
The overexpression and amplification of the protooncogene neu (ERBB2) play an important role in the development of aggressive breast cancer (BC) in humans. Ral-interacting protein (RLIP), a modular stress-response protein with pleiotropic functions, is overexpressed in several types of cancer, including BC. Here, we show that blocking RLIP attenuates the deleterious effects caused by the loss of the tumor suppressor p53 and inhibits the growth of human BC both in vitro and in vivo in MMTV-neu mice. In addition, we show that treatment with the diet-derived, RLIP-targeting chemotherapeutic 2'-hydroxyflavanone (2HF), alone or in combination with RLIP-specific antisense RNA or antibodies, significantly reduced the cumulative incidence and/or burden of mammary hyperplasia and carcinoma in MMTV-neu mice. 2HF treatment correlated with reduced tumor cell proliferation and increased apoptosis, and the average number of Ki67-positive (proliferating) cells was significantly lower in the tumors of 2HF-treated mice than in the tumors of control mice. Furthermore, targeting RLIP also resulted in the overexpression of E-cadherin and the infiltration of CD3+ T cells into mammary tumors. Taken together, these results underscore the translational potential of RLIP-targeting agents and provide a strong rationale to validate them in the clinic.
Collapse
Affiliation(s)
- Jyotsana Singhal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010
- Department of Molecular Medicine, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010
| | - Prakash Kulkarni
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010
| | - David Horne
- Department of Molecular Medicine, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010
| | - Sanjay Awasthi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Ravi Salgia
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010
| | - Sharad S. Singhal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010
| |
Collapse
|
6
|
The subgroup of 2'-hydroxy-flavonoids: Molecular diversity, mechanism of action, and anticancer properties. Bioorg Med Chem 2021; 32:116001. [PMID: 33444847 DOI: 10.1016/j.bmc.2021.116001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022]
Abstract
Flavonoids are abundant in nature, structurally very diversified and largely investigated. However, the subgroup of 2'-hydroxyflavonoids is much less known and not frequently studied. The present review identifies the major naturally-occurring and synthetic 2'-hydroxyflavonoid derivatives and discusses their structural characteristics and biological properties, with a focus on anticancer activities. The pharmacological properties of 2'-hydroxyflavone (2'-HF) and 2'-hydroxyflavanone (2'-HFa) are detailed. Upon binding to the Ral-interacting protein Rlip implicated in the transport of glutathione conjugates, 2'-HFa inhibits tumor cell proliferation and restrict tumor growth, in particular in breast cancer models. Among the synthetic derivatives, the characteristics of the anticancer product 2D08 (2',3',4'-trihydroxy flavone) are detailed to shed light on the molecular mechanism of action of this compound, as a regulator of protein SUMOylation. Inhibition of protein SUMOylation by 2D08 blocks cancer cell migration and invasion, and the compound greatly enhances the anticancer effects of conventional cytotoxic drugs like etoposide. The structural role of the 2'-hydroxyl group on the phenyl C-ring of the flavonoid is discussed, notably the capacity to engage intramolecular H-bonding interactions with the O1 atom on the B-ring of the chromone unit (or the oxygen of a 3-OH group when it is presents). The 2'-hydroxyl group of flavonoid appears as a regulator of the conformational freedom between the bicyclic A-B unit and the appended phenyl C-ring, favoring the planarity of the molecule. It is an essential group accounting for the biological properties of 2'-HF, 2'-HFa and structurally related compounds. This review shed light on 2'-hydroxyflavonoids to encourage their use and chemical development.
Collapse
|
7
|
Sonowal H, Ramana KV. 2'-Hydroxyflavanone prevents LPS-induced inflammatory response and cytotoxicity in murine macrophages. Toxicol In Vitro 2020; 69:104966. [PMID: 32800949 PMCID: PMC7572836 DOI: 10.1016/j.tiv.2020.104966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
2'-Hydroxyflavanone (2-HF) is a natural flavonoid isolated from citrus fruits. Multiple studies have demonstrated that 2-HF with its anti-proliferative and pro-apoptotic effects prevent the growth of various cancers. Although 2-HF is a well known anti-oxidative and chemopreventive agent, its role as an anti-inflammatory agent is not well established. In this study, we examined the effect of 2-HF on LPS-induced cytotoxicity and inflammatory response in murine RAW 264.7 macrophages. Flow cytometry analysis showed that pre-treatment of RAW 264.7 macrophages with 2-HF significantly prevented LPS-induced macrophage apoptosis. 2-HF also prevented LPS-induced reactive oxygen species (ROS) and nitric oxide (NO) production, lipid peroxidation, and loss of mitochondrial membrane potential in murine macrophages. Most importantly, the release of multiple inflammatory cytokines and chemokines such as eotaxin, IL-2, IL-10, IL-12p40, LIX, IL-15, IL-17, MCP-1, and TNF-α induced by LPS in the macrophages was inhibited by 2-HF. 2-HF also prevented LPS-induced activation of protein kinases p38MAPK and SAPK/JNK. Apart from this, LPS-induced phosphorylation, nuclear translocation, and DNA-binding of the redox transcription factor, NF-κB, was prevented by 2-HF. Our results demonstrate that 2-HF by regulating ROS/MAPK/NF-κB prevents LPS-induced inflammatory response and cytotoxicity in murine macrophages suggesting that the need of potential development of 2-HF as an anti-inflammatory agent to ameliorate various inflammatory complications.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
8
|
Bose C, Singh SP, Igid H, Green WC, Singhal SS, Lee J, Palade PT, Rajan A, Ball S, Tonk V, Hindle A, Tarbox M, Awasthi S. Topical 2'-Hydroxyflavanone for Cutaneous Melanoma. Cancers (Basel) 2019; 11:cancers11101556. [PMID: 31615091 PMCID: PMC6826616 DOI: 10.3390/cancers11101556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
2′-hydroxyflavanone (2HF) is a dietary flavonoid with anticancer activity towards multiple cancers. Here, we report that topically applied 2HF inhibits the growth of intradermal implants of melanoma in immunocompetent mice. 2HF induced apoptosis and inhibited the growth of the human SK-MEL-24 as well as murine B16-F0 and B16-F10 melanoma cell lines in vitro. Apoptosis was associated with depletion of caspase-3, caspase-9, and PARP1 in B16-F0 and SK-MEL-24 cells. Caspase-9 and MEKK-15 were undetected even in untreated B16-F10 cells. Signaling proteins TNFα, and phospho-PDGFR-β were depleted in all three cell lines; MEKK-15 was depleted by 2HF in SK-MEL-24 cells. 2HF enhanced sunitinib (an MEK and PDGFR-β inhibitor) and AZD 2461 (a PARP1 inhibitor) cytotoxicity. 2HF also depleted the Ral-regulated, stress-responsive, antiapoptotic endocytic protein RLIP76 (RALBP1), the inhibition of which has previously been shown to inhibit B16-F0 melanoma growth in vivo. Functional inhibition of RLIP76 was evident from inhibition of epidermal growth factor (EGF) endocytosis by 2HF. We found that topically applied 2HF–Pluronic Lecithin Organogel (PLO) gel inhibited B16-F0 and B16-F10 tumors implanted in mice and caused no overt toxicity despite significant systemic absorption. 2HF treatment reduced phospho-AKT, vimentin, fibronectin, CDK4, cyclinB1, and BCL2, whereas it increased BIM and phospho-AMPK in excised tumors. Several cancer signals are controlled by endocytosis, a process strongly inhibited by RLIP76 depletion. We conclude that 2HF–PLO gel may be useful for topical therapy of cutaneous metastases of melanoma and could enhance the antineoplastic effects of sunitinib and PARP1 inhibitors. The mechanism of action of 2HF in melanoma overlaps with RLI76 inhibitors.
