1
|
NAGINI SIDDAVARAM, KALLAMADI PRATHAPREDDY, TANAGALA KRANTHIKIRANKISHORE, REDDY GEEREDDYBHANUPRAKASH. Aldo-keto reductases: Role in cancer development and theranostics. Oncol Res 2024; 32:1287-1308. [PMID: 39055885 PMCID: PMC11267078 DOI: 10.32604/or.2024.049918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/08/2024] [Indexed: 07/28/2024] Open
Abstract
Aldo-keto reductases (AKRs) are a superfamily of enzymes that play crucial roles in various cellular processes, including the metabolism of xenobiotics, steroids, and carbohydrates. A growing body of evidence has unveiled the involvement of AKRs in the development and progression of various cancers. AKRs are aberrantly expressed in a wide range of malignant tumors. Dysregulated expression of AKRs enables the acquisition of hallmark traits of cancer by activating oncogenic signaling pathways and contributing to chemoresistance. AKRs have emerged as promising oncotherapeutic targets given their pivotal role in cancer development and progression. Inhibition of aldose reductase (AR), either alone or in combination with chemotherapeutic drugs, has evolved as a pragmatic therapeutic option for cancer. Several classes of synthetic aldo-keto reductase (AKR) inhibitors have been developed as potential anticancer agents, some of which have shown promise in clinical trials. Many AKR inhibitors from natural sources also exhibit anticancer effects. Small molecule inhibitors targeting specific AKR isoforms have shown promise in preclinical studies. These inhibitors disrupt the activation of oncogenic signaling by modulating transcription factors and kinases and sensitizing cancer cells to chemotherapy. In this review, we discuss the physiological functions of human AKRs, the aberrant expression of AKRs in malignancies, the involvement of AKRs in the acquisition of cancer hallmarks, and the role of AKRs in oncogenic signaling, and drug resistance. Finally, the potential of aldose reductase inhibitors (ARIs) as anticancer drugs is summarized.
Collapse
|
2
|
Bano S, Nadeem H, Zulfiqar I, Shahzadi T, Anwar T, Bukhari A, Masaud SM. Synthesis and anti-inflammatory activity of benzimidazole derivatives; an in vitro, in vivo and in silico approach. Heliyon 2024; 10:e30102. [PMID: 38726192 PMCID: PMC11078874 DOI: 10.1016/j.heliyon.2024.e30102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Many non-steroidal anti-inflammatory drugs (NSAIDs) concurrently inhibit both COX-1 and COX-2, with a preference for specifically targeting COX-2 due to its significant involvement in various pathologies. In addition to COX enzymes, several other targets, including Aldose reductase, Aldo-ketoreductase family 1-member C2, and Phospholipase A2, have been identified as contributors to inflammation and a myriad of other diseases. In this context, a series of 2-substituted benzimidazole derivatives was synthesized and assessed for their anti-inflammatory potential through both in vitro and in vivo assays. Molecular docking studies were conducted to elucidate the mechanism of action of these compounds against COX enzymes and other therapeutic targets associated with NSAIDs, such as Aldose reductase, AIKRC, and Phospholipase A2. Among the synthesized compounds, B2, B4, B7, and B8 demonstrated IC50 values lower than the standard ibuprofen, as determined by the Luminol-enhanced chemiluminescence assay. Validation of these findings was achieved through an in vivo carrageenan-induced mice paw edema model, confirming a comparable anti-inflammatory effect to diclofenac sodium observed in vitro. Notably, these compounds exhibited significant binding affinity with all therapeutic targets investigated in this study. These results suggest that the newly synthesized derivatives possess noteworthy anti-inflammatory potential, warranting further exploration for the development of novel multi-targeting inhibitors.
Collapse
Affiliation(s)
- Shaher Bano
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Iqra Zulfiqar
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Tamseela Shahzadi
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Tayyaba Anwar
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Asma Bukhari
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Syed Muzzammil Masaud
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
3
|
Kawade G, Kurata M, Matsuki Y, Fukuda S, Onishi I, Kinowaki Y, Watabe S, Ishibashi S, Ikeda M, Yamamoto M, Ohashi K, Kitagawa M, Yamamoto K. Mediation of Ferroptosis Suppressor Protein 1 Expression via 4-Hydroxy-2-Nonenal Accumulation Contributes to Acquisition of Resistance to Apoptosis and Ferroptosis in Diffuse Large B-Cell Lymphoma. J Transl Med 2024; 104:102027. [PMID: 38311062 DOI: 10.1016/j.labinv.2024.102027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma. New therapeutic strategies are needed for the treatment of refractory DLBCL. 4-Hydroxy-2-nonenal (4-HNE) is a cytotoxic lipid peroxidation marker, which alters intracellular signaling and induces genetic mutations. Lipid peroxidation is associated with nonapoptotic cell death, called ferroptosis. However, the relationship between 4-HNE accumulation and feroptotic regulators in DLBCL has not been fully evaluated. Here, we aimed to evaluate the accumulation of lipid peroxide and the expression of ferroptosis suppressor protein 1 (FSP1) in DLBCL using immunohistochemistry. We found a significant increase in the expression of FSP1 in cases with nuclear 4-HNE accumulation (P = .021). Both nuclear and cytoplasmic 4-HNE accumulation and FSP1 positivity were independent predictors of worse prognosis. In vitro exposure to 4-HNE resulted in its concentration- and time-dependent intracellular accumulation and increased expression of FSP1. Furthermore, short-term (0.25 and 1.0 μM) or long-term (0.25 μM) exposure to 4-HNE induced resistance to not only apoptosis but also ferroptosis. Taken together, regulation of FSP1 through 4-HNE accumulation may attenuate resistance to cell death in treatment-resistant DLBCL and might help develop novel therapeutic strategies for refractory DLBCL.
Collapse
Affiliation(s)
- Genji Kawade
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuko Matsuki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sho Fukuda
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Iichiroh Onishi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuko Kinowaki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiori Watabe
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sachiko Ishibashi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masumi Ikeda
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahide Yamamoto
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Ohashi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
4
|
Huang YC, Chen WC, Yu CL, Chang TK, I-Chin Wei A, Chang TM, Liu JF, Wang SW. FGF2 drives osteosarcoma metastasis through activating FGFR1-4 receptor pathway-mediated ICAM-1 expression. Biochem Pharmacol 2023; 218:115853. [PMID: 37832794 DOI: 10.1016/j.bcp.2023.115853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Osteosarcoma is a malignant tumor with high metastatic potential, such that the overall 5-year survival rate of patients with metastatic osteosarcoma is only 20%. Therefore, it is necessary to unravel the mechanisms of osteosarcoma metastasis to identify predictors of metastasis by which to develop new therapies. Fibroblast growth factor 2 (FGF2) is a growth factor involved in embryonic development, cell migration, and proliferation. The overexpression of FGF2 and FGF receptors (FGFRs) has been shown to enhance cancer cell proliferation in lung, breast, gastric, and prostate cancers as well as melanoma. Nonetheless, the roles of FGF2 and FGFRs in human osteosarcoma cells remain unknown. In the present study, we found that FGF2 was overexpressed in human osteosarcoma sections and correlated with lung metastasis. Treatment of FGF2 induced migration activity, invasion activity, and intercellular adhesion molecule (ICAM)-1 expression in osteosarcoma cells. In particular, the downregulation or antagonism of FGFR1-4 suppressed FGF2-induced ICAM-1 expression and cancer cell migration. Furthermore, FGFR1, FGFR2, FGFR3, and FGFR4 were involved in FGF2-induced the phospholipase Cβ/protein kinase Cα/proto-oncogene c-Src signaling pathway and triggered c-Jun nuclear translocation. Subsequent c-Jun upregulation of activator protein-1 transcription activity on the ICAM-1 promoter led to an increased migration of osteosarcoma cells. Moreover, the knockdown of endogenous FGF2 suppressed ICAM-1 expression and migration of osteosarcoma cells. These findings suggest that FGF2/FGFR1-4 signaling promotes metastasis via its direct downstream target gene ICAM-1, revealing a novel potential therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Yu-Ching Huang
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan; Division of Spine Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wei-Cheng Chen
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Division of Sports Medicine & Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chen-Lin Yu
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Ting-Kuo Chang
- Division of Spine Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Augusta I-Chin Wei
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Tsung-Ming Chang
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ju-Fang Liu
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - Shih-Wei Wang
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Lipases from different yeast strains: Production and application for n-3 fatty acid enrichment of tuna eyeball oil. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
6
|
Tanawattanasuntorn T, Rattanaburee T, Thongpanchang T, Graidist P. Trans-(±)-Kusunokinin Binding to AKR1B1 Inhibits Oxidative Stress and Proteins Involved in Migration in Aggressive Breast Cancer. Antioxidants (Basel) 2022; 11:antiox11122347. [PMID: 36552555 PMCID: PMC9774946 DOI: 10.3390/antiox11122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/12/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Synthetic trans-(±)-kusunokinin ((±)KU), a potential anticancer substance, was revealed to have an inhibitory effect on breast cancer. According to the computational modeling prediction, AKR1B1, an oxidative stress and cancer migration protein, could be a target protein of trans-(-)-kusunokinin. In this study, we determined the binding of (±)KU and AKR1B1 on triple-negative breast and non-serous ovarian cancers. We found that (±)KU exhibited a cytotoxic effect that was significantly stronger than zopolrestat (ZP) and epalrestat (EP) (known AKR1B1 inhibitors) on breast and ovarian cancer cells. (±)KU inhibited aldose reductase activity that was stronger than trans-(-)-arctiin ((-)AR) but weaker than ZP and EP. Interestingly, (±)KU stabilized AKR1B1 on SKOV3 and Hs578T cells after being heated at 60 and 75 °C, respectively. (±)KU decreased malondialdehyde (MDA), an oxidative stress marker, on Hs578T cells in a dose-dependent manner and the suppression was stronger than EP. Furthermore, (±)KU downregulated AKR1B1 and its downstream proteins, including PKC-δ, NF-κB, AKT, Nrf2, COX2, Twist2 and N-cadherin and up-regulated E-cadherin. (±)KU showed an inhibitory effect on AKR1B1 and its downstream proteins, similar to siRNA-AKR1B1. Interestingly, the combination of siRNA-AKR1B1 with EP or (±)KU showed a greater effect on the suppression of AKR1B1, N-cadherin, E-cadherin and NF-κB than single treatments. Taken together, we concluded that (±)KU-bound AKR1B1 leads to the attenuation of cellular oxidative stress, as well as the aggressiveness of breast cancer cell migration.
Collapse
Affiliation(s)
- Tanotnon Tanawattanasuntorn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thidarath Rattanaburee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Tienthong Thongpanchang
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Correspondence: ; Tel.: +66-74-45-1184
| |
Collapse
|
7
|
Saeed A, Ejaz SA, Sarfraz M, Tamam N, Siddique F, Riaz N, Qais FA, Chtita S, Iqbal J. Discovery of Phenylcarbamoylazinane-1,2,4-Triazole Amides Derivatives as the Potential Inhibitors of Aldo-Keto Reductases (AKR1B1 & AKRB10): Potential Lead Molecules for Treatment of Colon Cancer. Molecules 2022; 27:molecules27133981. [PMID: 35807227 PMCID: PMC9268700 DOI: 10.3390/molecules27133981] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Both members of the aldo-keto reductases (AKRs) family, AKR1B1 and AKR1B10, are over-expressed in various type of cancer, making them potential targets for inflammation-mediated cancers such as colon, lung, breast, and prostate cancers. This is the first comprehensive study which focused on the identification of phenylcarbamoylazinane-1, 2,4-triazole amides (7a−o) as the inhibitors of aldo-keto reductases (AKR1B1, AKR1B10) via detailed computational analysis. Firstly, the stability and reactivity of compounds were determined by using the Guassian09 programme in which the density functional theory (DFT) calculations were performed by using the B3LYP/SVP level. Among all the derivatives, the 7d, 7e, 7f, 7h, 7j, 7k, and 7m were found chemically reactive. Then the binding interactions of the optimized compounds within the active pocket of the selected targets were carried out by using molecular docking software: AutoDock tools and Molecular operation environment (MOE) software, and during analysis, the Autodock (academic software) results were found to be reproducible, suggesting this software is best over the MOE (commercial software). The results were found in correlation with the DFT results, suggesting 7d as the best inhibitor of AKR1B1 with the energy value of −49.40 kJ/mol and 7f as the best inhibitor of AKR1B10 with the energy value of −52.84 kJ/mol. The other potent compounds also showed comparable binding energies. The best inhibitors of both targets were validated by the molecular dynamics simulation studies where the root mean square value of <2 along with the other physicochemical properties, hydrogen bond interactions, and binding energies were observed. Furthermore, the anticancer potential of the potent compounds was confirmed by cell viability (MTT) assay. The studied compounds fall into the category of drug-like properties and also supported by physicochemical and pharmacological ADMET properties. It can be suggested that the further synthesis of derivatives of 7d and 7f may lead to the potential drug-like molecules for the treatment of colon cancer associated with the aberrant expression of either AKR1B1 or AKR1B10 and other associated malignancies.
Collapse
Affiliation(s)
- Amna Saeed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
- Correspondence: (S.A.E.); (J.I.)
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain Campus, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates;
| | - Nissren Tamam
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O Box 84428, Riyadh 11671, Saudi Arabia;
| | - Farhan Siddique
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden;
- Department of Pharmacy, Royal Institute of Medical Sciences (RIMS), Multan 60000, Pakistan
| | - Naheed Riaz
- Department of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, UP, India;
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othmane, Casablanca BP7955, Morocco;
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, Abbottabad Campus, COMSATS University Islamabad, Abbotabad 22060, Pakistan
- Correspondence: (S.A.E.); (J.I.)
| |
Collapse
|
8
|
Zhao H, Dong X, Huang T, Li X. A Potential Prognostic Biomarker for Glioma: Aldo-Keto Reductase Family 1 Member B1. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:9979200. [PMID: 35341178 PMCID: PMC8956411 DOI: 10.1155/2022/9979200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022]
Abstract
Aldo-keto reductase family 1 member B1 (AKR1B1) plays a vital role in tumor development and is involved in the tumor immune process. However, its role in glioma cell is poorly studied. This study's aim was to assess the role of AKR1B1 in glioma through bioinformatics analysis. The AKR1B1 expression data and corresponding clinical data of glioma were collected from the Cancer Genome Atlas (TCGA) database. The R packages were used for data integration, extraction, analysis, and visualization. According to the median value of the risk score, all patients were divided into high-risk and low-risk groups to draw the Kaplan-Meier (KM) survival curves and to explore the level of immune infiltration. The expression of AKR1B1 was significantly elevated in glioma tissues compared to normal tissues (P < 0.001). The high expression of AKR1B1 was significantly associated with WHO grade (P < 0.001), IDH status (P < 0.001), 1p/19q codeletion (P < 0.001), primary therapy outcome (P = 0.004), and age (P < 0.05). Kaplan-Meier survival analysis found that OS (HR = 3.75, P < 0.001), DSS (HR = 3.85, P < 0.001), and PFI (HR = 2.76, P < 0.001) were lower in patients with glioma with high AKR1B1 expression than in the group with low AKR1B1 expression. Based on GESA, six pathways (including interferon gamma signaling, signaling by interleukins, cell cycle checkpoints, cytokine receptor interaction, cell adhesion molecules (CAMs), and cell surface interactions) at the vascular wall were identified as significantly different between the two groups. Moreover, highly expressed AKR1B1 was associated with immune cell infiltration. AKR1B1 plays a key role in glioma progression and prognosis and, therefore, serves as a potential biomarker for prediction of patients' survival.
Collapse
Affiliation(s)
- Hulin Zhao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Xuetao Dong
- Department of Neurosurgery, Chuiyangliu Hospital Affiliated To Tsinghua University, Beijing, China
| | - Tianxiang Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xueji Li
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Bose C, Hindle A, Lee J, Kopel J, Tonk S, Palade PT, Singhal SS, Awasthi S, Singh SP. Anticancer Activity of Ω-6 Fatty Acids through Increased 4-HNE in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13246377. [PMID: 34944997 PMCID: PMC8699056 DOI: 10.3390/cancers13246377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Epidemiological evidence suggests that breast cancer risk is lowered by Ω-3 and increased by Ω-6 polyunsaturated fatty acids (PUFAs). Paradoxically, the Ω-6 PUFA metabolite 4-hydroxynonenal (4-HNE) inhibits cancer cell growth. This duality prompted us to study whether arachidonic acid (AA) would enhance doxorubicin (dox) cytotoxicity towards breast cancer cells. We found that supplementing AA or inhibiting 4-HNE metabolism potentiated doxorubicin (dox) toxicity toward Her2-dependent breast cancer but spared myocardial cells. Our results suggest that Ω-6 PUFAs could improve outcomes of dox chemotherapy in Her2-overexpressing breast cancer. Abstract Her2-amplified breast cancers resistant to available Her2-targeted therapeutics continue to be a challenge in breast cancer therapy. Dox is the mainstay of chemotherapy of all types of breast cancer, but its usefulness is limited by cumulative cardiotoxicity. Because oxidative stress caused by dox generates the pro-apoptotic Ω-6 PUFA metabolite 4-hydroxynonenal (4-HNE), we surmised that Ω-6 PUFAs would increase the effectiveness of dox chemotherapy. Since the mercapturic acid pathway enzyme RALBP1 (also known as RLIP76 or Rlip) that limits cellular accumulation of 4-HNE also mediates dox resistance, the combination of Ω-6 PUFAs and Rlip depletion could synergistically improve the efficacy of dox. Thus, we studied the effects of the Ω-6 PUFA arachidonic acid (AA) and Rlip knockdown on the antineoplastic activity of dox towards Her2-amplified breast cancer cell lines SK-BR-3, which is sensitive to Her2 inhibitors, and AU565, which is resistant. AA increased lipid peroxidation, 4-HNE generation, apoptosis, cellular dox concentration and dox cytotoxicity in both cell lines while sparing cultured immortalized cardiomyocyte cells. The known functions of Rlip including clathrin-dependent endocytosis and dox efflux were inhibited by AA. Our results support a model in which 4-HNE generated by AA overwhelms the capacity of Rlip to defend against apoptosis caused by dox or 4-HNE. We propose that Ω-6 PUFA supplementation could improve the efficacy of dox or Rlip inhibitors for treating Her2-amplified breast cancer.
Collapse
Affiliation(s)
- Chhanda Bose
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Ashly Hindle
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Jihyun Lee
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Jonathan Kopel
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Sahil Tonk
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Philip T. Palade
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Sharad S. Singhal
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
- Medical Oncology Service, Doctors Hospital, 16 Middle Rd., George Town, Grand Cayman KY1-1104, Cayman Islands, UK
- Correspondence: (S.A.); (S.P.S.); Tel.: +1-305-949-6066 (S.A.); +1-806-743-1540 (S.P.S.)
| | - Sharda P. Singh
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
- Correspondence: (S.A.); (S.P.S.); Tel.: +1-305-949-6066 (S.A.); +1-806-743-1540 (S.P.S.)
| |
Collapse
|
10
|
Wu T, Ke Y, Tang H, Liao C, Li J, Wang L. Fidarestat induces glycolysis of NK cells through decreasing AKR1B10 expression to inhibit hepatocellular carcinoma. Mol Ther Oncolytics 2021; 23:420-431. [PMID: 34853813 PMCID: PMC8605295 DOI: 10.1016/j.omto.2021.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/08/2021] [Indexed: 02/08/2023] Open
Abstract
The aldose reductase inhibitor Fidarestat has been noted to have efficacy in treating a variety of tumors. To define its role in hepatocellular carcinoma (HCC), we induced a HCC xenograft model in mice, which were treated with different doses of Fidarestat. The amounts of natural killer (NK) cells and related inflammatory factors were detected in the serum of the mice. Fidarestat inhibited HCC tumor growth and lung metastasis in vivo and increased NK cell number as well as levels of NK cell-related inflammatory factors in mouse serum. NK cells were then co-cultured with the HCC cell line in vitro to detect effects on HCC cell progression after Fidarestat administration. The glycolysis activity of the NK cells was evaluated by extracellular acidification rate, while aldo-keto reductase family 1 member B10 (AKR1B10) expression was detected by western blot analysis. Administration of Fidarestat downregulated the expression of AKR1B10 in NK cells and promoted NK cell glycolysis to enhance their killing activity against HCC cells. However, depletion of NK cells or upregulation of AKR1B10 attenuated the anticancer activity of Fidarestat. Taken together, Fidarestat downregulated AKR1B10 expression in NK cells to promote NK cell glycolysis, thereby alleviating HCC progression.
Collapse
Affiliation(s)
- Tiangen Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Kunming 650101, China
- Department of Gastroenterological Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Yang Ke
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Kunming 650101, China
| | - Haoran Tang
- Department of Gastroenterological Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Chen Liao
- Department of Gastroenterological Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Jinze Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Kunming 650101, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Kunming 650101, China
| |
Collapse
|
11
|
Diabetes and Colorectal Cancer Risk: A New Look at Molecular Mechanisms and Potential Role of Novel Antidiabetic Agents. Int J Mol Sci 2021; 22:ijms222212409. [PMID: 34830295 PMCID: PMC8622770 DOI: 10.3390/ijms222212409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Epidemiological data have demonstrated a significant association between the presence of type 2 diabetes mellitus (T2DM) and the development of colorectal cancer (CRC). Chronic hyperglycemia, insulin resistance, oxidative stress, and inflammation, the processes inherent to T2DM, also play active roles in the onset and progression of CRC. Recently, small dense low-density lipoprotein (LDL) particles, a typical characteristic of diabetic dyslipidemia, emerged as another possible underlying link between T2DM and CRC. Growing evidence suggests that antidiabetic medications may have beneficial effects in CRC prevention. According to findings from a limited number of preclinical and clinical studies, glucagon-like peptide-1 receptor agonists (GLP-1RAs) could be a promising strategy in reducing the incidence of CRC in patients with diabetes. However, available findings are inconclusive, and further studies are required. In this review, novel evidence on molecular mechanisms linking T2DM with CRC development, progression, and survival will be discussed. In addition, the potential role of GLP-1RAs therapies in CRC prevention will also be evaluated.
Collapse
|
12
|
Goudar VS, Koduri MP, Ta YNN, Chen Y, Chu LA, Lu LS, Tseng FG. Impact of a Desmoplastic Tumor Microenvironment for Colon Cancer Drug Sensitivity: A Study with 3D Chimeric Tumor Spheroids. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48478-48491. [PMID: 34633791 DOI: 10.1021/acsami.1c18249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Three-dimensional (3D) spheroid culture provides opportunities to model tumor growth closer to its natural context. The collagen network in the extracellular matrix supports autonomic tumor cell proliferation, but its presence and role in tumor spheroids remain unclear. In this research, we developed an in vitro 3D co-culture model in a microwell 3D (μ-well 3D) cell-culture array platform to mimic the tumor microenvironment (TME). The modular setup is used to characterize the paracrine signaling molecules and the role of the intraspheroidal collagen network in cancer drug resistance. The μ-well 3D platform is made up of poly(dimethylsiloxane) that contains 630 round wells for individual spheroid growth. Inside each well, the growth surface measured 500 μm in diameter and was functionalized with the amphiphilic copolymer. HCT-8 colon cancer cells and/or NIH3T3 fibroblasts were seeded in each well and incubated for up to 9 days for TME studies. It was observed that NIH3T3 cells promoted the kinetics of tumor organoid formation. The two types of cells self-organized into core-shell chimeric tumor spheroids (CTSs) with fibroblasts confined to the shell and cancer cells localized to the core. Confocal microscopy analysis indicated that a type-I collagen network developed inside the CTS along with increased TGF-β1 and α-SMA proteins. The results were correlated with a significantly increased stiffness in 3D co-cultured CTS up to 52 kPa as compared to two-dimensional (2D) co-culture. CTS was more resistant to 5-FU (IC50 = 14.0 ± 3.9 μM) and Regorafenib (IC50 = 49.8 ± 9.9 μM) compared to cells grown under the 2D condition 5-FU (IC50 = 12.2 ± 3.7 μM) and Regorafenib (IC50 = 5.9 ± 1.9 μM). Targeted collagen homeostasis with Sclerotiorin led to damaged collagen structure and disrupted the type-I collagen network within CTS. Such a treatment significantly sensitized collagen-supported CTS to 5-FU (IC50 = 4.4 ± 1.3 μM) and to Regorafenib (IC50 = 0.5 ± 0.2 μM). In summary, the efficient formation of colon cancer CTSs in a μ-well 3D culture platform allows exploration of the desmoplastic TME. The novel role of intratumor collagen quality as a drug sensitization target warrants further investigation.