Collapse
Affiliation(s)
- Chhanda Bose
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - Sharda P Singh
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - Henry Igid
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - William C Green
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - Sharad S Singhal
- Department of Medical Oncology and Therapeutic Research, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Jihyun Lee
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - Philip T Palade
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Aditya Rajan
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - Somedeb Ball
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - Vijay Tonk
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ashly Hindle
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - Michelle Tarbox
- Department of Dermatology and Dermatopathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Sanjay Awasthi
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| |
Collapse
|
9
|
Song J, Xu S, Zhang ZH, Chen YH, Gao L, Xie DD, Sun GP, Yu DX, Xu DX. The correlation between low vitamin D status and renal interleukin-6/STAT3 hyper-activation in patients with clear cell renal cell carcinoma. Steroids 2019; 150:108445. [PMID: 31295461 DOI: 10.1016/j.steroids.2019.108445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
Low vitamin D status has been associated with increased risks of renal cell carcinoma (RCC). This study aimed to analyze the link between low vitamin D status and interleukin (IL)-6/STAT3 hyper-activation in clear cell RCC (ccRCC) patients. Forty-three newly diagnosed ccRCC patients and 86 age- and sex-matched controls were recruited. The association between low vitamin D status and IL-6/STAT3 hyper-activation was analyzed. Proliferation makersand STAT3 signal were evaluated. As expected, serum IL-6 level was higher in ccRCC patients than in controls. Moreover, serum IL-6 level was reversely correlated with serum 25(OH)D in ccRCC patients but not in controls. In addition, STAT3 signaling was hyper-activated in cancerous tissue. CcRCC patients were divided into three groups according to serum 25(OH)D level: vitamin D sufficiency (VitD-S, ≥30 ng/ml), vitamin D insufficiency (VitD-I, ≥20 and <30 ng/ml) or vitamin D deficiency (VitD-D, <20 ng/ml). Serum IL-6 was higher in ccRCC patients with VitD-D than those with VitD-S/VitD-I. Cancerous pSTAT3 level was higher in ccRCC patients with VitD-D than those with VitD-S/VitD-I. The number of pSTAT3+ nuclei in cancerous tissue was more in ccRCC patients with VitD-D than those with VitD-S/VitD-I. The expressions of cancerous PCNA, cyclin D1 and Ki-67, three markers of proliferation, were higher in ccRCC patients with VitD-D than those with VitD-S/VitD-I. The in vitro experiments showed that active vitamin D3 inhibited LPS-induced STAT3 phosphorylation in ACHN cells. Our results provide evidence that low vitamin D status is correlated with hyper-activation of cancerous IL-6/STAT3 and proliferation in ccRCC patients.
Collapse
Affiliation(s)
- Jin Song
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Shen Xu
- Department of Oncology, First Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Zhi-Hui Zhang
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Yuan-Hua Chen
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Dong-Dong Xie
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Guo-Ping Sun
- Department of Oncology, First Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - De-Xin Yu
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230022, China.
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
10
|
Nagaprashantha LD, Singhal J, Chikara S, Gugiu G, Horne D, Awasthi S, Salgia R, Singhal SS. 2′-Hydroxyflavanone induced changes in the proteomic profile of breast cancer cells. J Proteomics 2019; 192:233-245. [DOI: 10.1016/j.jprot.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/03/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
|
11
|
Singhal J, Chikara S, Horne D, Salgia R, Awasthi S, Singhal SS. RLIP inhibition suppresses breast-to-lung metastasis. Cancer Lett 2019; 447:24-32. [PMID: 30684594 DOI: 10.1016/j.canlet.2019.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/08/2019] [Accepted: 01/19/2019] [Indexed: 11/26/2022]
Abstract
Breast tumor metastasis is a leading cause of cancer-related deaths worldwide. Breast cancer (BC) cells frequently metastasize to the lungs, where they pose a formidable therapeutic challenge. In the current study, we evaluated the anti-proliferative and anti-metastatic effects of 2'-hydroxyflavanone (2HF) and RLIP inhibition in an array of triple-negative BC cell lines and an orthotopic mouse model of breast-to-lung metastasis. Compared to control treatment, RLIP inhibition reduced in-vitro cell viability and suppressed the migratory and invasive potential of BC cells. In-vitro studies showed that 2HF treatment reduced the expression of RLIP, KRAS, pERK, pSTAT3, and pP70S6K. Further, mice orthotopically implanted with lung-seeking luciferase-expressing TMD231 cells were treated with 2HF (50 mg/kg, b.w.), RLIP antisense (RAS; 5 mg/kg, b.w.), RLIP antibody (Rab; 5 mg/kg, b.w.) or a combination of 2HF + RAS + Rab. 2HF-, RAS-, and Rab-treated mice exhibited significantly lower primary tumor weight and reduced lung metastasis compared to control mice. Mice treated with a combination of 2HF + RAS + Rab exhibited no metastasis and significantly lower tumor weight than the single agent-treated mice. Collectively, our results suggest that 2HF has potential to be combined with RLIP inhibition/depletion to more effectively suppress primary breast tumor growth and metastasis to the lungs.
Collapse
Affiliation(s)
- Jyotsana Singhal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA; Department of Molecular Medicine, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Shireen Chikara
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - David Horne
- Department of Molecular Medicine, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Sharad S Singhal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
12
|
Gervazoni LFO, Gonçalves-Ozório G, Almeida-Amaral EE. 2'-Hydroxyflavanone activity in vitro and in vivo against wild-type and antimony-resistant Leishmania amazonensis. PLoS Negl Trop Dis 2018; 12:e0006930. [PMID: 30521527 PMCID: PMC6283348 DOI: 10.1371/journal.pntd.0006930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022] Open
Abstract
Background To overcome the current problems in leishmaniasis chemotherapy, natural products have become an interesting alternative over the past few decades. Flavonoids have been studied as promising family of compounds for leishmaniasis treatment. 2’-Hydroxyflavanone (2HF) is a flavanone, a class of flavonoid that has shown promising results in cancer studies. In this study, we demonstrated the effects of 2HF in vitro and in vivo against wild-type and antimony-resistant Leishmania amazonensis promastigotes. Methodology/Principal findings 2HF was effective against promastigotes and the intracellular amastigote form, decreasing the infection index in macrophages infected with wild-type and antimony-resistant promastigotes, but it was not toxic to macrophages. In silico analysis indicated 2HF as a good oral candidate for leishmaniasis treatment. In vivo, 2HF was able to reduce the lesion size and parasite load in a murine model of cutaneous leishmaniasis using wild-type and antimony-resistant promastigotes, demonstrating no cross-resistance with antimonials. Conclusions/Significance Taken together, these results suggest 2HF as a potential candidate for leishmaniasis chemotherapy for cutaneous leishmaniasis caused by both wild-type and antimony-resistant Leishmania species by oral administration. Furthermore, studies should be conducted to determine the ideal dose and therapeutic regimen. Leishmaniasis is a parasitic disease endemic to 98 countries, affecting more than 12 million people globally, and there are more than 350 million people in risk areas. Although there are many drugs available as alternatives for leishmaniasis treatment, they remain mostly ineffective, expensive and longstanding, in addition to generating side effects and resistance. Antimonial resistance is currently one of the biggest obstacles in leishmaniasis chemotherapy. Due to the poor chemotherapy scenario and the need for a drug able to overcome resistance problems and therapeutic failures, natural products have become an important alternative for leishmaniasis treatment. Here, we evaluated the antileishmanicidal activity of 2HF in vitro and in vivo against wild-type and antimony-resistant L. amazonensis cells. 2HF inhibited the cellular proliferation of promastigotes and the intracellular amastigote form in a dose-dependent manner in both wild-type and antimony-resistant cells. Furthermore, 2HF reduced the lesion size and parasitic load in a murine model of cutaneous leishmaniasis using wild-type and antimony-resistant promastigotes without altering hematological parameters and serological toxicology markers. This is the first time that the activity of a flavonoid on the antimony-resistant L. amazonensis has been demonstrated in vitro and in vivo by the oral route.
Collapse
Affiliation(s)
- Luiza F. O. Gervazoni
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | - Gabriella Gonçalves-Ozório
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | - Elmo E. Almeida-Amaral
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
13
|
Awasthi S, Singhal SS, Singhal J, Nagaprashantha L, Li H, Yuan YC, Liu Z, Berz D, Igid H, Green WC, Tijani L, Tonk V, Rajan A, Awasthi Y, Singh SP. Anticancer activity of 2'-hydroxyflavanone towards lung cancer. Oncotarget 2018; 9:36202-36219. [PMID: 30546837 PMCID: PMC6281421 DOI: 10.18632/oncotarget.26329] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/21/2018] [Indexed: 12/12/2022] Open
Abstract
In previous studies, we found that 2'-hydroxyflavonone (2HF), a citrus flavonoid, inhibits the growth of renal cell carcinoma in a VHL-dependent manner. This was associated with the inhibition of glutathione S-transferases (GSTs), the first step enzyme of the mercapturic acid pathway that catalyzes formation of glutathione-electrophile conjugates (GS-E). We studied 2HF in small cell (SCLC) and non-small cell (NSCLC) lung cancer cell lines for sensitivity to 2HF antineoplastic activity and to determine the role of the GS-E transporter Rlip (Ral-interacting protein; RLIP76; RALBP1) in the mechanism of action of 2HF. Our results show that 2HF induced apoptosis in both histological types of lung cancer and inhibited proliferation and growth through suppression of CDK4, CCNB1, PIK3CA, AKT and RPS6KB1 (P70S6K) signaling. Increased E-cadherin and reduced fibronectin and vimentin indicated inhibition of epithelial-mesenchymal transition. Additionally, 2HF inhibited efflux of doxorubicin and increased its accumulation in the cells, but did not add to the transport inhibitory effect of anti-Rlip antibodies alone. Binding of Rlip to 2HF was evident from successful purification of Rlip by 2HF affinity chromatography. Consistent with increased drug accumulation, combined treatment with 1-chloro-2, 4-dinitrobenzene, reduced the GI50 of 2HF by an order of magnitude. Results of in-vivo nude mouse xenograft studies of SCLC and NSCLC, which showed that orally administered 2HF inhibited growth of both histological types of lung cancer, confirmed in-vitro study results. Our result suggest that Rlip inhibition is likely a mechanism of action. Our findings are basis of proposing 2HF as therapeutic or preventative drug for lung cancer.
Collapse
Affiliation(s)
- Sanjay Awasthi
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Sharad S. Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lokesh Nagaprashantha
- Department of Medical Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Hongzhi Li
- Bioinformatics Core Facility, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yate-Ching Yuan
- Bioinformatics Core Facility, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zheng Liu
- Bioinformatics Core Facility, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - David Berz
- Beverly Hills Cancer Center, Los Angeles, CA 90211, USA
| | - Henry Igid
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - William C. Green
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Lukman Tijani
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Vijay Tonk
- Department of Pediatrics, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Aditya Rajan
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Yogesh Awasthi
- Department of Biochemistry and Molecular Biology, the University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sharda P. Singh
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
14
|
Singhal J, Singhal P, Horne D, Salgia R, Awasthi S, Singhal SS. Metastasis of breast tumor cells to brain is suppressed by targeting RLIP alone and in combination with 2'-Hydroxyflavanone. Cancer Lett 2018; 438:144-153. [PMID: 30223070 DOI: 10.1016/j.canlet.2018.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 11/28/2022]
Abstract
Brain metastasis is an important cause of morbidity and mortality in cancer-patients. Breast tumor cells frequently metastasize to brain and initiate severe therapeutic complications. In the present study, we evaluated the anti-metastatic effects of 2'-hydroxyflavanone (2HF) alone and in combination with RLIP targeted therapy in a novel murine model of breast tumor metastasis. The MDA-MB231Br (brain-seeking) breast cancer (BC) cells stably-transfected with luciferase were injected into the left-ventricle of NSG mouse heart and the migration of cells to brain was monitored using a non-invasive bioluminescent imaging system. To evaluate the tumor growth suppressive effects, mice were given 2HF (50 mg/kg, b.w., alternate days orally), RLIP-antibody (Rab; 5 mg/kg, b.w., weekly i.p.) or combination of 2HF+Rab starting day1 after intra-cardiac injection. Our results reveal that 2HF and Rab significantly prevented the metastasis of BC cells to brain. Further, mice treated with combination of 2HF+Rab exhibited no metastasis as compared to either or the single agent-treated mice. This study for the first time demonstrates the anti-metastatic effects of 2HF and RLIP-inhibition in-vivo in a novel breast tumor metastasis model and provides the rationale for further clinical investigation.