Collapse
Affiliation(s)
- Venkanagouda S Goudar
- Department of Engineering and System Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Manohar Prasad Koduri
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
- Department of Mechanical, Materials, and Aerospace, School of Engineering, University of Liverpool, Harrison Hughes Building, Liverpool L693GH, U.K
| | - Yen-Nhi Ngoc Ta
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Li-An Chu
- Department of Biomedical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Long-Sheng Lu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan, ROC
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, ROC
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, ROC
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan, ROC
| | - Fan-Gang Tseng
- Department of Engineering and System Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| |
Collapse
|
13
|
Singh M, Kapoor A, Bhatnagar A. Physiological and Pathological Roles of Aldose Reductase. Metabolites 2021; 11:655. [PMID: 34677370 PMCID: PMC8541668 DOI: 10.3390/metabo11100655] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Aldose reductase (AR) is an aldo-keto reductase that catalyzes the first step in the polyol pathway which converts glucose to sorbitol. Under normal glucose homeostasis the pathway represents a minor route of glucose metabolism that operates in parallel with glycolysis. However, during hyperglycemia the flux of glucose via the polyol pathway increases significantly, leading to excessive formation of sorbitol. The polyol pathway-driven accumulation of osmotically active sorbitol has been implicated in the development of secondary diabetic complications such as retinopathy, nephropathy, and neuropathy. Based on the notion that inhibition of AR could prevent these complications a range of AR inhibitors have been developed and tested; however, their clinical efficacy has been found to be marginal at best. Moreover, recent work has shown that AR participates in the detoxification of aldehydes that are derived from lipid peroxidation and their glutathione conjugates. Although in some contexts this antioxidant function of AR helps protect against tissue injury and dysfunction, the metabolic transformation of the glutathione conjugates of lipid peroxidation-derived aldehydes could also lead to the generation of reactive metabolites that can stimulate mitogenic or inflammatory signaling events. Thus, inhibition of AR could have both salutary and injurious outcomes. Nevertheless, accumulating evidence suggests that inhibition of AR could modify the effects of cardiovascular disease, asthma, neuropathy, sepsis, and cancer; therefore, additional work is required to selectively target AR inhibitors to specific disease states. Despite past challenges, we opine that a more gainful consideration of therapeutic modulation of AR activity awaits clearer identification of the specific role(s) of the AR enzyme in health and disease.
Collapse
Affiliation(s)
- Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Aniruddh Kapoor
- Internal Medicine—Critical Care, School of Medicine, Saint Louis University, St. Louis, MO 63141, USA;
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| |
Collapse
|
14
|
Sonowal H, Ramana KV. Development of Aldose Reductase Inhibitors for the Treatment of Inflammatory Disorders and Cancer: Current Drug Design Strategies and Future Directions. Curr Med Chem 2021; 28:3683-3712. [PMID: 33109031 DOI: 10.2174/0929867327666201027152737] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
Aldose Reductase (AR) is an enzyme that converts glucose to sorbitol during the polyol pathway of glucose metabolism. AR has been shown to be involved in the development of secondary diabetic complications due to its involvement in causing osmotic as well as oxidative stress. Various AR inhibitors have been tested for their use to treat secondary diabetic complications, such as retinopathy, neuropathy, and nephropathy in clinical studies. Recent studies also suggest the potential role of AR in mediating various inflammatory complications. Therefore, the studies on the development and potential use of AR inhibitors to treat inflammatory complications and cancer besides diabetes are currently on the rise. Further, genetic mutagenesis studies, computer modeling, and molecular dynamics studies have helped design novel and potent AR inhibitors. This review discussed the potential new therapeutic use of AR inhibitors in targeting inflammatory disorders and cancer besides diabetic complications. Further, we summarized studies on how AR inhibitors have been designed and developed for therapeutic purposes in the last few decades.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Moores Cancer Center, University of California San Diego, La Jolla, California 92037, United States
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
15
|
Shi Z, Kong X, Li C, Liu H, Aliagan AI, Liu L, Shi Y, Shi X, Ma B, Jin R, Wang S, Pan D, Tang J. Bioinformatic analysis of differentially expressed genes as prognostic markers in pheochromocytoma and paraganglioma tumors. Genes Genet Syst 2021; 96:55-69. [PMID: 34039789 DOI: 10.1266/ggs.20-00057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The pathogenesis of pheochromocytoma and paraganglioma (PCPG) catecholamine-producing tumors is exceedingly complicated. Here, we sought to identify important genes affecting the prognosis and survival rate of patients suffering from PCPG. We analyzed 95 samples obtained from two microarray data series, GSE19422 and GSE60459, from the Gene Expression Omnibus (GEO) repository. First, differentially expressed genes (DEGs) were identified by comparing 87 PCPG tumor samples and eight normal adrenal tissue samples using R language. The GEO2R tool and Venn diagram software were applied to the Database for Annotation, Visualization and Integrated Discovery (DAVID) to analyze Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO). We further employed Cytoscape with the Molecular Complex Detection (MCODE) tool to make protein-protein interactions visible for the Search Tool for Retrieval of Interacting Genes (STRING). These procedures resulted in 30 candidate DEGs, which were subjected to Kaplan-Meier analysis and validated by Gene Expression Profiling Interactive Analysis (GEPIA) to determine their influence on overall survival rate. Finally, we identified ALDH3A2 and AKR1B1, two genes in the glycerolipid metabolism pathway, as being particularly enriched in PCPG tumors and correlated with T and B tumor-infiltrating immune cells. Our results suggest that these two DEGs are closely associated with the prognosis of malignant PCPG tumors.
Collapse
Affiliation(s)
- Zhen Shi
- Department of Hand and Microsurgery, Xiangya Hospital, Central South University.,Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio
| | - Xiaodi Kong
- Department of Urology, Xiangya Hospital, Central South University
| | - Cheng Li
- Department of Hand and Microsurgery, Xiangya Hospital, Central South University
| | - Hui Liu
- Department of Hand and Microsurgery, Xiangya Hospital, Central South University
| | - Abdulhafiz Imam Aliagan
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio
| | - Li Liu
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio
| | - Yue Shi
- School of Mechanical Engineering, Northwestern Polytechnical University
| | - Xiao Shi
- The Third Xiangya Hospital, Central South University
| | - Binbin Ma
- Department of Hand and Microsurgery, Xiangya Hospital, Central South University
| | - Ruiqi Jin
- The Third Xiangya Hospital, Central South University
| | - Shizhuo Wang
- College of Life Science and Technology, Beijing University of Chemical Technology
| | - Ding Pan
- Department of Hand and Microsurgery, Xiangya Hospital, Central South University
| | - Juyu Tang
- Department of Hand and Microsurgery, Xiangya Hospital, Central South University
| |
Collapse
|
16
|
Aldose Reductase Differential Inhibitors in Green Tea. Biomolecules 2020; 10:biom10071003. [PMID: 32640594 PMCID: PMC7407822 DOI: 10.3390/biom10071003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Aldose reductase (AKR1B1), the first enzyme in the polyol pathway, is likely involved in the onset of diabetic complications. Differential inhibition of AKR1B1 has been proposed to counteract the damaging effects linked to the activity of the enzyme while preserving its detoxifying ability. Here, we show that epigallocatechin gallate (EGCG), one of the most representative catechins present in green tea, acts as a differential inhibitor of human recombinant AKR1B1. A kinetic analysis of EGCG, and of its components, gallic acid (GA) and epigallocatechin (EGC) as inhibitors of the reduction of L-idose, 4-hydroxy2,3-nonenal (HNE), and 3-glutathionyl l-4-dihydroxynonanal (GSHNE) revealed for the compounds a different model of inhibition toward the different substrates. While EGCG preferentially inhibited L-idose and GSHNE reduction with respect to HNE, gallic acid, which was still active in inhibiting the reduction of the sugar, was less active in inhibiting HNE and GSHNE reduction. EGC was found to be less efficient as an inhibitor of AKR1B1 and devoid of any differential inhibitory action. A computational study defined different interactive modes for the three substrates on the AKR1B1 active site and suggested a rationale for the observed differential inhibition. A chromatographic fractionation of an alcoholic green tea extract revealed that, besides EGCG and GA, other components may exhibit the differential inhibition of AKR1B1.
Collapse
|
17
|
Khayami R, Hashemi SR, Kerachian MA. Role of aldo-keto reductase family 1 member B1 (AKR1B1) in the cancer process and its therapeutic potential. J Cell Mol Med 2020; 24:8890-8902. [PMID: 32633024 PMCID: PMC7417692 DOI: 10.1111/jcmm.15581] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
The role of aldo‐keto reductase family 1 member B1 (AKR1B1) in cancer is not totally clear but growing evidence is suggesting to have a great impact on cancer progression. AKR1B1 could participate in a complicated network of signalling pathways, proteins and miRNAs such as mir‐21 mediating mechanisms like inflammatory responses, cell cycle, epithelial to mesenchymal transition, cell survival and apoptosis. AKR1B1 has been shown to be mostly overexpressed in cancer. This overexpression has been associated with inflammatory mediators including nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NFκB), cell cycle mediators such as cyclins and cyclin‐dependent kinases (CDKs), survival proteins and pathways like mammalian target of rapamycin (mTOR) and protein kinase B (PKB) or AKT, and other regulatory factors in response to reactive oxygen species (ROS) and prostaglandin synthesis. In addition, inhibition of AKR1B1 has been shown to mostly have anti‐cancer effects. Several studies have also suggested that AKR1B1 inhibition as an adjuvant therapy could render tumour cells more sensitive to anti‐cancer therapy or alleviate the adverse effects of therapy. AKR1B1 could also be considered as a potential cancer diagnostic biomarker since its promoter has shown high levels of methylation. Although pre‐clinical investigations on the role of AKR1B1 in cancer and the application of its inhibitors have shown promising results, the lack of clinical studies on AKR1B1 inhibitors has hampered the use of these drugs to treat cancer. Thus, there is a need to conduct more clinical studies on the application of AKR1B1 inhibitors as adjuvant therapy on different cancers.
Collapse
Affiliation(s)
- Reza Khayami
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Reza Hashemi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| |
Collapse
|
18
|
Sugar Alcohols Have a Key Role in Pathogenesis of Chronic Liver Disease and Hepatocellular Carcinoma in Whole Blood and Liver Tissues. Cancers (Basel) 2020; 12:cancers12020484. [PMID: 32092943 PMCID: PMC7072169 DOI: 10.3390/cancers12020484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
The major risk factors for hepatocellular carcinoma (HCC) are hepatitis C and B viral infections that proceed to Chronic Liver Disease (CLD). Yet, the early diagnosis and treatment of HCC are challenging because the pathogenesis of HCC is not fully defined. To better understand the onset and development of HCC, untargeted GC-TOF MS metabolomics data were acquired from resected human HCC tissues and their paired non-tumor hepatic tissues (n = 46). Blood samples of the same HCC subjects (n = 23) were compared to CLD (n = 15) and healthy control (n = 15) blood samples. The participants were recruited from the National Liver Institute in Egypt. The GC-TOF MS data yielded 194 structurally annotated compounds. The most strikingly significant alteration was found for the class of sugar alcohols that were up-regulated in blood of HCC patients compared to CLD subjects (p < 2.4 × 10−12) and CLD compared to healthy controls (p = 4.1 × 10−7). In HCC tissues, sugar alcohols were the most significant (p < 1 × 10−6) class differentiating resected HCC tissues from non-malignant hepatic tissues for all HCC patients. Alteration of sugar alcohol levels in liver tissues also defined early-stage HCC from their paired non-malignant hepatic tissues (p = 2.7 × 10−6). In blood, sugar alcohols differentiated HCC from CLD subjects with an ROC-curve of 0.875 compared to 0.685 for the classic HCC biomarker alpha-fetoprotein. Blood sugar alcohol levels steadily increased from healthy controls to CLD to early stages of HCC and finally, to late-stage HCC patients. The increase in sugar alcohol levels indicates a role of aldo-keto reductases in the pathogenesis of HCC, possibly opening novel diagnostic and therapeutic options after in-depth validation.
Collapse
|
19
|
Khedr MA, Al-Wabli RI, Almutairi MS, Zaghary WA. QSAR-based rational discovery of novel substituted-4'-iminospiro[indoline-3,3'-[1,2,5]thiadiazolidinyl]-2-one 1',1'-dioxide with potent in vitro anticancer activity. BMC Chem 2019; 13:3. [PMID: 31355364 PMCID: PMC6659568 DOI: 10.1186/s13065-019-0520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 01/16/2019] [Indexed: 11/10/2022] Open
Abstract
Recent studies have suggested that aldose reductase inhibition preferentially inhibits the growth of cancer cells. However, the investigations of this issue are not many. Novel nine substituted- 4'-iminospiro[indoline-3,3'-[1,2,5] thiadiazolidinyl]-2-one 1',1'-dioxide derivatives were designed by both isosteric replacement of the imidazolidine-2,5-dione moiety in spirohydantoin scaffold and conformational rigidification approaches. A QSAR with high predictive power (r2 = 0.99) was created from a series of potent aldose reductase inhibitors and was used to predict the activity of our new compounds. Compound 5 showed the best docking score (- 33.24 kcal/mol) with the least RMSD value (< 1.5) obtained by molecular dynamic simulations over 20 ns. All compounds showed promising anticancer activities especially compound 5 that achieved the highest inhibitory activities with IC50; 0.013, 0.031, 0.064, and 0.048 mmol/L against breast, colon, prostate, and lung cell lines respectively. The discovery of this lead compound confirmed the rational design. Further investigations may be required for optimization of this compound.
Collapse
Affiliation(s)
- Mohammed A. Khedr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11790 Egypt
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hasa, 31982 Saudi Arabia
| | - Reem I. Al-Wabli
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Maha S. Almutairi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Wafaa A. Zaghary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11790 Egypt
| |
Collapse
|
20
|
Saxena A, Tammali R, Ramana KV, Srivastava SK. Aldose Reductase Inhibitor, Fidarestat Prevents High-fat Diet-induced Intestinal Polyps in Apc Min/+ Mice. Curr Cancer Drug Targets 2019; 18:905-911. [PMID: 28786349 DOI: 10.2174/1568009617666170808105633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 06/08/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent epidemiological and experimental studies have shown that obesity is a major risk factor for Colorectal Cancer (CRC). Regular intake of high fat-containing diet can promote obesity and metabolic syndrome by increasing the insulin resistance and inflammatory response which contribute to carcinogenesis. Previously, we have shown that inhibition of polyol pathway enzyme aldose reductase (AR) prevents carcinogens- and inflammatory growth factorsinduced CRC. However, the effect of AR inhibition on a high-fat diet (HFD)-induced formation of intestinal polyps in Apc-deficient Min (multiple intestinal neoplasia; ApcMin/+) mice is not known. METHODS We examined the effect of AR inhibitor, fidarestat on the HFD-induced formation of preneoplastic intestinal polyps in ApcMin/+ mice which is an excellent model of colon cancer. RESULTS APCMin/+ mice fed for 12 weeks of HFD caused a significant increase in the formation of polyps in the small and large intestines and fidarestat given along with the HFD prevented the number of intestinal polyps. Fidarestat also decreased the size of the polyps in the intestines of HFDtreated APC Min mice. Further, the expression levels of beta-catenin, PCNA, PKC-β2, P-AKT, Pp65, COX-2, and iNOS in the small and large intestines of HFD-treated mice significantly increased, and AR inhibitor prevented it. CONCLUSION Our results thus suggest that fidarestat could be used as a potential chemopreventive drug for intestinal cancers due to APC gene mutations.
Collapse
Affiliation(s)
- Ashish Saxena
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Ravinder Tammali
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Satish K Srivastava
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
21
|
Shoji Y, Takamura H, Ninomiya I, Fushida S, Tada Y, Yokota T, Ohta T, Koide H. The Embryonic Stem Cell-Specific Transcription Factor ZFP57 Promotes Liver Metastasis of Colorectal Cancer. J Surg Res 2019; 237:22-29. [PMID: 30694787 DOI: 10.1016/j.jss.2018.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/28/2018] [Accepted: 11/09/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND The embryonic stem cell-specific transcription factor, ZFP57, has been shown to play an important role in tumor formation. In this study, we examined if ZFP57 is involved in colorectal cancer metastasis. MATERIALS AND METHODS First, we used colorectal cancer cell lines to perform in vivo metastatic experiments with nude mice. Next, we carried out immunohistochemical analysis of clinical specimens of colorectal cancers. RESULTS In liver metastatic experiments using human colorectal cancer HT29 and HCT116 cells, liver polymetastases occurred at high frequency in ZFP57-overexpressing HT29 and HCT116 cells, whereas both control cells only resulted in oligometastases. Next, we analyzed ZFP57 expression using clinical specimens. Liver metastasis-positive cases were more frequently associated with ZFP57 overexpression than negative cases in primary lesions of colorectal cancer, and the overexpression was particularly remarkable in tumor invasive lesions. Furthermore, ZFP57 overexpression was significantly correlated not only with liver metastasis but also with lymph node metastasis. In addition, the expression level of ZFP57 was significantly correlated with that of the metastasis-related gene NANOG. We also found that ZFP57 overexpression reduced the progression-free survival rate of patients with colorectal cancer. CONCLUSIONS This study demonstrated that ZFP57 plays an important role in the hematogenous metastasis of colorectal cancer, suggesting that it could be used as a novel treatment target.
Collapse
Affiliation(s)
- Yasuhiro Shoji
- Gastroenterologic Surgery, Kanazawa University, Ishikawa, Japan
| | | | - Itasu Ninomiya
- Gastroenterologic Surgery, Kanazawa University, Ishikawa, Japan
| | - Sachio Fushida
- Gastroenterologic Surgery, Kanazawa University, Ishikawa, Japan
| | - Yuhki Tada
- Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan; Technology and Development Team for Mammalian Genome Dynamics, RIKEN BioResource Center, Ibaraki, Japan
| | - Takashi Yokota
- Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Tetsuo Ohta
- Gastroenterologic Surgery, Kanazawa University, Ishikawa, Japan
| | - Hiroshi Koide
- Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan; Laboratory of Molecular and Biochemical Research, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Regulation of aldose reductase activity by tubulin and phenolic acid derivates. Arch Biochem Biophys 2018; 654:19-26. [DOI: 10.1016/j.abb.2018.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/29/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022]
|
23
|
Anti-angiogenic effect of phospholipases A2 from Scorpio maurus venom glands on Human Umbilical Vein Endothelial Cells. Toxicon 2018; 145:6-14. [DOI: 10.1016/j.toxicon.2018.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/02/2018] [Accepted: 02/22/2018] [Indexed: 11/18/2022]
|
24
|
Shukla K, Sonowal H, Saxena A, Ramana KV. Didymin prevents hyperglycemia-induced human umbilical endothelial cells dysfunction and death. Biochem Pharmacol 2018; 152:1-10. [PMID: 29548811 DOI: 10.1016/j.bcp.2018.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/09/2018] [Indexed: 01/01/2023]
Abstract
Although didymin, a flavonoid-O-glycosides compound naturally found in the citrus fruits, has been reported to be a potent anticancer agent in the prevention of various cancers, its role in the prevention of cardiovascular complications is unclear. Most importantly, its effect in the prevention of endothelial dysfunction, a pathological process involved in the atherogenesis, is unknown. We have examined the efficacy of didymin in preventing the high glucose (HG; 25 mM)-induced human umbilical vein endothelial cells (HUVECs) dysfunction. Our results indicate that incubation of HUVECs with HG resulted in the loss of cell viability, and pre-incubation of didymin prevented it. Further, didymin prevented the HG-induced generation of reactive oxygen species (ROS) as well as lipid peroxidation product, malondialdehyde. Pretreatment of HUVECs with didymin also prevented the HG-induced decrease in eNOS and increase in iNOS expressions. Further, didymin prevented the HG-induced monocytes cell adhesion to endothelial cells, expressions of ICAM-1 and VCAM-1 and activation of NF-κB. Didymin also prevented the release of various inflammatory cytokines and chemokines in HG-treated HUVECs. In conclusion, our results demonstrate that didymin with its anti-oxidative and anti-inflammatory actions prevents hyperglycemia-induced endothelial dysfunction and death. Thus, it could be developed as a potential natural therapeutic agent for the prevention of cardiovascular complications in diabetes.
Collapse
Affiliation(s)
- Kirtikar Shukla
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Himangshu Sonowal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ashish Saxena
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
25
|
Sonowal H, Pal P, Shukla K, Saxena A, Srivastava SK, Ramana KV. Aldose reductase inhibitor, fidarestat prevents doxorubicin-induced endothelial cell death and dysfunction. Biochem Pharmacol 2018; 150:181-190. [PMID: 29458045 DOI: 10.1016/j.bcp.2018.02.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/14/2018] [Indexed: 12/14/2022]
Abstract
Despite doxorubicin (Dox) being one of the most widely used chemotherapy agents for breast, blood and lung cancers, its use in colon cancer is limited due to increased drug resistance and severe cardiotoxic side effects that increase mortality associated with its use at high doses. Therefore, better adjuvant therapies are warranted to improve the chemotherapeutic efficacy and to decrease cardiotoxicity. We have recently shown that aldose reductase inhibitor, fidarestat, increases the Dox-induced colon cancer cell death and reduces cardiomyopathy. However, the efficacy of fidarestat in the prevention of Dox-induced endothelial dysfunction, a pathological event critical to cardiovascular complications, is not known. Here, we have examined the effect of fidarestat on Dox-induced endothelial cell toxicity and dysfunction in vitro and in vivo. Incubation of human umbilical vein endothelial cells (HUVECs) with Dox significantly increased the endothelial cell death, and pre-treatment of fidarestat prevented it. Further, fidarestat prevented the Dox-induced oxidative stress, formation of reactive oxygen species (ROS) and activation of Caspase-3 in HUVECs. Fidarestat also prevented Dox-induced monocyte adhesion to HUVECs and expression of ICAM-1 and VCAM-1. Fidarestat pre-treatment to HUVECs restored the Dox-induced decrease in the Nitric Oxide (NO)-levels and eNOS expression. Treatment of HUVECs with Dox caused a significant increase in the activation of NF-κB and expression of various inflammatory cytokines and chemokines which were prevented by fidarestat pre-treatment. Most importantly, fidarestat prevented the Dox-induced mouse cardiac cell hypertrophy and expression of eNOS, iNOS, and 3-Nitrotyrosine in the aorta tissues. Further, fidarestat blunted the Dox-induced expression of various inflammatory cytokines and chemokines in vivo. Thus, our results suggest that by preventing Dox-induced endothelial cytotoxicity and dysfunction, AR inhibitors could avert cardiotoxicity associated with anthracycline chemotherapy.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pabitra Pal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kirtikar Shukla
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ashish Saxena
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Satish K Srivastava
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
26
|
Shukla K, Sonowal H, Saxena A, Ramana KV, Srivastava SK. Aldose reductase inhibitor, fidarestat regulates mitochondrial biogenesis via Nrf2/HO-1/AMPK pathway in colon cancer cells. Cancer Lett 2017; 411:57-63. [PMID: 28986187 PMCID: PMC5693654 DOI: 10.1016/j.canlet.2017.09.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/18/2017] [Accepted: 09/21/2017] [Indexed: 12/25/2022]
Abstract
Although we have shown earlier that aldose reductase (AR) inhibitors prevent colorectal cancer cell (CRC) growth in culture as well as in nude mice xenografts, the mechanism(s) is not well understood. In this study, we have investigated how AR inhibition prevents CRC growth by regulating the mitochondrial biogenesis via Nrf2/HO-1 pathway. Incubation of CRC cells such as SW-480, HT29, and HCT116 with AR inhibitor, fidarestat that non-covalently binds to the enzyme, increases the expression of Nrf2. Further, fidarestat augmented the EGF-induced expression of Nrf2 in CRC cells. Fidarestat also increased the Nrf2 -DNA binding activity as well as expression of HO-1 and NQO1 and activation of SOD and catalase in SW480 cells. Similarly, in nude mice xenograft tumor tissues, Nrf2 and HO-1 levels were significantly higher in fidarestat-treated mice compared to controls. Further, stimulation of CRC cells with EGF in the presence of fidarestat increased the mRNA levels of PGC-1α, Nrf1 and TFAM and protein levels of PGC-1α, TFAM and COX-IV and decreased the mitochondrial DNA damage as measured by 8-hydroxy-2'-deoxyguanosine levels. AR inhibitor also modulated the phosphorylations of AMPK and mTOR and expression of p53 in EGF-treated cells. Collectively, our results indicate that AR inhibitor prevents CRC growth by increasing mitochondrial biogenesis via increasing the expression of Nrf2/HO-1/AMPK/p53 and decreasing the mitochondrial DNA damage.