Collapse
Affiliation(s)
- Jyotsana Singhal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA; Department of Molecular Medicine, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Preeti Singhal
- Department of Medicine, University of Texas Health, San Antonio, TX, 78229, USA
| | - David Horne
- Department of Molecular Medicine, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Sharad S Singhal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
15
|
Hasmim M, Bruno S, Azzi S, Gallerne C, Michel JG, Chiabotto G, Lecoz V, Romei C, Spaggiari GM, Pezzolo A, Pistoia V, Angevin E, Gad S, Ferlicot S, Messai Y, Kieda C, Clay D, Sabatini F, Escudier B, Camussi G, Eid P, Azzarone B, Chouaib S. Isolation and characterization of renal cancer stem cells from patient-derived xenografts. Oncotarget 2017; 7:15507-24. [PMID: 26551931 PMCID: PMC4941257 DOI: 10.18632/oncotarget.6266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 01/06/2023] Open
Abstract
As rapidly developing patient-derived xenografts (PDX) could represent potential sources of cancer stem cells (CSC), we selected and characterized non-cultured PDX cell suspensions from four different renal carcinomas (RCC). Only the cell suspensions from the serial xenografts (PDX-1 and PDX-2) of an undifferentiated RCC (RCC-41) adapted to the selective CSC medium. The cell suspension derived from the original tumor specimen (RCC-41-P-0) did not adapt to the selective medium and strongly expressed CSC-like markers (CD133 and CD105) together with the non-CSC tumor marker E-cadherin. In comparison, PDX-1 and PDX-2 cells exhibited evolution in their phenotype since PDX-1 cells were CD133high/CD105-/Ecadlow and PDX-2 cells were CD133low/CD105-/Ecad-. Both PDX subsets expressed additional stem cell markers (CD146/CD29/OCT4/NANOG/Nestin) but still contained non-CSC tumor cells. Therefore, using different cell sorting strategies, we characterized 3 different putative CSC subsets (RCC-41-PDX-1/CD132+, RCC-41-PDX-2/CD133-/EpCAMlow and RCC-41-PDX-2/CD133+/EpCAMbright). In addition, transcriptomic analysis showed that RCC-41-PDX-2/CD133− over-expressed the pluripotency gene ERBB4, while RCC-41-PDX-2/CD133+ over-expressed several tumor suppressor genes. These three CSC subsets displayed ALDH activity, formed serial spheroids and developed serial tumors in SCID mice, although RCC-41-PDX-1/CD132+ and RCC-41-PDX-2/CD133+ displayed less efficiently the above CSC properties. RCC-41-PDX-1/CD132+ tumors showed vessels of human origin with CSC displaying peri-vascular distribution. By contrast, RCC-41-PDX-2 originated tumors exhibiting only vessels of mouse origin without CSC peri-vascular distribution. Altogether, our results indicate that PDX murine microenvironment promotes a continuous redesign of CSC phenotype, unmasking CSC subsets potentially present in a single RCC or generating ex novo different CSC-like subsets.
Collapse
Affiliation(s)
- Meriem Hasmim
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France.,INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | - Stefania Bruno
- Department of Molecular Biotechnology and Healthy Science, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Sandy Azzi
- INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | - Cindy Gallerne
- INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | - Julien Giron Michel
- INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | - Giulia Chiabotto
- Department of Medical Science, University of Torino, Medical School, Torino, Italy
| | - Vincent Lecoz
- INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | | | | | | | - Vito Pistoia
- Laboratory of Oncology Giannina Gaslini Institute, Genoa, Italy
| | - Eric Angevin
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France.,Medical Oncology Department, Gustave Roussy Campus, Villejuif, France
| | - Sophie Gad
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France.,Laboratoire de Génétique Oncologique EPHE, Ecole Pratique des Hautes Etudes, Paris, France
| | - Sophie Ferlicot
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France.,Université Paris-Sud, Assistance Publique-Hôpitaux de Paris, Service d'Anatomo-Pathologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Yosra Messai
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France
| | - Claudine Kieda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Denis Clay
- INSERM UMR 972, Paul Brousse Hospital, Villejuif, France
| | - Federica Sabatini
- Stem Cell and Cell Therapy Laboratory, Istituto G. Gaslini, Genoa, Italy
| | - Bernard Escudier
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France.,Medical Oncology Department, Gustave Roussy Campus, Villejuif, France
| | - Giovanni Camussi
- Department of Medical Science, University of Torino, Medical School, Torino, Italy
| | - Pierre Eid
- INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | | | - Salem Chouaib
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France
| |
Collapse
|
16
|
Chikara S, Nagaprashantha LD, Singhal J, Horne D, Awasthi S, Singhal SS. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett 2017; 413:122-134. [PMID: 29113871 DOI: 10.1016/j.canlet.2017.11.002] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022]
Abstract
Several epidemiological observations have shown an inverse relation between consumption of plant-based foods, rich in phytochemicals, and incidence of cancer. Phytochemicals, secondary plant metabolites, via their antioxidant property play a key role in cancer chemoprevention by suppressing oxidative stress-induced DNA damage. In addition, they modulate several oxidative stress-mediated signaling pathways through their anti-oxidant effects, and ultimately protect cells from undergoing molecular changes that trigger carcinogenesis. In several instances, however, the pro-oxidant property of these phytochemicals has been observed with respect to cancer treatment. Further, in vitro and in vivo studies show that several phytochemicals potentiate the efficacy of chemotherapeutic agents by exacerbating oxidative stress in cancer cells. Therefore, we reviewed multiple studies investigating the role of dietary phytochemicals such as, curcumin (turmeric), epigallocatechin gallate (EGCG; green tea), resveratrol (grapes), phenethyl isothiocyanate (PEITC), sulforaphane (cruciferous vegetables), hesperidin, quercetin and 2'-hydroxyflavanone (2HF; citrus fruits) in regulating oxidative stress and associated signaling pathways in the context of cancer chemoprevention and treatment.
Collapse
Affiliation(s)
- Shireen Chikara
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Lokesh Dalasanur Nagaprashantha
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sanjay Awasthi
- Department of Medical Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
17
|
Singhal J, Nagaprashantha L, Chikara S, Awasthi S, Horne D, Singhal SS. 2'-Hydroxyflavanone: A novel strategy for targeting breast cancer. Oncotarget 2017; 8:75025-75037. [PMID: 29088842 PMCID: PMC5650397 DOI: 10.18632/oncotarget.20499] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022] Open
Abstract
Breast cancer is the most common cancer in women that is driven by cross-talk with hormonal and cellular signaling pathways. The natural phytochemicals, due to broad-spectrum anti-inflammatory and anti-cancerous properties, present with novel opportunities for targeting breast cancer. Intake of citrus fruits is known to reduce the risk for incidence of breast cancer. Hence, we tested the efficacy of citrus flavonoid 2'-hydroxyflavanone (2HF) in breast cancer. 2HF inhibited survival, clonogenic ability, cell cycle progression and induced apoptosis in breast cancer cells. 2HF also decreased VEGF levels and inhibited migratory capacity of breast cancer cells. Administration of 2HF led to regression of triple-negative MDA-MB-231 tumors in the mice xenograft model. 2HF decreased the levels of RLIP76 both in vitro studies and in vivo MDA-MB-231 xenograft model of breast cancer. Western blot and histopathological analyses of resected tumors showed a decline in the levels of survival and proliferation markers Ki67, pAkt, survivin, and cell cycle proteins CDK4 and cyclin B1. 2HF treatment led to inhibition of angiogenesis as determined by decreased VEGF levels in vitro and angiogenesis marker CD31 in vivo. 2HF reversed the pro-/anti-apoptotic ratio of BAX/BCL-2 by decreasing anti-apoptotic protein BCL-2 and increasing pro-apoptotic proteins BAX and BIM in vivo. 2HF also decreased the mesenchymal markers vimentin and fibronectin along with causing a parallel increase in pro-differentiation protein E-cadherin. Collectively, the ability of 2HF to decrease RLIP76, VEGF and regulate critical proliferative, apoptotic and differentiation proteins together provides strong rationale to further develop 2HF based interventions for targeting breast cancer.
Collapse
Affiliation(s)
- Jyotsana Singhal
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Lokesh Nagaprashantha
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Shireen Chikara
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sanjay Awasthi
- Department of Medical Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S. Singhal
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
18
|
Ito R, Narita S, Huang M, Nara T, Numakura K, Takayama K, Tsuruta H, Maeno A, Saito M, Inoue T, Tsuchiya N, Satoh S, Habuchi T. The impact of obesity and adiponectin signaling in patients with renal cell carcinoma: A potential mechanism for the "obesity paradox". PLoS One 2017; 12:e0171615. [PMID: 28178338 PMCID: PMC5298294 DOI: 10.1371/journal.pone.0171615] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/23/2017] [Indexed: 11/18/2022] Open
Abstract
Although obesity increases the risk of renal cell carcinoma (RCC), obese patients with RCC experience longer survival than non-obese patients. However, the mechanism of this "obesity paradox" is unknown. We examined the impact of preoperative BMI, serum total adiponectin (sAd) level, total adiponectin secretion from perinephric adipose tissue, and intratumoral expression of adiponectin receptors on RCC aggressiveness and survival. We also investigated the mechanism underlying enhanced cancer aggressiveness in RCC cells stimulated with exogenous adiponectin. Overweight and obese patients had significantly lower grade cancers than normal patients in all patients and in those without metastasis (p = 0.003 and p = 0.027, respectively). Cancer-specific survival was significantly longer in overweight and obese patients than in normal patients in all patients (p = 0.035). There was a weak inverse correlation between sAd level and BMI in RCC patients (r = -0.344, p = 0.002). Tumor size was slightly correlated with sAd level, and high sAd was significantly associated with poor overall survival rates in patients with non-metastatic RCC (p = 0.035). Adiponectin levels in perinephric adipose tissue and intratumoral AdipoR1/R2 expression were not correlated with RCC aggressiveness or survival. Proliferation significantly increased in 786-O and Caki-2 cells exposed to exogenous adiponectin, whereas cell invasion and migration were unaffected. In addition, exogenous adiponectin significantly inhibited starvation- and metformin-induced apoptosis, and up-regulated p-AMPK and Bcl-xL levels. In summary, low BMI and high adiponectin levels are associated with aggressive cell behaviors and poor survival in surgically-treated RCC patients. The effects of adiponectin on proliferation and apoptosis might underlie the "obesity paradox" of RCC.
Collapse
Affiliation(s)
- Ryuichi Ito
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Shintaro Narita
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
- AMED-CREST, Japan Agency for Medical Research and Development
- * E-mail:
| | - Mingguo Huang
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
- AMED-CREST, Japan Agency for Medical Research and Development
| | - Taketoshi Nara
- Department of Urology, Yamagata University Graduate School of Medicine, Yamagata, Japan
| | - Kazuyuki Numakura
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Koichiro Takayama
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroshi Tsuruta
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Atsushi Maeno
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Mitsuru Saito
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takamitsu Inoue
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
- AMED-CREST, Japan Agency for Medical Research and Development
| | - Norihiko Tsuchiya
- Department of Urology, Yamagata University Graduate School of Medicine, Yamagata, Japan
| | - Shigeru Satoh
- Center for Kidney Disease and Transplantation, Akita University Hospital, Akita, Japan
| | - Tomonori Habuchi
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
- AMED-CREST, Japan Agency for Medical Research and Development
| |
Collapse
|
19
|
Hsin IF, Lee JY, Huo TI, Lee FY, Huang HC, Hsu SJ, Wang SS, Ho HL, Lin HC, Lee SD. 2'-Hydroxyflavanone ameliorates mesenteric angiogenesis and portal-systemic collaterals in rats with liver fibrosis. J Gastroenterol Hepatol 2016; 31:1045-51. [PMID: 26474184 DOI: 10.1111/jgh.13197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/16/2015] [Accepted: 09/22/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Portal-systemic collaterals lead to dreadful consequences in patients with cirrhosis. Angiogenesis participates in the development of liver fibrosis, hyperdynamic circulation, and portal-systemic collaterals. 2'-Hydroxyflavanone (2'-HF), one of the citrus fruits flavonoids, is known to have antiangiogenesis effect without adverse response. However, the relevant effects in liver fibrosis have not been surveyed. METHODS Male Wistar rats received thioacetamide (TAA, 100 mg/kg tiw, i.p.) for 6 weeks to induce liver fibrosis. On the 29th to 42nd day, rats randomly received 2'-HF (100 mg/kg, qod, i.p.) or vehicle (corn oil). On the 43rd day, after hemodynamic measurements, the followings were surveyed: (i) severity of collaterals; (ii) mesenteric angiogenesis; (iii) mesenteric proangiogenic factors protein expressions; (iv) Mesenteric vascular endothelial cells apoptosis; and (v) Mesenteric expressions of proteins regulating apoptosis. RESULTS Compared with the vehicle group, 2'-HF did not significantly change body weight, mean arterial pressure, heart rate, and portal pressure in TAA rats. 2'-HF significantly alleviated the severity of collaterals, but the mesenteric phospho-ERK, ERK, phospho-Akt, Akt, COX1, COX2, VEGF, and VEGFR-2 protein expressions were not altered. The apoptotic index of 2'-HF group was significantly higher and the mesenteric protein expressions of pro-apoptotic factors, NFkB 50, NFkB 65, Bax, phospho-p53, 17 kD cleaved caspase 3, and 17 kD casepase 3 were up-regulated. CONCLUSIONS 2'-HF does not influence the hemodynamics but alleviated the severity of collaterals in rats with liver fibrosis and early portal hypertension. This is, at least partly, attributed to enhanced apoptosis of mesenteric vascular endothelial cells.