Collapse
Affiliation(s)
- Kirtikar Shukla
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Himangshu Sonowal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ashish Saxena
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Satish K Srivastava
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
27
|
Misuri L, Cappiello M, Balestri F, Moschini R, Barracco V, Mura U, Del-Corso A. The use of dimethylsulfoxide as a solvent in enzyme inhibition studies: the case of aldose reductase. J Enzyme Inhib Med Chem 2017; 32:1152-1158. [PMID: 28856935 PMCID: PMC6009938 DOI: 10.1080/14756366.2017.1363744] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/21/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
Aldose reductase (AR) is an enzyme devoted to cell detoxification and at the same time is strongly involved in the aetiology of secondary diabetic complications and the amplification of inflammatory phenomena. AR is subjected to intense inhibition studies and dimethyl sulfoxide (DMSO) is often present in the assay mixture to keep the inhibitors in solution. DMSO was revealed to act as a weak but well detectable AR differential inhibitor, acting as a competitive inhibitor of the L-idose reduction, as a mixed type of non-competitive inhibitor of HNE reduction and being inactive towards 3-glutathionyl-4-hydroxynonanal transformation. A kinetic model of DMSO action with respect to differently acting inhibitors was analysed. Three AR inhibitors, namely the flavonoids neohesperidin dihydrochalcone, rutin and phloretin, were used to evaluate the effects of DMSO on the inhibition studies on the reduction of L-idose and HNE.
Collapse
Affiliation(s)
- Livia Misuri
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Tuscany Region PhD School in Biochemistry and Molecular Biology, Italy
| | - Mario Cappiello
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Francesco Balestri
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Roberta Moschini
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Vito Barracco
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Tuscany Region PhD School in Biochemistry and Molecular Biology, Italy
| | - Umberto Mura
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Antonella Del-Corso
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| |
Collapse
|
28
|
Endo S, Xia S, Suyama M, Morikawa Y, Oguri H, Hu D, Ao Y, Takahara S, Horino Y, Hayakawa Y, Watanabe Y, Gouda H, Hara A, Kuwata K, Toyooka N, Matsunaga T, Ikari A. Synthesis of Potent and Selective Inhibitors of Aldo-Keto Reductase 1B10 and Their Efficacy against Proliferation, Metastasis, and Cisplatin Resistance of Lung Cancer Cells. J Med Chem 2017; 60:8441-8455. [PMID: 28976752 DOI: 10.1021/acs.jmedchem.7b00830] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aldo-keto reductase 1B10 (AKR1B10) is overexpressed in several extraintestinal cancers, particularly in non-small-cell lung cancer, where AKR1B10 is a potential diagnostic marker and therapeutic target. Selective AKR1B10 inhibitors are required because compounds should not inhibit the highly related aldose reductase that is involved in monosaccharide and prostaglandin metabolism. Currently, 7-hydroxy-2-(4-methoxyphenylimino)-2H-chromene-3-carboxylic acid benzylamide (HMPC) is known to be the most potent competitive inhibitor of AKR1B10, but it is nonselective. In this study, derivatives of HMPC were synthesized by removing the 4-methoxyphenylimino moiety and replacing the benzylamide with phenylpropylamide. Among them, 4c and 4e showed higher AKR1B10 inhibitory potency (IC50 4.2 and 3.5 nM, respectively) and selectivity than HMPC. The treatments with the two compounds significantly suppressed not only migration, proliferation, and metastasis of lung cancer A549 cells but also metastatic and invasive potentials of cisplatin-resistant A549 cells.
Collapse
Affiliation(s)
- Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Shuang Xia
- Graduate School of Innovative Life Science, University of Toyama , Toyama 930-8555, Japan
| | - Miho Suyama
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Yoshifumi Morikawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Hiroaki Oguri
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Dawei Hu
- Graduate School of Innovative Life Science, University of Toyama , Toyama 930-8555, Japan
| | - Yoshinori Ao
- Graduate School of Science and Engineering, University of Toyama , Toyama 930-8555, Japan
| | - Satoyuki Takahara
- Graduate School of Innovative Life Science, University of Toyama , Toyama 930-8555, Japan
| | - Yoshikazu Horino
- Graduate School of Science and Engineering, University of Toyama , Toyama 930-8555, Japan
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama , Toyama 930-0194, Japan
| | - Yurie Watanabe
- School of Pharmacy, Showa University , Tokyo 142-8555, Japan
| | - Hiroaki Gouda
- School of Pharmacy, Showa University , Tokyo 142-8555, Japan
| | - Akira Hara
- Faculty of Engineering, Gifu University , Gifu 501-1193, Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University , Gifu 501-1193, Japan
| | - Naoki Toyooka
- Graduate School of Innovative Life Science, University of Toyama , Toyama 930-8555, Japan.,Graduate School of Science and Engineering, University of Toyama , Toyama 930-8555, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| |
Collapse
|
29
|
Lan H, Yuan H, Lin C. Sulforaphane induces p53‑deficient SW480 cell apoptosis via the ROS‑MAPK signaling pathway. Mol Med Rep 2017; 16:7796-7804. [PMID: 28944886 DOI: 10.3892/mmr.2017.7558] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 05/08/2017] [Indexed: 11/06/2022] Open
Abstract
Sulforaphane (SFN) has been revealed to inhibit the growth and induce apoptosis of cancer cells. However, the detailed anticancer effects of SFN on p53‑deficient colon cancer cells has yet to be clearly elucidated. The present study employed p53‑deficient SW480 cells to establish an SFN‑induced in vitro model of apoptosis. The critical events leading to apoptosis were then evaluated in SFN‑treated p53‑deficient SW480 cells, by performing an MTT assay, flow cytometry, western blotting and ELISA. The results demonstrated that SFN at concentrations of 5, 10, 15 and 20 µM induced mitochondria‑associated cell apoptosis, which was further confirmed by disruption of the mitochondrial membrane potential, an increase in the Bax/Bcl‑2 ratio, as well as activation of caspase‑3, ‑7 and ‑9. In addition, SFN‑induced apoptosis was associated with an increase in the generation of reactive oxygen species (ROS), and the activation of extracellular signal‑regulated kinases (Erk) and p38 mitogen‑activated protein kinases. However, SFN did not induce expression of the p53 family member, p73. SFN‑induced apoptosis was subsequently confirmed to be ROS‑dependent and associated with Erk/p38, as the specific inhibitors for ROS, phosphorylated (p)‑Erk and p‑p38, completely or partially attenuated the SFN‑induced reduction in SW480 cell viability. In addition, the results demonstrated that even at the lowest concentrations (5 µM), SFN increased the sensitivity of p53‑proficient HCT‑116 cells to cisplatin. In conclusion, the results suggest that SFN may induce apoptosis in p53‑deficient SW480 cells via p53/p73‑independent and ROS‑Erk/p38‑dependent signaling pathways.
Collapse
Affiliation(s)
- Hai Lan
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hongyin Yuan
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Congyao Lin
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
30
|
Taskoparan B, Seza EG, Demirkol S, Tuncer S, Stefek M, Gure AO, Banerjee S. Opposing roles of the aldo-keto reductases AKR1B1 and AKR1B10 in colorectal cancer. Cell Oncol (Dordr) 2017; 40:563-578. [PMID: 28929377 DOI: 10.1007/s13402-017-0351-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Aldo-keto reductases (including AKR1B1 and AKR1B10) constitute a family of oxidoreductases that have been implicated in the pathophysiology of diabetes and cancer, including colorectal cancer (CRC). Available data indicate that, despite their similarities in structure and enzymatic functions, their roles in CRC may be divergent. Here, we aimed to determine the expression and functional implications of AKR1B1 and AKR1B10 in CRC. METHODS AKR1B1 and AKR1B10 gene expression levels were analyzed using publicly available microarray data and ex vivo CRC-derived cDNA samples. Gene Set Enrichment Analysis (GSEA), The Cancer Genome Atlas (TCGA) RNA-seq data and The Cancer Proteome Atlas (TCPA) proteome data were analyzed to determine the effect of high and low AKR1B1 and AKR1B10 expression levels in CRC patients. Proliferation, cell cycle progression, cellular motility, adhesion and inflammation were determined in CRC-derived cell lines in which these genes were either exogenously overexpressed or silenced. RESULTS We found that the expression of AKR1B1 was unaltered, whereas that of AKR1B10 was decreased in primary CRCs. GSEA revealed that, while high AKR1B1 expression was associated with increased cell cycle progression, cellular motility and inflammation, high AKR1B10 expression was associated with a weak inflammatory phenotype. Functional studies carried out in CRC-derived cell lines confirmed these data. Microarray data analysis indicated that high expression levels of AKR1B1 and AKR1B10 were significantly associated with shorter and longer disease-free survival rates, respectively. A combined gene expression signature of AKR1B10 (low) and AKR1B1 (high) showed a better prognostic stratification of CRC patients independent of confounding factors. CONCLUSIONS Despite their similarities, the expression levels and functions of AKR1B1 and AKR1B10 are highly divergent in CRC, and they may have prognostic implications.
Collapse
Affiliation(s)
- Betul Taskoparan
- Department of Biological Sciences, Orta Doğu Teknik Üniversitesi (ODTU/METU), Ankara, Turkey
| | - Esin Gulce Seza
- Department of Biological Sciences, Orta Doğu Teknik Üniversitesi (ODTU/METU), Ankara, Turkey
| | - Secil Demirkol
- Department of Molecular Biology and Genetics, Bilkent Üniversitesi, Ankara, Turkey
| | - Sinem Tuncer
- Department of Biological Sciences, Orta Doğu Teknik Üniversitesi (ODTU/METU), Ankara, Turkey
| | - Milan Stefek
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ali Osmay Gure
- Department of Molecular Biology and Genetics, Bilkent Üniversitesi, Ankara, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Doğu Teknik Üniversitesi (ODTU/METU), Ankara, Turkey.
| |
Collapse
|
31
|
Liu B, Fu XQ, Li T, Su T, Guo H, Zhu PL, Tse AKW, Liu SM, Yu ZL. Computational and experimental prediction of molecules involved in the anti-melanoma action of berberine. JOURNAL OF ETHNOPHARMACOLOGY 2017; 208:225-235. [PMID: 28729227 DOI: 10.1016/j.jep.2017.07.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/07/2017] [Accepted: 07/15/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGIC RELEVANCE Berberine (BBR) is a naturally occurring alkaloid compound that can be found in Chinese medicinal herbs such as Rhizoma Coptidis and Phellodendri Cortex. These BBR containing herbs are commonly used by Chinese medicine doctors to treat cancers including melanoma. In this study, we explored proteins potentially involved in the anti-melanoma effects of BBR using computational and experimental approaches. MATERIALS AND METHODS Target proteins of BBR were predicted using the reverse pharmacophore screening, molecular docking and molecular dynamics. Anti-melanoma activities of BBR in melanoma cells were examined by MTT and EdU proliferation assays. Effects of BBR on activities of target proteins in melanoma cells were examined by Western blotting or fluorescence assay. RESULTS Ten proteins implicated in cancer and with high fit-score in the reverse pharmacophore screening were selected as potential targets of BBR. Molecular docking and molecular dynamics revealed that BBR could stably bind to four of the ten proteins, namely 3-phosphoinositide-dependent protein kinase 1 (PDK1), glucocorticoid receptor (GR), p38 mitogen-activated protein kinase (p38) and dihydroorotate dehydrogenase (DHODH). Cellular experiments showed that BBR inhibited cell proliferation, increased the phosphorylation of GR and p38, and inhibited the activity of DHODH in A375 human melanoma cells. CONCLUSIONS These findings suggest that p38, GR and DHODH are potentially involved in the anti-melanoma action of BBR. This study provided a chemical and pharmacological justification for the clinical use of BBR-containing herbs in melanoma treatment.
Collapse
Affiliation(s)
- Bin Liu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiu-Qiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ting Li
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Tao Su
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Hui Guo
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Pei-Li Zhu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Anfernee Kai-Wing Tse
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Shi-Ming Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.
| |
Collapse
|
32
|
Sonowal H, Pal PB, Wen JJ, Awasthi S, Ramana KV, Srivastava SK. Aldose reductase inhibitor increases doxorubicin-sensitivity of colon cancer cells and decreases cardiotoxicity. Sci Rep 2017; 7:3182. [PMID: 28600556 PMCID: PMC5466629 DOI: 10.1038/s41598-017-03284-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
Anthracycline drugs such as doxorubicin (DOX) and daunorubicin remain some of the most active wide-spectrum and cost-effective drugs in cancer therapy. However, colorectal cancer (CRC) cells are inherently resistant to anthracyclines which at higher doses cause cardiotoxicity. Our recent studies indicate that aldose reductase (AR) inhibitors such as fidarestat inhibit CRC growth in vitro and in vivo. Here, we show that treatment of CRC cells with fidarestat increases the efficacy of DOX-induced death in HT-29 and SW480 cells and in nude mice xenografts. AR inhibition also results in higher intracellular accumulation of DOX and decreases the expression of drug transporter proteins MDR1, MRP1, and ABCG2. Further, fidarestat also inhibits DOX-induced increase in troponin-I and various inflammatory markers in the serum and heart and restores cardiac function in mice. These results suggest that fidarestat could be used as adjuvant therapy to enhance DOX sensitivity of CRC cells and to reduce DOX-associated cardiotoxicity.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX-77555, USA
| | - Pabitra B Pal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX-77555, USA
| | - Jian-Jun Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX-77555, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX-79430, USA
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX-77555, USA
| | - Satish K Srivastava
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX-77555, USA.
| |
Collapse
|
33
|
van der Laan JW, Kasper P, Silva Lima B, Jones DR, Pasanen M. Critical analysis of carcinogenicity study outcomes. Relationship with pharmacological properties. Crit Rev Toxicol 2016; 46:587-614. [DOI: 10.3109/10408444.2016.1163664] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Peter Kasper
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | | | - David R. Jones
- Medicines and Healthcare Products Regulatory Agency, London, UK
| | - Markku Pasanen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
34
|
Ruiz FX, Cousido-Siah A, Porté S, Domínguez M, Crespo I, Rechlin C, Mitschler A, de Lera ÁR, Martín MJ, de la Fuente JÁ, Klebe G, Parés X, Farrés J, Podjarny A. Structural Determinants of the Selectivity of 3-Benzyluracil-1-acetic Acids toward Human Enzymes Aldose Reductase and AKR1B10. ChemMedChem 2015; 10:1989-2003. [PMID: 26549844 DOI: 10.1002/cmdc.201500393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 12/15/2022]
Abstract
The human enzymes aldose reductase (AR) and AKR1B10 have been thoroughly explored in terms of their roles in diabetes, inflammatory disorders, and cancer. In this study we identified two new lead compounds, 2-(3-(4-chloro-3-nitrobenzyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetic acid (JF0048, 3) and 2-(2,4-dioxo-3-(2,3,4,5-tetrabromo-6-methoxybenzyl)-3,4-dihydropyrimidin-1(2H)-yl)acetic acid (JF0049, 4), which selectively target these enzymes. Although 3 and 4 share the 3-benzyluracil-1-acetic acid scaffold, they have different substituents in their aryl moieties. Inhibition studies along with thermodynamic and structural characterizations of both enzymes revealed that the chloronitrobenzyl moiety of compound 3 can open the AR specificity pocket but not that of the AKR1B10 cognate. In contrast, the larger atoms at the ortho and/or meta positions of compound 4 prevent the AR specificity pocket from opening due to steric hindrance and provide a tighter fit to the AKR1B10 inhibitor binding pocket, probably enhanced by the displacement of a disordered water molecule trapped in a hydrophobic subpocket, creating an enthalpic signature. Furthermore, this selectivity also occurs in the cell, which enables the development of a more efficient drug design strategy: compound 3 prevents sorbitol accumulation in human retinal ARPE-19 cells, whereas 4 stops proliferation in human lung cancer NCI-H460 cells.
Collapse
Affiliation(s)
- Francesc X Ruiz
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS, rue Laurent Fries, 67404, Illkirch CEDEX, France. .,Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, 08854-5627, Piscataway, NJ, (USA).
| | - Alexandra Cousido-Siah
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS, rue Laurent Fries, 67404, Illkirch CEDEX, France
| | - Sergio Porté
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Marta Domínguez
- Departmento de Química Orgánica and Centro de Investigaciones Biomédicas (CINBIO), Universidade de Vigo, 363100, Vigo, Spain
| | - Isidro Crespo
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Chris Rechlin
- Institute of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - André Mitschler
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS, rue Laurent Fries, 67404, Illkirch CEDEX, France
| | - Ángel R de Lera
- Departmento de Química Orgánica and Centro de Investigaciones Biomédicas (CINBIO), Universidade de Vigo, 363100, Vigo, Spain
| | - María Jesús Martín
- Biomar Microbial Technologies S.A., Parque Tecnológico de León, 24009, León, Spain
| | | | - Gerhard Klebe
- Institute of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Alberto Podjarny
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS, rue Laurent Fries, 67404, Illkirch CEDEX, France.
| |
Collapse
|
35
|
Li X, Shen Y, Lu Y, Yang J. Amelioration of Bleomycin-induced Pulmonary Fibrosis of Rats by an Aldose Reductase Inhibitor, Epalrestat. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:401-11. [PMID: 26330752 PMCID: PMC4553399 DOI: 10.4196/kjpp.2015.19.5.401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/11/2015] [Accepted: 06/29/2015] [Indexed: 12/21/2022]
Abstract
Aldose reductase (AR) is known to play a crucial role in the mediation of diabetic and cardiovascular complications. Recently, several studies have demonstrated that allergen-induced airway remodeling and ovalbumin-induced asthma is mediated by AR. Epalrestat is an aldose reductase inhibitor that is currently available for the treatment of diabetic neuropathy. Whether AR is involved in pathogenesis of pulmonary fibrosis and whether epalrestat attenuates pulmonary fibrosis remains unknown. Pulmonary fibrosis was induced by intratracheal instillation of bleomycin (5 mg/kg) in rats. Primary pulmonary fibroblasts were cultured to investigate the proliferation by BrdU incorporation method and flow cytometry. The expression of AR, TGF-β1, α-SMA and collagen I was analyzed by immunohistochemisty, real-time PCR or western blot. In vivo, epalrestat treatment significantly ameliorated the bleomycin-mediated histological fibrosis alterations and blocked collagen deposition concomitantly with reversing bleomycin-induced expression up-regulation of TGF-β1, AR, α-SMA and collagen I (both mRNA and protein). In vitro, epalrestat remarkably attenuated proliferation of pulmonary fibroblasts and expression of α-SMA and collagen I induced by TGF-β1, and this inhibitory effect of epalrestat was accompanied by inhibiting AR expression. Knockdown of AR gene expression reversed TGF-β1-induced proliferation of fibroblasts, up-regulation of α-SMA and collagen I expression. These findings suggest that AR plays an important role in bleomycin-induced pulmonary fibrosis, and epalrestat inhibited the progression of bleomycin-induced pulmonary fibrosis is mediated via inhibiting of AR expression.
Collapse
Affiliation(s)
- Xianwei Li
- Department of Pharmacology, Wannan Medical College, Wuhu 241002, China
| | - Yuanyuan Shen
- Department of Pharmacology, Wannan Medical College, Wuhu 241002, China
| | - Yining Lu
- Department of Pharmacology, Wannan Medical College, Wuhu 241002, China
| | - Jieren Yang
- Department of Pharmacology, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
36
|
Giménez-Dejoz J, Kolář MH, Ruiz FX, Crespo I, Cousido-Siah A, Podjarny A, Barski OA, Fanfrlík J, Parés X, Farrés J, Porté S. Substrate Specificity, Inhibitor Selectivity and Structure-Function Relationships of Aldo-Keto Reductase 1B15: A Novel Human Retinaldehyde Reductase. PLoS One 2015; 10:e0134506. [PMID: 26222439 PMCID: PMC4519324 DOI: 10.1371/journal.pone.0134506] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/09/2015] [Indexed: 02/02/2023] Open
Abstract
Human aldo-keto reductase 1B15 (AKR1B15) is a newly discovered enzyme which shares 92% amino acid sequence identity with AKR1B10. While AKR1B10 is a well characterized enzyme with high retinaldehyde reductase activity, involved in the development of several cancer types, the enzymatic activity and physiological role of AKR1B15 are still poorly known. Here, the purified recombinant enzyme has been subjected to substrate specificity characterization, kinetic analysis and inhibitor screening, combined with structural modeling. AKR1B15 is active towards a variety of carbonyl substrates, including retinoids, with lower kcat and Km values than AKR1B10. In contrast to AKR1B10, which strongly prefers all-trans-retinaldehyde, AKR1B15 exhibits superior catalytic efficiency with 9-cis-retinaldehyde, the best substrate found for this enzyme. With ketone and dicarbonyl substrates, AKR1B15 also shows higher catalytic activity than AKR1B10. Several typical AKR inhibitors do not significantly affect AKR1B15 activity. Amino acid substitutions clustered in loops A and C result in a smaller, more hydrophobic and more rigid active site in AKR1B15 compared with the AKR1B10 pocket, consistent with distinct substrate specificity and narrower inhibitor selectivity for AKR1B15.
Collapse
Affiliation(s)
- Joan Giménez-Dejoz
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Michal H. Kolář
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Neuroscience and Medicine (INM-9) and Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Francesc X. Ruiz
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire-Centre de Biologie Intégrative, CNRS, INSERM, UdS, Illkirch CEDEX, France
| | - Isidro Crespo
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Alexandra Cousido-Siah
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire-Centre de Biologie Intégrative, CNRS, INSERM, UdS, Illkirch CEDEX, France
| | - Alberto Podjarny
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire-Centre de Biologie Intégrative, CNRS, INSERM, UdS, Illkirch CEDEX, France
| | - Oleg A. Barski
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sergio Porté
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
37
|
Abstract
The ability to inhibit gene expression via RNA interference (RNAi) has a broad therapeutic potential for various human diseases such as infections and cancers. Recent advances in mechanistic understanding of RNAi have improved the design of functional small interfering (si) RNAs with superior potency and specificity. With respect to delivery, new developments in delivery strategies have facilitated preclinical and clinical siRNA applications. This review provides valuable insights to guide the design and delivery of therapeutic siRNAs.
Collapse
Affiliation(s)
- Mouldy Sioud
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310, Oslo, Norway,
| |
Collapse
|
38
|
Shoeb M, Ansari NH, Srivastava SK, Ramana KV. 4-Hydroxynonenal in the pathogenesis and progression of human diseases. Curr Med Chem 2014; 21:230-7. [PMID: 23848536 DOI: 10.2174/09298673113209990181] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 06/18/2013] [Accepted: 07/05/2013] [Indexed: 02/06/2023]
Abstract
Metastable aldehydes produced by lipid peroxidation act as 'toxic second messengers' that extend the injurious potential of free radicals. 4-hydroxy 2-nonenal (HNE), a highly toxic and most abundant stable end product of lipid peroxidation, has been implicated in the tissue damage, dysfunction, injury associated with aging and other pathological states such as cancer, Alzheimer, diabetes, cardiovascular and inflammatory complications. Further, HNE has been considered as a oxidative stress marker and it act as a secondary signaling molecule to regulates a number of cell signaling pathways. Biological activity of HNE depends on its intracellular concentration, which can differentially modulate cell death, growth and differentiation. Therefore, the mechanisms responsible for maintaining the intracellular levels of HNE are most important, not only in the defense against oxidative stress but also in the pathophysiology of a number of disease processes. In this review, we discussed the significance of HNE in mediating various disease processes and how regulation of its metabolism could be therapeutically effective.