Collapse
Affiliation(s)
- I-Fang Hsin
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Endoscopy Center for Diagnosis and Treatment, Taipei, Taiwan
| | - Jing-Yi Lee
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Teh-Ia Huo
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fa-Yauh Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Chun Huang
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shao-Jung Hsu
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Sun-Sang Wang
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Department of Medical Affair and Planning, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Ling Ho
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shou-Dong Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
20
|
Zhang H, Zhan Z, Cui M, Gao Y, Wang D, Feng Y. Hydroxyflavanone inhibits gastric carcinoma MGC-803 cell proliferation. Int J Clin Exp Med 2015; 8:16955-16959. [PMID: 26629250 PMCID: PMC4659138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/06/2015] [Indexed: 06/05/2023]
Abstract
Gastric carcinoma (GC) is the most common primary malignancy of the digestive tract, with increasing incidence in many countries. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to assess inhibition of HepG2 cell proliferation by 2'-hydroxyflavanone. The STAT3 pathway was performed. 2'-hydroxyflavanone reduced inhibitory effects on MGC-803 cell proliferation. 2'-hydroxyflavanone exhibited the highest inhibition rate. Treatment of MGC-803 cells with 400, 200, and 100 μg/ml 2'-hydroxyflavanone resulted in 88.9±0.7%, 81.2±0.5%, 68.4±0.5% decrease in cell viability, respectively, indicating an IC50 of 9.3 μg/ml. The 100 μg/ml 2'-hydroxyflavanone can significantly inhibit the STAT3 pathway activation. 2'-hydroxyflavanone inhibits MGC-803 cell proliferation by inhibiting STAT3 pathway activation. This extract is therefore a potential drug candidate for treatment of liver cancer.
Collapse
Affiliation(s)
- Haiyan Zhang
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University Changchun 130033, Jilin Province, China
| | - Zhuo Zhan
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University Changchun 130033, Jilin Province, China
| | - Mingfu Cui
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University Changchun 130033, Jilin Province, China
| | - Yongjian Gao
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University Changchun 130033, Jilin Province, China
| | - Dayu Wang
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University Changchun 130033, Jilin Province, China
| | - Ye Feng
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University Changchun 130033, Jilin Province, China
| |
Collapse
|
21
|
Uno T, Ogura C, Izumi C, Nakamura M, Yanase T, Yamazaki H, Ashida H, Kanamaru K, Yamagata H, Imaishi H. Point mutation of cytochrome P450 2A6 (a polymorphic variant CYP2A6.25) confers new substrate specificity towards flavonoids. Biopharm Drug Dispos 2015. [DOI: 10.1002/bdd.1966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomohide Uno
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Chika Ogura
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Chiho Izumi
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Masahiko Nakamura
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Science; Kyoto Gakuen University; 1-1 Nanjo, Sogabe Kameoka Kyoto 621-8555 Japan
| | - Takeshi Yanase
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics; Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
| | - Hitoshi Ashida
- Laboratory of Biochemistry Frontiers, Graduate School of Agricultural Science; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Kengo Kanamaru
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Hiroshi Yamagata
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Hiromasa Imaishi
- Functional Analysis of Environmental Genes, Research Center for Environmental Genomics; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| |
Collapse
|
22
|
Singhal SS, Singhal J, Figarola JL, Riggs A, Horne D, Awasthi S. 2′-Hydroxyflavanone: A promising molecule for kidney cancer prevention. Biochem Pharmacol 2015; 96:151-8. [DOI: 10.1016/j.bcp.2015.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/27/2015] [Indexed: 12/18/2022]
|
23
|
WU KAIJIE, NING ZHONGYUN, ZHOU JIANCHENG, WANG BIN, FAN JINHAI, ZHU JIANNING, GAO YANG, WANG XINYANG, HSIEH JERTSONG, HE DALIN. 2′-Hydroxyflavanone inhibits prostate tumor growth through inactivation of AKT/STAT3 signaling and induction of cell apoptosis. Oncol Rep 2014; 32:131-8. [DOI: 10.3892/or.2014.3218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/11/2014] [Indexed: 11/06/2022] Open
|
24
|
Yousuf S, Radhika D, Enoch IVMV, Easwaran M. The influence of β-cyclodextrin encapsulation on the binding of 2'-hydroxyflavanone with calf thymus DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 98:405-412. [PMID: 23010624 DOI: 10.1016/j.saa.2012.08.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 08/07/2012] [Accepted: 08/21/2012] [Indexed: 06/01/2023]
Abstract
Inclusion complexation of 2'-hydroxyflavanone (2'HF) with β-cyclodextrin (β-CD) was studied, both in solution phase and as solid inclusion complexes, by UV-visible and fluorescence spectroscopic, scanning electron microscopic and X-ray diffractometric techniques. The interaction of 2'HF with calf thymus DNA (ctDNA) in the presence and the absence of β-CD were compared. Fluorescence enhancement was observed for 2'HF due to the formation of 1:1 complex with β-CD. The structure of 1:1 complex is proposed based on spectral observation, molecular modeling and by calculated theoretical bond lengths. The possible mode of interaction between 2'HF and DNA was analyzed by molecular modeling method. The interaction of 2'HF with calf thymus DNA (ctDNA) was investigated by absorption and fluorescence measurements in the presence and the absence of β-CD as capping agent. Both in the presence and the absence of β-CD, 2'HF showed hyper-chromic effect, red shift of absorption spectra, and quenching of fluorescence due to binding of 2'HF with ctDNA. The results reveal that the phenolic moiety is involved in inclusion complexation with β-CD and interaction with DNA. In the presence of β-CD, the phenolic moiety may be included in cyclodextrin cavity, whereas the dihydrobenzopyran-4-one moiety interacts with DNA. Further, β-CD selectively blocks a part of the 2'HF molecule binding with DNA. This renders the remaining portion of the flavanone available for interaction with DNA.
Collapse
Affiliation(s)
- Sameena Yousuf
- Department of Chemistry, Karunya University, Coimbatore 641 114, Tamil Nadu, India
| | | | | | | |
Collapse
|
25
|
Acetylation of histone H3 prevents resistance development caused by chronic mTOR inhibition in renal cell carcinoma cells. Cancer Lett 2012; 324:83-90. [DOI: 10.1016/j.canlet.2012.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/30/2012] [Accepted: 05/02/2012] [Indexed: 12/23/2022]
|
26
|
Boušová I, Skálová L. Inhibition and induction of glutathione S-transferases by flavonoids: possible pharmacological and toxicological consequences. Drug Metab Rev 2012; 44:267-86. [PMID: 22998389 DOI: 10.3109/03602532.2012.713969] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many studies reviewed herein demonstrated the potency of some flavonoids to modulate the activity and/or expression of glutathione S-transferases (GSTs). Because GSTs play a crucial role in the detoxification of xenobiotics, their inhibition or induction may significantly affect metabolism and biological effects of many drugs, industrials, and environmental contaminants. The effect of flavonoids on GSTs strongly depends on flavonoid structure, concentration, period of administration, as well as on GST isoform and origin. Moreover, the results obtained in vitro are often contrary to the vivo results. Based on these facts, the revelation of important flavonoid-drug or flavonoid-pollutant interaction has been complicated. However, it should be borne in mind that ingestion of certain flavonoids in combination with drugs or pollutants (e.g., acetaminophen, simvastatin, cyclophosphamide, cisplatine, polycyclic aromatic hydrocarbons, chlorpyrifos, acrylamide, and isocyanates), which are GST substrates, could have significant pharmacological and toxicological consequences. Although reasonable consumptions of a flavonoids-rich diet (that may lead to GST induction) are mostly beneficial, the uncontrolled intake of high concentrations of certain flavonoids (e.g., quercetin and catechins) in dietary supplements (that may cause GST inhibition) may threaten human health.
Collapse
Affiliation(s)
- Iva Boušová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic, European Union
| | | |
Collapse
|
27
|
Park S, Chan CC. Von Hippel-Lindau disease (VHL): a need for a murine model with retinal hemangioblastoma. Histol Histopathol 2012; 27:975-84. [PMID: 22763871 PMCID: PMC3407271 DOI: 10.14670/hh-27.975] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Von Hippel-Lindau (VHL) disease is a highly penetrant autosomal dominant systemic malignancy that gives rise to cystic and highly vascularized tumors in a constellation of organs. Patients with VHL disease commonly present with hemangioblastomas in the central nervous system and the eye while other manifestations include pheochromocytoma, clear cell renal cell carcinoma, endolymphatic sac tumors of the middle ear, pancreatic cystadenomas, epididymal and broad ligament cystadenomas. Animal models inactivating the VHL gene product in various organ tissues have been constructed over the past 15 years to parse its HIF-associated mechanisms and its link to tumorigenesis. These models, despite advancing our understanding the molecular role of VHL, are by and large unable to recapitulate the more common features of human VHL disease. Up to date, no model exists that develop retinal hemangioblastomas, the most common clinical manifestation. The purpose of this review is: (1) to discuss the need for an ocular VHL model, (2) to review the animal models that recapitulate clinical VHL disease and (3) to propose potential mechanisms of tumorigenesis for the development of ocular VHL.
Collapse
Affiliation(s)
- Stanley Park
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Chi-Chao Chan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Singhal S. Novel Flavonoid Didymin Inhibits Neuroblastomas—Response. Cancer Prev Res (Phila) 2012. [DOI: 10.1158/1940-6207.capr-12-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sharad Singhal
- Author's Affiliation: Department of Diabetes and Metabolic Disease Research, Beckman Research Institute, City of Hope, National Medical Center, Duarte, California
| |
Collapse
|
29
|
Leake K, Singhal J, Nagaprashantha LD, Awasthi S, Singhal SS. RLIP76 regulates PI3K/Akt signaling and chemo-radiotherapy resistance in pancreatic cancer. PLoS One 2012; 7:e34582. [PMID: 22509328 PMCID: PMC3317991 DOI: 10.1371/journal.pone.0034582] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/07/2012] [Indexed: 11/18/2022] Open
Abstract
Purpose Pancreatic cancer is an aggressive malignancy with characteristic metastatic course of disease and resistance to conventional chemo-radiotherapy. RLIP76 is a multi-functional cell membrane protein that functions as a major mercapturic acid pathway transporter as well as key regulator of receptor-ligand complexes. In this regard, we investigated the significance of targeting RLIP76 on PI3K/Akt pathway and mechanisms regulating response to chemo-radiotherapy. Research Design and Methods Cell survival was assessed by MTT and colony forming assays. Cellular levels of proteins and phosphorylation was determined by Western blot analyses. The impact on apoptosis was determined by TUNEL assay. The anti-cancer effects of RLIP76 targeted interventions in vivo were determined using mice xenograft model of the pancreatic cancer. The regulation of doxorubicin transport and radiation sensitivity were determined by transport studies and colony forming assays, respectively. Results Our current studies reveal an encompassing model for the role of RLIP76 in regulating the levels of fundamental proteins like PI3K, Akt, E-cadherin, CDK4, Bcl2 and PCNA which are of specific importance in the signal transduction from critical upstream signaling cascades that determine the proliferation, apoptosis and differentiation of pancreatic cancer cells. RLIP76 depletion also caused marked and sustained regression of established human BxPC-3 pancreatic cancer tumors in nude mouse xenograft model. RLIP76 turned out to be a major regulator of drug transport along with contributing to the radiation resistance in pancreatic cancer. Conclusions/Significance RLIP76 represents a mechanistically significant target for developing effective interventions in aggressive and refractory pancreatic cancers.