Collapse
Affiliation(s)
- Mohammad Shoeb
- Department of Biochemistry and Molecular biology, University of Texas Medical Branch, Galveston, Texas -77555, USA.
| | | | | | | |
Collapse
|
39
|
Aldose reductase inhibition suppresses azoxymethane-induced colonic premalignant lesions in C57BL/KsJ-db/db mice. Cancer Lett 2014; 355:141-7. [PMID: 25218594 DOI: 10.1016/j.canlet.2014.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 08/29/2014] [Accepted: 09/04/2014] [Indexed: 12/31/2022]
Abstract
Type-2 diabetes and obesity-related metabolic abnormalities are major risk factors for the development of colon cancer. In the present study, we examined the effects of polyol pathway enzyme aldose reductase (AR) inhibitor, fidarestat, on the development of azoxymethane (AOM)-induced colonic premalignant lesions in C57BL/KsJ-db/db obese mice. Our results indicate that fidarestat given in the drinking water caused a significant reduction in the total number of colonic premalignant lesions in the AOM treated obese mice. Further, the expression levels of PKC-β2, AKT, COX-2 and iNOS in the colonic mucosa of AOM-treated mice were significantly decreased by fidarestat. The serum levels of IL-1α, IP-10, MIG, TNF-α and VEGF are significantly suppressed in AOM + fidarestat treated obese mice. Fidarestat also decreased the expression of COX-2, iNOS, XIAP, survivin, β-catenin and NF-κB in high glucose-treated HT29 colon cancer cells. In conclusion, our results indicate that fidarestat inhibits the development of colonic premalignant lesions in an obesity-related colon cancer and is chemopreventive to colorectal carcinogenesis in obese individuals.
Collapse
|
40
|
Cousido-Siah A, Ruiz FX, Mitschler A, Porté S, de Lera ÁR, Martín MJ, Manzanaro S, de la Fuente JA, Terwesten F, Betz M, Klebe G, Farrés J, Parés X, Podjarny A. Identification of a novel polyfluorinated compound as a lead to inhibit the human enzymes aldose reductase and AKR1B10: structure determination of both ternary complexes and implications for drug design. ACTA ACUST UNITED AC 2014; 70:889-903. [PMID: 24598757 DOI: 10.1107/s1399004713033452] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/10/2013] [Indexed: 01/09/2023]
Abstract
Aldo-keto reductases (AKRs) are mostly monomeric enzymes which fold into a highly conserved (α/β)8 barrel, while their substrate specificity and inhibitor selectivity are determined by interaction with residues located in three highly variable external loops. The closely related human enzymes aldose reductase (AR or AKR1B1) and AKR1B10 are of biomedical interest because of their involvement in secondary diabetic complications (AR) and in cancer, e.g. hepatocellular carcinoma and smoking-related lung cancer (AKR1B10). After characterization of the IC50 values of both AKRs with a series of polyhalogenated compounds, 2,2',3,3',5,5',6,6'-octafluoro-4,4'-biphenyldiol (JF0064) was identified as a lead inhibitor of both enzymes with a new scaffold (a 1,1'-biphenyl-4,4'-diol). An ultrahigh-resolution X-ray structure of the AR-NADP(+)-JF0064 complex has been determined at 0.85 Å resolution, allowing it to be observed that JF0064 interacts with the catalytic residue Tyr48 through a negatively charged hydroxyl group (i.e. the acidic phenol). The non-competitive inhibition pattern observed for JF0064 with both enzymes suggests that this acidic hydroxyl group is also present in the case of AKR1B10. Moreover, the combination of surface lysine methylation and the introduction of K125R and V301L mutations enabled the determination of the X-ray crystallographic structure of the corresponding AKR1B10-NADP(+)-JF0064 complex. Comparison of the two structures has unveiled some important hints for subsequent structure-based drug-design efforts.
Collapse
Affiliation(s)
- Alexandra Cousido-Siah
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSER/UdS, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - Francesc X Ruiz
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSER/UdS, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - André Mitschler
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSER/UdS, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - Sergio Porté
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Ángel R de Lera
- Departamento de Química Orgánica, Universidade de Vigo, 36310 Vigo, Spain
| | - María J Martín
- Biomar Microbial Technologies S.A., Parque Tecnológico de León, 24009 León, Spain
| | - Sonia Manzanaro
- Biomar Microbial Technologies S.A., Parque Tecnológico de León, 24009 León, Spain
| | - Jesús A de la Fuente
- Biomar Microbial Technologies S.A., Parque Tecnológico de León, 24009 León, Spain
| | - Felix Terwesten
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Michael Betz
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Gerhard Klebe
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Alberto Podjarny
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSER/UdS, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France
| |
Collapse
|
41
|
Duarte S, Momier D, Baqué P, Casanova V, Loubat A, Samson M, Guigonis JM, Staccini P, Saint-Paul MC, De Lima MP, Carle GF, Pierrefite-Carle V. Preventive cancer stem cell-based vaccination reduces liver metastasis development in a rat colon carcinoma syngeneic model. Stem Cells 2014. [PMID: 23193035 DOI: 10.1002/stem.1292] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer stem cells (CSCs) represent a minor population of self-renewing cancer cells that fuel tumor growth. As CSCs are generally spared by conventional treatments, this population is likely to be responsible for relapses that are observed in most cancers. In this work, we analyzed the preventive efficiency of a CSC-based vaccine on the development of liver metastasis from colon cancer in a syngeneic rat model. We isolated a CSC-enriched population from the rat PROb colon carcinoma cell line on the basis of the expression of the aldehyde dehydrogenase-1 (ALDH1) marker. Comparative analysis of vaccines containing lysates of PROb or ALDH(high) cells by mass spectrometry identifies four proteins specifically expressed in the CSC subpopulation. The expression of two of them (heat shock protein 27-kDa and aldose reductase) is already known to be associated with treatment resistance and poor prognosis in colon cancer. Preventive intraperitoneal administration of vaccines was then performed before the intrahepatic injection of PROb cancer cells. While no significant difference in tumor occurrence was observed between control and PROb-vaccinated groups, 50% of the CSC-based vaccinated animals became resistant to tumor development. In addition, CSC-based vaccination induced a 99.5% reduction in tumor volume compared to the control group. To our knowledge, this study constitutes the first work analyzing the potential of a CSC-based vaccination to prevent liver metastasis development. Our data demonstrate that a CSC-based vaccine reduces efficiently both tumor volume and occurrence in a rat colon carcinoma syngeneic model.
Collapse
Affiliation(s)
- Sonia Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Curcumin (diferuloylmethane) is the biphenolic active compound of turmeric. Curcumin has been used for hundreds of years to treat various ailments. Curcumin has been reported to exert numerous pharmacological effects by modulating multiple molecular targets including those involved in the pathogenesis of cancer. Cancer has been characterized as the dysregulation of cell signaling pathways through gradual alteration of regulatory proteins and through gene mutation. Curcumin is a highly pleiotropic molecule that modulates several intracellular signaling pathways in cancer. The pleiotropic activities of curcumin have been attributed to its novel molecular structure. Based on its β-diketone moiety, curcumin exists in keto-enol tautomers, and this tautomerism favors interaction and binding with a wide range of enzymes. Several studies have shown modulation of numerous signaling enzymes by curcumin including, LOX, COX-2, XO, proteasomes, Ca(2+)-ATPase of sarcoplasmic reticulum, MMPs, HAT, HDAC, DNMT1, DNA polymerase λ, ribonucleases, GloI, protein kinases (PKA, PKB, PKC, v-Src, GSK-3β, ErbB2), protein reductases (TrxR1, AR), GSH, ICDHs, peroxidases (Prx1, Prx2, Prx6) by treatment with curcumin. Various biophysical analyses have been reported, which shows the underlying molecular interaction of curcumin with multiple targets in terms of binding affinities. The current chapter describes how curcumin binds and modulates multiple enzymes involved cancer. Published clinical trial studies with curcumin in cancer management will also be discussed.
Collapse
Affiliation(s)
- Adeeb Shehzad
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Raheem Shahzad
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Young Sup Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
43
|
Fanfrlík J, Kolář M, Kamlar M, Hurný D, Ruiz FX, Cousido-Siah A, Mitschler A, Řezáč J, Munusamy E, Lepšík M, Matějíček P, Veselý J, Podjarny A, Hobza P. Modulation of aldose reductase inhibition by halogen bond tuning. ACS Chem Biol 2013; 8:2484-92. [PMID: 23988122 DOI: 10.1021/cb400526n] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this paper, we studied a designed series of aldose reductase (AR) inhibitors. The series was derived from a known AR binder, which had previously been shown to form a halogen bond between its bromine atom and the oxygen atom of the Thr-113 side chain of AR. In the series, the strength of the halogen bond was modulated by two factors, namely bromine-iodine substitution and the fluorination of the aromatic ring in several positions. The role of the single halogen bond in AR-ligand binding was elucidated by advanced binding free energy calculations involving the semiempirical quantum chemical Hamiltonian. The results were complemented with ultrahigh-resolution X-ray crystallography and IC50 measurements. All of the AR inhibitors studied were shown by X-ray crystallography to bind in an identical manner. Further, it was demonstrated that it was possible to decrease the IC50 value by about 1 order of magnitude by tuning the strength of the halogen bond by a monoatomic substitution. The calculations revealed that the protein-ligand interaction energy increased upon the substitution of iodine for bromine or upon the addition of electron-withdrawing fluorine atoms to the ring. However, the effect on the binding affinity was found to be more complex due to the change of the solvation/desolvation properties within the ligand series. The study shows that it is possible to modulate the strength of a halogen bond in a protein-ligand complex as was designed based on the previous studies of low-molecular-weight complexes.
Collapse
Affiliation(s)
- Jindřich Fanfrlík
- Institute of Organic
Chemistry and Biochemistry and Gilead Science Research Center, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Michal Kolář
- Institute of Organic
Chemistry and Biochemistry and Gilead Science Research Center, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Martin Kamlar
- Department
of Organic Chemistry, Charles University in Prague, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - David Hurný
- Department
of Organic Chemistry, Charles University in Prague, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Francesc X. Ruiz
- Department
of Integrative Biology, IGBMC, CNRS, INSERM, UdS, 1 rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - Alexandra Cousido-Siah
- Department
of Integrative Biology, IGBMC, CNRS, INSERM, UdS, 1 rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - André Mitschler
- Department
of Integrative Biology, IGBMC, CNRS, INSERM, UdS, 1 rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - Jan Řezáč
- Institute of Organic
Chemistry and Biochemistry and Gilead Science Research Center, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Elango Munusamy
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Martin Lepšík
- Institute of Organic
Chemistry and Biochemistry and Gilead Science Research Center, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Pavel Matějíček
- Department
of Physical and Macromolecular Chemistry, Charles University in Prague, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Jan Veselý
- Department
of Organic Chemistry, Charles University in Prague, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Alberto Podjarny
- Department
of Integrative Biology, IGBMC, CNRS, INSERM, UdS, 1 rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - Pavel Hobza
- Institute of Organic
Chemistry and Biochemistry and Gilead Science Research Center, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Palacký University, Olomouc, 771 46 Olomouc, Czech Republic
| |
Collapse
|
44
|
Shoeb M, Ramana KV, Srivastava SK. Aldose reductase inhibition enhances TRAIL-induced human colon cancer cell apoptosis through AKT/FOXO3a-dependent upregulation of death receptors. Free Radic Biol Med 2013; 63:280-90. [PMID: 23732517 PMCID: PMC3729926 DOI: 10.1016/j.freeradbiomed.2013.05.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/10/2013] [Accepted: 05/24/2013] [Indexed: 12/26/2022]
Abstract
One of the major problems associated with the chemotherapy of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) that selectively kills tumor cells is decreased drug resistance. This warranted the development of safe novel pharmacological agents that could sensitize the tumor cells to TRAIL. Herein, we examined the role of aldose reductase (AR) in sensitizing cancer cells to TRAIL and potentiating TRAIL-induced apoptosis of human colon cancer cells. We demonstrate that AR inhibition potentiates TRAIL-induced cytotoxicity in cancer cells by upregulation of both death receptor (DR)-5 and DR4. Knockdown of DR5 and DR4 significantly (>85%) reduced the sensitizing effect of the AR inhibitor fidarestat on TRAIL-induced apoptosis. Further, AR inhibition also downregulates cell survival proteins (Bcl-xL, Bcl-2, survivin, XIAP, and FLIP) and upregulates the expression of proapoptotic proteins such as Bax and alters mitochondrial membrane potential, leading to cytochrome c release, caspases-3 activation, and PARP cleavage. We found that AR inhibition regulates AKT/PI3K-dependent activation of forkhead transcription factor FOXO3a. Knockdown of FOXO3a significantly (>80%) abolished AR inhibition-induced upregulation of DR5 and DR4 and apoptosis in colon cancer cells. Overall, our results show that fidarestat potentiates TRAIL-induced apoptosis through downregulation of cell survival proteins and upregulation of death receptors via activation of the AKT/FOXO3a pathway.