Collapse
Affiliation(s)
- Kathryn Leake
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, California, United States of America
| | - Jyotsana Singhal
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, California, United States of America
| | - Lokesh Dalasanur Nagaprashantha
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, California, United States of America
| | - Sanjay Awasthi
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, California, United States of America
| | - Sharad S. Singhal
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Arjumand W, Sultana S. Role of VHL gene mutation in human renal cell carcinoma. Tumour Biol 2011; 33:9-16. [PMID: 22125026 DOI: 10.1007/s13277-011-0257-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/25/2011] [Indexed: 12/17/2022] Open
Abstract
The Von Hippel-Lindau (VHL) is an inherited neoplasia syndrome caused by the inactivation of VHL tumor suppressor gene, and somatic mutation of this gene has been related to the development of sporadic clear cell renal carcinoma. The affected individuals are at higher risk for the development of tumor in other organs, which include pheochromocytomas, retinal angioma, pancreatic cysts, and CNS hemangioblastomas. The VHL mRNA encodes a protein (pVHL) that contains 213 amino acid residues which migrate with an apparent molecular weight of 24 to 30 kDa. The VHL gene protein has multiple functions that are linked to tumor suppression, but the best recognized and evidently linked to the development of renal cell carcinoma (RCC) is inhibition of hypoxia-inducible factor (HIF), as well as plays a role in targeting HIF for ubiquitin-mediated degradation. Aberrations in VHL's function, either through mutation or promoter hypermethylation, lead to the accumulation of HIF, which will transcriptionally upregulate a sequence of hypoxia responsive genes, including epidermal growth factor, vascular endothelial growth factor, platelet-derived growth factor, and other proangiogenic factors, resulting in upregulated blood vessel growth, one of the prerequisites of a tumor. HIF plays a critical role in pVHL-defective tumor formation, raising the possibility that drugs directed against HIF or its downstream targets (such as vascular endothelial growth factor) may one day play a role in the treatment of RCC. Moreover, a number of drugs have been developed that target HIF-responsive gene products, many of these targeted therapies have demonstrated significant activity in kidney cancer clinical trials and signify substantive advances in the treatment of this disease.
Collapse
Affiliation(s)
- Wani Arjumand
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard, Hamdard University, Hamdard Nagar, New Delhi 110062, India.
| | | |
Collapse
|
31
|
Vatsyayan R, Singhal J, Nagaprashantha LD, Awasthi S, Singhal SS. Nutlin-3 enhances sorafenib efficacy in renal cell carcinoma. Mol Carcinog 2011; 52:39-48. [PMID: 22006587 DOI: 10.1002/mc.20875] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 12/19/2022]
Abstract
The renal cell carcinoma (RCC) is one of the top 10 cancers in USA. The renal tumors are highly angiogenic and are resistant to conventional interventions, particularly radiotherapy. The advent of multi-specific tyrosine kinase inhibitor sorafenib has improved the progression-free survival in RCC, but overall survival in recurrent and metastatic RCC is still a concern that has lead to characterization of combinatorial regimens. Hence, we studied the effect of combination of nutlin-3, an MDM2 inhibitor, which increases p53 levels, and sorafenib in RCC. Sorafenib along with nutlin-3 synergistically inhibited the cell survival and enhanced caspase-3 cleavage leading to apoptosis in RCC. Nutlin-3 and sorafenib were more effective in reducing the migration of RCC, in combination than as single agents. Sorafenib and nutlin-3 decreased the phosphorylation of vascular endothelial growth factor receptor-2 (VEGFR-2) and ERK along with inducing p53 activity. The sorafenib and nutlin-3 co-treatment lead to enhanced levels of p53, p-p53, and increase in the levels of p53 pro-apoptotic effector PUMA, Bax, and decrease in the anti-apoptotic Bcl-2 levels. Importantly, our studies revealed that sorafenib alone can activate p53 in a concentration dependent manner. Thus, co-treatment of nutlin-3 with sorafenib leads to increased half-life of p53, which in turn can be activated by sorafenib, to induce downstream pro-apoptotic and anti-proliferative effects. This is the first report showing the synergistic effect of sorafenib and nutlin-3 while providing a strong clinical-translational rationale for further testing of sorafenib and nutlin-3 combinatorial regimen in human RCC.
Collapse
Affiliation(s)
- Rit Vatsyayan
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | | | | | | | | |
Collapse
|
32
|
RLIP76, a glutathione-conjugate transporter, plays a major role in the pathogenesis of metabolic syndrome. PLoS One 2011; 6:e24688. [PMID: 21931813 PMCID: PMC3172288 DOI: 10.1371/journal.pone.0024688] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/17/2011] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Characteristic hypoglycemia, hypotriglyceridemia, hypocholesterolemia, lower body mass, and fat as well as pronounced insulin-sensitivity of RLIP76⁻/⁻ mice suggested to us the possibility that elevation of RLIP76 in response to stress could itself elicit metabolic syndrome (MSy). Indeed, if it were required for MSy, drugs used to treat MSy should have no effect on RLIP76⁻/⁻ mice. RESEARCH DESIGN AND METHODS Blood glucose (BG) and lipid measurements were performed in RLIP76⁺/⁺ and RLIP76⁻/⁻ mice, using Ascensia Elite Glucometer® for glucose and ID Labs kits for cholesterol and triglycerides assays. The ultimate effectors of gluconeogenesis are the three enzymes: PEPCK, F-1,6-BPase, and G6Pase, and their expression is regulated by PPARγ and AMPK. The activity of these enzymes was tested by protocols standardized by us. Expressions of RLIP76, PPARα, PPARγ, HMGCR, pJNK, pAkt, and AMPK were performed by Western-blot and tissue staining. RESULTS The concomitant activation of AMPK and PPARγ by inhibiting transport activity of RLIP76, despite inhibited activity of key glucocorticoid-regulated hepatic gluconeogenic enzymes like PEPCK, G6Pase and F-1,6-BP in RLIP76⁻/⁻ mice, is a salient finding of our studies. The decrease in RLIP76 protein expression by rosiglitazone and metformin is associated with an up-regulation of PPARγ and AMPK. CONCLUSIONS/SIGNIFICANCE All four drugs, rosiglitazone, metformin, gemfibrozil and atorvastatin failed to affect glucose and lipid metabolism in RLIP76⁻/⁻ mice. Studies confirmed a model in which RLIP76 plays a central role in the pathogenesis of MSy and RLIP76 loss causes profound and global alterations of MSy signaling functions. RLIP76 is a novel target for single-molecule therapeutics for metabolic syndrome.
Collapse
|