Collapse
Affiliation(s)
- Mohammad Shoeb
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, 77555
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, 77555
| | - Satish K Srivastava
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, 77555
| |
Collapse
|
45
|
Wang B, Wang W, Niu W, Liu E, Liu X, Wang J, Peng C, Liu S, Xu L, Wang L, Niu J. SDF-1/CXCR4 axis promotes directional migration of colorectal cancer cells through upregulation of integrin αvβ6. Carcinogenesis 2013; 35:282-91. [PMID: 24085800 DOI: 10.1093/carcin/bgt331] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Colorectal cancer (CRC) displays a predilection for metastasis to liver. Although stromal cell-derived factor-1 (SDF-1)/CXCR4 plays an important role in the liver metastasis, the molecular mechanism still remains obscure. We previously reported that integrin αvβ6 was implicated in the progression of CRC. However, no data are currently available on the cross talk between CXCR4 and αvβ6. In the present study, we first demonstrated the cross talk between CXCR4 and αvβ6 and their role in liver metastasis of CRC. We analyzed 159 human CRC samples and found that expression of CXCR4 and αvβ6 was significantly associated with liver metastasis, and interestingly expression of αvβ6 significantly correlated with expression of CXCR4. Both CXCR4 and αvβ6 were highly expressed in metastatic CRC cell lines HT-29 and WiDr, whereas both of them were exiguous in non-metastatic cell line Caco-2. Furthermore, inhibition of αvβ6 significantly decreased SDF-1α-induced cell migration in vitro. SDF-1/CXCR4 could upregulate αvβ6 expression through phosphorylation of ERK and activation of Ets-1 transcription factor. In conclusion, we demonstrate that SDF-1/CXCR4 induces directional migration and liver metastasis of CRC cells by upregulating αvβ6 through ERK/Ets-1 pathway. These data support combined inhibition of CXCR4 and αvβ6 to prevent development of liver metastasis of CRC.
Collapse
Affiliation(s)
- Ben Wang
- Department of Hepatobiliary Surgery
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Saxena A, Shoeb M, Ramana KV, Srivastava SK. Aldose reductase inhibition suppresses colon cancer cell viability by modulating microRNA-21 mediated programmed cell death 4 (PDCD4) expression. Eur J Cancer 2013; 49:3311-9. [PMID: 23827854 DOI: 10.1016/j.ejca.2013.05.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/02/2013] [Accepted: 05/30/2013] [Indexed: 12/11/2022]
Abstract
Inhibition of polyol pathway enzyme aldose reductase (AR) has been shown to prevent colon cancer cells growth in culture and in nude mice xenografts. However, the role of AR in the mediation of growth factor-induced colon cancer cells growth is not well understood. In this study, we have investigated how AR inhibition prevents tumour growth via regulation of microRNA (miR)-21-mediated programmed cell death 4 (PDCD4) expression in colon cancer cells in in vitro and in vivo. Treatment of colon cancer cells (HT29, SW480 and Caco-2) with epidermal growth factor (EGF) caused increased expression of miR-21 and inhibition of AR prevented it. Further, AR inhibition also increased PDCD4, a putative target of miR-21 in human colon cancer cells. Inhibition of AR also prevented EGF-induced phosphorylation of PDCD4. Treatment of HT29 cells with AR inhibitor, fidarestat, prevented the EGF-induced phosphorylation of mammalian target of rapamycin (mTOR), regulatory associated protein of mTOR (Raptor), eukaryotic initiation factor 4E (eIF4E), p70 S6 kinase (S6K) and eukaryotic initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) and increased the phosphorylation of 5' adenosine monophosphate-activated protein kinase (AMPK). Similarly, in nude mice xenograft tissues, PDCD4 and 4E-BP1 levels were significantly higher in AR inhibitor-treated mice compared to controls. Collectively, these results indicate that AR inhibition prevents growth factor-induced colon cancer growth by down-regulating miR-21 expression and increasing PDCD4 levels through the reactive oxygen species (ROS)/AMPK/mTOR/AP1/4E-BP1 pathway.
Collapse
Affiliation(s)
- Ashish Saxena
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | | | | | | |
Collapse
|
47
|
Yadav UCS, Naura AS, Aguilera-Aguirre L, Boldogh I, Boulares HA, Calhoun WJ, Ramana KV, Srivastava SK. Aldose reductase inhibition prevents allergic airway remodeling through PI3K/AKT/GSK3β pathway in mice. PLoS One 2013; 8:e57442. [PMID: 23460857 PMCID: PMC3584054 DOI: 10.1371/journal.pone.0057442] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/21/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Long-term and unresolved airway inflammation and airway remodeling, characteristic features of chronic asthma, if not treated could lead to permanent structural changes in the airways. Aldose reductase (AR), an aldo-sugar and lipid aldehyde metabolizing enzyme, mediates allergen-induced airway inflammation in mice, but its role in the airway remodeling is not known. In the present study, we have examined the role of AR on airway remodeling using ovalbumin (OVA)-induced chronic asthma mouse model and cultured human primary airway epithelial cells (SAECs) and mouse lung fibroblasts (mLFs). METHODS Airway remodeling in chronic asthma model was established in mice sensitized and challenged twice a week with OVA for 6 weeks. AR inhibitor, fidarestat, was administered orally in drinking water after first challenge. Inflammatory cells infiltration in the lungs and goblet cell metaplasia, airway thickening, collagen deposition and airway hyper-responsiveness (AHR) in response to increasing doses of methacholine were assessed. The TGFβ1-induced epithelial-mesenchymal transition (EMT) in SAECs and changes in mLFs were examined to investigate AR-mediated molecular mechanism(s) of airway remodeling. RESULTS In the OVA-exposed mice for 6 wks inflammatory cells infiltration, levels of inflammatory cytokines and chemokines, goblet cell metaplasia, collagen deposition and AHR were significantly decreased by treatment with AR inhibitor, fidarestat. Further, inhibition of AR prevented TGFβ1-induced altered expression of E-cadherin, Vimentin, Occludin, and MMP-2 in SAECs, and alpha-smooth muscle actin and fibronectin in mLFs. Further, in SAECs, AR inhibition prevented TGFβ1- induced activation of PI3K/AKT/GSK3β pathway but not the phosphorylation of Smad2/3. CONCLUSION Our results demonstrate that allergen-induced airway remodeling is mediated by AR and its inhibition blocks the progression of remodeling via inhibiting TGFβ1-induced Smad-independent and PI3K/AKT/GSK3β-dependent pathway.
Collapse
Affiliation(s)
- Umesh C. S. Yadav
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Amarjit S. Naura
- Department of Medicine and Stanley Scot Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Leopoldo Aguilera-Aguirre
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hamid A. Boulares
- Department of Pharmacology and Experimental Therapeutics and Stanley Scot Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - William J. Calhoun
- Department of Internal Medicine-Pulmonary/Critical Care, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kota V. Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Satish K. Srivastava
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
48
|
Ruiz FX, Cousido-Siah A, Mitschler A, Farrés J, Parés X, Podjarny A. X-ray structure of the V301L aldo-keto reductase 1B10 complexed with NADP(+) and the potent aldose reductase inhibitor fidarestat: implications for inhibitor binding and selectivity. Chem Biol Interact 2013; 202:178-85. [PMID: 23295227 DOI: 10.1016/j.cbi.2012.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/12/2012] [Accepted: 12/18/2012] [Indexed: 01/03/2023]
Abstract
Only one crystal structure is currently available for tumor marker AKR1B10, complexed with NADP(+) and tolrestat, which is an aldose reductase inhibitor (ARI) of the carboxylic acid type. Here, the X-ray structure of the complex of the V301L substituted AKR1B10 holoenzyme with fidarestat, an ARI of the cyclic imide type, was obtained at 1.60Å resolution by replacement soaking of crystals containing tolrestat. Previously, fidarestat was found to be safe in phase III trials for diabetic neuropathy and, consistent with its low in vivo side effects, was highly selective for aldose reductase (AR or AKR1B1) versus aldehyde reductase (AKR1A1). Now, inhibition studies showed that fidarestat was indeed 1300-fold more selective for AR as compared to AKR1B10, while the change of Val to Leu (found in AR) caused a 20-fold decrease in the IC50 value with fidarestat. Structural analysis of the V301L AKR1B10-fidarestat complex displayed enzyme-inhibitor interactions similar to those of the AR-fidarestat complex. However, a close inspection of both the new crystal structure and a computer model of the wild-type AKR1B10 complex with fidarestat revealed subtle changes that could affect fidarestat binding. In the crystal structure, a significant motion of loop A was observed between AR and V301L AKR1B10, linked to a Phe-122/Phe-123 side chain displacement. This was due to the presence of the more voluminous Gln-303 side chain (Ser-302 in AR) and of a water molecule buried in a subpocket located at the base of flexible loop A. In the wild-type AKR1B10 model, a short contact was predicted between the Val-301 side chain and fidarestat, but would not be present in AR or in V301L AKR1B10. Overall, these changes could contribute to the difference in inhibitory potency of fidarestat between AR and AKR1B10.
Collapse
Affiliation(s)
- Francesc Xavier Ruiz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | | | | | | | | | | |
Collapse
|
49
|
Laffin B, Petrash JM. Expression of the Aldo-Ketoreductases AKR1B1 and AKR1B10 in Human Cancers. Front Pharmacol 2012; 3:104. [PMID: 22685431 PMCID: PMC3368246 DOI: 10.3389/fphar.2012.00104] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/13/2012] [Indexed: 01/27/2023] Open
Abstract
The American Cancer Society estimates that there will be more than 1.5 million new cases of cancer in 2011, underscoring the need for identification of new therapeutic targets and development of novel cancer therapies. Previous studies have implicated the human aldo-ketoreductases AKR1B1 and AKR1B10 in cancer, and therefore we examined AKR1B1 and AKR1B10 expression across all major human cancer types using the Oncomine cancer gene expression database (Compendia Biosciences, www.oncomine.com). Using this database, we found that expression of AKR1B1 and AKR1B10 varies greatly by cancer type and tissue of origin, including agreement with previous reports that AKR1B10 is significantly over-expressed in cancers of the lungs and liver. AKR1B1 is more broadly over-expressed in human cancers than AKR1B10, albeit at a generally lower magnitude. AKR1B1 over-expression was found to be associated with shortened patient survival in acute myelogenous leukemias and multiple myelomas. High AKR1B10 expression tends to predict less aggressive clinical course generally, notably within lung cancers, where it tends to be highly over-expressed compared to normal tissue. These findings suggest that AKR1B1 inhibitors in particular hold great potential as novel cancer therapeutics.
Collapse
Affiliation(s)
- Brian Laffin
- Department of Ophthalmology, The School of Medicine, University of Colorado Aurora, CO, USA
| | | |
Collapse
|
50
|
Abstract
RNA interference (RNAi) has been extensively employed for in vivo research since its use was first demonstrated in mammalian cells 10 years ago. Design rules have improved, and it is now routinely possible to obtain reagents that suppress expression of any gene desired. At the same time, increased understanding of the molecular basis of unwanted side effects has led to the development of chemical modification strategies that mitigate these concerns. Delivery remains the single greatest hurdle to widespread adoption of in vivo RNAi methods. However, exciting advances have been made and new delivery systems under development may help to overcome these barriers. This review discusses advances in RNAi biochemistry and biology that impact in vivo use and provides an overview of select publications that demonstrate interesting applications of these principles. Emphasis is placed on work with synthetic, small interfering RNAs (siRNAs) published since the first installment of this review which appeared in 2006.
Collapse
|